Al duda) Baall Ay i 3l 4y ggaall @ G[“

ENST
i % o People's Democratic Republic of Algeria
) il g (ladl andal) 30 5 g
Ministry of Higher Education and scientific research
L o] il Luledf Ayl o) A yaal)
National High School of Technology
Department of Electrical Engineering and Industrial Informatics
Final Year Project to Obtain the Diploma of
Engineering
Field:
Telecommunications
Speciality:
Telecommunication Systems and Networks
Subject:
Study and Deployment of a Software Defined Networking
Solution on a Public Cloud (OpenNebula)
Realized by:
LECHEHEB Manel
Members of The Jury:

Mrs BOUTARFA Souhila Chair M.C.B ENST
Mrs ABBAD Leila Supervisor M.A.A ENST
Mr SEFTA Mahfoud Co-supervisor Head of Cloud Infrastructure Icosnet
Mr BELAHCENE Abdelkader Examinator M.A.A ENST
Mrs CHIALI Imane Examinator M.C.B ENST

Algiers, 06/07/2023

Academic year 2022 -2023

Dedecations

To my dearest mother, the one that always believes in me,

supports me, guides me and the source of my happiness.

To my dear father, for his encouragement, support, and

especially for the sacrifices he made.

To my life inspiration, my brother and sisters, who always

encourage me to go beyond my dreams.

To the faculty and staff of National Higher School of
Technology. Above all, to our God Almighty who showered
us His blessings in our everyday lives, especially for the
strength, courage, patience, wisdom,time, and guidance in

the realization of this work.

Acknowledgments

First and foremost, I want to thank Allah for giving me
strength, patience, desire, bravery, and health to complete

this project.

1I’d also want to thank my parents, my brother and my
sisters for their support and encouragement during my long

academic career.

I would like to express my gratitude and appreciation to my
supervisor, Mrs. ABBAD Leila for assisting me through
every difficult obstacle in my way, for supporting me and

guiding me to finish my project.
I would also address my thanks to Mr. Sefta Mahfoud and

all the infrastructure cloud’s team who shared their
expertise with me, guided me and answered my questions

during the realisation of this project

And without forgetting the jury members for the honour
they have given me by taking the time to read and evaluate

this work.

Finally, thanks to everyone in my promotion team, the
whole department of electrical engineering and industrial
computing, and everyone who has helped me both morally

and materially.

Contents

List of Figures
List of Tables
List of Acronymso
General Introduction
I Generalities within Icosnet Cloud Architecture
[.L1 Introduction
.2 Virtualizationo
[.2.1 Definition
[.2.2 Why Virtualization 7
[.2.3 Type of Virtualization
[.2.4 Important Concepts in Virtualization
[.2.4.1 Virtual Machine Monitor (Hypervisor)
[.24.2 Host and Guest
[.2.4.3 Virtual Machine
[.24.4 Containers
[.245 Cluster
[.3 Cloud Computing
[.3.1 Definition
[.3.2 Types of Cloud Computing
[.3.3 Types of Cloud Services
[.3.4 Benefits of Cloud Computing
[.3.5 Relation between Virtualization and Cloud Computing
[.4 The Cloud Architecture of Icosnet
[.4.1 KVM Hypervisor
[.41.1 Installation
[.4.1.2 Networking Characteristics
[.4.2 OpenNebula Cloud
[.4.2.1 Installation
[.4.2.2 Networking Characteristics

1. Conclusion.

Contents

IT Needs Analysis and Choice of the SDN Solution 23
II.1 Introduction 24
I1.2 Overview about SDN 24

[1.2.1 Definition 24
[1.2.2 OpenFlow 25
[1.2.3 SDN on Cloud Computing 26
[1.2.4 Why SDN 7 26
I1.3 Requirements of the Solution 27
I1.4 Choice of the Solution 27
[1.4.1 OpenDaylight 28
I1.42 OVS-DPDK 29
I1.4.3 ONOS 31
I1.5 Comparaison between the Solutions 32
I[1.6 Conclusion. e 34

ITI Implementation of ONOS SDN Controller 35
III.1 Introduction 36
II1.2 The Architecture 36
ITI.3 The integration 37

I11.3.1 SDN-Virtualization Part 37
[I1.3.1.1 Open Network Operating System (ONOS) 38

I11.3.1.2 Open vSwitch 43

I11.3.1.3 OVS-ONOS 48

I11.3.2 SDN-Cloud Part 48
IT1.4 Conclusion e o1

IV Results and Discussion, 53
IV.1 Introduction 54
IV.2 Tests of the Solution 54

IV.2.1 Virtual Machines Isolation 54
IV.2.1.1 Reactive Forwarding 54

IV.2.1.2 Intent Framework 55

IV.2.1.3 Implementation 55

IV.2.2 Necessary Commands 58
IV.2.3 ONOS REST API 61

IV.3 Problems Experienced and Solutions 62
IV.3.1 Problems 62
IV.3.2 Solutions 63

IV.4 Propositions for a Real Implementation 64
IV.5 Conclusion e 65

General Conclusion 66

Contents

Appendices

Bibliographies

Webographies

Abstract

List of Figures

[1
[.2
1.3
I.4
L5
1.6

L7

I.8

L.9

[.10
[.11
[.12
[.13
[.14
I.15
I.16

.17
[.18
I.19
1.20
[.21
[.22
1.23
[.24

II.1
I1.2
I1.3
I1.4
I1.5
I1.6
IL.7
I1.8

Comparison between Traditional and Virtual Computer Architecture [3]

Comparison between the Two Types of Hypervisors[5]
Concepts of Host and Guest within Hypervisor Based Virtualization [6] .
Virtual Machine Architecture within Hardware Host
Comparison between VM and Container Architectures[8]
Migration of VMs from Overloaded Host to Host with Free Ressources

on the Same Cluster[10]
Cloud Computing Service Providers
[cosnet Cloud Architecture L.
KVM Logo
Exemples of Libvirt API Commands
Virt-manager L
Verify the VT and the KVM’s Support
Adding Users and Verifying API Installation
Verification of libvirtd Status 0.
Mlustration of a Virtual Network Architecture Generated by KVM
Screenshot of (ip address) Command Displaying Network Interfaces

Informations
KVM Networking Modes
OpenNebula Logo
Key Features Offered by OpenNebula[13]
OpenNebula Daemon Properly Started
OpenNebula Sunstone GUI
OpenNebula KVM Host Node
Opennebula Network[13] Lo
Creatinganew VM

Comparison between Traditional and SDN Architecture
Software defined Networking Architecture
SDN within Cloud Computing
OpenDaylight Logo
ODL Environment
ODL’s Command Line Program
ODL’s Problems
OVS Logo

List of Figures

I1.9
IT.10
II.11

II.1
II1.2
I1I.3
I11.4
ITL.5
IT1.6
1.7
ITI.8
IT1.9
IT1.10
II1.11
I11.12
IT1.13
IT1.14
IT1.15

IT1.16
.17
IT1.18
I11.19
I11.20

V.1
IV.2
IV.3
V4
IV.5
IV.6
V.7
IV.8
IV.9
IV.10
IV.11
IV.12
IV.13
V.14
IV.15
IV.16
IV.17

Open vSwitch’s Components
OVS-DPDK’s Problem
ONOS LOZgo o e

The Suggested Architecture by Integrating SDN
Projection of the SDN Architecture on the Infrastructure
SDN-Virtualization Part
Adding SDN User
Java Version
Maven Version
ONOS Service Running
ONOS CLI
ONOS GUI
ONOS Activated Applications
OVS Service
Screnshoot of "ip a” Cammand Displaying OVS Switch
OVS Configuration
Creating an OVS VNET
The Virtual Network Interface of the New VM Attached to OVS Virtual

Network o .
Attachment the OVS Bridge to the ONOS Controller
SDN-Cloud Part
Opennebula Front-end Configuration with OVS
VNET Open vSwitch
Managing the Controlled Network via OpenNebula Sunstone

Reactive Forwarding within ONOS
The Types of ONOS Intents
Displaying the Creation of the VMs Using the Command "ovs-vsctl show”
Displaying the Two VMs on ONOS GUT
Connection Establishment between the 2 VMs by activating the FWD . .
Disconnection between the VMs because of the FWD Deactivation
Intent’s Flow
VMs Connected through Intent
Network View: Connectivity Requests Cause Flow [19]
GUI ONOS Network Overview
Cluster’s Informations L.
Routing and Security Configurations
Managing Intentso L
ONOS API
ONOS Flows
Issue of Incompatibility between the Versions
Effect of the Nested Virtualization

II

List of Figures

IV.18 ONOS Cluster[18] 64
IV.19 Implementation of an OpenNebula Virtual Router 64
IV.20 Implementation of the Proxy[20] 65
A.1 VirtualBox’s Snapshot oL 69
A.2 Creation of a Virtual machine Using virt-manager 70
A3 Switching OS to Desktop 71
A4 OSDesktop 71
A5 MariaDB Back-end 72
A.6 OpenNebula Sunstone 73

IT1

List of Tables

I.1 Comparison between the SDN Solutions

IV

List of Acronyms

API Application Programming Interface
CLI Command Line Interface

CPU Central Processing Unit

CSP Cloud Service Provider

FWD Forwarding

GUI Graphical User Interface

TaaS Infrastructure as a Service

IBM International Business Machines Corporation
IP Internet Protocol

ISP Internet Service Provider

IT Information Technology

JSON JavaScript Object Notation

KVM Kernel-based Virtual Machine

LTS Long-Term Support

MAC Media Access Control

NAT Network Address Translation

NETCONF Network management protocol

NIC Network Intrtface Card

ODL OpenDaylight

OF OpenFlow

ONF The Open Networking Forum
ONOS Open Network Operating System
oS Operating System

List of Acronyms

OVvS
PaaS
QEMU
QoS
RAM
REST
SaaS
SAN
SDN
SSH
SNMP
TCP
VM
VMM
VMs
VNC
VNET
VNIC
VT
VXLAN
XML

Open vSwitch

Platform as a Service

Quick Emulator

Quality Of Service

Random Access Memory
Representational state transfer
Software as a Service

Storage Area Network

Software Defined Networking

Secure Socket Shell

Simple Network Management Protocol
Transmission Control Protocol
Virtual Machine

Virtual Machine Monitor

Virtual Machines

Virtual Network Computing

Virtual Network

Virtual Network Interface Card
Virtualization Technology

Virtual eXtensible Local Area Network

Ezxtensible Markup Language

VI

General Introduction

During the few years, the world has completely changed, in view of the information
technology (IT) landscape, according to the appearance of many emergence of revolu-
tionary technologies such as virtualisation and cloud computing. These lasts are two

interconnected state-of-the-art technology that has innovated the IT industry.

Virtualisation is a process that enables more powerful use of physical computer hardware.
It allows the division of the computing resources (processors, memory, storage, etc.) of a
single physical infrastructure into several virtual computers, commonly known as virtual

machines, micro virtual machines or containers.

While cloud computing consists of hosting and using data on remote servers, that
are managed by the cloud service providers (CSP), via the Internet. It offers access,
orchestration and management of the shared computing resources using a software, rather

than owning a local host device. Whereas the CSP sells such accessible services.

The combination of these two aspects has created a new beneficial business for the
internet service provider (ISP) and especially for the CSP around the world. In Algeria,
ICOSNET was one of them. It offers cloud services designed to suit client infrastructure’s
needs and size, through its data centers located in Algeria. The only private ISP in
Algeria has a technical team responsible of the infrastructure cloud, which is constantly
developing and keeping up to date with the latest technology in this field. That is why
they suggest including software defined networking (SDN) on their own cloud.

The software defined networking is a cutting-edge technology that serves to centralize
the management and the control of the network by separating the data forwarding and
the network control, then using a software to administrate rather a virtual or a physical
network. In our case, SDN is used to control a virtual network formed of a cluster running

on three separated servers.

Context and Problematic

Considering that during this project, Icosnet uses a public cloud named OpenNebula,
in the cloudy side. And in the second side, the Kernel-based Virtual Machine (KVM)
hypervisor as a tool of virtualisation. But the conjunction of these two software creates

General Introduction

some limits. And the SDN controller is supposed to solve it. Among these limits:

e The decentralisation of the network configurations on the hardware, sometimes the

same configurations repeat on many devices.

e Human contribution to network management increased the possibility of fatal errors.

Especially, that Icosnet hosts data of many big companies.

e Absence of a graphical user interface (GUI) to clearly observe the architecture of
the virtual network and all the changes on its configurations.

e The inability to isolate virtual instances on the same virtual network (VNET) from
each other, and the obligation of creating a new VNET on OpenNebula for each
instance in order to isolate it. Which is an exhausting and impractical action.
Knowing that, the isolation of a virtual machine from the internal network is a

major aspect of security.

Goals and Contributions

In the end of our dissertation, we are supposed to:

e Firstly, having a basic virtual infrastructure composed of virtual machines created
using KVM hypervisor and attached to its bridge, through the public cloud Open-
Nebula Sunstone.

e Secondly, carry out the study of needs and the appropriate SDN solution for this
architecture.

e Thirdly, the integration of the solution on the basic virtual infrastructure and ap-

plying the necessary modifications.

e Finally, testing the functioning of the SDN controller, applying the network config-
uration, especially isolation of the virtual machines (VMs), and suggesting require-

ment for the real implementation.

Dissertation Organization

It is structured into 4 chapters, such that:

e Chapter I: "Generalities within Icosnet Cloud Architecture”
Involved an overview about both virtualisation within the Kernel-based Virtual
Machine and cloud computing within the public cloud OpenNebula. Also, review
the current cloud infrastructure architecture used by Icosnet and its limitations.

e Chapter II: "Needs Analysis and Choice of the SDN Solution”
Discuss the concepts of software defined networking in the cloud environment, and

study the suitable solution on such environment, according to the needs analysis.

General Introduction

e Chapter III: “Implementation of ONOS SDN Controller”
Detail the implementation and the configuration of whole open network operating
system (ONOS) SDN solution and open vSwitch (OVS) between KVM and Open-

nebula.

e Chapter IV: "Results and Discussion”
Examine the capabilities of the new realizable architecture, its issues, and practical

solutions by performing some tests.

e We conclude with a general summary of all the achieved work, valorisation of efforts
and drawn attention to the difficulties faced. In the end, proposing some perspectives

to ameliorate the solution.

