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General Introduction

A person’s life can be significantly affected both physically and psychologically by los-
ing a hand. The physical effects, particularly when the amputation is not fully healed
or when pain from phantom limbs manifests, can make it difficult to do daily duties
and cause discomfort and anguish. However, advancements in prosthetics have provided
amputees with opportunities to regain physical fitness and independence. Myoelectric
prosthetics, in particular, allow individuals to restore some lost limb function by utiliz-
ing surface Electromyography (sEMG) signals from antagonistic muscles to control basic
gripping movements. While progress has been made in improving the function of complex
prosthetics through pattern recognition methods, their full potential for practical clinical
applications is yet to be realized.

The employment of gestures with multimodal signals is a promising advancement in the
field of prosthetics that enables amputees to control their prosthetic devices more organ-
ically and intuitively. Eye-tracking technology and numerous sensors, including sEMG
and accelerometer sensors, can be used as multimodal signals to identify and decipher
the intentions and movements of users. The EMG sensor captures electrical signals from
the arm muscles, providing information about the user’s intended hand movements. The
accelerometer data measures hand acceleration, enhancing the accuracy of tracking, while
eye-tracking technology detects the user’s gaze for more precise interactions.

In other applications, users can interact with computers and other gadgets in a more
intuitive and natural way by integrating these sensors. For instance, people can move
their hands to control a robotic arm or their head and hands to move around a virtual
environment.

Deep Learning, a field within Machine Learning, plays a crucial role in this pursuit, aiming
to bring machine learning closer to the realm of artificial intelligence. Deep Learning is a
valuable component of data science, encompassing statistics and predictive modeling, and
greatly aids scientists in efficiently collecting, analyzing, and interpreting vast amounts
of data. By leveraging Deep Learning techniques, these signals, can be fused to enhance
gesture recognition, paving the way for more effective prosthetic control.

The primary objective of this work is to develop intelligent solutions capable of recognizing
hand gestures from sEMG signals, accelerometer data, and other complementary signals.
This approach can improve the accuracy and efficiency of prosthetic control, enabling
amputees to perform a wider range of daily activities with greater ease and confidence.



General Introduction

To present the work conducted, this engineering thesis is structured as follows:

o The first chapter provides a comprehensive introduction to the employed signals,
including sEMG, eye tracking, and accelerometer data, and their significance in
hand gesture recognition. It also discusses the dataset utilized in this work.

e The second chapter introduces deep learning and its fundamental concepts, such
as neural networks, convolutional neural networks (CNN), and recurrent neural
networks (RNN). It explores the application of multimodal deep learning techniques
to integrate and analyze data from multiple sources.

o The third chapter focuses on developing a deep learning-based approach for hand
gesture recognition using sEMG signals as a unique modality. It presents the pro-
posed model, which combines CNN and Long and Short Term Memory (LSTM), and

explores the search for optimal hyperparameters to enhance system performance.

e In chapter four, the study concentrates on developing a hand gesture recognition
system that utilizes sEMG signals, accelerometer data, and gaze information as
inputs from multiple sources. This chapter presents the evolution of our solution
from one source to three modalities. The performances of the proposed models are
evaluated and compared to other approaches discussed in the related works.
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Chapter 1. Multimodal perception of hand gestures

1.1 Introduction

Gesture recognition using wearable sensors and deep learning methods has emerged as
a prominent field in human-computer interaction. However, one persistent challenge in
this domain is the limited accuracy and generalizability of recognition models, especially
when it comes to recognizing a wide range of gestures in various scenarios. To overcome
this limitation, researchers are actively exploring innovative approaches.

One promising avenue is the utilization of wearable sensors, such as surface ElectroMyo-
Graphy (sEMG) sensors. These sensors capture electrical signals generated by muscle
activity during hand gestures. By analyzing these signals, distinct patterns can be identi-
fied, enabling the recognition of specific gestures. Deep learning models, with their ability
to extract complex features and to learn hierarchical representations, can effectively cap-
ture the intricate relationships within the sEMG signals and improve the accuracy of
gesture recognition.

In addition to sEMG, other wearable sensors like accelerometers and gyroscopes offer
valuable insights into hand motion and orientation. Accelerometers provide information
about the acceleration and movement of the hand. Currently, some research-oriented
sEMG electrodes are already equipped with three-axis accelerometers. By integrating
data from these sensors with sEMG signals, a more comprehensive understanding of hand
gestures can be achieved. Deep learning algorithms can be trained on multimodal data to
capture the intricate dynamics between muscle activity, hand movement, and orientation,
leading to robust and accurate gesture recognition.

Additionally, the use of eye-tracking technology expands the capabilities of multimodal
gesture detection. It becomes possible to determine the user’s focus of attention and as-
sociate it with particular gestures by observing the user’s eye movements. The user’s gaze
direction can offer helpful hints about the intended meaning of a gesture, improving the
interpretability and accuracy of gesture recognition systems. This association of multiple
sensors types can build systems that are more resilient and adaptable to various users,
environments, and applications by merging data from many sources.

The aim of this chapter is to study these sensors properties and the principal charac-
teristic of the generated signals.

1.2 Electromyogram (EMG) signals

Electromyography (EMG) is an experimental technique that involves recording and an-
alyzing electrical signals generated by muscles [1]. These signals, known as myoelectric
signals, are produced by changes in the muscle fiber’s physiological state. EMG can be
measured non-invasively using electrodes on the skin (surface EMG) or invasively using
needles inside the muscle (implanted EMG). Surface EMG is commonly used as it is safe
and easy to conduct. The EMG signal represents the bioelectrical events associated with
muscle contraction and is measured in millivolts (mV) [2]. By analyzing the EMG signal,

4



Chapter 1. Multimodal perception of hand gestures

insights into muscle activity can be gained. A voluntary signal from the central nervous
system that activates specific muscle fibers through the spinal cord and motor neurons
causes a muscle contraction. The resulting EMG signal is the total of all the muscular
action potentials and offers important details on the activity of the muscles during various
motions, aiding in the comprehension of the mechanics of the human body.

1

Amplitude (mV)
Normalized PSD
o

(0] P e T S——
. 0 500
Time (s) Frequency (Hz)

Figure 1.1: illustrates an example of sSEMG signal.

1.2.1 The characteristics of EMG signals

The EMG (Electromyography) signal is indeed a complex physiological signal that reflects
the electrical activity of muscles. It exhibits the several following characteristics [2], [3]:

e Random: The EMG signal can appear random due to the stochastic nature of
muscle activation and motor unit recruitment.

» Non-stationary: The EMG signal is non-stationary because its statistical properties,
such as mean and variance, change over time. This variability arises from factors
like changes in muscle contraction levels and movement artifacts.

e Non-linear: The EMG signal is non-linear, meaning its waveform does not follow
a linear relationship. The behavior of muscle fibers and the interactions between
them result in non-linear characteristics.

o Multi-component: The EMG signal is composed of multiple components originating
from different sources. Besides muscle activity, it may also contain interference
from the heart’s electrical activity (ECG) and brain activity (EEG) within the
same frequency range. To separate EMG signals from ECG and EEG signals, a
dominant frequency range of 20 Hz to 500 Hz is commonly chosen. This range
ensures reasonable separation from other signals in the same frequency range.
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o Regarding the amplitude and frequency ranges, the EMG signal can vary signifi-
cantly. The amplitude typically ranges from 10 pv to 3 mV, depending on factors
like muscle size, location, and the degree of contraction.

It’s important to note that these characteristics and ranges can vary slightly depending
on the specific context, measurement techniques, and the muscles being monitored.

1.2.2 Hand Gesture Recognition using EMG

Hand Gesture Recognition using EMG involves detecting hand gestures through analyz-
ing the electrical signals generated by muscle movements. Different solutions have been
developed using conventional methods and Deep learning-based approaches. It can be in
a variety of applications, including robotics control, virtual reality systems, and prosthetic
devices, the technique has yielded encouraging results.

The figure 1.2 demonstrates the use of robotic hand prostheses controlled by Electromyo-
graphy (EMG) data. It shows a robotic hand, and electrodes attached to the user’s arm,
capturing electrical signals from the arm muscles during intentional hand movements.
Advanced algorithms and control systems process and analyze the EMG data, allowing
the robotic hand prosthesis to mimic the user’s hand movements.

MOVEMENT MOVEMENT ROBOTIC
REPLICATION CLASSIFICATION PROSTHESIS
CONTROL
\ *\ o #

& data 1
glove

o

o

...
{ biceps brachii | !

{ triceps brachii
electrodes &  fequally spaced 8EMG
accelerometers 'extensor digitorum superficialis

Figure 1.2: Robotic Hand Prostheses Controlled by Electromyography Data

1.3 Accelerometer data

Accelerometer data refers to the measurements and readings obtained from an accelerom-
eter sensor that detects and quantifies the acceleration experienced by a device or wear-
able in three dimensions [4]. The accelerometer data typically includes acceleration values
along the x, y, and z axes, representing the device’s movement or changes in velocity in
different directions. These measurements are often recorded as numerical values or time-
series data, allowing for analysis and interpretation of motion patterns, trends, and specific
motions. By analyzing accelerometer data, various applications and algorithms can lever-
age the information to enable motion detection, gesture recognition, activity tracking, and
other functionalities that rely on understanding and utilizing motion-related information

6
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[5]-

The figure 1.3 depicts a graphical representation of labeled axes for an accelerometer.
The x-axis represents movement in the horizontal plane, the y-axis represents movement
perpendicular to the horizontal plane (e.g., vertical movement), and the z-axis repre-
sents movement perpendicular to both the x and y axes (e.g., depth or forward/backward
movement).

' . Axis

Accelerometer

Figure 1.3: The flat movement measurement of the accelerometer (x, y and z axis)[6]

1.3.1 The characteristics of Accelerometer Data

Accelerometer data for hand gesture recognition possesses several characteristics that are
essential for accurate classification. Here are some key characteristics [7], [8]:

o Three-Axis Data: Accelerometers capture data along three axes (X, Y, and Z),
representing the three dimensions of physical space. This comprehensive data can
provide a detailed representation of hand movements.

o Amplitude and Magnitude: Accelerometer data reflects the acceleration experienced
by the hand during gestures. The amplitude of the acceleration indicates the inten-
sity or force of the gesture, while the magnitude combines the acceleration values
from all three axes to represent the overall movement.

« Noise and Artifacts: Accelerometer data is susceptible to noise and artifacts. Fac-
tors like sensor quality, device orientation, and external disturbances can introduce

7
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unwanted noise. Preprocessing techniques, such as filtering and noise reduction, are
used to improve the signal quality.

o Multiclass Classification: Hand gesture recognition often involves differentiating
between multiple gestures or classes. The accelerometer data needs to be labeled
with corresponding gesture classes for supervised learning.

Considering these characteristics, accelerometer data provides valuable information for
accurate hand gesture recognition. It captures the dynamics, intensity, and orientation of
hand movements.

1.3.2 Hand Gesture Recognition Using Accelerometer Data

In the context of hand gesture recognition for prosthetics, accelerometer data refers to the
measurements obtained from an accelerometer sensor that is integrated into a prosthetic
hand or limb.In the context of hand gesture recognition for prosthetics, accelerometer
data refers to the measurements obtained from an accelerometer sensor that is integrated
into a prosthetic hand or limb. Figure 1.4 illustrates the positioning of accelerometers on
the hand to capture the hand’s acceleration. The accelerometer data is processed and
analyzed to identify the patterns and movements associated with different hand gestures.
Algorithms and machine learning techniques can be applied to the accelerometer data to
train models that can recognize and classify the intended gestures accurately. Prosthetic
hand systems can comprehend the user’s intended hand movements and transform them
into appropriate actions by regulating the motors or actuators inside the prosthetic hand
by gathering and analyzing accelerometer data. As a result, users are able to restore
dexterity and control over their prosthetic limb, improving their ability to carry out
various duties and activities.