Chapter I

Generalities within Icosnet Cloud
Architecture

Chapter I. Generalities within Icosnet Cloud Architecture

I.1 Introduction

In this chapter, we will briefly discuss the process of both virtualisation and cloud
computing technologies, their general concepts and tools. Then, we will highlight the
KVM hypervisor and the OpenNebula cloud, its installations, configurations and uses.
Furthermore, we will review in detail Icosnet cloud architecture.

Drawing your attention to the fact that this work is a real cloud infrastructure project
at Icosnet, in addition to being my end of studies project. I worked on it during my
internship in coordination with the supervisors there, who provided for me the necessary
tools to succeed in such an innovative project.

I.2 Virtualization

I.2.1 Definition

Virtualization was an inevitable result of the growing capability of datacenter technology
and the continuing pressure to reduce technology costs[l]. To remove ambiguity, virtu-
alization defined as a framework or methodology of dividing the resources of a computer
hardware: Central Processing Unit (CPU), Random Access Memory(RAM), storage, Net-
work Interface Card (NIC), etc, into multiple execution environments, by applying one or
more concepts or technologies such as hardware and software partitioning, time-sharing,
partial or complete machine simulation, emulation, quality of service, and many others.
Furthermore, virtualization is a layer of abstraction that breaks the standard paradigm
of computer architecture, decoupling the operating system from the physical hardware
platform and the applications that run on it[2]. (Figure A.6)

OPERATING SYSTEM /

- —4‘—/1‘/’

VIRTUALIZATION LAYER

HARDWARE

TRADITIONALARCHITECTURE VIRTUAL ARCHITECTURE

HARDWARE

Figure I.1: Comparison between Traditional and Virtual Computer Architecture [3]

I.2.2 Why Virtualization ?
Virtualization provides notable benefits, here some of its key advantages:

e Cost Savings: By combining several physical servers into one virtual environment,
virtualization can lower hardware expenses. This lessens the need for additional
gear and the related expenses of electricity, cooling, and upkeep. Thing that makes
virtualization an eco-friendly approach to IT.

Chapter I. Generalities within Icosnet Cloud Architecture

Improved Efficiency: By enabling the use of different operating systems and appli-
cations on a single physical server, virtualization can increase the effectiveness of I'T
operations. As a result, less new hardware and related expenses are needed.

Increased Availability: By enabling redundancy and failover capabilities, virtual-
ization can improve the availability of applications and services. This makes sure
that even if one of the physical servers breaks down, the applications and services
are still accessible.

Improved Security: By isolating applications and services from one another, vir-
tualization can enhance security. This lowers the chance that one application or
service will negatively impact another.

Improved Mobility: By enabling the migration of services and applications from one
physical server to another and from a state to another, virtualization can enhance
mobility. This makes it possible to relocate software and services to new data centers
or locations and to an old state. Through a variety of functionalities, including
snapshot (see Appendix A.1), copy, clone, and back up of the virtual system.

I.2.3 Type of Virtualization

Virtualization appears in a variety of kinds that come together to build the infrastructure

that supports the virtual environment:

Server Virtualization: This type of virtualization permits multiple operating sys-
tems and applications to run on the same hardware, by partitions a physical server

into various virtual servers[4].

Desktop Virtualization: Through this kind of virtualization, many users can access

their own virtual desktops from any device, wherever they may be.

Application Virtualization: This type of virtualization allows the running of ap-
plications on any hardware, irrespective of the underlying operating system (for

example, running a Linux application in a Windows environment).

Storage Virtualization: This kind of virtualization allows multiple physical storage
devices to be managed as a single virtual entity.

Network Virtualization: This type of virtualization permits the creation and the
management of multiple virtual networks with its own addressing as a single entity
on top of a physical network infrastructure. It covers virtual network interface card
(VNIC), virtual switches and virtual routers, etc. Often, it uses SDN to control
traffic.

Security Virtualization: Multiple security policies may be applied to various virtual

network segments using this kind of virtualization, and specially firewalling.

Chapter I. Generalities within Icosnet Cloud Architecture

I.2.4 TImportant Concepts in Virtualization

I.2.4.1 Virtual Machine Monitor (Hypervisor)

The virtual machine monitor (VMM) is the major key tool for virtualization, it is
a software that provides a layer of abstraction between the physical hardware and the
virtual system, allowing the creation and the management of several virtual instances
with isolated operating systems from each other, simultaneously and on a single physical
machine. There exists two types of hypervisor:

a) Hypervisor type I
Also known by bare metal, it operates directly on the hardware, turning it into an
instrument for controlling the operating system. Then, on the top of this hypervisor,
the guest OSes operate. This kind has direct access to the hardware resources, which
allows for efficient performance and resource management. For example : ESXi from
VMware , KVM the free hypervisor for Linux .

b) Hypervisor type II
Also known by host metal, it works inside another operating system. For example:
VirtualBox, Open Source software published by Oracle.

" APP [app APP | APP |
[os | [os | | os | os |

OPERATING SYSTEM

Type 2 Hypervisor

Type 1 Hypervisor

Figure 1.2: Comparison between the Two Types of Hypervisors[5]

1.2.4.2 Host and Guest

The host is the physical machine host server; the underlying hardware that provides
virtualized resources, such as CPU, RAM, storage and network I/O, and so on. While
the guest is a completely separate and independent instance of an operating system and
application software, that emulates the functionality of a physical computer system. The
guest can take different forms, such as a virtual machine (VM) when its OS runs on the
top of hosts infrastructures or a container when it shares the host’s OS kernel. Guest can
exist on a single physical machine but is usually distributed across multiple hosts for load

balancing®.

! Distributing the computing workload within hosts

Chapter I. Generalities within Icosnet Cloud Architecture

Guest OS

Hypervisor/\VvMNMMM

Kernel of the Host

Hypervisor based Virtualization

Figure 1.3: Concepts of Host and Guest within Hypervisor Based Virtualization [6]

1.2.4.3 Virtual Machine

Virtual machine (VM) is a type of guests, i.e. it is an instance of an operating system
created by a Virtual Machind Monitor (VMM) on the top of host infrastructure and
enables a computer to behave like another computer. Every virtual machine contains
a unique set of virtual hardware (CPU, memory, network interfaces, and disk storage)
that is used to run an operating system and other programs. This enables customers to
execute many applications and operating systems on the same machine, frequently with
heterogeneous operating systems, without having to invest in additional physical hosts.

Its main properties within a datacenter consist on[7]:

e Partitioning: Distribute system resources among virtual machines while running

different operating systems on a single physical host machine.

Insulation: Isolate fault and security management at the hardware level.

Encapsulation: Saving a virtual machine’s whole state to files will enable easy mov-
ing and copying of the VM.

e Hardware independence: Any VM can be created or moved to any physical server.

1.2.4.4 Containers

Virtualization by containerization consists of partitioning directly at the level of the
operating system. Each container so runs in its own environment while utilizing the same
host OS. Because of this, containers are typically used to virtualize a program rather than

a whole server?.

1.2.4.5 Cluster

A cluster is a logical grouping of hosts (often three hosts: master, standby and worker?)

2During this thesis, we will focus especially on the hypervisor virtualization. So, we won’t place much
emphasis on virtualization by containerization
3Worker host is the responsible for balancing between master and standby host in case the master

8

Chapter I. Generalities within Icosnet Cloud Architecture

Operating Operatimng
Swsterr Swsterm

Memory, Netwvwork, PMermory, Netwwork,
Disk {(Wirtwual) Disk (Wirtwal)

Wwirtual viachinmne vVionitor
Hwperwvisor

Physical Host Hardware
CPU, Memory, Netwworl, Dislk

— - ———
L] = ¥ T — ~ '

HOST

Figure 1.4: Virtual Machine Architecture within Hardware Host

)
. I Virtual Machine L ..)

ﬁ Apps E Services ﬁ Apps E Services
0s ﬁ Kernel 0s ﬁ Kemel

Hardware

N

Apps Services i
= EH | S —
05 {:@} Kernel

Hardware

Figure 1.5: Comparison between VM and Container Architectures[§]

with the same kind of CPU and shared a common storage domains. According to reg-
ulations set forth on the cluster and settings on the virtual machines, virtual machines
are dynamically assigned to any host in a cluster and may be moved between them. The
cluster is he greatest level at which power and load-sharing regulations can be established.
It is an efficient method that safeguards against hardware and software malfunctions and

guarantees high availability of servers and the network[9].

server fails or overloads.

Chapter I. Generalities within Icosnet Cloud Architecture

Node 1 cpu N Node 2 cPu] Node 3 cpu EEEN]
RAMENE""] I rRAM N]

Shared Storage

Figure 1.6: Migration of VMs from Overloaded Host to Host with Free Ressources on the
Same Cluster[10]

1.3 Cloud Computing

1.3.1 Definition

Cloud Computing consists of hosting and exploiting data on distant servers through the
Internet. Rather than employing personal computers or local servers to run programs,
cloud computing allows the use of shared computing resources. In most cases, it involves
the utilization of virtualized resources, such as servers, storage, networks, software, and
services, that are provided through the Internet (“the cloud”). Cloud computing eliminates
the need for hardware and software by enabling users to access data and apps from any
device with an Internet connection. It eliminates, also, the need for clients to configure
or manage resources themselves, so they only pay the CSP for what they use.

s N\\r.rosoﬁ ¢ L
|
A 1
S |
N 1 ~
N . . | fﬂ/ Y ~—
| (
- . G Vi
o~ ~ \ S

(cogle Clou ~ - Ng
\‘— Google Cloud / - R ol ge',nent
\,/_#/ S~ f--a‘t.fOrm

~ ‘7 ~
~ e e N
N (\\\\

Figure 1.7: Cloud Computing Service Providers?

4Google,MS, AMZ, VMware, OpenNebula are all Cloud Computing Service Providers each in his own
way. But it should be noted that OpenNebula is a cloud management platform, i.e. a tool for cloud
computing. And it hasn’t its own data center.

10

Chapter I. Generalities within Icosnet Cloud Architecture

I.3.2 Types of Cloud Computing

There are three principal types of cloud computing[11]:

Public Cloud: Public clouds are shared infrastructure systems offered by a third-
party cloud service provider and made available online to several customers or or-

ganizations

Private Cloud: Private clouds offer additional control, customisation, and security
because they are specialized infrastructure that is exclusively used by one company.

Hybrid Cloud Hybrid Cloud is a combining between public and private cloud. It
aims to handle the needs or limits of an organization while maximizing the advan-

tages of both cloud deployment strategies.

1.3.3 Types of Cloud Services

There are three principal types of cloud services[11]:

Infrastructure as a service (IaaS): It consists on offering infrastructure servers and
virtual machines (VMs), storage, networks, operating systems from a cloud provider.
while client should manage both OS and applications.

Platform as a service (PaaS): It offers a platform and environment for clients to
build, deploy, and manage applications without the complexity of infrastructure
management. It is dedicated especially to developers and organizations looking to
develop their own platform, through its flexibility.

Software as a service (SaaS): It provides software applications over the internet.
While the provider is responsible on providing the whole application, and take care

of any upkeep, such as software updates and security patches.

1.3.4 Benefits of Cloud Computing

Here are only the tip of cloud computing’s iceberg of potential:

Cost Efficiency

High flexibility
Availability
Environment friendlly
Easy backup and restore
Heigh performance

Excellent accessibility

11

Chapter I. Generalities within Icosnet Cloud Architecture

e More Secure

I.3.5 Relation between Virtualization and Cloud Computing

Virtualization is the key component of an improved cloud computing. Despite the fact
that both two technologies could exist one far from the other, but the combination of them
is the crucial key for CSP to enhance the services offered on their data centers. Admit-
ting that virtualization is the physical foundation layer of services, while cloud computing

offers access, orchestration and management of these services.

I.4 The Cloud Architecture of Icosnet

In keeping up to date with modern technologies, and whiting the creation and exploita-
tion of its data center, Icosnet follows the approach of applying a combination between
hypervisor virtualization and cloud computing, in order to offer a high quality of services
as a CSP to its clients. So on the one hand, virtualisation is ensured by Kernel-based
Virtual Machine (KVM) hypervisor. On the other hand, cloud computing is guaranteed
by the use of the public cloud OpenNebula.

Technically, the data center of Icosnet uses a cluster of three physical servers linked to a
storage bay (SAN, Storage Area Network)® and managed by OpenNebula Sunstone. So as
to create a KVM cluster managed by openNebula, KVM hypervisor is properly installed
on each host server with an openNebula KVM node driver. And, in another separated
virtual machine created on another platform, the OpenNebula front end is deployed. Also,
an ssh link is established between the OpenNebula public cloud and the KVM cluster, to
enable passwordless login on the system. For the purpose of that, all nodes and front-end

can interact to one another through SSH without any manual intervention.

Then, all the servers are connected to a physical router that offers routing and NAT
capabilities. Followed by a physical firewall to filter the inbound and outbound traffic.
Knowing that, they don’t need to use a physical switch because of the presence of a virtual
switch on each server. This virtual bridge is automatically created while installing and
configuring KVM.

To create a service or a virtual machine, the network administrator uses OpenNebula
Sunstone to send orders to the KVM hypervisor, which create the instance on a specified
host server. Through the cloud, a necessary configuration must be done, including assign-
ing private internet protocol address (IP address) and VNET®, computing resources and
determine an OS template, according to the clients requirements.

5Generally, servers are used to store its operating systems, necessary applications such KVM and
temporary data. While SAN store virtual machines files and data that needs to be shared by multiple
servers (snapshots, clone, and backup)

6Virtual Network

12

Chapter I. Generalities within Icosnet Cloud Architecture

/ - \
‘@r— -

Open

\ | |
2 Z Nebula

~

(000 K¥M |
R

\ X

(

[000 K¥M |
\ N
N

e
[000 K¥M |
e

Data center

Figure 1.8: Icosnet Cloud Architecture

In order to conduct a needs study, we try to approach this architecture by creating
a test environment using two client-server virtual machines. One machine is considered
as a host server including the KVM hypervisor, and the second machine is considered
as the machine which contains the public cloud OpenNebula. Then an SSH linked is
established between the two machines as required. Both of them use an Ubuntu 22.04
Long-Term Support (LTS) server OS, which is the latest LTS version of Ubuntu, because
of its stability, long-term support, flexibility and its large integration with the cloud.
Knowing that, Icosnet gives VM access to two VMs, I do the disk extension and the
switching from server OS to desktop OS before using them. (For more information about
the two process, please refer to Appendices A.3)

I.4.1 KVM Hypervisor

KVM is the acronym of "Kernel-based Virtual Machine”
which is the Linux open-source virtualization module. It @
is considered as an hypervisor type I, because it enables WKV M
the Linux machine to function as a host running a number)
of separated VMs known as guests. It is merged into the Figure 1.9: KVM Logo
mainline Linux kernel since Linux2.6.20 version. Each VM
is built as a typical Linux process, scheduled by the default Linux scheduler,and equipped

with specific virtual hardware such a network card, graphics adapter, CPU(s), memory,
and disks[12].

KVM offers many features including:

13

Chapter I. Generalities within Icosnet Cloud Architecture

e Full virtualization: The full virtualization offered by KVM enables the operation of

numerous virtual machines on a single physical server.

e High performance: KVM offers near-native performance, enabling high-performance

virtual machines.

e Scalability: A single physical server can accommodate up to thousands of virtual

computers using KVM.

e Security: Each virtual machine is protected from the others due to the robust

isolation that KVM provides.

e Open source: KVM can be customized and integrated with other open source

projects because it is open source.

e Support for multiple operating systems: Many operating systems such as Linux,

Windows, and Mac OS X are supported by KVM.

e Easy to use: By integrating a simple graphical user interface and command line

tools, KVM is simple to operate.

KVM needs two special package: the emulator QEMU and th API Libvirt. Qemu’
is an hypervisor type I used with KVM through "kvm-gemu” to emulate various hard-

ware components, such as CPUs and I/O devices. While Libvirt API is used to unify

the KVM management, it provides CLI utilities like virsh, virt-manager, and virt-install

commands, which provides hundreds of options to manage every aspect of the virtual

machines communicate with the virtualization infrastructure.

.
user@LTSICOH2004: ~ alfl = xl

user@LTSICOH2004:~$% sudo virt-manager
[sudo] password for user:
user@LTSICOH2004:~% sudo virsh list --all
Id Name State

VM 01 shut off

user@LTSICOH2004:~$% sudo virsh start VM 01
Domain 'VM 01' started

user@LTSICOH2004:~% sudo virsh list --all
Id Name State

2 VM 01 running

user@LTSICOH2004:~$]

Figure 1.10: Exemples of Libvirt API Commands

A GUTI utility called virt-manager is used to manage virtual machines using KVM:

"QEMU is an hypervisor but can be used as an emulator with KVM to improve virtualization capa-
bilities, and because KVM is a bare-metal VMM that provides hardware virtualization capabilities and

doesn’t offer a software to manage it

14

Chapter I. Generalities within Icosnet Cloud Architecture

L1 osinformation

Virtual Machine Manager x Ao QAW ¢
|l File virtualMachine View Send Key
| File Edit View Help =@ » n @ =
| |?, Open G - 2 overview Detalls XML

Virtual Network Interface
18 Performance

) cpus Network source: | virtual network ‘default’ : NAT
- QEMUMKVM

== Memory Device model: | Bridge device..
— unning & virtio Disk 1

P 50 1 122.0
SATA CDROM 1 address: 192.168.122.179 C

(4" NIC :82:bd:bT Link state: @ active
RALES - Tablet
Shut Down » Reboot Mouse
Keyboard

Shut Down O Display Spice
Migrate... Force Reset [#) Soundiche

E Off 5 Serial1
ol oree @ Channel gemu-ga
Open Save s Channel spice

[video QXL

M Controller USB O

B Controller PCle 0

B Controller SATA O

B Controller Virtlo Serial 0
@ usa Redirector 1

@ usB Redirector 2

@, RNG fdevfurandom

Add Hardware Remove

Figure I.11: Virt-manager

I.4.1.1 Installation
To install KVM on Ubuntu 22.04 LTS, we need to follow these steps:

1. Check if the CPU supports Virtualization technology(VT), using:

$ egrep -c ’(vmxsvm)’ /proc/cpuinfo
If we get number # 0, the CPU supports VT. Otherwise, it does not support VT.
2. Check the host system’s CPU specifications and capabilities, using:
$ apt install cpu-checker
3. Check if the system supports KVM, using:

$ kvm-ok

@LTSICOH2008: ~

root@LTSICOH2008: ~#

iroot@LTSICOHZ2008: ~#

root@LTSICOHZ2008:~# egrep —c ' (vmx|svm)' /proc/cpuinfo

le

root@LTSICOH2008:~# apt install cpu-checker

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

cpu—checker is already the newest wversion (0.7-1.3buildl).
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
jroot@LTSICOHZ008:~# kvm—ok

INFO: /dev/kvm exists

KVM acceleration can be used

|root@LTSICOH2008: ~#

Figure [.12: Verify the VT and the KVM’s Support
4. Downlaod the necessary packages, using:

15

Chapter I. Generalities within Icosnet Cloud Architecture

$ sudo apt install gemu-kvm libvirt-daemon-system

$ sudo apt install libvirt-clients bridge-utils
5. Add user to both Libvirt and KVM groups, using:

$ sudo adduser root libvirt

$ sudo adduser root kvm

6. Verify the installation of libvirt API, using:

$ sudo virsh list-all

Figure 1.13: Adding Users and Verifying API Installation

7. Check the status of the libvirtd® service, using:
$ sudo systemctl status libvirtd

libwvirtd

e

1
1
1
1
1
1
1
10
10

Figure 1.14: Verification of libvirtd Status

8The "libvirtd” service is a daemon that manages the communication between virtualization solutions

KVM and the libvirt API

16

Chapter I. Generalities within Icosnet Cloud Architecture

I.4.1.2 Networking Characteristics

When libvirt and KVM are properly installed, a new virtual device is added simulta-
neously which is a virtual bridge. And while creating an new VM (To delve deeper into
the process of creating a VM, please refer to Appendix A.2) , a new VNET which corre-
sponds to the virtual network interface card (VNIC) with a new IP address according to

the networking mode used are added .

VM 1 VM 2 VM 3 VM 4

L - o 3

R L YRIC? TRIT?
B 2 22000 meam-——-—] '

To Physical Network

Figure 1.15: Illustration of a Virtual Network Architecture Generated by KVM

3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP gro
up default glen 1000

link/ether 52:54:00:de:6b:30 brd ff:ff:ff:ff:ff:ff

inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr@

valid 1ft forever preferred 1ft forever
PO qdisc noqueue master virbrO®

link/ether fe:54:00:97:55:e7 brd ff:ffiff:ff:ff:ff

inet6 fe80::fc54:ff:fe97:55e7/64 scope Link
valid_1ft forever preferred_lft forever
8: vnet4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu, 1500 qdisc noqueue master virbro
state UNKNOWN group default qlen 1000
link/ether fe:54:00:82:bd:b7 brd ff:ff:ff:ff:t€:ff
inet6 feB0::fc54:ff:fe82:bdb7/64 scope link
valid _Lft forever preferred Lft forever

Virtual Bridge
(Switch)

Figure 1.16: Screenshot of (ip address) Command Displaying Network Interfaces
Informations

There exist three principal networking modes for communication between the guests
and the KVM host:

17

Chapter I. Generalities within Icosnet Cloud Architecture

192.168.10.12
vz

E - '\92168105
/

- 9216&\ .7

i
192.168.10.61
i

-l 192.168.10.7
—-— i

]
!-] 192.168.108
—— ;

- wznwoe
192.168.10.9
mwalov

Physical Network Physical Network

(a) Bridged Networking Mode (b) Network Address Translation Mode

E 192.168.10.6

— . 192.168.10.7
T —

. |92 168.10.8
19215&109

Physical Network

(c) Macvtap Networking Mode

Figure [.17: KVM Networking Modes

I1.4.2 OpenNebula Cloud

OpenNebula is an open source cloud and edge computing

platform. It is a cloud management platform for building open
and managing private, public and hybrid clouds. It com- /
bines hypervisor virtualization and container technologies NebU|q

with multi-tenancy, auto-provision and elasticity to offer

applications and services on-demand[13]. It provides a cen- ~ Figure L.18: OpenNebula
tralized interface for deploying, monitoring and managing Logo
virtualized computing resources, including virtual machines,

storage, and networking[14].

OpenNebula provides a single, feature-rich and flexible platform that unifies manage-
ment of I'T infrastructure and applications, preventing vendor lock-in and reducing com-
plexity, resource consumption and operational costs. It uses a modular architecture,
allowing users to add custom functionality through plugins and APIs. It supports various
hypervisors, such as KVM[13].

Throughout our project, we use the stable version 6.6 of OpenNebula as a public
cloud with the KVM hypervisor. OpenNebula uses a module called "vmm_exec” to

18

Chapter I. Generalities within Icosnet Cloud Architecture

Third-party Tools Built-in Tools
Sap . &y g% Sunstone GUI
[S] [0 Z=Z FireEdge GUI
Terraform Kubernetes Ansible Docker
Virtual Machines Virtual Machines System Containers Micro-VMs

L) U)W &6

(mvv) (5] ()

Open
’ Nebula

Figure 1.19: Key Features Offered by OpenNebula[13]

communicate with KVM using the libvirt communication protocol. Exactly, it uses the
VMM (Verification Methodology Manual) protocol. It resembles a driver. The vimm_exec
sends commands to KVM to start, stop, monitor and manage virtual machines.

[.4.2.1 Installation
The installation of OpenNebula consists on:

e Cloud single front end installlation:
Involving MySQL/MariaDB database installation, OpenNebula community edition
software downloading, OpenNebula Daemon configuration, managing the oneadmin
user, starting services and openning firewall’s ports on the first machine.(To delve
deeper on the complete installation, please refer to Annexe A.4)

To verify installtion, we run command: $ oneuser show

A2 root@ILTSICOH2004: ~ — (| ><

Figure 1.20: OpenNebula Daemon Properly Started

We login in through the Sunstone GUI via the link : http://<frontend_address>:9869

19

Chapter I. Generalities within Icosnet Cloud Architecture

- & OpenNebula Sunstone = -+ ~ >

<« (e O O o~ localhost:98 L o Ea]

o2 Open
£ Nebula

— S - N ~
n = - = .
—
== EE [-] Virtual Networks =
-
= o o MB o o
e
qqqqqq L3
............. Hosts =
pa
= o
=
St
==

Figure 1.21: OpenNebula Sunstone GUI

e KVM node installlation: Involving OpenNebula software and KVM Node Package
installation on the second machine, Passwordless SSH configuration from Front-end
to hypervisor Node an Adding the Host with Sunstone.(To delve deeper on the
complete installation, please refer to Annexe A.4)

#% Open Hosts & oneadmin @ OpenNebula
= Nebula

Dashboard | H ¥

Instances
ID , Name Cluster RVMs Allocated CPU Allocated MEM Status
Templates
Storage
Network
Infrastructure

= o 1ow Oose O

4 Hosts

System

Setnings

Not odfcially supported

Figure 1.22: OpenNebula KVM Host Node

20

Chapter I. Generalities within Icosnet Cloud Architecture

I.4.2.2 Networking Characteristics

To manage and monitor the host, and to transfer the Image files. For our tests, We use
the simple virtual network mode which is bridged mode.

Op rriomal

[INET J

W NETWVWOREK

l: ImnterFace] ': ImterFace]
[Bridge] [Bridge]
Wi s

Figure 1.23: Opennebula Network[13]

So after creating a VNET using bridged mode, we create template for the VM, then the
VM instance itself:

=
It ubuntu

NNNNNN

(a) Screenshot on OpenNebula Sunstone Front end

(b) Screenshot on KVM Node

Figure [.24: Creating a new VM

21

Chapter I. Generalities within Icosnet Cloud Architecture

I.5 Conclusion

In conclusion, this chapter delves into various aspects of virtualization and cloud com-
puting, with a specific emphasis on the KVM hypervisor and the OpenNebula public
cloud. The chapter explores the implementation details, networking specifications, and
the application of these technologies through the cloud architecture of Icosnet. By success-
fully creating a prototype of the basic architecture of Icosnet, we have laid the foundation
for delivering a comprehensive needs analysis and selecting the appropriate SDN solution,
in the next chapter. This enables us to optimize the network infrastructure and enhance
overall performance.

22

Chapter 11

Needs Analysis and Choice of the SDN

Solution

23

Chapter II. Needs Analysis and Choice of the SDN Solution

I1.1 Introduction

Through this chapter, we aim to provide a comprehensive understanding of the concept
of software defined networking (SDN) in general, with a specific focus on its application
in cloud computing. We will conduct a needs analysis and conclude by selecting the
appropriate solution for Icosnet’s cloud architecture.

I1.2 Overview about SDN

Switches on physical networks route information in the form of packets based on the
combined knowledge of different elements. Routing tables are built up by exchanging
topology and state information across different network devices. Network problems cause
temporary disruption as devices try to discover new paths, which can lead to data loss
and routing delays. In light of the fact that every new technology is developed to address
a specific need or solve an issue. The SDN technology emerges to solve specially such a
problem and others.

I1.2.1 Definition
The Open Networking Forum (ONF)! defines SDN as follows:

“Software-Defined Networking (SDN) is an emerging architecture that is
dynamic,manageable, cost-effective, and adaptable, making it ideal for the
high-bandwidth, dynamic nature of today’s applications. This architecture decouples the
network control and forwarding functions enabling the network control to become directly
programmable and the underlying infrastructure to be abstracted for applications and
network services. The OpenFlow protocol is a foundational element for building SDN
solutions[15].”

Simply put, SDN is a networking architecture that permits the centralized management
and control of a network into a single entity "controller” that is driven by application pro-
gramming interfaces (APIs). As a result, it separates the control plane, which determines
how the network should behave, from the data plane, which implements those decisions.
Using several protocols and technologies.

=

Controller
Programmable Machine
5witch£

o § Control Plane _:
Data Plane § §

Figure II.1: Comparison between Traditional and SDN Architecture

'A working groups that aim to accelerate the use of SDN and OpenFlow technologies through coop-
eration, standardization activities, and the creation of open-source solutions

24

Chapter II. Needs Analysis and Choice of the SDN Solution

In general, software defined networking functionalities can be categorized into three
planes. These are as follows:

e Data Plane: It involves the various network devices (such as switches, access points,
routers, and firewalls), which send and receive information to and from the controller

across a southbound APIs.

e Control Plane: It includes the controller, which is the central component of an SDN
architecture and which allows for centralized management and control, automation,

and policy enforcement across the network environments.

e Application Plane: The controller and the applications and policy engines commu-
nicate with one another via northbound APIs, making an SDN appear to be a single
logical network device.