Figure 1.4: Sensor of a three-axis accelerometer enclosed in a waterproof case

1.4 Eye tracking data

Eye tracking is a method for observing and analyzing eye movements to determine a
person’s direction of gaze and visual attention. Cameras are commonly used to cap-
ture images of the eyes, which are then processed to calculate properties related to eye

8
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movements. The gaze direction and point of gaze in 3D coordinates can be estimated by
analyzing the pupil and corneal reflection. Eye tracking techniques can be classified as in-
trusive or non-intrusive, depending on whether the recording device makes direct contact
with the user [9]. Invasive methods offer higher accuracy but require direct contact, while
non-invasive methods use remote cameras. Infrared corneal reflection technology is com-
monly used [10], analyzing pupillary reflectance and corneal gloss to determine the gaze
direction (Figure 1.5). Eye tracking provides real-time data on eye movements, enabling
insights into cognitive, emotional, and physiological states. It has various applications in
rehabilitation, assistance, and understanding human behavior and interactions.

Origine Coordinates
(Center of Scene
Camera

kg g

Z z;' Gaze Direction

:__, —  Vector
| [.}{:-':':-:Z.}I
i 1 L]
Pupil Center Gaze Position 3D
Coordinates (3.Y.7) Coordinates (3,Y.7)

Figure 1.5: Overview of the gaze quantities calculated by a head mounted eye tracking
system|[10]

1.4.1 The characteristics of Eye tracking in gesture recognition
The characteristics of eye tracking data for hand gesture recognition include [10]-[12]:

o Eye movement information: Eye tracking captures saccades, fixations, and gaze
direction, providing insights into visual attention and intention.

« Spatial data: Eye tracking measures eye positions, aiding in determining the relative
positions of hands and gestures.

o Temporal data: Eye tracking data collected over time enables analysis of temporal
patterns and sequences of eye movements, crucial for recognizing dynamic gestures.

o Non-invasiveness: Eye tracking is non-intrusive, relying on optical or infrared sen-
sors for comfortable user experience.

« Robustness to lighting conditions: Eye tracking technology works effectively under
various lighting conditions, ensuring reliable gesture recognition.

e Individual uniqueness: Eye movement patterns are unique to individuals, allowing
for personalized gesture recognition and adaptations.
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Leveraging these characteristics, eye tracking data enhances hand gesture recognition,
enabling intuitive and natural human-computer interactions.

1.4.2 Hand Gesture Recognition Using Eye tracking

Eye tracking technology can enhance hand gesture detection systems by providing addi-
tional contextual information. It records eye motions, such as pupil size, gaze direction,
and movement patterns, using specialized cameras or sensors . This data can be used
in various ways, including anticipating gestures based on gaze direction and detecting
subtle hand motions that may be challenging to capture with hand tracking alone . By
combining hand and eye tracking data, the system can improve accuracy and provide
user feedback, such as visual or auditory confirmation [12]. Eye-tracking data can also
aid in the segmentation of hand regions, reducing false positives or negatives in gesture
detection. Overall, eye tracking enhances hand gesture recognition by providing insights
into user intent and attention, resulting in a more intuitive and natural user experience.

The figure 1.6 show gaze points are superimposed onto the scene camera video, show-
casing the subject’s visual fixations. Each fixation is represented by a circle, with its
diameter indicating the duration of the fixation, and a number indicating the order of the
fixations. The subject’s task in this particular scenario was to grasp the door handle and
the bottle

Figure 1.6: Visualizing Gaze Points Overlapped onto Scene Camera Video: An Illustrative
Example[12]

1.5 Description of the dataset MeganePro[12]

The dataset "MeganePro Dataset” was published by the University of Applied Sciences
Western Switzerland (HES-SO Valais), Istituto Italiano di Tecnologia (IIT), and Uni-
versity Hospital Zurich (UHZ) in 2019 [12]. It has been gathered using Myo-Electricity,
accelerometers and Gaze.

10
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The MeganePro team created a set-up (Figure 1.7) for collecting sSEMG from the forearm,
gaze and visual data.

External
Eye monitor
Tracking of the
Device Acquisition
Laptop
Objects

Surface
EMG
Electrodes

Figure 1.7: Eye tracking data device and SEMG electrodes for an acquisition[12]

1.5.1 Dataset Acquisition

The Delsys Trigno Wireless sSEMG System (Delsys Inc., USA) is made up of sSEMG elec-
trodes that are utilized to record muscle activity from the participants’ forearms. The
inter-sensor delay is less than 500 s, the baseline noise is less than 750 nV RMS, and
the sampling rate for the sSEMG signal is 1926 Hz [10]. A three-axial accelerometer that
gathers data at a sampling rate of 148 Hz is built into each electrode. The electrodes and
a base station that is joined to the laptop communicate wirelessly. Figure 1.8 illustrates
the electrodes and the Tobii Pro Glasses 2 used for the acquisition process. To collect
data on gaze and vision, the Tobii Pro Glasses 2 developed by Tobii AB, Sweden (see
Figure 1.8) were utilized. The gaze and information connected to the gaze are captured
at 100 Hz. The data from the glasses is wirelessly sent to the laptop and locally stored
on a portable recording device that is linked to the glasses via a cable. Additionally, the
recording device has a battery that has a maximum recording time of about 120 minutes.

11
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Figure 1.8: Tobii Pro Glasses 2 and sEMG electrodes [10]

The dataset was built from 29 people while they made a variety of static and dynamic
hand gestures. For these experiments, 10 grasps are chosen, each of which may be used
to move repeatedly three objects in a natural way. Standing and sitting positions were
used for all static grasps. During the dynamic portion, a subset of the earlier objects was
functionally handled using the same grasps.

Twelve SEMG electrodes with incorporated three-axial accelerometers were implanted in
two arrays around the right forearm before the activity as shown in figure 1.8 A detailed
description of this dataset is available in[12]

Figure 1.9: Overview of the acquisition protocol and setup during the execution of a
task[10]

The table 1.1 [12] summarizes the ID and name of different grasp types , along with
the ID and name of the objects involved in the grasping action. In some cases, there is
further refinement specifying the ID and name of the specific object parts used in the
grasping. Additionally, the table includes a column indicating the vocal command given
to the subjects.

12



Table 1.1: Overview of the grasp types and objects for the static condition of the exercise

Grasp Object Object Part Vocal Instruction

1 bottle 1 bottle take the bottle
medium wrap 2 can 2 can can

3 door handle 3 door handle door handle

4 mug 23 handle mug
lateral 5 key 5 key key

24 pencil case 6 zip zip

7 plate 7 plate plate
parallel extension 8 book 8 book book

9 drawer 9 drawer drawer

1 bottle 10 cap cap of the hottle
tripod grasp 4 mug 4 mug mug

9 drawer 11 knob knob of the drawer

12 ball 12 ball ball
power sphere 13 |bulb 13 |bulb light bulb

5 key 5 key keys

15 jar 26 lid jar
precision disk 13 |bulb 13 |bulb light bulb

12 ball 12 ball ball

16 clothespin 16 clothespin clothespin
prismatic pinch 5 key 27 keyring keys

2 can 25 pull tab can

21 remote 17 button point at a button of the remote
index finger extension 18 knife 18 knife take the knife

19 fork 19 fork fork

20 screwdriver 20 screwdriver screwdriver
adducted thumb 21 remote 21 remote remote

22 wrench 22 wrench wrench

18 knife 18 knife knife
prismatic four finger 19 fork 19 fork fork

22 wrench 22 wrench wrench




Chapter 1. Multimodal perception of hand gestures

1.5.2 Dataset size and organisation

First of all, all modalities (SEMG, Accelerometer, Gaz) were resampled at the original
1926 Hz sampling rate of the sSEMG stream. Each modality has 1926 data points per
second.

The dataset size can be defined as the number of signals per gesture per subject. Each
subject performed 10 grasps each grasp with 10 repetitions of the manipulation of the
same object. Therefore, it is composed of 100 signals per subject, with a total of 29 sub-
jects the data contains 2900 signals each one with around 15000 data points. Finally, the
dataset has a size of 40M row for each modality.

sEMG dataset contains 12 columns for 12 electrodes each one with three columns repre-
senting the three axial accelerometer (x,y,z), and 2 columns for eye-tracking data repre-
senting the x and y coordinates of the plane. Figures 1.10, 1.11, 1.12 shows examples of
sEMG, eye tracking and accelerometer signals.
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Figure 1.11: Eye tracking signals
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Figure 1.12: Accelerometer signals

The sEMG signals are down-sampled (reduce the sampling frequency). This process
is frequently used to reduce the size of a dataset while keeping the important details and
properties of the original data. The sampling rate may be fairly high when working with
high-frequency data, such as sensor measurements or time series data, producing a large
amount of data. In this work, we made downsampling with a factor of 10. This factor can
reduce the number of data points while attempting to retain the essential features and
dynamics of the original signal. This reduction in data size can lead to computational effi-
ciency, faster processing times, and improved resource utilization, especially when dealing
with large datasets or limited computing resources [12].

Figure 1.10 shows examples of SEMG signals.

1.5.3 Data pre-processing

Working with EMG (Electromyography) data requires many pre-processing steps, includ-
ing data scaling or normalization. The amplitude of the EMG signals can vary greatly
based on a number of variables, including the degree of muscle activation, the location of
the electrodes, and individual variances.

For many EMG studies, such as feature extraction, classification, or pattern recogni-
tion, data scaling or normalization is crucial. It enhances the stability of algorithms or
models, helps to mitigate the effect of amplitude changes, and makes the results more
generalizable. It made the range and the distribution of the EMG data more uniform and
acceptable for analysis. To ensure that the size of the data does not create bias or distort
the analysis results, the fundamental objective of data scaling is to scale all of the EMG
signals to a similar scale [13], [14].

The z-score normalization, commonly referred to as standardization, is a popular tech-
nique for scaling EMG data [14]. Using this method, the data is transformed to have
a mean of zero and a standard deviation of one. As a result, the EMG signals have a
uniform scale and are centred on zero, making it simpler to compare and analyse the data
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from various participants and trials.

When working with a multimodal model that takes input from multiple sources with
different scales, it is generally advisable to standardize or normalize each modality sepa-
rately. This ensures that the data from different modalities are on a similar scale, enabling
the model to learn from all modalities effectively[15], [16].

To ensure consistency in the scaling across all modalities, we may consider applying
scaling or normalization techniques to the accelerometer and eye-tracking data as well.
This will help ensure that all modalities have similar scales. Scaling the data from each
modality individually before feeding it into the multimodal model helps prevent any single
modality from dominating the learning process due to differences in scales [17]

1.5.4 Data Segmentation

A crucial step in signal processing is signal segmentation, which entails breaking a contin-
uous signal into manageable windows or smaller pieces. This method is frequently used
to examine and process signals in a more focused and useful way, such as time series data
or sensor measurements [18], [19].

The windowing technique is one often used method for segmenting signals. Window-
ing is the process of dividing a continuous signal into fixed-duration windows that may or
may not overlap [17], [18] as shown in figurel.13. Each window represents a short segment
of the original signal.

Windowing has many benefits for signal processing. It allows for the use of localized
analytic methods inside each window, enabling the extraction of time-varying character-
istics, the discovery of patterns, or the computing of statistical measures within certain
signal segments. The continuity of the studied data can also be improved by the overlap
between adjacent windows, which can assist minimize edge effects and provide a smoother
transition between segments.
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Figure 1.13: Data segmentation

In signal processing and data analysis, a sliding window is a method that makes that
overlap between windows including moving a fixed-size window or interval through a se-
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ries of data points. The window moves progressively, usually by one data point at a time,
enabling the study of successive data segments.