Application plane — L,I
Applications —

APIIN IA.PIN

API N

SDMN Nourthbound Interface

SDN
logical
controller

Control plane

SDN Southbound Interface

APT SI Interface of the control data plane (e.g.: OpenFlow)

Data plane

Network node | [Network node (Network node

Figure I1.2: Software defined Networking Architecture

I1.2.2 OpenFlow

OpenFlow protocol (OF) is the language used by the central controller to communicate
changes to network equipment, switchs?. It works on the transmission control protocol
(TCP). The standard protocol is TCP 6633 for OF V1.0 and 6653 for OF V1.3+, while
the latest version used in the industry is V1.5. whereas, OF channel between the switch

and the controller is successfully established only after a successful TCP 3-way handshake.

Furthermore, the essential part of the OF protocol is the flow table which is similar to
the media access control (MAC) table of a traditional switch. It saves flow coming from
the controller that instructs the SDN switch what to do with a packet when it arrives at
an incoming port. The switch will compare certain factors, such as an IP address, port
number, MAC address, VLAN ID, etc., and choose the best matching flow entry from the
table, carrying out the action linked to that entry. The corresponding action is carried out
if a match is discovered. If a match cannot be made “TABLE_MISS”, the switch forwarde
the packet to the SDN controller, which will then decide on the best course of action and
update the flow table.

2In the context of SDN, a switch refers to any network device that can use the OF protocol, not just
layer 2 devices in the OSI model

25

Chapter II. Needs Analysis and Choice of the SDN Solution

I1.2.3 SDN on Cloud Computing

Besides that sdn has emerged as a powerful approach for implementing network ar-
chitectures in physical networks. It penetrated both virtualization and cloud computing
environment. Whether on the physical network infrastructure or on the virtualized net-
work infrastructure, the technical concept of SDN still the same. So, SDN controllers
by using application programming interfaces (APIs) communicate with all the virtual

appliances to manage and direct network traffic.

E- e
- SDN Northbound: g8 &) user/ave
User (0SS/BSS) Application «<----> SDN controller E‘."‘ REST —
Protocols (Rest-API, JAVA) = _i; -------------------- e
= g SDN
-
33 Controller OpenFlow/
- SDN Southbound: H TN\ Nercone/
SDN controller <----> Network Elements .. N S SDN Southbound Interfoce=«====essacessessaacase
Protocols (Openflow, NETCONF, SSH, HTTP, ..)
-
———
£ Virtual Network & \@
» Element Virtual Infrastructure
=
g A F
g2 (<] bl
-‘:E :‘eetwork e Q Domain 2 rigSy
s k B - ==
= Ea* Domain1 <3 -
Physical Infrastructure [&=

Figure 11.3: SDN within Cloud Computing

I1.2.4 Why SDN ?

The way we design and maintain networks is changing due to the use of software defined
networking. SDN has been adopted by businesses more and more as a result of its many

beneficial features, among its benefits:

e Cost Reduction: By obviating the need for expensive networking hardware. Since

the intelligence is centralized at the SDN controller, it enables businesses to employ
less expensive hardware for better effect. Knowing that, some SDN solutions are
offered for free, and others come with a paid license such VMware NSX.

Ease of Management: Network planning and setup are made easier with a single
management panel that provides improved visibility into network resources. And,

configuration’s faults will be reduced progressively.

Centralized Network Processing: It provides a single product for all networking
demands and concentrates decision-making power at the controller, simplifying net-
work components and reducing complexity. consequently, it provides services quicker

and with greater agility.

Overhead Reduction: By using the different methods of isolation that are accessible
in the SDN, which is an important concept in the delivery of virtual machines,
to provide separation for customer workloads. For example, setting up VLANSs
on various networking can be complex, but service providers can quickly isolate

customer virtual machines with SDN.

26

Chapter II. Needs Analysis and Choice of the SDN Solution

e Improved Network Security: It make it simple to identify and respond to security

threats by implementing security policies and monitoring network traffic from a
central console. The problem of creating a single point of attack is also present,
although this is resolved by applying clustering process on a virtual environment.

Traffic Control: Managers of data centres can gain from utilising a single man-
agement solution to centralise networking control. Simultaneously, SDN offers a
number of isolation options, such as establishing firewalls and ACLs at the NIC
level of virtual machines. The SDN management panel also allows to set traffic

rules, which aids in giving a complete control over network traffic.

I1.3 Requirements of the Solution

For this project, Icosnet imposed a number of requirements to be met when choosing

the right SDN solution. These requirements were based on the experience gained from
the use of the NSX-t the paid SDN solution from VMware on another platform. They are
numerated as follows:

1.

The solution must be compatible with the existing architecture. In other words,
with both KVM hypervisor and OpenNebula public cloud. SO, the SDN solution’s

testes must well work on the previous prototype prepared.

. The solution must be capable of being integrated on the OpenNebula Sunstone.

. The solution must be for free, open source and with a good documentation’s avail-

ability.

. The controller must be capable of providing a high performance isolation between

different virtual instances. Either by using virtual local area network (VLAN),
virtual extensible local area network (VXLAN) or another process. For guaranteed

east-west disconnection.

In order to permit north-south connection, the solution must provide efficient net-

work configuration control by providing both NAT and routing protocol control.

. The solution must offer robust firewalling rule control in order to give security

configuration control. So enabling the possibility of developing the solution in the

future and include additional security features.

I1.4 Choice of the Solution

There are several SDN solutions that satisfy these requirements and differ to some extent

in certain criteria. In order to select the most suitable solution to be deployed in the data

center, a comparison between the most efficient solutions has been made.

By performing extensive researches, we have adapted to these three controllers:

27

Chapter II. Needs Analysis and Choice of the SDN Solution

I1.4.1 OpenDaylight

OpenDaylight (ODL) is an open source software defined
networking platform that makes use of open protocols to
offer network device monitoring and centralized program-
matic control[16]. Prior to being hosted by the Linux Foun- * OPEN
dation, it was previously developed in 2013 as a joint effort
between the International Business Machines corporation
(IBM) and Cisco. It can be deployed on Linux-based distri-
butions such as CentOS, Red Hat, and Ubuntu, as well as Figure I1.4: OpenDaylight
on Windows-based systems. ODL is a powerful and flexible Logo
SDN controller platform, that serves as a base for develop-

ing and automating networks of any size.

OpenDaylight includes an OpenFlow plugin, which enables communication with OpenFlow-
enabled network devices. It includes a southbound plugin for routing protocols. Thus,
ODL controller can be used on both virtual and physical infrastructure networks.

In addition to offering the requirements already mentioned, it offers a user interface
for the control and the supervision of network components. Which makes it ideal to use
in our project, this is why I try to install and manipulate Sulfur-SR3 version the 16th
release(16.03) of ODL (it was the latest stable version). OpenDaylight is a Java® program,
so we need to install java and maven. I used java 11.0.17 and maven 3.9.0 (IL.5).

:-S mvn -version
Apache Maven 3.9.0 (9b58d2bad23a66bel61c4664ef21ce219¢c2¢B584)
Maven home: /opt/maven
Java version: 11.0.17, vendor: Ubuntu, runtime: Jusr/lib/jvm/java-11-openjdk-am
d64
Default locale: en_NG, platform encoding: UTF-8
0S name: "linux", version: "5.15.0-60-generic", arch: "amd64", family: "unix"

:-§ java -version
openjdk version "11.0.17" 2022-10-18
Open]DK Runtime Environment (build 11.0.17+8-post-Ubuntu-1ubuntu222.04)
Open]DK 64-Bit Server VM (build 11.8.17+8-post-Ubuntu-1ubuntu222.04, mixed mode

, sharing)
=y |

Figure I1.5: ODL Environment

Then I had properly installed it, following the instruction provided on the official web
site:

But I still can’t access to the OpenDaylight DLUX (OpenDaylight User Interface),

3Java is the programming language, and Java Runtime Environment (JRE) is the environment in
which Java programms are running. While Apache Maven is a build automation tool for maintaining
Java programms

28

Chapter II. Needs Analysis and Choice of the SDN Solution

S ./binfkaraft

Apache Karaf starting up. Press Enter to open the shell now.

for a 1list of available commands
"[Lcmd] --help' for help on a specific command.

'=ctrli-d>" or type 'system:shutdown' or 'logout' to shutdown OpenDaylight.
@ >

@ =

Figure I1.6: ODL’s Command Line Program

because of the absence of "odl-http-service” feature on this stable version and the unavail-
ability of its package on the ODL official web site. So, we skip this solution.

@ >
@ >
odl-restconf odl-12switch-switch odl-mds

[} >
al-apidocs odl-dlLux-all

odl-http-service

(a)

- - New Tab o
Q. localhost:8181/index.html — o, =

>
-5 iImport bookmarks... & Getting Started
=

& localhost:s181
This site is asking you to sign in.

Username

admin

Password

Figure 11.7: ODL’s Problems

I1.4.2 OVS-DPDK

Open vSwitch (OVS) is a software designed to be a multi-layer virtual switch of produc-
tion level. The open source Apache 2.0 licence governs OVS. It is intended to maintain

support for industry-standard management interfaces and protocols while enabling signif-
icant network automation through programmatic extension[17].

OVS was made to facilitate distribution across several physical servers in addition to

29

Chapter II. Needs Analysis and Choice of the SDN Solution

exposing common control and visibility interfaces to the virtual networking layer. Open
vSwitch supports many Linux-based virtualization technologies such: KVM and Virtual-
Box. It supports both VLAN and VXLAN.

CDD V>

Opraenm S~~~ itach

Figure I1.8: OVS Logo

It has two modes of operation. The switching and forwarding functions are handled
only by the first mode, known as normal mode. The second one, flow mode which uses
the flow table to determine the packet forwarding rules. The OVS Controller is primarily
in charge of managing this flow table, which enables great automation and abstraction
when adding or removing control flows to accommodate network requirements|14].

The principal components of OVS are:

e Openvswitch-switch: The switch is implemented by the daemon ovs-vswitchd and
a flow-based switching Linux kernel module.

e ovsdb-server: It is a small database server that ovs-vswitchd contacts to inquire
more about its configuration.

e Openvswitch-switch-dpdk: It enables the utilization of the Data Plane Development
Kit (DPDK), which consist on collection of libraries and drivers for quick user-space
packet processing.

e Openvswitch-testcontroller: It is a simple useful SDN controller that can be used
on tests though not for production, generally used with Mininet?. It can control a
number of switches using openflow protocol.

= ~# sSudo apt sSearch openvswitch

rity 2:20.3.0-Oubuntul.l all
ack — Open wvSwitch plugin agent

Ppd ity 2.17.5—-0 Nntu0.22.04.2 amdé4

omponents

updates, ja .17 .5—0Oubuntud.22.04.2 amdé64

n wvSwitch

-5—OubuntuO.22.04.2 all

.17 .5—0Oubuntu0.22.04.2 amdé4
/Jammy—updates, J§ammy— curity 2.17.5—OubuntuO.22.04.2 all
Open wSwitch public key infrastructure dependency package
/jammy—updates, jammy—security 2.17.5—O0Oubuntu0.22.04.2 all
open vs W urce
1 S—Oubuntul.22.04.2 amdé4
OF S ¥
ty 2.17 Juak 1t - o a md 6 a
DPDK enabled OF
7 . 5S—Ouk t 22 _.04.2 1
ope Switch test pac
v 2.17 Juk 2t z22.04.2 4
Simple controllerx
/Jammy—updates, jammy—security 2.17.5-0Oubuntul.22.04.2 amdé4
Open vSwitch VTEP utilities
oy 1rity L7] r y.22.04.2 11

Python 32 bindings

rooct@LTsIcoHz2o008:~#

Figure 11.9: Open vSwitch’s Components

41t is an emulator that allows the creation of realistic virtual network instances for tests

30

Chapter II. Needs Analysis and Choice of the SDN Solution

Data Plane Development Kit (DPDK) devices can be combined with Open vSwitch, to
increase capacities and optimise virtual switch performances. It is a software framework
that offers a collection of libraries and drivers for quickening user space packet processing.
So, DPDK lead to high performance of networking control, i.e. it boosts Sdn utilization.

Despite that Open vSwitch provides a power full virtual switch either for data centers,
it doesn’t offer its proper graphical user interface which complicates its use. Then, its
proper controller doesn’t offer a high performance of openflow control. So, we won’t use
all the SDN solution, but we appreciate the use of its virtual switch. Knowing that, we
get a lot of problems while linking OVS with DPDK. So, we avoid its utilization, because
we aim to use the resulting solution on a reeal datacenter that hosts virtual instances of

important clients and we won’t risk.

checking for struct tef t.firstuse... yes

checking whether dpdk is enzbled... yes

checking for rte config.h... yes

checking whether RTE LIBRTE VHOST NUMA is declared... yes

checking for library_contaiging ggt_mempolicy... -1numa
checking whether RTE EAL NUMA AWARE HUGEPAGES is declared... yes
checking for library containing get mempolicy... (cached) -Inuma

checking whether RTE NET PCAP is declared... no

checking whether RTE NET AF XDP is declared... no

checking whether RTE LIBRTE VHOST NUMA is declared... (cached) yes

checking whether RTE NET MLX5 is declared... no

checking whether RTE NET ML¥4 is declared... no

checking whether MAP HUGE SHIFT is declared... yes

checking for library containing dlopen... none required

checking whether linking with dpdk works... no

configure: error: Failed to link with DPDK, check the config.log for more details. If a working DPDK library was not foun
d in the default search path, update PKG_CONFIG PATH for pkg-config to find the .pc file in a non-standard location.
sdn@sdn01: /usr/src/ovss

Figure I1.10: OVS-DPDK’s Problem

I1.4.3 ONOS

Open Network Operating System (ONOS) is an open source SDN controller. It is
especially created to meet the needs of network service providers, it offers high levels
of scalability, availability and performance. ONOS SDN serves as the control plane for
both enterprise networks and service provider networks including campus LANs and data

centre networks.

The ONOS is made to offer ease of support for new network services, and provision
of SDN control for legacy OpenFlow-enabled devices. Service providers can grow their
networks and add fresh components with the help of ONOS without impacting the rest
of the system. Its distributed architecture decreases the risk of network failure, resulting

in high network availability.

ONOS has a large community which has actively participated in its development. A new
version of ONOS is published almost every three months, and its source code is written

in Java.

31

Chapter II. Needs Analysis and Choice of the SDN Solution

Figure I11.11: ONOS Logo

The open network operating system SDN solution provides several features[18], which

include:

High Availability and Resiliency: Which is a crucial key for CSP, stabilize the

network connection using multiple mechanisms such clustering.

Performance at Scale: It is buildings and architectures to offer an extreme efficiency.
It is able to control and manage several devices and supports millions of applications
intent search queries while maintaining less than 50 millisecond response time (or

better) for network events, at its northbound interface.

Modular Software: ONOS has been modularized to make software easier to read,
test, maintain, and customize, with over 135 platform extensions available. It offers
a lot of applications, and keep growing with each platform release.

Northbound Abstractions: By using the API, ONOS simplifies the creation, de-
ployment, and operation of configuration, management, and control applications.

Southbound Abstractions: ONOS abstracts device characteristics for easy adapta-
tion to legacy or new devices. ONOS southbound supports P4, OpenFlow, CLI,
Network Management Protocol NETCONF, RESTCONF, Simple Network Man-
agement Protocol (SNMP), CLI, BGP and more,

GUI Framework and Base Ul: The ONOS GUI gives users access to a multi-layer
network view and enables them to explore various network aspects such as connec-

tion, state, faults, and more.

In additions to Icosnet requirements, ONOS controller offers several other functionalities.

Which make it the suitable controller to use.

IL.5

Comparaison between the Solutions

We sum up the features of all the solutions on the following table: (table II.1)

32

Chapter II. Needs Analysis and Choice of the SDN Solution

Dauli
OpenDaylight Open vSwitch ONOS

- DPDK

Compatible with KVM

Compatible with
OpenNebula

Open source

For free

With GUI

Isolation between
virtual instances

Networking (routing
protocols and NAT)

Firewalling

Robustness within a
datacenter

Availability of
documentations

Table I1.1: Comparison between the SDN Solutions

33

Chapter II. Needs Analysis and Choice of the SDN Solution

I1.6 Conclusion

As seen in this chapter, software defined networking is the cutting-edge technology that
resolve traditional networking’s structural limitations. SDN separates the control plane
from the data plane and allowing a centralised network devices control and management.
In addition of its usage on physical infrastructure, SDN storm the cloud infrastructure
and a lot of solutions has developed. ODL, OVS and ONOS are among them.

Moreover, during this chapter, we tried to highlight the specifications of each solution,
by applying a comparison between them according to our structure requirements. As a
result, the controller ONOS is the suitable controller while the OVS offers a high bridging
performance with the advent of openflow protocol compared to Linux bridges which have

a huge limitation with the configurations of openfLow protocol.

So we decide to combine the two solutions ONOS controller and OVS switch, and we
eliminate the utilization of KVM bridge. In order to improve the cloud infrastructure and
centralize the networking control. In the next chapter, we will focus on the implementa-

tions of these choices on the prototype of Icosnet cloud architecture.

34

Chapter 111

Implementation of ONOS SDN

Controller

35

Chapter III. Implementation of ONOS SDN Controller

IT11.1 Imntroduction

Across this chapter, we will implement the whole chosen olutions including both OVS
bridge and ONOS controller on the basic cloud infrastructure. So, the rest of the chapter
includes their installation, their configuration and their connection to the KVM hypervisor
and the OpenNebula public cloud.

I11.2 The Architecture

In order to improve and centralize the cloud networking, we have opted to the SDN
technology. We discussed, in the previous chapter, the solutions that exist within a
virtualized environment, and we choose the combination of ONOS SDN controller and
OVS bridge to offer an enhanced quality. The utilisation of ONOS controller aims to
centralize management and control of the network using an API. While the utilisation
of OVS switch aims to replacing the Linux bridge which is generated automatically with
the KVM, to resolve the issue that KVM bridge doesn’t allow OpenFlow protocol and to
improve the quality of service (QoS) because OVS switch works in two modes switching

and forwarding mode and flow mode.

Here is an image (III.1) that illustrates the suggested architecture:

I
- OO

— — — — — — —

Figure II1.1: The Suggested Architecture by Integrating SDN

Before implementing the solution on the real cluster, we will test it on the prototype
prepared during the first chapter. So, the first Ubuntu 22.04 LTS machine that contains
the public cloud OpenNebula will keep its initial status, i.e. no modification will be done
on Opennebula front end’s installation, and no new driver will be installed. We will just
change some configuration thereafter. However, on the second Ubuntu 22.04 LTS machine,
both OVS virtual switch and ONOS SDN controller are installed and configured, then the
virtual machines already created and linked to the KVM bridge will be migrated to OVS
switch and the KVM bridge will be ignored. We will be able, also, to link the new virtual
machines created directly to Open vSwitch. After that, we will set up The ONOS SDN

36

Chapter III. Implementation of ONOS SDN Controller

controller to control all the virtual infrastructure, using OpenFlow protocol which works
on TCP.

Our proposition is inspired by the standard architecture of software defined networking.
Here is an illustration where we project the SDN architecture on the prototype:

Application Plane
ONOS - API ‘/)L

SDN Northbound INterface e

SDN Southbound Interface

Data Plane

Open vSwitch

: : OvS
H&EE e

Figure II1.2: Projection of the SDN Architecture on the Infrastructure

IT1.3 The integration

In order to simplify the work and easly detect configurations errors, While the in-
tegration, we work on two approaches: SDN-Virtualization and SDN-Cloud. The first
one consists on configuring the whole bloc (controller and Ovs switch), and the second
approach consists on configuring the bloc with OpenNebula public cloud.

I11.3.1 SDN-Virtualization Part

Firstly, Open Network Operating System SDN controller will be installed. Secondly,
Open vSwitch switch will be installed too. Thirdly, we configure OVS to take into con-
sideration the ONOS as its controller. In this part, the presence of OpenNebula is totally
ignored to simplify things, then the controller tests are applied using a manual manage-

ment.

- -r Open
2= Nebula

If " .1»(\[—‘_%5| wll:"_:LI @ @ e

Figure II1.3: SDN-Virtualization Part

37

Chapter III. Implementation of ONOS SDN Controller

IT11.3.1.1 Open Network Operating System (ONOS)
a) Requirement [18]

The following prerequisites should be satisfied in order to provide a basic execution

environment:

2 core CPU

2 GB RAM

10 GB hdd

e 1 NIC (any speed)

The following ports of the machine must be open in order for ONOS to provide
the associated functionalities:

o Port 8181: For REST API and GUI
e Port 8101: To access the ONOS CLI
e Port 6653: For OpenFlow

e Port 9876: For intra-cluster communication (communication between target

machines)

Running ONOS as root is not advised. Scripts used to operate ONOS as a service
require a special unprivileged user (typically user "sdn”) set up in the system. So,
the sdn user is creat it and added to the sdn group using:

$ sudo adduser sdn --system --group

Figure I11.4: Adding SDN User

ONOS is a platform built on Java. So, Java must be installed. These commands
are used to install and verify its installation:

$ sudo apt update
$ sudo apt install default-jdk

Figure II1.5: Java Version

38

Chapter III. Implementation of ONOS SDN Controller

We need to install the last version of Apache Maven 3.9.1 which serves as the
build tool and manages dependencies of ONOS, using: $ cd /opt/

$ wget link_to_zip file_of_(apache-maven-3.9.1-bin.zip)
$ sudo unzip apache-maven-3.9.1-bin.zip

$ sudo mv apache-maven-3.9.1 maven

We set up environment variables for Maven!

, including necessary path to locate
Java environment and the Maven installation directory for a better performance,

using this commande:

$ sudo nano /etc/profile.d/maven.sh

export JAVA_HOME=/usr/lib/jvm/default-java
export M2_HOME=/opt/maven

export MAVEN_HOME=/opt/maven
export PATH=${M2_HOME}/bin:${PATH}

$ source /etc/profile.d/maven.sh

Figure II1.6: Maven Version

Then, we install both curl? and git® using:
$ sudo apt install git $ sudo apt-get install curl
ONOS should be installed under (/opt) directory:

$ sudo mkdir /opt
$ cd /opt

b) Installation

LA project management tool primarily used for developing Java applications

2Tt provides a command-line utility for sending or receiving data to or from a server. It supports many
protocols such as HT'TP, HTTPS, FTP, and more

3Git is a distributed version control system that programmers use to collaborate while improving
source code

39

Chapter III. Implementation of ONOS SDN Controller

We opt installing the latest Long Term Supported (LTS) Release which is ONOS
2.7.0 version named X-Wing (LTS) version. We install the ONOS tar.gz format,
untar the ONOS archive and rename the extracted directory, using:

$ sudo wget -c link_to_0NOS_2.7.0.tar.gz
$ sudo tar xzf onos-2.7.0.tar.gz

$ sudo mv onos-2.7.0 onos
ONOS is running using its start-stop script: $ /opt/onos/bin/onos-service start

In production environments, it is required to configure ONOS to start running as
a real Linux service according to our Ubuntu 22.04 LTS version. In order that the
OS can start it automatically as part of the boot process and can restart it in case
of caching, using these commands:

$ sudo cp /opt/onos/init/onos.initd /etc/init.d/onos
$ sudo update-rc.d onos defaults
$ sudo cp /opt/onos/init/onos.conf /etc/init/onos.conf
$ sudo cp /opt/onos/init/onos.service /etc/systemd/system/
$ sudo systemctl daemon-reload

$ sudo systemctl enable onos

ONOS options are configured, by adding the default user "sdn” and activate some

necessary applications using: $ sudo nano /opt/onos/options

ONOS_USER=sdn

ONOS_APPS=drivers ,openflow,gui?2

We check the status of the ONOS service and we start it using:

$ sudo systemctl status onos.service

$ sudo systemctl start onos.service

apache—karaf—4a.
{: +UseG1lGC XK = Ma

Figure II1.7: ONOS Service Running

40

Chapter III. Implementation of ONOS SDN Controller

Allowing the "ssh-rsa” algorithm to be used for host key authentication during the
Secure Shell (SSH) handshake process, by running:

$ cd /opt/onos/bin/ $ sudo nano ~/.ssh/config

HostKeyAlgorithms +ssh-rsa

Finally, we start interacting with ONOS via:
e Command Line Interface (CLI):
while the default login credentials are onos / rocks.

$ cd /opt/onos/
$./bin/onos start
$./bin/onos-service list

$./bin/onos -1 onos

Figure IT1.8: ONOS CLI

41

Chapter III. Implementation of ONOS SDN Controller

e Graphical user interface (GUI):

@ | _) ONOS Login x|+ hd B
(5 C QO DO o+ localhost:8181 s/uiflogin.htm ks d g =
Open Network Operating System

User: onos
Password: [eeees| |
(a)
@ | -/ONOS x|+ M X
¢ C QO D localhost if#t M % da=
=
=
ONOS Summary
Version
Devices
Links
Hosts
Topology 5CCs
Intents
Flows
AN A D -4
J“\N)Jf “‘\”'(k;f(/
N |
(b)

Figure I11.9: ONOS GUI

c) Configuration

In order to properly configure ONOS controller, some applications must be acti-
vated, initially, such as OpenFlow and Reactive Forwarding. (Figurelll.10)

Thereafter, the rest of the configuration of ONOS with Open vSwitch will be done
after the complete installation of OVS.

42

Chapter III. Implementation of ONOS SDN Controller

] - ?

Applications (169 Total) QxR) W=
[openfiow | AN Fields ~|

- = Confirm Action

-

- [carcer o |

NEEEEN

on

Applications (169 Total)

[AllFelds W]

- Title App ID Version

N R TR TR TR TR G SR TR 4

UL TUILE LR UL

(b)
Figure I11.10: ONOS Activated Applications

I11.3.1.2 Open vSwitch
a) Requirement

There is no need to install all the requirements individually while using "apt get
install” which automatically manages package dependencies.

b) Installation

The installation consiste on downloading both ” openvswitch-switch "and ” openvswitch-
common " packages that includes the core userspace components of the switch. Then

starting openvswitch-switch service Using :

43

Chapter III. Implementation of ONOS SDN Controller

$ sudo apt-get install openvswitch-switch

$ sudo apt-get install openvswitch-common

$ sudo systemctl start openvswitch-switch.service

Figure II1.11: OVS Service

c) Configuration

The Open vSwitch switch should be created and a physical interface of manage-
ment should be linked to it using these commands:

$ sudo ovs-vsctl add-br ovsbr0O

$ sudo ovs-vsctl add-port ovsbrO ens192

7: ovs—system: <BROADCAST, MULTICAST> mtu 1500 gdisc
noop sState DOWN group default glen 1000
link/ethexr fez03:17z20a:6c: 6e bxrd EX=ffF=Ertfrf=¥¥f==f

8 owvsbroO: <BROADCAST MULTICAST, UP, LOWER_UP> mtu 15
O gdisc nogueue state UNKNOWN group default glen 1
(o]
link/ethex 0O0:250:=:56zad4:=0a:=as brda FEEcocfFffzfr=fff=~ff
=X
inet o fFfe80: =:250:=:56ff: feadzaabS5/64 scope 1ink
wvalid 1ftT orever preferred 1ft forevexr

Figure II1.12: Screnshoot of "ip a” Cammand Displaying OVS Switch

$ sudo ovs-vsctl show $ sudo ovs-ofctl show ovsbr0

z ~5 sudo owvs—wsctl show
646—6l1llc34a546cc
= ensl 92

“CONFIG REPLY > « D> rags—mormal \iss _send len—0

Figure I11.13: OVS Configuration

44

Chapter III. Implementation of ONOS SDN Controller

A bridged Open vSwitch virtual network that link the VMs to the Open vSwitch
switch should be created from an XML file :

$ sudo nano ovs-network.xml

<network>

<name >ovs</name>

<uuid>f58cad29-0455-439a-b533-8362669cec92</uuid>
<forward mode=’bridge’/>
<bridge name=’ovsbr0’/>
<virtualport type=’openvswitch’/>
</network>

$ sudo virsh net-define ovs-network.xml
$ sudo virsh net-start ovs
$ sudo virsh net-autostart ovs
$ sudo virsh net-list --all

$ sudo virsh list --all

Figure I1I.14: Creating an OVS VNET

In order to add the VM to OVS VNET:

e For VM already existed and attached to KVM bridge:
It is necessary to modify the XML file of the VM already created to change
the KVM bridge with the OVS switch using:

$ sudo virsh edit VM

<interface type=’network’>
<mac address=’52:54:00:84:c7:4c’/>

<source network=’ovs’/> modify here

<model type=’virtio’/>

<address type=’pci’ domain=’0x0000’ bus=’0x01"
slot=’0x00’ function=’0x0’/>

45

Chapter III. Implementation of ONOS SDN Controller

</interface>

$ sudo virsh start VM
$ virsh list

e For new VM created:
Precise the ovs as mode of networking on the XML file of the new VM using:

$ sudo nano name_of_the file.xml

<domain type=’kvm’>
<name >name_of_the_VM</name>
<memory unit=’KiB’>2097152</memory >
<vcpu placement=’static’>2</vcpu>
<os>
<type arch=’x86_64’ machine=’pc-i440fx-2.1’>hvm</
type>
<boot dev=’hd’/>
<boot dev=’cdrom’/>
</os>
<devices>
<disk type=’file’ device=’cdrom’>
<driver name=’qemu’ type=’raw’/>
<source file=’/home/user/Downloads/ubuntu
-22.04.2-1live-server -amd64.iso’/>
<target dev=’hdc’ bus=’ide’/>
</disk>
<disk type=’file’ device=’disk’>
<driver name=’qemu’ type=’qcow2’/>

<source file=’/home/user/myvm.qcow2’/>

<target dev=’vda’ bus=’virtio’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00"
slot=’0x04’ function=’0x0’/>
</disk>
<interface type=’network’>
<mac address=’52:54:00:01:02:03’/>
<source network=’ovs’/>
<model type=’virtio’/>
<address type=’pci’ domain=’0x0000’ bus=’0x00"
slot=’0x03’ function=’0x0’/>
</interface>
<serial type=’pty’>
<target port=’0’/>
</serial>

46

Chapter III. Implementation of ONOS SDN Controller

<input type=’mouse’ bus=’ps2’/>

<graphics type=’vnc’ port=’-1’ autoport=’yes’/>

</devices>
</domain>

$ cd /home/user/
$ sudo gemu-img create -f qcow2 myvm.qcow2 20G
$ sudo virsh define name_of_the_file.xml
$ sudo sudo virsh start name_of_the_VM

$ sudo ovs-vsctl show
Then we configure manually the IP address of OVS switch using :

$ sudo ip addr add 10.1.0.2/24 dev ovsbr0O

$ sudo ip link set up dev ovsbrO

And the IP address of the VM created using "netplane” commands.