200

Figure 1.14: Sliding window technique

1.5.5 Data preparation

The initial dataset included 40 million rows for each modality, which made analysis quite
computationally intensive. We used downsampling methods to keep a representative
sample of the original data while reducing the dataset size to 4 million rows. The dataset
was then divided into smaller, more manageable windows of 200 rows each using data
segmentation. This window size allows for the recording of temporal data within each
window, which corresponds to a time period of 1 second. A 30% overlap between successive
windows was established, resulting in a 150-millisecond gap, to assure continuity and
prevent information loss at window borders. The final dataset size was reduced to 11
Millions raws greatly enhancing computing performance without compromising important
data.

1.6 Conclusion

In conclusion, this chapter has provided an overview of Electromyography (EMG), ac-
celerometer data, and eye tracking signals. We discussed the generalities of these signals
and their relevance to hand gesture recognition. Additionally, we presented different ap-
proaches for hand gesture recognition using sSEMG, accelerometers, and eye tracking.

The review of related work highlighted the important properties of these signals that
need to be considered in the classification process. Furthermore, we gained insights into
the dataset used in our work and discussed the preprocessing steps involved.

By understanding the characteristics and preprocessing requirements of these signals,

we can effectively analyze and classify hand gestures, laying the foundation for further
research and development in the field of gesture recognition.
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2.1 Introduction

Deep learning is a subfield of machine learning that focuses on train artificial neural net-
works to learn and make decisions similarly to human brains. To handle and interpret
complicated data, it entails creating and training artificial neural networks with numerous
layers of interconnected nodes.

Deep learning algorithms may handle tasks like picture and speech recognition, natural
language processing, and predictive analytics by automatically learning and extracting
meaningful patterns or representations from massive amounts of labeled or unlabeled
data. The "deep” in deep learning refers to the complexity of neural networks, which
include several hidden layers that let them pick up hierarchical data representations.

Deep learning has several advantages over traditional machine learning methods. First,
it acts directly on raw signals, avoiding time-consuming preprocessing and feature engi-
neering.

Furthermore, deep learning can learn high-quality representations even when the input
is corrupted and noisy [20]. In addition, deep neural networks can capture high-level
representative features and latent dependencies through deep structures.

This chapter give the theoretical background and introduces the concepts used in the
development of our solution.

2.2 Neural networks

2.2.1 Neuron model

A neuron model is a mathematical representation of the behavior of a biological neuron
(the basic unit of the nervous system). Figure 2.1 depicts the mathematical model of a
single neuron.

Input the data provided to a model for training, prediction, or classification. This data
can take various forms such as images, text, audio or digital data.

Weight In machine learning, weights are used to assign importance to the different fea-
tures in the input data.

Bias The bias term is similar to the intercept in a linear function. It is added to the
weighted summation of its inputs.

Activation Function The activation function is used to introduce nonlinearity in the
model’s output. Without this nonlinearity, the model produces only linear combinations
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by function
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Figure 2.1: The various components of a neuron

of the input values, limiting its ability to model complex relationships in the data.

Y=9§ (Z w;x; + b) (2.1)

Where, y represents the output of the neuron, § is the activation function (which is typ-
ically non-linear), wi are the weights, xi are the inputs, and b is the bias of the neuron.
However, it should be noted that a single neuron is only capable of solving binary linear
classification problems and is not able to simulate more complex non-linear functions.

Table 2.1 resumes the more popular activation functions
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Rectified Linear Unit (ReLU) 10
ReLU sets the output to zero for neg-
ative input values and retains the in-
put value for non-negative inputs. The
mathematical representation of ReLLU
is as follows:

o(z) = max(0, z) (2.2)

(=}

-10 10

Leaky ReLU The Leaky ReLU func-
tion is similar to ReLLU, but has a small
slope for negative input values. This
is meant to address the "dead ReLU”
problem where some neurons become
permanently inactive. Mathematically
it can be represented as:

f(z) = max(0.1z, x) (2.3)

Softmax Function The softmax func-
tion is often used in the output layer
of a multi-class classification task. It
maps the input values to a probability
distribution over the possible classes.
Mathematically it can be represented
as: /

exp(z;)

S ew(z) Y

softmax(z;) =

Hyperbolic Tangent Function
Tanh maps input values to a range be-
tween -1 and 1, creating a smooth and
symmetric function centered around
zero. Tanh introduces non-linearity, 1
enabling the network to capture com-
plex relationships. It has a strong
gradient around zero, facilitating faster
convergence during training. Tanh is
commonly employed in hidden layers to
introduce non-linearities and capture
intricate patterns. Mathematically it

can be represented as:

et —e "

f@) == (25

et 4 e %

Table 2.1: Popular activation functions
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2.2.2 Forward propagation

Equation (2.6) refers to the calculation of the activations or outputs of each layer in
a neural network during forward propagation. Specifically, given the input features or
sample vector x, the activations of the hidden layers a¥ (1=1,2,...,L-1) can be calculated
recursively as:

a® — ¢(W(l)a(l*1) + b(l)) (2.6)

where W® is the weight matrix for layer 1, b is the bias vector for layer 1, phi is the
activation function (e.g., sigmoid, ReLU, etc.), a1 is the input to layer 1, and a® is
the output or activation of layer 1. The input layer is typically not counted as a layer in
the network, so the first hidden layer is considered to be layer 1 (i.e. the input layer is
layer 0). Therefore, a(®) = zrefers to the activation of the input layer, which is simply the
input features or sample vector itself.

Input Layer Hidden Layer 1 Hidden Layer 2 OQutput Layer

Figure 2.2: Multi-layer neural network[21]

Input Layer The input layer is the first layer in a neural network that receives input
data. It passes this information to the next layers.

Hidden Layers Hidden layers in a neural network are responsible for processing and
extracting features from the input data. They are called "hidden” because their com-
putation is not directly visible in the output. Deep learning networks have multiple
interconnected hidden layers that enable them to search for increasingly complex features
in data.

Output Layer The output layer takes input from the preceding hidden layers and pro-
duces the final prediction based on the model’s learned features. In classification or
regression models, the output layer typically has a single node or multiple nodes, de-
pending on the problem’s complexity. The number of nodes in the output layer and the
activation function used depends on the specific problem being solved..

In neural networks, forward propagation involves passing input features through the net-
work to obtain predictions. Activations are computed layer-by-layer using weights, biases,
and activation functions.
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2.3 Loss function

The loss function in a neural network quantifies the difference between predicted and
actual outputs [22]. It guides training by minimizing this difference. Cross-entropy loss
is popular for classification tasks, penalizing high-confidence incorrect predictions. Mean
squared error (MSE) is common for regression tasks. Other loss functions like mean
absolute error (MAE) can also be used. The choice depends on the problem.

2.4 Backpropagation

The aim of the backpropagation algorithm is to calculate the impact of every weight and
bias in the network on the loss function. By doing so, it becomes possible to modify the
weights and biases using an appropriate learning algorithm such as stochastic gradient
descent. The goal of backpropagation is to find:

oL
—0 (2.7)
Where W;,? represents the weight associated with the connection between the k-th neuron
in the (I-1) th layer and the j-th neuron in the lth layer of a neural network. These values
can be found by recursively applying the chain rule from the output of the network to the
input.

2.5 Optimization Algorithms

Adaptive optimization algorithms improve neural network performance by adjusting the
learning rate over time or accumulating the gradient. This is different from traditional
optimization techniques that use a fixed learning rate. Popular neural network optimizers
include Stochastic Gradient Descent (SGD), SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta, and Adam. The choice of algorithm depends on the problem
and data characteristics.

2.5.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an optimization algorithm used in machine learning
to train models by updating their parameters based on gradients calculated from randomly
selected mini-batches of training data. It balances computational efficiency with conver-
gence speed and enables effective training of large-scale and deep learning models. SGD
gradually minimizes the loss function by adjusting parameters in the opposite direction
of the gradients. It can escape local minima and explore the parameter space efficiently
but may result in slower convergence and fluctuations. Variants like mini-batch SGD and
momentum-based methods have been developed to improve performance and stability.
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2.5.2 Adam (Adaptive Moment Estimation)

Adam is an optimization algorithm for deep learning that combines Momentum and RM-
Sprop. It adjusts learning rates based on past gradients and second moments to optimize
parameter updates. By incorporating momentum and adaptive rates, Adam improves
training by maintaining the right direction and speed. It converges faster and delivers
good results by default, surpassing traditional stochastic gradient descent (SGD). It is
widely used in deep learning tasks.

2.6 Regularisation

During the process of training a model, the aim is to minimize the loss function based on a
training set. However, it is possible for the model to start overfitting on the training data,
which means it can perfectly classify the training data but perform poorly on test data due
to memorizing peculiarities of the training set, such as noise [22]. To prevent overfitting,
several regularization strategies have been developed to improve the generalization of the
model. Common regularization methods used in deep learning include:

o Data augmentation
e Dropout

o L1 regularization

o L2 regularization

o Early stopping

Some methods are presented below.

2.6.1 Dropout

The key idea behind dropout is to randomly drop units and their connections during the
training phase [23]. This technique has been shown to effectively improve the generaliza-
tion of the model by introducing noise into the system, forcing it to learn more global
features instead of focusing on a single feature. The random dropping of nodes can be
seen as training multiple smaller models in an ensemble, further enhancing the model’s
performance. Overall, dropout is a powerful technique that can help prevent overfitting
and improve the robustness of the model.

2.6.2 Early stopping

During training, models are usually evaluated on a validation set separate from the train-
ing set. As the model trains, its performance on the validation set is monitored, and if
validation accuracy begins to decline or plateaus, training is terminated early, before the
model begins to overfit the training data as illustrated in figure 2.4. Stopping training
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(a)

Figure 2.3: Dropout Strategy. (a) A standard neural network. (b) Applying dropout to
the neural network on the left by dropping the crossed units[23]

early prevents the model from remembering the training data and generalizing better to
unseen data. This can improve the overall performance of the model on new data. Al-
though this method does not improve validation accuracy during training, it results in the
best performing model. Early stopping is a simple but effective way to prevent overfitting
and can be easily implemented in most machine learning frameworks [24].
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Early Stopping

Loss

Epochs

Figure 2.4: Early Stopping Strategy|[24]

2.7 Deep Learning Foundations

Deep learning algorithms are divided into several subcategories based on their purpose:
Discriminative deep learning models are able to classify the input data according
to a predefined label based on the adaptively learned discriminative features. These dis-
criminative algorithms are able to learn distinctive features by nonlinear transformation,
and perform classification through probabilistic prediction[25]. Thus, these algorithms
can play the role of both feature extraction and classification. The most common dis-
criminative architectures include multilayer perceptron (MLP), recurrent neural networks
(RNN), and convolutional neural networks (CNN), as well as their variations.

Hybrid deep learning models are models that combine multiple deep learning mod-
els. An example of a common hybrid deep learning model uses an algorithm to extract

features and discriminative algorithms to perform classification for example a CNN-RNN
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model.

Discriminative deep learning models are the most popular and powerful algorithms in
muscle signal research because recognition of muscle signals is their main task. For a
dataset of muscle signal samples x, y, where x represents the set of EMG signal ob-
servations and y represents the set of ground truth samples (i.e. labels). The goal of
discriminative deep learning models is to learn a function x — y mapping. In summary,
discriminative models receive the input data and output the corresponding category or
label. All the discriminative model techniques presented in this section are supervised
learning techniques, which require information from observations and ground truth.

2.8 Convolutional neural networks (CNNs)

A Convolutional Neural Network (CNN) is a deep learning architecture designed for pro-
cessing grid-like input, like images or sounds. CNNs are widely used in computer vision
tasks such as image classification, object detection, and image segmentation. They utilize
convolutional layers to extract meaningful features by applying filters across the input
grid, capturing local patterns and spatial hierarchies. This allows CNNs to automatically
learn relevant representations for complex visual tasks. Pooling layers are employed to
reduce spatial dimensions, improving translation robustness and computational efficiency.
CNNs have revolutionized computer vision and are a crucial component in modern deep
learning models for visual recognition.

2.8.1 The basic components of a CNN

A typical CNN consists of several layers, including convolutional layers, pooling layers, and
fully connected layers (figure 2.6). The input data is fed into the network and processed
layer by layer until the final output is produced. The layers of a CNN are interconnected
in a way that allows the network to automatically learn and extract features from the
input data.

Convolutional Layer

These layers perform the operation of convolution, which involves applying filters or ker-
nels to the input data to extract features [25]. The filters slide over the input data,
calculating dot products between the filter values and input values, resulting in a feature
map that represents the presence of specific features in different regions of the input.

Pooling layers

These layers reduce the spatial dimensions (width and height) of the feature maps by
aggregating neighboring values using operations such as maximum (max-pooling) or av-
erage (average-pooling). This helps reduce computational complexity while preserving
important features and providing some translation invariance.
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In Max pooling layer, the maximum element is selected from each window or region
of the input feature map. This process helps identify the most dominant features within
each window (Figure 2.5).

Figure 2.5: Example of a max pooling operation with spatial extent F' = 2 x 2 and stride
S=2

In average pooling, the average value of the elements within a specific region of the feature
map is calculated. It simply averages the features from the feature map.

Fully connected layers

These layers act like traditional Multilayer Perceptron where each neuron is connected
to all neurons in the previous layer. Fully connected layers are typically used at the end
of a CNN to combine extracted features and make predictions or classifications based on
them.

P— 15t Feature Maps It Feature Mags. 2rd Feature Maps 2rd Feature Mags  Fully Connected
ot mage After Comvolution After Poaling After Coavolution fter Pooling Features

[

Saft Max
Laghtlc Regression

Ist Convolution Layer 1t Pooling Layer  2rd Convolution Layer  2rd Pooling Layer  Fully Connected  Saft Max
Layer  Classification Layer

Figure 2.6: Illustration of a typical CNN architecture with two convolution layers, two
max pooling layers, one fully connected layer, and one soft max classification layer

2.8.2 Understanding Conv1lD and Conv2D

ConvlD and Conv2D are convolutional operations used in deep learning for processing
sequential and image data, respectively. Conv1D, short for one-dimensional convolution,
is applied to 1D inputs, such as sequences, time series, or text. It involves sliding a set of
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filters (kernels) along the input sequence, capturing local patterns and extracting relevant
features. ConvlD is commonly used in tasks like natural language processing, speech
recognition, and audio analysis [26], [27].

Conv2D, on the other hand, refers to two-dimensional convolution. It operates on 2D
inputs, typically images or spatial data represented as matrices. By sliding convolutional
filters across the input in both horizontal and vertical directions, Conv2D effectively
captures spatial relationships, detecting edges, textures, and higher-level image features.
Conv2D is widely used in computer vision tasks, including image classification, object
detection, and image segmentation.

Both ConvlD and Conv2D rely on shared weights within each convolutional filter, en-
abling the models to learn and generalize spatial patterns across different locations of the
input. These convolutional operations have been instrumental in achieving state-of-the-
art performance in various domains by automatically learning hierarchical representations
from raw data.

The figure 2.7 illustrates that when using a 1D CNN, the data must have 1 spatial di-
mension. This implies that each sample needs to be 2D, consisting of a spatial dimension
and channels. Consequently, the X-train input should be a 3D tensor, with dimensions
including batch size, spatial dimensions, and channels.

Likewise, in the case of a 2D CNN, there would be 2 spatial dimensions, such as height and
width (H, W), and the samples would be 3D, with dimensions including height, width, and
channels (H, W, Channels). The X-train input would then be represented as (Samples,
H, W, Channels).

Kemel size =3 Input shape = 2D
1D CNN Batch = None

Width = Time axis = 7
Feature maps / Channels = 1

Kemel size = (3,3)

Input shape = 3D

2D CNN Height =5
Width=7
Feature maps / Channels = 1

Figure 2.7: Data Structure Requirements for 1D and 2D Convolutional Neural
Networks[28]

2.8.3 Advantages and limitations of CNNs

CNNs have several advantages, including the ability to automatically learn and extract
features from input data, scalability to large datasets, and high accuracy in image recogni-
tion tasks. However, CNNs also have some limitations, such as their high computational
cost and dependence on large amounts of training data. Additionally, CNNs may not
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perform well in cases where the input data is very different from the training data, or
where the task requires reasoning or understanding beyond simple pattern recognition.

2.9 Recurrent neural network (RNN)

Recurrent Neural Networks (RNNs) are neural networks designed to efficiently model
sequence data by incorporating information from previous elements in the sequence [21].
Unlike traditional neural networks, RNNs have a recurrent structure that allows them
to persist information over time, similar to how humans build upon past thoughts. This
"memory” enables RNNs to influence current inputs and outputs based on previous inputs
[29]. RNN contains a hidden layer that stores and recalls information over time, making
them effective for tasks involving sequential data. for each timestep t, the activation

Figure 2.8: Architecture of a traditional RNN

<t>

a~*>and the output y<'> are expressed as follows:

0 = g1 (Waaa<"" + W< + by) (2.8)

y<t> = 92(Wyaa<t> + by) (2.9)

Where Wz, Waa, Wya, ba,by are coefficients that are shared temporally and g1, g2 are the
activation functions.

2.9.1 Types of Recurrent Neural Networks

Sequential data cannot be effectively processed by traditional neural networks, as they
have independent input and output layers that do not allow for information to be retained
between sequential inputs[29], [30]. Recurrent Neural Networks (RNNs) were developed
to address this limitation by incorporating an internal memory that can store information
from previous outputs. There are four commonly used types of RNNs:

29



Chapter 2. Deep Learning

one fo one one to many many to one many to many many to many

T T T I
[HH (W [HHHHD [

5 K]

i 0 UOE  Cod 0L

Figure 2.9: Summary of the main RNN models[30]
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2.9.1.1 One-to-One RNN

The One-to-One recurrent neural network (RNN) is a simple type of RNN architecture
that takes a single input and produces a single output [29]. Unlike other RNN architec-
tures, the One-to-One RNN has fixed input and output sizes and behaves like a standard
neural network. One common use case of the One-to-One RNN architecture is in image
classification tasks.

2.9.1.2 One-to-Many

The One-to-Many architecture is a recurrent neural network (RNN) model that produces
multiple outputs from a single input [29]. This model is designed to handle fixed input
sizes and generate a sequence of data outputs. It has a range of applications in fields
such as Music Generation and Image Captioning, where it is used to generate music or
captions from a given input image.

2.9.1.3 Many-to-One

A Many-to-One RNN is a type of recurrent neural network architecture that takes a
sequence of inputs and produces a single output by learning relevant features through a
series of hidden layers [29]. This model is commonly used in various natural language
processing tasks such as Sentiment Analysis.

2.9.1.4 Many-to-Many
The Many-to-Many architecture is a recurrent neural network (RNN) model that gener-
ates a sequence of output data from a corresponding sequence of input units [29]. It can

be further divided into two subcategories:

Many-to-Many (equal size) where the input and output layers of the RNN have the
same number of units.

Many-to-Many (unequal size) where the input and output sequences have different
numbers of units. This type of RNN is often used in tasks such as machine translation.
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2.9.2 Advantages and limitations of Recurrent Neural Networks
(RNNs)

RNNs have several advantages such as the ability to process inputs of any length, re-
membering information throughout time, sharing weights across dependent hidden lay-
ers. It is an effective solution for pixel neighborhood prediction when combined with
Convolutional Neural Networks. However, RNNs also have some drawbacks, such as slow
computation due to their recurrent nature, difficulty in training, problems with processing
long sequences using certain activation functions, and issues with exploding and vanishing
gradients. Additionally, RNNs cannot be stacked into very deep models and struggle to
keep track of long-term dependencies [29][31].

2.9.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network
specifically designed to overcome the vanishing gradient problem. The vanishing gra-
dient problem refers to the issue where the gradient term diminishes exponentially during
back-propagation, hindering the learning of long period dependencies and leading to sub-
optimal performance. LSTMs tackle this problem by incorporating specialized memory
cells and gating mechanisms that selectively retain or forget information over multiple
time steps. By effectively mitigating the vanishing gradient problem, LSTMs excel at
capturing and utilizing long-term dependencies in sequential data. They achieve this
through the use of three types of gates(Figure 2.10), which play a crucial role in selec-
tively remembering or forgetting information[29]. These gates are:

Forget Gate

i T 1

= »
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A | e

- . L.-I_A_/
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© ®“@

v

Input Gate Output Gate

Figure 2.10: LSTM gates[30]

The Input gate is responsible for determining which values from the input will be used
to modify the memory in an LSTM cell. The gate uses a sigmoid function to decide which
values to let through, with a range of 0 to 1. Additionally, a tanh function is used to
assign weights to the values that are passed through the gate, determining their level of
importance on a scale of -1 to 1.

iy = o(Wilhi—1, ) + b;) and (2.10)
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Cy = tanh(Welhe_1, 2] + be) (2.11)

Where is the sigmoid function, ht—1) is the output at time instant t-1, ; is the current
input at time instant t, b bias, and w the weights, tildeC; Candidate value.

The Forget gate in an LSTM cell is responsible for determining which information
should be discarded or forgotten from the memory cell. This is done using a sigmoid
function that looks at the previous hidden state (ht-1) and the current input (Xt), and
outputs a number between 0 (discard this) and 1 (keep this) for each value in the cell
state (Ct-1)[30]. The forget gate allows the LSTM network to selectively retain or forget
information from the memory cell as needed, improving its ability to learn and remember
patterns in sequential data [30].

fi = U(Wf[htfl, xy] + bf) (2.12)

The Output gate in an LSTM cell is responsible for computing the output of the cur-
rent cell state, based on both the current input and the information stored in memory.
Like the input gate, the output one uses the same activation function (sigmoid and tanh).
The output of the sigmoid function is then multiplied by the output of the tanh function,
producing the final output of the LSTM cell. This process enables the network to selec-
tively output relevant information from the memory cell, improving its ability to process
sequential data.

o = o(Wolhi—1, ¢ + b,) and (2.13)

ht = O¢ - tanh(Ct) (214)

Where h; is the output and C; internal state.

2.10 Multimodal Deep Learning

Multimodal deep learning involves training deep learning models on diverse data types,
such as images, text, and audio, to improve performance. This approach can combine
popular architectures like CNNs and RNNs to leverage different types of information.
For example, in a hybrid architecture, a CNN can be used to process visual input and
extracts high-level features anda RNN to handle sequential data and models temporal
dependencies.

By integrating both modalities, multimodal deep learning enables a more comprehensive
understanding of data, capturing complementary information and improving accuracy,
generalization, and robustness. This approach is applicable in various domains, including
image analysis, speech recognition, and natural language processing. Figure 2.11 shows
an example of these applications.

Multimodal deep learning provides a powerful framework for effectively modeling and
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comprehending multimodal data by leveraging spatial and temporal correlations [32],
(33].

Batch X 30

Tt = Subfﬁ%ﬂrk : Batch X 90
Baich X 30
Speech — SuI:I-LN;.mﬂDrKZ - E Oulput
&1
Baitch X 30
Image : Sub-l‘é:nsork 3

Figure 2.11: Example of Multimodal deep learning where different types of NN are used
to extract features

2.11 Evaluation metrics for performance

It is important to evaluate the performance of the trained model to determine its gen-
eralization capabilities on unseen data. By employing various performance evaluation
metrics, it is possible to enhance the model’s predictive accuracy before utilizing it for
making predictions on new data.

Confusion matrix

A confusion matrix is a tabular representation that summarizes the performance of a
classification model by displaying the counts of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions (figure 2.12). It is an important
tool for evaluating the performance of a classification model and understanding its pre-
dictive capabilities.

Yes No
ﬂg Yes True Positive False Positive
o
>
ge)
a
et
L
o
a
& No False Negative True Negative

Figure 2.12: Structure of a 2x2 Confusion Matrix

In the confusion matrix:

True Positive (TP): The model correctly predicted the positive class.
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True Negative (TN): The model correctly predicted the negative class.

False Positive (FP): The model incorrectly predicted the positive class when the actual
class was negative (Type I error).