6: virbrO: <NO;CAP\?\IER,BROAD'CAST,MULTICZ\ST,UP> mtua 1500 gdis
c nogueue state DOWN group default glen 1000

1ink/ether 52:54:00:2d2Z2:cb:299 brd £Ef:ffzffz=ffz:£f=£+f

inet 192.168.122.1/24 brd 192.168.122.255 scope global
irbroO

wvalid 1ft forever preferred 1ft forever

17 = ovs—system: <BROADCAST, MULTICAST> mtu 1500 gdisc noop St
ate DOWN group default glen 1000

link/ether fe:03:17:0a:6éc:6e brd ff:ff:ff:ff:££:-£ff
20-:= <BROADCAST MULTICAST, UP, LOWER_ UP> mtu 1500 gdisc

nogueue state UNKNOWN group default glen 1000
link/ether 00:50:56:a4d4:0a:a5 brd £f:ff:
inet 10.1.0.1/24 scope global ovsbrO

valid t forever preferred 1ft foreverc
inete fe80: :250:56ff: feadzaab/64 scope link
valid 1ft forever preferred 1ft forewver
24: wvnet3: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 gdisc
fg codel master ovs—system state UNKNOWN group default glen
1000
link/etherxr 1 202203 brd FE = =FffFf=FFf=FTT=TTT
inete feBO-: - e0l1:2203/64 scope link
valid referred 1ft forever
root@RLTSTCOHZ2(
(a) ” lp a k2

root@LTSICOH2008: /home /fuser#
root@LTSICOH2008: /home fuser# sudo ovs—vsctl show
6la082cd-125f-46le-b28a-98bdc28ceb72
Bridge ovsbr0
Port owvsbrl
Interface ovsbr(
type: internal
Port wvnet3
Interface wvnet3
Port ens192
Interface ensl92
ovs_versicn: "2.17.5"
root@LTSICOH2008: /home /usert |

(b) 7 ovs-vsctl show ”

Figure I11.15: The Virtual Network Interface of the New VM Attached to OVS Virtual
Network

47

Chapter III. Implementation of ONOS SDN Controller

I11.3.1.3 OVS-ONOS
Here are the necessary commands for attachment of the controller to the switch:

$ sudo ovs-vsctl set Bridge ovsbrO protocols=0penFlowl0
$ sudo ovs-vsctl set-controller ovsbrO tcp:10.250.11.85:6633

$ sudo ovs-vsctl show
$ sudo ovs-ofctl show ovsbrO

$ sudo ovs-dpctl show

[lelcome to Open Network Operating System (ONOS)!

Come help out! Find out how

Hit '<tab>' for a list of available c
and '[cmd] --help' for help on a ¢
Hit '<ctrl-d>' or type 'logout' tc

(a) OVS CLI (b) ONOS CLI

/ ONOS x | @ Thanks for downloadin x -+ ~ 22 a x

€« (¢ @ localhost ! u 2 Qa < & o =

,,,,,,,,

(c) ONOS GUI

Figure I11.16: Attachment the OVS Bridge to the ONOS Controller

So, the SDN-Virtualization part is correctly established manually using line commands.
Some tests of features will be done on the next chapter. While in the next section, we
will integrate the OpenNebula cloud. So, rather than using commands configurations, the
orchestrator will offset this.

I11.3.2 SDN-Cloud Part

In this part, the necessary configuration of OpenNebula to could be attached to the

48

Chapter III. Implementation of ONOS SDN Controller

bloc (Open vSwitch switch + ONOS controller) will be done. So we principaly interest
to this part:

Open
Nebula

\

VNET ,”

(o]
X (e v
¢ Cpen vEwitch

— _[____‘\
T,
\

,N-KV ivi
Hypervisor)

Figure I11.17: SDN-Cloud Part

Firstly, The Open vSwitch network drivers must be configured on the OpenNebula Front-
end by calculating VLAN-ID (all the VMs attached to the same OVS VNET will get the

same VLAN-ID) on ”/etc/one/oned.conf ” | using oneadmin user:

$ sudo nano /etc/one/oned.conf

VLAN_IDS
START = "2",

RESERVED = "0, 1, 4095"

And by adjusting some parameters in ” /var/lib/one/remotes/etc/vnm/OpenNebulaNet-

work.conf ”
$ sudo nano /var/lib/one/remotes/etc/vnm/OpenNebulaNetwork.conf

rarp_cache_poisoning true

:keep_empty_bridge true

:ovs_bridge_conf

:stp_enable true

$ su oneadmin

$ onehost sync -f

Secondly, there is no necessary configurations to do on the ONOS controller.

49

Chapter III. Implementation of ONOS SDN Controller

FdFEEE
f

Figure II1.18: Opennebula Front-end Configuration with OVS

Thirdly, in order to attach each VM to Open vSwitch, the creation and the network
configuration of the VNET should be done on OpenNebula Sunstone. We attach the
bridge created on OVS to the VNET, then we create the VM normally :

egrOpan‘ Create Virtual Network Template
\ebula

Instances

lemplates

]
L]

Storage

flk:: v ens192

4

i E

Figure I11.19: VNET Open vSwitch

Here is the change that appears after deleting the bridge and the VM creating in the
previous section, and creating a virtual machine linked to OVS VNET via OpenNebula

sunstone:

50

Chapter III. Implementation of ONOS SDN Controller

< & OpenNebula Sunstone x miniwebtool.com/mac > +
<« C O DO o localhost: # 7% ¥
2£0pen VMs 2

= Vs

2 1 o o 1
(a)
@ | & OpenNebula Sunstone: € miniwebtool.com/mac-a- X =+
& C O D o localhost: 67% ¥
#£%pen vm 2
e [= -]

Ve

J ONOS X 4 vioe N

€9 C O locabhostst Q

PUENOLY A+ oEKED (] o VBoon HAVERSON SWVESON PROTOCOL

VB {8 ofovonnoststastaes X

n,

(¢c) ONOS GUI (d) OVS CLI

Figure I11.20: Managing the Controlled Network via OpenNebula Sunstone

I11.4 Conclusion

At the end of this chapter, the whole chosen solution is appropriately implemented
between the cloud and the hypervisor. Firstly, we decide the suitable architecture. Sec-
ondly, both ONOS controller and OVS virtual switch are installed on the host according
to the requirements. Thirdly, The configuration is done following two approaches to avoid

complication. Finally, via OpenNebula Sunstone we can correctly create and attach the

51

Chapter III. Implementation of ONOS SDN Controller

virtual machines to Open vSwitch VNET and control the virtual network using ONOS
controller.

So, the conception and the deployment of the ONOS SDN Controller is well done, we

will perform some tests and discuss the issues occurred at the last chapter.

52

Chapter IV

Results and Discussion

53

Chapter IV. Results and Discussion

IV.1 Introduction

In the previous chapter, we integrate both Open vSwitch virtual switch and ONOS
controller on the prototype used, within the OpenNebula cloud and the KVM virtual
machine monitor. While within this chapter, we aim to analyse its capabilities and issues
by performing some tests and to propose some solutions.

IV.2 Tests of the Solution

IV.2.1 Virtual Machines Isolation

The isolation between the clients VMs was the crucial need and requirement of the
solution. According to the work achieved, the isolation is ensured through the ONOS
Reactive Forwarding (FWD) application and Intent Framework.

IV.2.1.1 Reactive Forwarding

Reactive Forwarding on the Open Network Operating System controller refers to a
mechanism that allows the controller to dynamically handle and react to network traffic
by installing flow rules on network switches based on incoming packets.

A packet-in message is sent to the controller by the switch whenever a packet arrives at
a switch and there is no flow rule in place to handle it. The controller then examines the
packet to decide what should happen next. Reactive forwarding prevents the requirement
to send every packet to the controller for processing by installing a flow rule in the switch
to handle future packets with similar characteristics.

This reactive approach helps reduce controller overhead and improves network efficiency.
In other words, reactive forwarding is a dynamic forwarding strategy employed by ONOS
SDN controllers using OpenFlow protocol.

root@LTSICOH2Z008: fJopt/onos,//bin# -/onos —1 onos
Password authentication

(onos@localhost) Passwords:

[Welcome to Open Network Operating System (ONOS) !

Documentation: wiki.onosproject.org
Tutorials: tutorjals.onosproject.org

Mailing lists:s lists.onosprojesct.org

Come help out! Find out how at: contribute.onosproject.org
Hit "<takb>" for a list of availakble commands

and " [cmd] —help” for help on a specific command.

Hit "<ctrl-—-d>" or type "logout®™ to exit ONOS session.

cnos@root >

node=10.250.11.101, wversion=2.7.0 clusterlId=defaunlt

nodes=1, devices=1, 1links=0, hosts=3, scC{({s)=1, flows=5, intents=0
onos@root deactivate org.onosproject. fwd

divated org.onosproject.fwd

root activate org.onosproject. fwd

ated org.onosproject. fwd

onos@root

Figure IV.1: Reactive Forwarding within ONOS

54

Chapter IV. Results and Discussion

IV.2.1.2 Intent Framework

The Intent Framework is a fundamental component of the ONOS SDN controller. It
provides a high-level abstraction for defining the desired behaviour of the network in
terms of intents, which represent the connectivity requirements or flow paths between
network devices. It allows specifying network behaviour in form of policies, rather than
mechanisms. Furthermore, it describes the desired outcome rather than how the outcome
should be reached.

ONOS Intent forms the foundation for the scalability of ONOS in terms of network
management and control. While creating an intent, it is translated into flow entries and
installed in the switch’s flow table, allowing the switch to forward packets according to

the defined intents without involving the controller for every packet.

oW I fo only
al network connectivity inten

Figure IV.2: The Types of ONOS Intents

IV.2.1.3 Implementation

In order to isolate all the virtual machines and connect just 2 VMs created on the KVM
host, these steps should be followed:

e 2 VMs are created with the same manner as in the previous chapters

Figure IV.3: Displaying the Creation of the VMs Using the Command "ovs-vsctl show”

e The VMs are automatically controlled by ONOS SDN controller.

55

Chapter IV. Results and Discussion

/ ONOS x | @ Thanks for downloadin X arF

& C @ localhost:81 105/Ui/#/topo2 Qa < % 0O 2

10250.11.101

Topology sccs

intents
Flows

Friendly
mMAC

VIAN

Figure IV.4: Displaying the Two VMs on ONOS GUI

10.250.11.101

ne - & /|

IP,LOKER_UP> mtu &

mty 65536 qdisc no

500 gdi

Figure IV.5: Connection Establishment between the 2 VMs by activating the FWD

e The connection between the 2VMs is established by activating the Fwd. (FigIV.5)
e The 2 VMs are disconnected because reactive forwarding is deactivating using.

$ onos@root > app deactivate org.onosproject.fwd

56

Chapter IV. Results and Discussion

10250.11.101

VM_02 on QEMU/KVM D O €

VM_01 on QEMU/KVM o File Virtual Machine View Send Key

10.0.
10.0.
10.0.
10.0.
10.0.
10.0
10.0.
10.0.

n 10.0.
10.0.
10.0.
10.0.
10.0.
10.0.
10.0.
10.0.
10.0.
10.0.

Figure IV.6: Disconnection between the VMs because of the FWD Deactivation

e An intent is created between the two hosts using :

onos@root> add-host-intent 52:54:00:01:02:03/None
52:54:00:01:02:05/None

0f.0000005056340aa5 (7 Total) O

[ATFelds]

STATE ¥ PACKETS DURATION FLOW PRIORITY TABLE NAME SELECTOR TREATMENT APP NAME

Figure IV.7: Intent’s Flow

57

Chapter IV. Results and Discussion

e The connection is again established throught the intent:

— a X
VM_01 on QEMU/KVM VM_02 on QEMU/KVM - 0

File VirtualMachine View SendKey

Figure IV.8: VMs Connected through Intent

In this way, all the virtual machines are isolated, even if they are in the same subnet,
and only the VMs wanting to connect via intent ping each other.