False Negative (FN): The model incorrectly predicted the negative class when the
actual class was positive (Type II error).

By analyzing the values in the confusion matrix, several evaluation metrics can be de-
rived, including [34]:

Accuracy: The overall proportion of correct predictions, calculated as:

TP +TN
TP+TN+ FP+ FN

Accuracy = (2.15)

Precision: The proportion of true positive predictions out of the total positive predic-
tions, calculated as:

TP
PT@CiSiOTl = m—w (2].6)

It measures the model’s ability to correctly identify positive instances.

Recall (Sensitivity or True Positive Rate): The proportion of true positive pre-
dictions out of the total actual positive instances, calculated as:

TP
= 1
Recall TP EN (2.17)

It measures the model’s ability to capture positive instances.

Specificity (True Negative Rate): The proportion of true negative predictions out of
the total actual negative instances, calculated as:

TN
Specificity = ———— 2.18
peci ficity TN FDP (2.18)
It measures the model’s ability to correctly identify negative instances.
F1 score: The harmonic mean of precision and recall, calculated as:
Fl—o Precision - Recall (2.19)

" Precision + Recall

The confusion matrix and the derived metrics help provide a comprehensive understanding
of a model’s performance, particularly in classification tasks, by capturing information
about true positives, true negatives, and the types of errors made by the model.
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2.12 Conclusion

In conclusion, this chapter has provided an overview of the theoretical concepts of deep
learning relevant to this project. We explored the different architectures of artificial neu-
ral networks, specifically the Convolutional Neural Network (CNN) and the Recurrent
Neural Network (RNN). These networks serve as the foundation for developing the hand
gesture recognition algorithm.

While many of these concepts can be implemented using predefined functions, it is crucial
to understand their underlying principles to design efficient algorithms. Deep learning
offers various theories, methods, and approaches, each suited for specific applications and
data characteristics.

The next chapter will focus on building the hand gesture recognition algorithm using the

CNN and LSTM networks explained in this chapter. By leveraging these architectures,
we aim to develop an accurate and robust algorithm for recognizing hand gestures.
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Chapter 3. Hand gestures recognition using Single Modality (sEMG)

3.1 Introduction

Muscles signals are highly sensitive to different biological (e.g., muscle artifacts, fatigue,
and attention) and environmental (e.g., noise) interferences, resulting in acquired sEMG
signals with low Signal to Noise Ratio (SNR). A low SNR cannot be easily corrected by
traditional methods due to the time required and the associated risk of information loss.
Therefore, it is crucial to be able to derive informative representations (relevant features)
from distorted signals.

Features extraction from medical signals relies heavily on human expertise in related
fields. The conventional method is to analyze and extract information needed for di-
agnosis and providing the adequate solutions. However, manual analysis presents time
issues due to the low availability of experts. Therefore, a method that can automatically
extract the most representative features from the input data is highly desired. Different
approaches using signal processing methods and machine learning algorithms are devel-
oped over the last decades. The most existing machine learning research has focused on
static data and thus cannot accurately classify rapidly changing brain signals. For exam-
ple, the classification accuracy of multi-class gesture recognition based on SEMG signals
in the state-of-the-art is generally lower than 80% [35].

The potential of Deep learning methods and their capacity of learning meaningful rep-
resentations from input data by constructing layered network. These methods can learn
high-level and complex representations by combining a sequence of simpler representa-
tions, each of which extracts partial information related to the complex representation. In
recent years, deep learning algorithms have been widely used and achieved great success
in different fields.

The aim of this chapter is to develop a deep learning based approach for hand gesture
recognition using sEMG signals. The following sections describe the proposed model,
its implementation and the search of the best hyperparameters to achieve higher perfor-
mances.

3.2 CNN-LSTM model for sEMG-based hand ges-
ture recognition

Hand gestures and object manipulation take a time to be established. Therefore, the
recognition of gestures process shall consider sequential characteristic of the sEMG sig-
nals. Thus, we proposed a hybrid CNN-LSTM architecture that combines recurrent layers
composed of LSTM cells with convolution layers. Figure 3.1 shows this model. This ar-
chitecture combines CNN layers for extracting spatial features from the input matrix of
EMGs signals and LSTM layers for capturing temporal dependencies in the sequence of
features. It concludes with fully connected layers to perform classification based on the
extracted features.
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3.2.1 Convolutional Layers

o The first layer is a Conv2D layer with 64 filters, a kernel size of (3, 3), and a
hyperbolic tangent (tanh) activation function. It takes an input of shape (window-
size, num-channels, 1), where the window width of the input is 12 channels and its
height is 200 data point. The num-channels is the number of SEMG channels (12
channels are available in the used dataset).

« MaxPooling2D layer with a pool size of (2, 2) follows the first Conv2D layer, which
reduces the spatial dimensions of the feature maps.

o The second Conv2D layer has 32 filters, a kernel size of (3, 3), and a tanh activation

function.

« MaxPooling2D layer with a pool size of (2, 2) follows the second Conv2D layer.

Applied regularization methods: batch normalization is used after the first MaxPooling
layer in order to normalize the activations of the previous layer and improving the training
speed and performance. A dropout of 40% is applied after the second convolution layer.
It is a well-known method to avoid overfitting.

12 Coloumns
*nWindows

200 Raw
Samples

=

“+—> T Windows
12 Input
Channels

+«——>

. Fully
Conv2D Conv2D Max-Polling LSTM  LSTM sonnecied ?;1;;111

63 B CO R ) Iayer

A =

Figure 3.1: A Hybrid Model Approach for Hand Gesture Recognition using sEMG Signals

3.2.2 LSTM Layers

The second part of this model consists of LSTM layers for the extraction of temporal
features from the sequential data. It is composed of two LSTM layers.
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o The first LSTM layer has 128 units and is set to return sequences

e The second LSTM layer has 64 units and also returns sequences.

3.2.3 Regularization methods

Dropout layer with a rate of 0.4 is applied to the output of the first and second LSTM
layers. After the first layer, the BatchNormalization is also applied.

3.2.4 Fully Connected Layers:

The function of this part is to classify the inputs on classes (Hand gestures). It is com-
posed of several fully connected layers, each one of them having a different number of
neurons and a tanh as an activation function. The output layer is composed of ten cells
for considering the ten hand gesture recognition considered in the dataset (chapter 1), a
softmax is used as an activation function.

The problem of hand gesture recognition is a classification problem, the loss function
to be minimized is cross-entropy.

The implementation and training of our model were carried out in a specific hardware
and software environment, as described in A .

3.2.5 Hyperparameter Tuning

The section highlights the importance of investigating hyperparameters to improve the
performance and flexibility of a hybrid model. The objective is to enhance the accuracy
of analyzing sSEMG data by employing a combination of Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks. The study conducts experi-
ments, analyzes the outcomes to assess the hybrid model’s effectiveness. Table 3.1 presents
the hyperparameters that were modified during the research.

Activation Function Optimizers and Learning | Batch Size

Rate
Tanh (Tangente Hyper- | SGD (Stochastic Gradient De- | Tested different batch sizes
bolique) scent) with different learning | during training

rates

Adam with different learning

rates

Table 3.1: Different hyperparameters
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3.2.6 Configuration 1

Figure 3.2 illustrates the accuracy and loss curves depicting the results obtained for the
training and validation data using the parameters from this configuration (B).
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Figure 3.2: Accuracy and Loss Curves of the obtained results for the training and valida-
tion data(Configuration 1)

The obtained results revealed a poor accuracy of 40% for the initial training. Several
factors may have contributed to this performance. Firstly, it is possible that the hy-
brid CNN-LSTM model architecture might have been unable to capture the information
present in the sEMG data. This suggests the need for searching other hyperparameters
that work better by running additional tests with other combinations of hyperparameters.

More experimentation is required to increase the hybrid CNN-LSTM model’s accuracy
and we start by changing the optimizer and learning rate.

3.2.7 Configuration 2

The network training is repeated using the new model and optimizer (B). The obtained
results of the test using the Adam optimizer and a reduced learning rate of 0.002 demon-
strated a significant improvement in the model’s performance (Figure 3.3). The achieved
accuracy of 80% marked a substantial increase compared to the previous test’s accuracy
of 40%, on the same number of epochs.

A comparison of the SGD and Adam optimizers’ performances produced insightful re-
sults.

The Adam optimizer’s adaptive learning rate allowed for efficient adjustment of the
model’s parameters and enabled faster convergence. In addition, it turned out that low-
ering the learning rate to 0.002 was a wise change. The model’s weights could be adjusted
more precisely thanks to the decreased learning rate. The model could better converge to
an optimal solution and prevent overshooting or becoming stuck in sub optimal regions
by reducing the step size during weight updates.
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Figure 3.3: Accuracy and Loss Curves of the obtained results for the training and valida-
tion data (Configuration 2)

3.2.8 Configuration 3

Utilizing the characteristics of this configuration(B), the training of the model leads to
its regeneration. This process reveals valuable insights regarding the interplay between
learning rate and various factors, such as model convergence, stability, and the potential
for achieving higher accuracies. The accuracy and loss curves are visually depicted in
Figure 3.4.
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Figure 3.4: Accuracy and Loss Curves of the obtained results for the training and valida-
tion data (Configuration 3)

Furthermore, the achieved accuracy of 94% with a learning rate of 0.001 at the 120 epoch
compared to the previous accuracies on the same number of epochs surpassed those ob-
tained in previous tests. This suggested that the model’s ability to capture complex
relationships within the sSEMG data improved as the learning rate decreased.

Additionally, the impact of the number of epochs is assessed by comparing accuracies
across different epoch settings while keeping the learning rate constant. Thus, we can see
that the model needs more training epochs to converge to the optimal solution, but on
this part, we only focused on the impact of lower learning rates.
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3.3 Performances evaluation of the final single modal-
ity CNN-LSTM model

The performance of the developed model is conducted in detail for both training and
validation data and test data.

3.3.1 Performances evaluation using training data

The final model is evaluated, initially, using examples representing the ten considered
hand gestures. The confusion matrix of the obtained results (figure 3.6) shows a very
small confusion rate between different classes and a very acceptable performance of recog-
nition (between 92% and 98%) without overfitting.

Confusion Matrix

medium wrap 0.011 000036 0.0045 00064 00048 00023 00034 000071

lateral - 0.004 00015 000092 00062 00013 00017 0002

parallel extension - 001 00077 0011 0.016 00056 0006 0.003 00091

tripod grasp - o 0.003 00032 0.005 000093 00019 0012 00061 0011

power sphere - 00045 0.0051 0.0026 00017 00081 0.006 0.0034
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precision disk - 0.0034 00032 0015 000036 00093 0.022 00014 0014 00025
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prismatic pinch - 00015 0012 0.0035 0.0022 000056 0011

LT 0. 00056 0.0022 0.0032

index finger extension - 0L0014 0.0014  0.002 0.014 0.013 0.00036 0.0032
-0.2
adducted thumb - 0.002 00029 00011 00047 O0UWOL17 00076 0U0O25
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prismatic four finger - 0.00036 0.0032 00046 0018 0011 00032 00086 00062 00062
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Figure 3.5: Evaluation of the Hybrid Model Performance: Confusion Matrix for training
data

The confusion matrix shows that the classification mistakes are fairly evenly spread across
all classes, indicating that the constructed CNN-LSTM model has performed well for the
ten considered hand gestures.

The Pie plot presented in figure 3.6 shows the distribution of the examples over the
ten classes and also the ratio of the predicted classes. The used data for the model eval-
uation are correctly distributed (10% approximately for each class).

For best visualization and interpretation of the sensibility of the developed model to
each hand gesture, we present a Bar diagram in figure 3.7. This diagram shows, for each
class, the difference between really available class (True) and the predicted one by the
developed model, that the difference between them is small.
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Predicted Labels True Labels
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triped grasp lateral tripod grasp
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power sphere medium wrap power sphere medium wrap
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precision disk prismatic four finger precision disk prismatic four finger
prismatic pinch adducted thumb prismatic pinch adducted thumb
index finger extension index finger extension

Figure 3.6: Predicted and True Labels in the training data model
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Figure 3.7: Comparison of Actual and Predicted Label Frequencies for Ten Classes in the
Training Data Model

For quantitative evaluation of the model for the ten hand gestures, the measured per-
formances are resumed in table 3.4.

3.3.2 Performances evaluation using test data
After performing a train-test split on our dataset, where we allocated 10% of the data to
the test set, we evaluate the trained model’s performance on unseen test data to assess

its ability to make predictions on new instances. In this subsection, the performances are
presented in the same order as in the previous paragraph.
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Classes Precision | Recall | F1 score | Support
medium wrap 0.96 0.98 0.97 5502
lateral 0.98 0.95 0.97 5620
parallel extension 0.92 0.96 0.94 5494
tripod grasp 0.96 0.94 0.95 5494
power sphere 0.96 0.93 0.94 5491
precision disk 0.93 0.95 0.94 5494
prismatic pinch 0.93 0.95 0.94 5480
index finger extension 0.93 0.93 0.93 5500
adducted thumb 0.93 0.92 0.93 5559
prismatic four fingers 0.94 0.96 0.95 5480

Table 3.2: The individual performances of each class

The confusion matrix is presented in figure 3.8. The test accuracy, for each class, is
slightly lower than the training accuracy. The diagonal elements varied from 84% to
94%. These values can can still be considered reasonably good compared to the presented
ones in figure 3.6. It indicates that the model is capable of making accurate predictions
on new and unseen data.
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prismatic four finger 0.0 0.0104 0.0157 0.0278 0.0174 0.0087 0.0296 0.0104

adducted thumb 0.0036 0.009 0.0018 0.009 0.0397 0.0181 0.0054
0.0034

index finger extension 0.0034 0.0034 0.0051 0.0256 0.029 0.0
prismatic pinch 0.0 0.0229 0.0076 0.0 0.0038

precision disk 0.0245

power sphere 0.0038 0.021 0.0095 0.0076

True Labels

tripod grasp 0.0075 0.0206 0.0169 0.03
0.0053 0.0036 0.0053 0.0142
0.0151 0.0038 0.0038 0.0038

0.0164 0.0055 0.0073 0.0036

parallel extension
lateral

medium wrap 0.0109

Figure 3.8: Evaluation of the Hybrid Model Performance: confusion matrix of test data

The Pie plot and Bar diagram presented in figure 3.9 and 3.10 show the distribution of
the examples used for the model test for the ten classes and also the ratio of the pre-
dicted classes. The used data for the model evaluation are correctly distributed (10%
approximately for each class). The obtained results are very close to those presented in
the previous paragraph using training data.

The global performances of the developed model are summarized in table 3.3 and the
individual ones for each class are presented in table 3.4.

Based on the results we have achieved, it appears that our classification model has per-
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Predicted and True Labels Comparison
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Figure 3.9: Predicted and True Lables Comparison
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Figure 3.10: Comparison of Actual and Predicted Label Frequencies for Ten Classes in
the Test Data Model

Accuracy | Precision | F1 score | Recall
88% 88.04% | 87.95% | 87.95%

Table 3.3: The global performances of the developed model

formed reasonably well with an 88% test accuracy, precision, recall, and F1 score. These
metrics indicate that our model is able to accurately classify instances into their respec-
tive classes with a relatively high level of overall accuracy.

An accuracy of 88% implies that our model correctly predicted the class labels for 88%

of the observations in the test dataset. This suggests that the model is effective in distin-
guishing between the different grasp classes.
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Classes Precision | Recall | F1 score | Support
medium wrap 0.9 0.93 0.92 531
lateral 0.94 0.9 0.92 556
parallel extension 0.85 0.88 0.87 543
tripod grasp 0.9 0.89 0.9 536
power sphere 0.9 0.84 0.87 562
precision disk 0.86 0.88 0.87 555
prismatic pinch 0.92 0.88 0.9 549
index finger extension 0.84 0.87 0.85 563
adducted thumb 0.84 0.82 0.83 568
prismatic four fingers 0.86 0.9 0.88 950

Table 3.4: The individual performances of each class

The recall, also known as sensitivity or true positive rate, is a measure of how well our
model captures instances of a particular class. An 87.5% recall implies that our model
successfully identified 87.5% of the instances belonging to each grasp class, indicating a
good ability to detect positive cases.

The F1 score combines precision and recall into a single metric and is useful for evaluating
the overall performance of the model. With an F1 score of 88%, our model demonstrates
a balanced trade-off between precision and recall, indicating a robust classification capa-
bility.

Overall, our model’s performance is quite promising, achieving high accuracy, precision,
recall, and F1 score.

3.4 Effect of manipulated object in recognition per-
formance

It is crucial to take object variation into account when working with sEMG signal data
gathered from participants performing various grasps with different objects. It is impor-
tant to study and analyze the impact of object variation on the model’s performance and
its ability to generalize.

During the learning process, we are considered for each hand grasp gesture one type
of object. Additionally, we evaluated the trained model’s performances when other ob-
jects are manipulated.

We perform a test for 6 subjects named from S10 to S15:

Our experiment yielded results indicating poor performance of the model when attempt-
ing to predict outcomes for unseen data from the same individual using a different object.
This finding highlights the considerable difficulty in applying the model’s predictions to
new objects within the same grasp. It suggests that the sSEMG signal patterns linked
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Subject | Accuracy (%)
S10 19
S11 26
S12 33
S13 32
S14 26
S15 19

Table 3.5: Subject’s accurecies while manipulating different objects

to distinct objects may vary significantly, posing challenges for the model to accurately
identify the same grasp when manipulating different objects.

Moreover, the model’s performance deteriorates with increased variability, such as when
the subject transitions from a seated to a standing position or from a static to a dynamic
task while maintaining the same grasp. The model needs to learn to adapt to diverse con-
texts and situations, and the introduction of these variations in the training set presents
additional challenges [12].

To provide an overview of the objects and associated grasps within the dataset, Table
3.8 illustrates the various objects used in both the training and test sets.
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Table 3.6: Overview of the objects and the grasps of the dataset

Grasp Static Tasks Train Objects Test Objects
Wedium wrap take the can bottle can

key pencilcase
Lateral take the zip of .

pencilcase

Parallel extension take the book

]
C
&

bottle mug
[I—
Tripod grasp take the bottle $ '54
k
Ower sphere take the ball ball =

P
&
»

- . bulb ball
Precision disk 7 |
take the light <
bulb ’
Prismatic pinch key can

take the key m ‘

Index finger )
. remote knife
extension take the knife ; ' /

Adducted thumb take the wrench screwdriver

wrench f '

Prismatic four
ﬁnger kn|fe fOI‘k

. take the fork / /
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3.5 Conclusion

A hybrid model composed of CNN and LSTM cells is proposed, trained and evaluated
for the recognition of ten hand gestures grasps using 12 sEMG channels. The obtained
results are very acceptable (accuracy of 88%).

In the following chapter, we present an approach for data fusion using deep learning
to improve the quality of single modality hand grasp gestures recognition.

However, an important question to be considered in the development of this kind of
application: What is the required accuracy of pattern recognition to be considered reli-
able by the user?

The classification accuracy does not consider the dynamic effects of real-time control[35].
Thus, there are various difficulties and constraints to take into account when employing
surface Electromyography (sEMG) data for classification in the context of a myoelectric
prosthesis hand such as:

o Electrode Shift: The electrodes will probably settle in a slightly different position
in relation to the underlying muscle each time a user puts on a prosthesis. The
loading and placement of the limb during usage may potentially cause the electrodes
to move|[35].

o Signal Variability: sEMG signals can vary significantly between subjects and even
within the same subject due to factors such as electrode placement, and muscle
fatigue, This variability can make it challenging to accurately classify the intended
hand movements [35].

o Adaptability: The user’s muscle patterns and strength may change over time, which
may have an effect on how well the classification system performs. To account for
these changes, the prosthesis may need to be periodically calibrated or retrained,
which can be time-consuming [35].

To address these challenges, it may be necessary to consider some strategies such as :

o Improved Data Collection: Collect sEMG signals from more participants and record
a variety of gesture and object-handling scenarios to improve the quality and diver-
sity of the training data. This would help increase the model’s ability to generalize
across different users.

e Signal Processing: Develop advanced signal processing techniques that can effec-
tively handle the variability and noise present in sEMG signals.

o Transfer learning: using transfer learning techniques to initialize or improve the
myoelectric prosthesis models by using pre-trained models from huge datasets. It
is also possible to think to extend the developed model in this project by transfer
learning for adapting this model to various other situations. This can enable faster
adaptation to new users.
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o Multimodal Sensing: Investigate the incorporation of other sensor modalities to
provide complementary information about hand position using for example inertial
measurement units (IMUs) and visual information.
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4.1 Introduction

The difficulty of interpreting and employing sEMG as a single modality was emphasized
as one of the constraints of myoelectric prostheses in the previous chapter. The anatomi-
cal characteristics of the user, the placement and contact of the electrodes with the skin,
variations in arm positions, and fatigue all have a significant impact on the signals [10].
Various studies have suggested overcoming the controllability problems by integrating or
replacing SEMG with modalities that are more stable, to improve the model accuracy on
one hand and on the other hand to overcome some of SEMG limitations.

We present in this chapter a multimodal integration techniques that combines different
signals such as sSEMG, accelerometer signals and the eye motion (gaze).

Eye tracking (Gaze) is the practice of measuring eye movements or positions to determine
where people are focusing during an activity or in other words where people are looking
before grasping an object [36].

Also, the orientation and motion of the arm can be mapped using accelerometry in the in-
ertial reference frame. Since accelerometers are inexpensive and some electrodes already
have a three-axial accelerometer incorporated, obtaining this information is affordable.
Numerous studies have demonstrated that the use of SEMG and accelerometry together
performs better than using just the first modality alone to recognize hand gestures. [10].

In this chapter, we present different models that combine these modalities (SEMG &
Gaze, sSEMG & Accelerometer, sEMG, Gaze & Accelerometer). These models share some
properties such as the global form of architectures and parameters and are trained and
tested using same data for performances evaluation.

4.2 Fusion of sEMG with Gaze

The previous studies provided solid evidence that the grasp of an object is often preceded
by a visual fixation on the same object [10]. Thus this visual information could be used to
improve the model performance and why not improve the control of a prosthetic device.
Gaze tracking data, combined with surface Electromyography (SEMG) data, can serve as
a supplementary modality to improve the accuracy of hand gesture recognition by deep
learning models. This combination can improve the performance of recognition. Even
still, gaze tracking data may not be sufficient on their own to provide precise control or
accurate predictions.

Figure 4.1 illustrates the developed architecture for combining the two modalities. It
is composed of two braches one for each modalities and some full connected layers to
concatenate the outputs of the previous branches and classified the signal according to
the considered classes. Ten hand gestures grasp have been considered in this work.
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Figure 4.1: Integrating Gaze and sEMG Signals in Hand Gesture Recognition: A Hybrid
Model Approach

4.2.1 Model training and performances evaluation

To select the model hyperparameters, many experiment are carried out and the best ones
are presented chosen. The selected ones are used for all the upcoming experiments pre-
sented in this part. Table 4.1 summarises these parameters:

Activation | Optimizer | Learning rate | Batch size | Epochs
Tanh Adam 0.001 256 150

Table 4.1: Fusion of sSEMG with Gaze: Model parameters

The figure 4.2 shows the accuracy and Loss evolution during the training phase. The
training and validation accuracies and losses curves show a good training without overfit-
ting. The comparison between the performance of this model with the one presented in
chapter 3 (using only SEMG modality) is in table 4.2. The training accuracy is improved
by 1.7%, going from 94% to 95.7% when gaze data was combined with sEMG data.
The model was able to use the combined insights from the two modalities by adding
gaze information as an additional modality to EMG, which improved performance dur-
ing training. This improvement highlights the complementary nature of gaze and sEMG
data and highlights how effective they are when used together to increase model accuracy.
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When comparing the test accuracies, the model integrating both gaze and sEMG data
obtained a test accuracy of 90% while the model using only SEMG data only obtained an
accuracy of 88%. This indicates that the integration of gaze data alongside sEMG data
has slightly improved the model’s performance on unseen test data. The additional data
from the gaze data appears to be helpful in improving the model’s capacity to generate
precise predictions on untested examples.