IV.2.2 Necessary Commands

The CLI and GUT are the most important and useful interfaces for managing the virtual
network. The GUI is a web application that provides a visual interface for the ONOS
controller. On the other hand, the CLI is the main interface for configuring and managing
the various aspects of running ONOS instances via numbers of commands which used to:

e Provide a detailled overview about the controlled network:

$ onos@root > summary
$ onos@root > nodes

$ onos@root > devices
$ onos@root > hosts
$ onos@root > flows

Switch

Port

Limk

Host

Connectivity
Request

Flow Path

Flow Entry

Figure IV.9: Network View: Connectivity Requests Cause Flow [19]

58

Chapter IV. Results and Discussion

onos@root >
node=10.250.11.101, version=2.7.0 clusterld=default
nodes=1, devices=l, links=0, hosts=4, 5CC(s)=1, flows=5, intents=0

onosf@root >
id=10.250.11.101, address=10.250.11.101:9876, state=ACTIVE, version=2.7.0, updated=1d4h ago *

id=00:50:56:A4:05:59/None, mac=00:50:56:A4:05:59, locations=[of:0000005056ad40aa5/2], auxLocations=null
, vlan=None, ip(s)=[], innerVlan=None, outerTPID=unknown, provider=of:org.onosproject.provider.host, c
onfigured=£false
id=00:50:56:A4:5D:E4/None, mac=00:50:56:A4:5D:E4, locations=[of:0000005056a40aa5/2], auxLocations=null
, vlan=None, ip(s)=[], innerVlan=None, outerTPID=unknown, provider=of:org.onosproject.provider.host, c
onfigured=false
id=52:54:00:01:02:03/None, mac=52:54:00:01:02:03, locations=[of:0000005056a40aa5/5], auxLocations=null
, vlan=None, ip(s)=[10.0.1.4], innerVlan=None, outerTPID=unknown, provider=of:org.onosproject.provider
Jhost, configured=false
id=52:54:00:01:02:05/None, mac=52:54:00:01:02:05, locations=[of:0000005056ad40aa5/12], auxLocations=nul
1, vlan=None, ip(s)=[10.0.1.5, fe80::5054:ff:fe01:205], innerVlan=None, cuterTPID=unknown, provider=of
rorg.onosproject.provider.host, configured=false
onos@root >
id=0f:0000005056a40aa5, available=true, local-status=connected 8hlOm ago, role=MASTER, type=SWITCH, mf
r=Niecira, Inc., hw=Open vSwitch, sw=2.17.5, serial-=None, chassis=5056a40aab, driver=ovs, channelld=10.
250.11.101:49658, datapathDescription=None, managementAddress=10.250.11.101, protocol=0F 10
onos@root >
deviceId=of:0000005056ad40aa5, flowRuleCount=5

id=10000487112c4, state=ADDED, bytes=0, packets=0, duration=29425, liveType=UNKNOWN, priority=4000
0, tableld=0, appld=org.onosproject.core, selector=[ETH_TYPE:bddp], treatment=DefaultTrafficTreatment{
immediate=[OUTPUT:CONTROLLER], deferred=[], transition=None, meter=[], cleared=true, StatTrigger=null,
metadata=null}

id=100006eeebdB2, state=ADDED, bytes=389075, packets=985, duration=29425, liveType=UNENOWN, priori
ty=40000, tableld=0, appld=org.onosproject.core, selector=[ETH TYPE:1lldp], treatment=DefaultTrafficTre
atment { immediate=[OQUTPUT:CONTROLLER], deferred=[], transition=None, meter=[], cleared=true, StatTrigge
r=null, metadata=null}

id=10000ebb2cb83, state=ADDED, bytes=95760, packets=2280, duration=29425, liveType=UNENOWN, priori
ty=40000, tableld=0, appld=org.onosproject.core, selector=[ETH_TYPE:arp], treatment=DefaultTrafficTrea
tment {immediate=[OUTPUT:CONTROLLER], deferred=[], transition=None, meter=[], cleared=true, StatTrigger
=null, metadata=null}

id=10000485e46f4, state=ADDED, bytes=339934, packets=4111, duration=5374, liveType=UNKNOWN, priori
ty=5, tableld=0, appld=org.onosproject.core, selector=[ETH TYPE:ipv4], treatment=DefaultTrafficTreatme
nt{immediate=[OUTPUT:CONTROLLER], deferred=[], transition=None, meter=[], cleared=true, StatTrigger=nu
11, metadata=null}

id=10000£789¢c730, state=ADDED, bytes=0, packets=0, duration=29425, liveType=UNENOWN, priority=5, t
ableId=0, appld=org.onosproject.core, selector=[ETH_TYPE:arp], treatment=DefaultTrafficTreatment{immed
iate=[QUTPUT:CONTROLLER], deferred=[], transition=None, meter=[], cleared=true, StatTrigger=null, meta
data=null}

onoslroot >

Figure IV.10: GUI ONOS Network Overview

$ onos@root > masters

onosfiraot »
10,250, 11101 1 dvices
of:0000005056a40aa5
onosfiraot)
1d=0f: 0000003056402, available=true, local-status=comnectad fhlln aqo, type=SHIICH, nf
r=fiicira, Inc., hw=Open vduiteh, sl 17,5, serial=None, chassis=dlboallaad, driver=ovs, chamelld=l1,
240,11, 101:4%%8, datapathDescription=None, managenenthdaress=10.250. 11,101, protocol=0F Il
noshrogt > |

Figure IV.11: Cluster’s Informations

e Get informations and configure network routing and security, using:

59

Chapter IV. Results and Discussion

MED

(b) Virtual Proxy

Figure IV.12: Routing and Security Configurations

e Delete intents, using:

$ onos@root > remove-intent -p org.onosproject.cli intent_ID

Q0:01:

Figure IV.13: Managing Intents

60

Chapter IV. Results and Discussion

IV.2.3 ONOS REST API

To facilitate the management and configuration of the network, ONOS provides various
access tools, including the Representational State Transfer Application Programming In-
terface (REST API). This API allows for the addition and removal of network rules and
can be accessed at” http://localhost:8181/onos/v1/”. By examining the source code of
this application, we can extract the following API endpoints:

o GET: Get all rules
e POST: Add a new rule
e DELETE: Remove a rule

r

] ONOS X @ localhost:8181/onos/v1/ x | + v 9V ©
¢ ¢ ® localhost:s 1 /devic a <% 04
{"devices”:[{"1d":"of:D008005050ad8aa5" , "type": "SWITCH", "available® :true, "role”: "MASTER", "nfr":"Nicira, Inc.”,"hw":"Open
vowitch","sw":"2.17.5", "serial":"None", "driver":"ovs", "chassisld":"3036ad8aa3", "lastlpdate”: "1687294849879" , "humanReadableLastlUpdate": "conne
cted 13h23m ago”, "annotations®:

{"channelld":"18.250.11.181:49658", "datapathDescription”: "Nene", "managementAddress”:"10.250.11.161", "protacol®:"0F 18"}}]}

Figure IV.14: ONOS API

Rather than using ONOS CLI for configuration, we can simply use "curl” command or
Postman to send rules to the Rest API, under the form of JavaScript Object Notation
(JSON) or Python file. This method is designed more for programmers to customise the

solution.
Here is an example of how configuring NAT using curl and json file:

curl -X POST --user onos:rocks --header ’Content-Type:
application/json’ --header °’Accept: application/json’ -d
it

"priority": 40000,

"isPermanent": true,

"selector": {
"ipv4Src": "10.0.0.10/24",

"ethType": "0x0800"
},
"treatment": {
"setField": {
"ipv4Dst": "203.0.113.10"

¥,

61

Chapter IV. Results and Discussion

"setField": {
"ethDst": "12:34:56:78:9a:bc"

},
"nat": {
"natAction": "dnat",

"natAddresses": [

{
"networkAddress": "203.0.113.10",
"prefixLength": 24

]
} } } }’ ’http://localhost:8181/onos/v1i/flows/of:0000005056
a4bbbl7appld=org.onosproject.openflow’

STATE » PACKETS DURATION Akt TABLE NAME SELECTOR TREATMENT APP NAME

—]

Figure IV.15: ONOS Flows

IV.3 Problems Experienced and Solutions

IV.3.1 Problems

Several challenges were encountered throughout this project, including:

e The challenge of unknowing the appropriate and compatible versions between ONOS,
OVS and OpenNebula and the appropriate version of openFlow (10, 13, 15) that
provides the necessary recommendations, because of the lack of the information.

@ # OpenNebula Sunstone: ¢ X | # OpenNebula Sunstone: C X # ONE 4.11.80: DELETE+RE X + ~ x
<« c O D localhost Hvms-tab/4 A3 o o=

Tue May 16 14 2023 [20][VMM][I]: Successfully execute virtualization driver operation: cancel.
Tue May 16 14 2023 [ZO][VMM][I]: 2023-05-16T14:55:51Z|00001|vconn |WARN |unix:/var/run/openvswitch
/0vsbre.mgmt :

Tue May 16 14 : 3

Storage Tue May 16 14 2023 [20][VMM][I]: 2023-05-16T14:55:51Z|00001|vconn |WARN|unix:/var/run/openvswitch

Templates

on negotiation failed (we support version 0x01, peer supports version 0x04)
Network :52 2023 [ZO][VMM][I]: ovs-ofctl: ovsbro: failed to connect to socket (Broken pipe)

Tue May 16 14:55:52 2023 [ZO][VMM][I]: clean: Executed "sudo -n ovs-vsctl --if-exists del-port ovsbro
one-4-0".

Tue May 16 14:55:52 2023 [Z0][VMM][I]: ExitCode: ©

Tue May 16 14 2023 [Z0][VMM][I]: Successfully execute network driver operation: clean.

Tue May 16 14:55:52 2023 [Z0][VMM][I]: Failed to execute network driver operation: post.

Tue May 16 14:55:52 2023 [20][VMM][E]: DEPLOY: ovswitch: INFO: post: Executed "sudo -n ovs-vsctl set

Infrastructure

System

Settings

Tue May 16 14:55:52 2023 [Z0][VM][I]: New LCM state is BOOT_FAILURE

Figure IV.16: Issue of Incompatibility between the Versions

62

Chapter IV. Results and Discussion

e [cosnet’s security requirement that obliges closing some ports and disabling some
protocols fearing of cyberattacks on the two VMs, which disable, for example, Open-
Nebula Fire-edge public endpoint access.

e Nested Virtualization of the two VMs used as a prototype, disable a lot of features
and engender compilation problems. For example, while opening the VM'’s ports for
remote access, the ONOS controller is able to control the devices on the first layer
of abstraction, which endanger security problems.

/ ONOS x + v - [} x
<« (¢ @ localhost: Q < ¥ o a
= ?
10.250.11.101
o

(a) ONOS GUI

(b) OVS CLI

Figure IV.17: Effect of the Nested Virtualization

IV.3.2 Solutions

In real implementations, the controller will be used directly on the server hardware,

63

Chapter IV. Results and Discussion

which eliminates the main obstacle of nested virtualisation, and console access reduces
security risks. We were compelled to test many product versions to create a matrix of
compatibility.

IV.4 Propositions for a Real Implementation

During our project, we integrate the solution only on one KVM host machine, i.e. the
controller on the KVM server. While on the production environment, Icosnet hosts its
machines within a KVM cluster. In order to ensure a high availability and load balancing
of controllers, it is recommended to realize an SDN cluster too.

Figure IV.18: ONOS Cluster[18]

Our approach using the virtual switch and the controller proved to be effective at the
switching level, i.e., at the second layer of the OSI model of the computer network, while
[cosnet still use a physical router and firewall. In order to centralize all the network and
improve the performances, we propose eliminating the hardware and replacing them with
an OpenNebula virtual router and an ONOS proxy.

Activities) Firefox Web Browser May 31 14:56 W O
@ | # OpenNebula Sunstone: C x | & OpenNebulaSunstone:C X + v x

<« C QO D localhost:9 t - logy- 6% Ty g 9

#£Open Network Topology
= Nebula

eeeeeeeee VNet OVSBr0

NNNNNNN
. @
e N\

nnnnnnnnnnn

<<<<<<

Figure IV.19: Implementation of an OpenNebula Virtual Router

64

Chapter IV. Results and Discussion

DEVICEID

device:smartnic-proxy X

Device ID

Rules O # [A Fas

Source MAC DestinationMAC SourcelPvd Destination IPvd P Source Destination Ingress

NS S S Address Address Address Protocol Port Port Interface

EtherTypt

M
] v b}

Figure IV.20: Implementation of the Proxy[20]

IV.5 Conclusion

Through this chapter, we evaluate the performance of the solution already integrated
by performing the tests of isolation between the virtual machines, and by manipulating
some commands via both ONOS GUI and REST API. Then, we highlight the problems
faced during this project, and its solutions. Finally, some requirements are proposed for

well executing the solution on the production environment.

65

General Conclusion

In this end-of-study project, the engineering methodologies, and theoretical aspects that
we acquired throughout our Networks and Telecommunications studies were applied to
solve a real-world technical problem in Icosnet’s datacenter, the Algerian cloud computing

service provider.

Cloud computing and virtualization are two cutting-edge technologies that continue to
develop in profound and unprecedented ways due to advances in technology and hardware
costs. As part of its strategy to remain at the forefront of current developments, Icosnet
has decided to develop its cloud platform by integrating a software-defined networking
solution. Our project aims to respond to this need.

In the dissertation, we took a closer look at the different types of network virtualization,
its fundamental concepts, and tools. Next, we explained in more detail how to manage
and orchestrate a virtual network using cloud tools. Next, we analyzed Icosnet’s cloud
in-depth, with a focus on the kernel-based virtual machine monitor (KVM) and the Open-
Nebula public cloud, both used in its data center. A prototype test was then created to
evaluate the specific area of the landscape under study.

The concept and technologies of software defined networking using the OpenFlow proto-
col to centralize and control virtual network flows are then discussed, in order of preparing
a needs study and the choice of a coherent and suitable SDN solution. This study led
to the integration of the entire Open vSwitch virtual switch block and Open Network
Operating System SDN controller into the prototype.

Finally, in addition to centralizing, controlling, and simplifying network administration
using the ONOS API, the specifications required by the company have been tested, in
particular the isolation between virtual machines. In this way, we were able to implement
control of the second layer of the computer network OSI model.

Several challenges were encountered throughout the project. In particular, we encoun-
tered problems with the nested virtual environment used for testing, which resulted in
certain functionalities being disabled. In addition, we encountered difficulties due to the
lack of documentation and similar projects, as well as security issues when connecting a

controller to another machine within Icosnet’s local network.

This project represents exclusive use of the OpenNebula cloud and KVM hypervisor for

66

General Conclusion

the first time, adding significant value for the company given the high cost of deploying
such solutions.

For future work, we plan to control the third layer of the OSI model of the computer
network to manage routing protocols, and network address translation, and eliminate the

need for physical hardware by integrating a virtual router on OpenNebula. Furthermore,
security can be controlled by creating a virtual proxy and controlled using ONOS.