It’s crucial to remember that the increase in test accuracy (a 2% increase) is quite small.
It suggests that although the incorporation of gaze data has provided certain benefits, its
contribution in this particular situation may have some limitations.
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Figure 4.2: Accuracy and Loss Curves for the Hybrid Model of sEMG and Gaze

Accuracy | sSEMG | sEMG & Gaze
Training | 94% 95.7%
Test 88% 90%

Table 4.2: Performances comparison of the sSEMG and the fusion of sSEMG and Gaz models

To analyse the model performance for all the considered hand gestures grasps, we present
the confusion matrix in figure 4.3. This matrix is obtained for test data. It is clear that
the model can distinct between different classes and the confusion ratio is very small. The
higher confusion rate is of 6%.
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Predicted Labels

Confusion Matrix

/;790}{1
prismatic four finger 4 0.0086 0.0138 0.031 0.0172 0.0017 0.0344 0.0017 0.0172
adducted thumb 0.0036 0.0091 0.0018 0.0236 0.0054 0.0036 0.0399
index finger extension 0.0033 0.0 0.0184 0.0467 0.0 0.0 0.0618
. prismatic pinch 0.0217 0.002 0.002 0.002 0.0118 0.002 0.0
gﬂ; precision disk 0.0099 0.0397 0.0017 0.0083 0.0463 0.0033 0.0165
g power sphere 0.0038 0.0076 0.0114 0.0227 0.0 0.0133 0.0114
. tripod grasp 4 0.0111 0.0111 0.0186 0.0019 0.0056 0.0223 0.0093
parallel extension 0.0126 0.0144 0.0036 0.0325 0.0072 0.0108 0.0126
lateral Y 0.0037 0.0093 0.0056 0.0 0.0187 0.0019 0.0
medium wrap 0.0059 0.0137 0.0039 0.0039 0.0059 0.0059 0.002 0.0

Figure 4.3: Evaluation of the Hybrid Model Performance: Confusion Matrix for skMG
and Gaze

4.3 Fusion of sEMG with Accelerometer measure-
ments

Unlike using gaze data, Accelerometer data can be more informative and be a valuable
input source for training and enhancing accuracy. Accelerometer data frequently offers
more direct and accurate information on physical movements compared to gaze tracking
data, making it a reliable modality for controlling prosthetic devices or improving model
performance.

The developed model in this case is also a two branch model. The first one (sEMG
madality) is the same developed in chapter 3 and used for the combination sEMG and
Gaze. The second branch has accelerometer data as input and has the same architecture
(as for Gaze) Figure 4.4. The difference is only in the number of inputs.

The figure 4.5 shows the accuracy and Loss evolution during the training phase. The
training and validation accuracies and losses curves show a good training without over-
fitting.

The combination of sEMG and accelerometer data has produced the highest accuracy
compared to the two previous scenarios (SEMG only, sEMG & Gaze) as was previously
anticipated.

The comparison between the performance of this model with the other models is in table
4.3. The model’s training and testing accuracy were both 97% when the accelerometer
and sEMG data were combined. It exceeds the accuracy of the previously developed
models. This shows also that the model’s performance on both the training and testing
datasets has significantly improved as a result of the incorporation of accelerometer data
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Figure 4.4: Integrating Accelerometer, and sEMG Signals in Hand Gesture Recognition:
A Hybrid Model Approach
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The integration of accelerometer data most likely give the model new information and
features that enhanced its capacity to recognize patterns and make precise predictions.
The model’s overall accuracy have been considerably improved by the integration of ac-
celerometer data.

It’s important to note that increasing accuracy by combining different modalities shows
the potential advantages of utilizing many data sources for a more accurate prediction of
hande gestures recognition.

Accuracy | sSEMG | sSEMG & Gaze | sEMG & Accelerometer
Training | 94% 95.7% 97%
Test 88% 90% 97%

Table 4.3: Performances comparison of the sEMG, sEMG & Gaze and sEMG & Ac-
celerometers models

To analyse the model performance for all the considered hand gestures grasps, figure 4.6
illustrates the obtained confusion matrix using test data. Like the previous model, it is
also clear here that this model can distinct between different classes and the confusion
ratio is very small. The higher confusion rate is less than 3%.
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Figure 4.5: Accuracy and Loss Curves for the Hybrid Model of sSEMG & Accelerometer
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prismatic four finger 0.0 0.0 0.0 0.0 0.0 0.0 0.0055 0.0055
adducted thumb 0.0018 0.009 0.0 0.0 0.0018 0.0 0.0072

index finger extension 0.0 0.0017 0.0017 0.0035 0.0052 0.0 0.0017
prismatic pinch 0.0037 0.0128 0.0018 0.0 0.0 0.0018 0.0037

% precision disk 0.0 0.0036 0.0 0.0
g power sphere 0.0 0.0036 0.0107 0.0036
tripod grasp 0.0 0.0019 0.0019 0.0
parallel extension 0.0018 0.0 0.0072 0.0036
lateral 0.0073 0.0 0.0 0.0
medium wrap 0.0 0.0037 0.0037 0.0037

Figure 4.6: Evaluation of the Hybrid Model Performance: Confusion Matrix for sEMG
and Accelerometer

4.4 Fusion of sEMG with Gaze and Accelerometer
modalities

The obtained results when combining sEMG with Gaze and with Accelerometer measure-
ment are very attractive. We present in this section a global system that combines the
three modalities. Its architecture is illustrated in figure 4.7.

The performance and capabilities of machine learning models can be further improved
by integrating gaze and accelerometer with sSEMG data. By combining these multiple
modalities, we may take advantage of the unique information of each type and develop a
more comprehensive understanding of the task.

We may evaluate the effect of incorporating various types of modalities on the model’s
performance by training the model with the integration of three modalities (EMG, gaze,
and accelerometer) while using the same hyperparameters as the previous models.
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Figure 4.7: A Hybrid Model Approach for Integrating Accelerometer, Gaze, and sEMG
Data in Hand Gesture Recognition

Figure 4.8 shows the accuracy and Loss evolution during the training phase and table

4.4 summarises the model performances for both training and test data. The comparison
between the performances of the four developed models enables us to understand the
additional advantages provided by including multiple modalities in the training process.
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Figure 4.8: Accuracy and Loss Curves for the Hybrid Model of sSEMG & Acceleromete &
Gaze

Comparing all of the previous scenarios, the model that combines three modalities (SEMG,
gaze, and accelerometer) achieves the highest accuracy, coming in at 98%. This notable
increase in accuracy emphasizes the benefit of combining multiple data types in the train-
ing process. The test and training accuracies are similar, indicating that the model
generalizes well and effectively uses the combined information from the three modalities
to produce accurate predictions.

Accuracy | sSEMG | sSEMG & Gaze | sEMG & Accelerometer | SEMG & Accelerometer & Gaze

Training | 94% 95.7% 97% 98%

Test 88% 90% 97% 98%

Table 4.4: Models performances

Figure 4.9 shows the confusion matrix obtained with this model. It is clear that the model
can easily separate between different classes.

The Pie plot of predicted and true labels (figure 4.10) provides a visual representation of
the distribution of different classes or categories within the predicted and true labels.
The degree to which the predictions of the model agree with the actual labels can be
determined by comparing the pie charts of predicted and true labels side by side.

The model’s predictions are consistent with the actual labels if the pie charts resem-
ble one another or strongly overlap. The model may be biased or inaccurate in predicting
certain class labels, on the other hand, if there are obvious differences between the pie
plots. These, the quality of model’s prediction is very acceptable.
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Confusion Matrix
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Figure 4.9: Evaluation of the Hybrid Model Performance: Confusion Matrix for sEMG &
Acceleromete and Gaze
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Figure 4.10: Predicted and True Labels Comparison
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lateral

parallel extension
tripod grasp

power sphere
precision disk
prismatic pinch

index finger extension
adducted thumb
prismatic four finger

The global performances of this model considering all the ten classes are resumed in the
following table. For a more illustration of these results, a bar diagram is plotted in fig-
ure 4.11. In this diagram, a categorical variable’s counts or frequencies of various class
labels, such as actual labels or predicted labels, are represented. The closed bar heights
for both actual and predicted labels for the ten classes shows that the model has similar
performances for all the classes.
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Classes Precision | Recall | Fl-score | Support
Medium wrap 0.97 0.99 0.98 531
Lateral 0.99 0.99 0.99 556
Parallel extension 0.99 0.96 0.97 543
Tripod grasp 0.99 0.98 0.99 536
Power sphere 0.98 0.98 0.98 562
Precision disk 0.98 0.99 0.98 555
Prismatic pinch 0.97 0.98 0.98 549
Index finger extension 0.98 0.98 0.98 563
Adducted thumb 0.97 0.98 0.98 568
Prismatic four fingers 0.99 0.98 0.98 950

Table 4.5: Test results for each class
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Figure 4.11: Comparison of Actual and Predicted Label Frequencies for Ten Classes in
the Model
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4.5 Test on Variability

In this section, we perform different experiments to study the model performance when
training and test data were acquired in different experimental conditions listed in previous
sections. This analysis aims to examine whether the sEMG or the accelerometer as well
as the gaze data recorded when performing a specific grasp result depend on task-related
factors, such as the grasped object.

To do this, two parameters are taken into consideration, each of them represents a different
train-test split of the data.
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4.5.1 Object-split

We included one of the three objects used for each grasp type in the training set and
another object is considered in the test set and we look at the best results across all
subjects. The aim is to understand how an object’s characteristics influence our data and
the model performances.

4.5.2 Trial-split

10% of our data is kept for the test set, while the remaining 90% is used for training. In
this case, the level of variability in the train and test data is the same.

Accuracy Comparison of Modalities
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Figure 4.12: Accuracy Comparison of Modalities

As expected the model performs poorly on object-split, this problem turned around the
challenge of variability in signals between subjects and within the same subject when
manipulating different objects with the same grasp.

The variations in signals seen between various participants are referred to as subject
variability. While performing the same grasp, each person may have different muscle
activation patterns, eye movement characteristics, and accelerometer readings. This vari-
ability makes it difficult for a model trained on data from one subject to generalize well to
other subjects, and that leads to resulting in poor performance. In addition, while manip-
ulating several objects with the same grasp, there may be variances in signal patterns even
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within the same person. Different objects have different physical characteristics, including
different shapes, weights, and textures, which can have an impact on how individuals ex-
ecute the grasp. These variances present the model with extra difficulties because it must
take into account the differences caused by the items while still identifying the desired
grab.

Even the integration of multiple modalities could not effectively overcome the limita-
tions posed by the subject’s variability. The signals from different modalities might still
exhibit significant variations between subjects while manipulating different objects, mak-
ing it challenging for the model to generalize accurately.

Finding ways to reduce the impact of signal variability is necessary to solve this issue. This
can involve collecting larger and more diverse datasets that cover a variety of subjects
and objects. Additionally, to enhance the model’s generalization capabilities, methods
like data augmentation, transfer learning, or fine-tuning might be used. Further study
and the use of novel methods are required to improve the model’s capacity to handle these
variances efficiently in order to solve this issue.

4.6 Models Training and performance evaluation con-
sidering the Amputees data

All the previously models are trained using examples of measurements obtained with in-
tact persons. The aim of this section is to train the same final model with its optimized
parameters using the dataset of amputee participants. This step enables us to evaluate
the model’s performance on a different set of participants and compare it to the results
obtained from the intact participant data.