67

Appendices

68

Appendix A

Complementary Informations

A.1 Snapshot

A virtual machine snapshot is a copy of a virtual machine’s state and data at a certain

moment. It comprises the VM’s network interface cards, discs, RAM, and power state. A

snapshot can be used to duplicate the same virtual machine or restore it to a previous state.

Snapshots are helpful for testing, VM migration, and backup and restore procedures.

3% Oracle VM VirtualBox Manager

File Machine Snapshot Help

10 v e B a oD

Take Delete Restore Properties Clone Seftings Discard Start

- (] X

¥ VM2_opendaylight (S..) (= Name
, () Powered Off H= v [snapshot1
v @ Snapshot 3
@ Current State (changed)

Taken
13/02/2023 10:58
13/02/2023 15:28

Attributes Information

Name: Enter a name for the new snapshot...

Description:

Take

Figure A.1: VirtualBox’s Snapshot

A.2 Creating VM Using Virsh Commands or virt-manager:

Reset

To create On KVM, it is possible to use both virt-manager or libvirt API via virsh

commands:

69

Appendix A. Complementary Informations

Virtual Machine Manager

X

New VM 2
L= Connection: QEMU/KVM
L3
QEMUMKVM

Ld like to install the operating system

a (ISO image or CDROM)

Cancel

L2, 2

=

New VM >
g Create a new virtual machine m Create a new virtual machine
Choose ISO or CDOROM install media

Choose Memory and CPU settings
rowmnloads/ubuntu 22.04.2 live server amd64.iso Browse Memory- [3889
Up to 3889 MiB available on the host
cPUs: 2
P to 2 available
Choose the operating system you are installing.
(=1 <
£3 Automatically detect from the installation media / source
Cancet Back Forwang

Cancel Back Fo

(¢) (d)

New VM
g Create a new virtual machine

B

g Create a new virtual machine

£2 Enable storage for this virtual machine

© Create a disk image for the vi

Ready to begin the installation
virtual machine
20.0

VMO
—+ |8 Ubuntu 22.04 LTS
Local COROM/ISO
custom storage 3889 MIB

Select or create

images/ VM

Ol.acow

20.0 GiB fvarilibflibvir
c ze configuration before install
L

~ Networ ection

Virtual network "default” : MNAT _
Bridge device

Cancel

()

Creating Virtual Machine

Back Fogard

o The virtual machine is now being created. Allocation of disk storage

and retrieval of the installation images may take a few minutes to
complete

Creating domain...

() (h)

Figure A.2: Creation of a Virtual machine Using virt-manager

e Using virt-manager: We follow these steps

Then, we complete the rest of the installation of the operating system.
e Using libvirt API: We use theses commands to create an Ubuntu 22.04 LTS machine:

$ sudo gemu-img create -f qcow2 VM_KVM 20G
$ sudo apt install virtinst

$ sudo virt-install

--name VM_KVM

70

Appendix A. Complementary Informations

--os-type=Linux

--os-variant=ubuntu22 .04

--vcpu=4
--ram=4096
--disk path=/home/user/VM_KVM.img,bsize=20

--graphics spice
--cdrom=/home/user/Downloads/ubuntu-22.04.1-1ive-
server —amd64.iso

--network bridge:virbrO

Then, we complete the rest of the installation of the operating system via Virtual
Network Computing (VNC) access.

A.3 Switch OS server - desktop

Using these commands:

$ sudo apt install tasksel
$ sudo tasksel

1 Installing packages [}
Installed sgml - -base (amde4d)

Figure A.3: Switching OS to Desktop

$ adduser name_of_user

Figure A.4: OS Desktop

71

Appendix A. Complementary Informations

A.4 OpenNebula installation

Firstly, we set up MySQL/MariaDB Back-end database, using these commands:

$ sudo apt update
$ sudo apt -y install mariadb-server
$ sudo mysql_secure_installation
$ sudo mysql -u root -p
$ MariaDB [(none)]> CREATE USER ’oneadmin’ IDENTIFIED BY ’oneadmin’;
$ MariaDB [(none)]> GRANT ALL PRIVILEGES ON opennebula.* TO ’oneadmin’;
$ MariaDB [(none)]> SET GLOBAL TRANSACTION ISOLATION LEVEL READ COMMITTED

r pa =

Welcome to the MariaDB monitor. Commands end with
Your MariaDB connection id is 32

Server wversions: 10.6.12—MariaDB—OubuntulO.22.04.1 Ubuntu 22.04

;s oxr \Ng-
Copvyright (<) 2000, 2018, Oracle, MariaDB Corporation Ab and
hers.

Type "Thelps " or "\hr*" for help. Type "\Nc°' to clear the current
nput sSstatement.

MariabDB [(none) 1> CREATE USER "Toneadmin " IDENTIFIED BY

n"

Query OK, 0 rows affected (0O.003 sec)

MariaDB [(none) 1> GRANT ALIL. PRIVILEGES ON op

dmin® s

Query OK, 0 rows affected (0.002 sec)

MariabDB [(none) 1> SET GLOBAIL TRANSACTION ISOLATION LEVEL READ
OMMITTED:

Query OK, 0 rows affected (0O.000 sec)

[(nmnone) 1> exit

Figure A.5: MariaDB Back-end

Then, we configure the packaging tools on the Front-end host to include OpenNebula

repositories, using these commands

$ sudo apt-get update
$ sudo apt-get -y install gnupg wget apt-transport-https
$ wget -q -0- https://downloads.opennebula.io/repo/repo2.key gpg —dearmor|
> /etc/apt/trusted.gpg.d/opennebula.gpg
$ echo "deb https://downloads.opennebula.io/repo/6.6/Ubuntu/22.04 stable
opennebula" > /etc/apt/sources.list.d/opennebula.list
$ sudo apt-get update

$ apt-get -y install opennebula opennebula-sunstone opennebula-fireedge

opennebula-gate opennebula-flow opennebula-provision
$ sudo nano /etc/one/oned.conf

[BACKEND "mysql",
SERVER "localhost",

PORT 0,
USER "oneadmin",
PASSWD "oneadmin",

72

Appendix A. Complementary Informations

DB_NAME = "opennebula",
CONNECTIONS =

COMPARE_BINARY = "no"]

After that, we install a complete OpenNebula Front-end from binary packages
available in the software repositories already configured:

$ sudo -u oneadmin /bin/sh
$ echo ’oneadmin:oneadmin’ > /var/lib/one/.one/one_auth
$ exit

$ sudo nano /etc/one/sunstone-server.conf

:public_fireedge_endpoint: http:// @_IP_Public

$ systemctl start opennebula opennebula-sunstone opennebula-fireedge

opennebula-gate opennebula-flow

$ systemctl enable opennebula opennebula-sunstone opennebula-fireedge

opennebula-gate opennebula-flow

$ oneuser show

We log in through the Sunstone GUI via http://<frontend_address>:9869

Open
jNebulc

Figure A.6: OpenNebula Sunstone

After that, we configure OpenNebula KVM Node from the binary packages, using
these commands: $ apt-get -y install gnupg wget apt-transport-https
$ wget -q -0- https://downloads.opennebula.io/repo/repo2.key gpg —dearmor|
> /etc/apt/trusted.gpg.d/opennebula.gpg
$ echo "deb https://downloads.opennebula.io/repo/6.6/Ubuntu/22.04 stable
opennebula" > /etc/apt/sources.list.d/opennebula.list
$ apt-get update
$ apt-get -y install opennebula-node-kvm
$ systemctl restart libvirtd

73

Appendix A. Complementary Informations

$ hostname

$ sudo nano /etc/hosts

@_IP_OpenNebula_Front -end

@hostname_0OpenNebula_Front -end

Finnaly, The OpenNebula Front-end connects to the hypervisor Nodes using SSH once

we configure passwordless SSH:
e Front-end:

$ hostname

$ sudo nano /etc/hosts

@_IP_OpenNebula_KVM-Node

@hostname_OpenNebula_KVM-Node

$ su - oneadmin

$ ssh-keyscan Hostname_OpenNebula_Front-end Hostname_OpenNebula_KVM-Node

>> /var/lib/one/.ssh/known_hosts
$ ssh-copy-id -i /var/lib/one/.ssh/id_rsa.pub Hostname_OpenNebula_KVM-
Node

¢ KVM Node:

$ su

$ sudo passwd oneadmin

$$$_PASSWORD_$$$

e front end:

$ su - oneadmin
$ scp -p /var/lib/one/.ssh/known_hosts @hostname_OpenNebula_KVM-Node:/var
/1lib/one/.ssh/
$ scp -p /var/lib/one/.ssh/id_rsa @hostname_OpenNebula_KVM-Node:/var/lib
/one/ .ssh/

Finally, we can properly create a remote KVM host and deploy Virtual machines.

74

Bibliographies

Thomas Olzak et al. “Microsoft virtualization: master Microsoft server, desktop,
application, and presentation virtualization”. In: Syngress Publishing (2010).
David Rule and Rogier Dittner. “The Best Damn Server Virtualization Book Pe-
riod: Including Vmware; Xen; and Microsoft Virtual Server”. In: Syngress Publishing
(2007).

Omayma Belkadi et al. “An Integration of OpenDaylight and OpenNebula for Cloud
Management Improvement using SDN”. In: IEEE (2019).

Sreenivas Subramanian Sriram Voruganti. “Software-Defined Networking (SDN) with
OpenStack”. In: Packt Publishing (2016).

Pankaj Berde et al. “ONOS: towards an open, distributed SDN OS”. In: HotSDN
201/ - Proceedings of the ACM SIGCOMM 201 Workshop on Hot Topics in Soft-
ware Defined Networking (2014).

75

Webographies

[10]

[11]

[12]

[13]

_
i A2

X,

The Company - Singapore Managed Cloud Hosting. URL: https://wuw.secureax.
com/about-us/. (visited on 2023).

Amazon Web Services (AWS). What Is Virtualization? - Cloud Computing Virtual-
ization Explained - AWS. URL: https://aws.amazon.com/what-is/virtualization/.
(visited on 2023).

Bimosaurus. 5§ Mesin Virtualisasi Paling Populer untuk Kampus - Blog eCampuz.
Oct. 24, 2019. URL: https://blog . ecampuz . com/5-mesin-virtualisasi-
terpopuler-untuk-kampus/. (visited on 2023).

RisingStack Engineering. Operating System Containers vs. Application Containers.
URL: https://blog.risingstack.com/operating-system-containers-vs-
application-containers. (visited on 2023).

VMuware Business Infrastructure Virtualization: Beyond Virtual Machines Servers |
Virtualization Works.com. URL: https://www.virtualizationworks.com. (visited
on 2023).

Vrapolinario. Containers vs. virtual machines. URL: https://learn.microsoft.
com/en-us/virtualization/windowscontainers/about/containers-vs-vm.
(visited on 2023).

2.3.Clusters Red Hat Virtualization 4.4 | Red Hat Customer Portal. URL: https:
//access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/
html/administration_guide/chap-clusters. (visited on 2023).

NAKIVO. What Is Hyper-V Virtual Machine Load Balancing? Dec. 20, 2022. URL:
https://www.nakivo.com/blog/hyper-v-virtual-machine-load-balancing/.
(visited on 2023).

What Is Cloud Computing? | Microsoft Azure. URL: https://azure.microsoft.
com/ en - us / resources / cloud - computing - dictionary / what - is - cloud -
computing/. (visited on 2023).

What is KVM? URL: https://www.redhat.com/en/topics/virtualization/
what-is-KVM. (visited on 2023).

OpenNebula 6.6 Documentation — OpenNebula 6.6.2 documentation. URL: https:
//docs.opennebula.io/6.6/. (visited on 2023).

Home - OpenDaylight. URL: https://www.opendaylight.org/. (visited on 2023).
Open vSwitch. URL: http://www.openvswitch.org/. (visited on 2023).

ONOS - ONOS - Wiki. URL: https://wiki.onosproject.org/. (visited on 2023).

76

https://www.secureax.com/about-us/
https://www.secureax.com/about-us/
https://aws.amazon.com/what-is/virtualization/
https://blog.ecampuz.com/5-mesin-virtualisasi-terpopuler-untuk-kampus/
https://blog.ecampuz.com/5-mesin-virtualisasi-terpopuler-untuk-kampus/
https://blog.risingstack.com/operating-system-containers-vs-application-containers
https://blog.risingstack.com/operating-system-containers-vs-application-containers
https://www.virtualizationworks.com
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-clusters
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-clusters
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-clusters
https://www.nakivo.com/blog/hyper-v-virtual-machine-load-balancing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://docs.opennebula.io/6.6/
https://docs.opennebula.io/6.6/
https://www.opendaylight.org/
http://www.openvswitch.org/
https://wiki.onosproject.org/

Webographies

[20] Low-level Software Development Services Company - CodiLime. URL: https: //
codilime.com. (visited on 2023).

7

https://codilime.com
https://codilime.com

Jaxlll

Slaadl a5l Lol Al 5] 431as 50 s M Ll G0 £ 5 fe o Oyl
& ONOS &Lzl saxll il o & e e bl Se &1 Tcosnet &yl
 KVM i3l 54231 3l OpenNebula Zol) &l (n ¢ OVS _oulisY] Jull

ol B al) S LY 5ea V1 3l e s LY Gl ;e talh ol

Abstract

The objective of this end-of-study project is to centralize and administer the virtual
network of Icosnet cloud service provider within its data center. This will be achieved
by integrating the ONOS software-defined network solution with the OVS virtual switch,
connecting the OpenNebula public cloud and the KVM hypervisor.

Keywords : Cloud, Virtualization, Hypervisor, Software Defined Networking.

Résumé

L’objectif de ce projet de fin d’étude est de centraliser et de controler I’administration
du réseau virtuel du fournisseur de services cloud Icosnet au sein de son centre de don-
nées. Cela sera réalisé en intégrant la solution de réseau défini par logiciel ONOS avec le
commutateur virtuel OVS, reliant le cloud public OpenNebula et 'hyperviseur KVM.

Mots clés : Nuage, Virtualisation, Hyperviseur, Réseau Défini par Logiciel.

	List of Figures
	List of Tables
	List of Acronyms
	General Introduction
	Generalities within Icosnet Cloud Architecture
	Needs Analysis and Choice of the SDN Solution
	Implementation of ONOS SDN Controller
	Results and Discussion
	General Conclusion
	Appendices
	Complementary Informations
	Bibliographies
	Webographies
	Abstract