The accuracy and loss curves obtained during the training of the model that used only
sEMG data, sSEMG and Gaze, and sEMG and Accelerometer are plotted in figures 4.13
4.14 4.15 respectively. The performances of these models using train and test data are
summarised in table 4.6. The three models achieves a training accuracy slightly higher
compared to the one obtained with intact participant’s data. It seems that the model
achieves a higher testing accuracy when trained on the amputee data compared to the
intact participant data. This observation suggests that the amputee participant’s data
contains more informative patterns or features that contribute to the overall performance
of the model.

sEMG sEMG & Gaze sEMG & Accelerometer
Accuracy | Intact | Amputees | Intact | Amputees | Intact Amputees
Training | 94% 95% 95% 96% 97% 98%
Test 88% 91% 90% 95% 97% 98%

Table 4.6: Accuracy Results
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Figure 4.13: Accuracy and Loss Curves for sEMG-only Model
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Figure 4.15: Accuracy and Loss Curves for sEMG & Accelerometer

Model’s Performances comparison with Related

works

Figure 4.16 illustrates the performances obtained with different classifiers (LDA: KRLS
mDWT, K-NN) published in [10] and that use the same dataset as in our work. These
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performances are obtained considering only sEMG signals.
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Figure 4.16: Classification accuracies for able-bodied and amputated subjects when pre-
dicting the grasp type with three different types of classifiers using sEMG signals [10] and
our model

The results of classification accuracy, reported in Figure 4.14, show accuracy between
63% and 82% for both intact and amputated subjects, depending on the classification
method (LDA, K-NN, or KRLS mDWT).[10]. Overall, the higher accuracy achieved by
our HCLSTM classifier suggests its potential for effective modelling and prediction in the
given domain, showing the advantages of leveraging deep learning techniques for sequen-
tial data analysis.

The figure 4.17 illustrates another comparison between our proposed model and the pre-
viously considered methods of classification [10] when the SEMG was combined with gaze
data.
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Figure 4.17: Classification accuracies for intact (intact!') and amputated (Amputees')
subjects when predicting the grasp type using only sEMG and while integrating also the
visual information[35]
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Figure 4.17 shows the classification accuracy for both intact and amputated subjects. The
integration of vision with muscular information increases the performance by about 4%
and 7% for intact subjects and amputees, respectively in comparison of the case of only
sEMG signals [10].

Also in the case of using our proposed classifier, the performance of the model increases by
about 2% and 4% for intact subjects and amputees when we integrate gaze information.

4.8 conclusion

This chapter was focused on the integration of gaze and accelerometer data alongside
sEMG data to perform multimodal classification for predicting ten different grasp types.
The study conducted a series of experiments, starting with the integration of SEMG with
gaze data, which resulted in an accuracy of 95%. While the fusion of SEMG and Ac-
celerometer can achieve an accuracy of 97%. Finally, by combining all three modalities
(EMG, gaze, and accelerometer) into a multimodal, an impressive accuracy of 98% was
obtained for both training and test data. These results highlight the effectiveness of in-
corporating multiple modalities for grasp classification.

Comparing our results to related work that used the same dataset, it would be essen-

tial to consider the specific methodologies, experimental setups, and evaluation metrics
used in those studies. However, our approach shows promising results.
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General Conclusion

In conclusion, this work has provided a comprehensive study of hand gesture recognition,
covering various aspects related to signal analysis, deep learning architectures, classifica-
tion models, and multimodal integration. The study emphasized the relevance of signals
such as surface Electromyography (sEMG), accelerometers, and eye tracking in hand ges-
ture recognition. Theoretical concepts of deep learning, including Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), were explored as the founda-
tion for developing accurate and robust gesture recognition algorithms.

A hybrid model combining CNN and LSTM cells was proposed for recognizing ten hand
gesture grasps using SEMG data as a single modality, achieving an acceptable accuracy
of 88%. The study addressed the challenges and constraints associated with sEMG data
classification, employing strategies such as improved data collection, signal processing,
transfer learning, and multimodal sensing to overcome them.

The effectiveness of integrating gaze and accelerometer data with EMG data was demon-
strated, resulting in a significant improvement in classification accuracy. By combining
all three modalities, a promising accuracy of 98% was achieved for both training and test
datasets.

Considering these achievements, there are several perspectives for future work in the
field of hand gesture recognition for myoelectric prostheses. Exploration of advanced
deep learning architectures, such as attention mechanisms, graph neural networks, or
transformer-based architectures, could be conducted to improve the accuracy and ro-
bustness of classification algorithms. Enhancing the real-time applicability of gesture
recognition systems is essential, and the development of efficient and lightweight models
for real-time classification on prosthetic limbs would significantly enhance usability and
practicality.

The development of personalized and adaptive models should also be pursued to im-
prove accuracy and user experience. Techniques like transfer learning or personalized
fine-tuning could be investigated to adapt pre-trained models to individual users. Addi-
tionally, integrating contextual information and semantic understanding could enhance
gesture recognition systems by incorporating knowledge about user intentions, task con-
text, or environmental factors.

To evaluate the usability, acceptance, and effectiveness of the developed systems in real-
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world scenarios, conducting user studies and clinical trials is crucial. Gathering feedback
from amputees and healthcare professionals can provide valuable insights to refine the
technology and address user-specific needs.

By considering these perspectives, future research can contribute to advancing the field

of hand gesture recognition for myoelectric prostheses, ultimately improving the quality
of life and autonomy for individuals with limb amputation.
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Appendix A

Software and Hardware Tools

A.1 Software

A reliable software environment is necessary for the development of efficient deep learning
models for time series analysis.

The software environment used to train deep learning models for time series analysis
is covered in this section. The study made use of the TensorFlow framework and the
flexible programming language Python, as well as crucial modules like pandas, numpy,
matplotlib, and Keras. The work was done using Spyder as the Integrated Development
Environment (IDE) in the Anaconda environment.

The software environment is built on the popular programming language Python. It
is a popular option for data analysis and deep learning tasks due to its user-friendly syn-
tax, substantial community support, and rich ecosystem of libraries. In this study, tools
like pandas, numpy, and matplotlib were essential for manipulating data, performing cal-
culations, and visualizing the results. Numpy supplied crucial capabilities for numerical
computing and array operations, while Pandas supported effectively data pretreatment,
cleaning, and transformation. Data exploration and pattern recognition were made easier
with the help of Matplotlib’s ability to create a variety of visuals.

This research used TensorFlow as the underlying deep learning framework, together with
Keras, a high-level neural network library. By offering an accessible API and abstracting
away low-level operations, Keras made the process of developing, testing, a deep-learning
models simpler. The model training and deployment in production contexts were made
easier by the scalable and effective framework TensorFlow. Its extensive toolkit enabled
operations including distributed computing, model optimization, and data preparation.

The Anaconda environment, a complete data science platform, was used to perform this
research. Package management, environment management, and other crucial capabilities
provided by Anaconda allowed for the easy integration of libraries and quick project setup.
The IDE of choice, Spyder, offered a user-friendly and potent environment for Python
data analysis and scientific computing. With its features, which included code editing,
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debugging, and variable exploration, model creation, and experimentation became more
productive.

A.2 Hardware

This part explores the hardware configuration utilized for training machine learning mod-
els in time series analysis.

A.2.1 AMD Ryzen 5 3500U CPU

The research utilized an AMD Ryzen 5 3500U CPU as the central processing unit. This
CPU is equipped with 4 cores and 8 threads, allowing for parallel execution of tasks.
With a base clock speed of 2.9 GHz, the CPU provides a solid foundation for efficient
data processing and model training in time series analysis.

A.2.2 AMD Radeon Vega 8 GPU

The system incorporated an integrated AMD Radeon Vega 8 GPU, which offers acceler-
ated computations for machine learning tasks. The GPU provides additional processing
power specifically designed for parallel operations, enabling faster training and inference
of models. The inclusion of the AMD Radeon Vega 8 GPU enhances the overall compu-
tational capabilities of the system, particularly for tasks involving large-scale time series
data.

A.2.3 Memory

The hardware configuration included DDR4 memory with a capacity of 8GB and a clock
speed of 2400 MHz. This high-speed memory facilitated efficient data storage, retrieval,
and processing during model training. The ample memory capacity allowed for the han-
dling of large datasets and the storage of intermediate computations, contributing to
improved training performance and reduced processing time.
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Appendix B

Model’s configuration parameters

B.1 Configuration 1

For this, the first step made was to test the CNN-LSTM model with the parameters in-
dicated in Table B.1.

Activation function | Tanh
Optimizer SGD
Learning rate 0.2
Number of epochs | 120
Batch size 256

Table B.1: Parameter Configuration 1 for Training a CNN-LSTM Model

B.2 Configuration 2

With a learning rate of 0.2, the SGD optimizer’s initial training test produced a low accu-
racy metric. This inspired the investigation of further optimization methods to perhaps
enhance the performance of the model. Adam Optimizer was selected as a strong con-
tender because of its adaptable learning rate and momentum. It becomes used with a
decreased learning rate of 0.002. The goal was to compare the performance of SGD and
Adam optimizers as well as look into the advantages of using a slower learning rate. All
considered parameters in this case are in table B.2.
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Activation function | Tanh

Optimizer Adam

Learning rate 0.002
Number of epochs 120
Batch size 256

Table B.2: Parameter Configuration 2 for Training a CNN-LSTM Model

B.2.1 Configuration 3

In this part, we consider Adam optimizer with a reduced learning rate (0.001) compared
to the used one in the previous test. The number of epochs is also increased (Table B.3).

Activation function | Tanh

Optimizer Adam

Learning rate 0.001
Number of epochs 150
Batch size 256

Table B.3: Parameter Configuration 3 for Training a CNN-LSTM Model
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Abstract

This work aims to advance gesture recognition by combining multimodal signals, including
surface electromyography (SEMQ), accelerometer, and eye-tracking data, using deep learning
techniques. The proposed hybrid architecture incorporates Convolutional Neural Networks
(CNNs) for feature extraction and Long Short-Term Memory (LSTM) networks for time series
processing, aiming to enhance gesture recognition accuracy. The evaluation involves two
stages: first, assessing performance with sSEMG data alone, and second, evaluating a multimodal
dataset with accelerometers and eye-tracking. The MeganePro dataset is used for training deep
learning algorithms to improve hand gesture recognition and develop intuitive human-computer
interaction control mechanisms. This research significantly contributes to the field of gesture
recognition.

Keywords: Gesture recognition, multimodal signals, sSEMG, accelerometer, eye tracking, deep
learning, Convolutional neural networks (CNN), Long Short Time Memory (LSTM).

Résumé

Ce travail vise a faire progresser la reconnaissance gestuelle en combinant des signaux
multimodaux, notamment des données d'électromyographie de surface (SEMGQG),
d'accélérometre et de suivi oculaire, a l'aide de techniques d'apprentissage profond.
L'architecture hybride proposée intégre des réseaux de neurones convolutifs (CNN) pour
l'extraction de caractéristiques et des réseaux LSTM (Réseaux de neurones a mémoire a court
terme) pour le traitement des séries temporelles, dans le but d'améliorer la précision de la
reconnaissance gestuelle. L'évaluation comprend deux <étapes : d'abord, évaluer les
performances uniquement avec les données sEMG, puis évaluer un ensemble de données
multimodal comprenant des accélérométres et du suivi oculaire. Le jeu de données MeganePro
est utilis¢é pour entrainer des algorithmes d'apprentissage profond afin d'améliorer la
reconnaissance des gestes de la main et de développer des mécanismes de contrdle intuitifs pour
l'interaction homme-machine. Cette recherche contribue de maniére significative au domaine
de la reconnaissance gestuelle.

Mots-clés : Reconnaissance des gestes, signaux multimodaux, SEMG, accélérometre, suivi
oculaire, apprentissage profond, réseaux neuronaux convolutifs (CNN), Réseaux de neurones a
mémoire a court terme (LSTM).
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