

 ةة الجزائرية الديمقراطية الشعبيجمهوريال

 People's Democratic Republic of Algeria

ي ارة التعليم العالي والبحث العلموز

Ministry of Higher Education and scientific research

 المدرسة الوطنية العليا للتكنولوجيا

National High School of Technology

Department of Electrical Engineering and Industrial Informatics

Final Year Project to Obtain the Diploma of

Engineering

Field:

Telecommunications

Speciality:

Telecommunication Systems and Networks

Subject:

Study and Deployment of a Software Defined Networking

Solution on a Public Cloud (OpenNebula)

Realized by:

LECHEHEB Manel

Members of The Jury:

Mrs BOUTARFA Souhila Chair M.C.B ENST

Mrs ABBAD Leila Supervisor M.A.A ENST

Mr SEFTA Mahfoud Co-supervisor Head of Cloud Infrastructure Icosnet

Mr BELAHCENE Abdelkader Examinator M.A.A ENST

Mrs CHIALI Imane Examinator M.C.B ENST

Algiers, 06/07/2023

Academic year 2022 –2023

Dedecations

“
To my dearest mother, the one that always believes in me,

supports me, guides me and the source of my happiness.

To my dear father, for his encouragement, support, and

especially for the sacrifices he made.

To my life inspiration, my brother and sisters, who always

encourage me to go beyond my dreams.

To the faculty and staff of National Higher School of

Technology. Above all, to our God Almighty who showered

us His blessings in our everyday lives, especially for the

strength, courage, patience, wisdom,time, and guidance in

the realization of this work.

”

Acknowledgments

“
First and foremost, I want to thank Allah for giving me

strength, patience, desire, bravery, and health to complete

this project.

I’d also want to thank my parents, my brother and my

sisters for their support and encouragement during my long

academic career.

I would like to express my gratitude and appreciation to my

supervisor, Mrs. ABBAD Leila for assisting me through

every difficult obstacle in my way, for supporting me and

guiding me to finish my project.

I would also address my thanks to Mr. Sefta Mahfoud and

all the infrastructure cloud’s team who shared their

expertise with me, guided me and answered my questions

during the realisation of this project

And without forgetting the jury members for the honour

they have given me by taking the time to read and evaluate

this work.

Finally, thanks to everyone in my promotion team, the

whole department of electrical engineering and industrial

computing, and everyone who has helped me both morally

and materially.

”

Contents

List of Figures . I

List of Tables . IV

List of Acronyms . V

General Introduction . 1

I Generalities within Icosnet Cloud Architecture 4

I.1 Introduction . 5

I.2 Virtualization . 5

I.2.1 Definition . 5

I.2.2 Why Virtualization ? . 5

I.2.3 Type of Virtualization . 6

I.2.4 Important Concepts in Virtualization 7

I.2.4.1 Virtual Machine Monitor (Hypervisor) 7

I.2.4.2 Host and Guest . 7

I.2.4.3 Virtual Machine . 8

I.2.4.4 Containers . 8

I.2.4.5 Cluster . 8

I.3 Cloud Computing . 10

I.3.1 Definition . 10

I.3.2 Types of Cloud Computing . 11

I.3.3 Types of Cloud Services . 11

I.3.4 Benefits of Cloud Computing . 11

I.3.5 Relation between Virtualization and Cloud Computing 12

I.4 The Cloud Architecture of Icosnet . 12

I.4.1 KVM Hypervisor . 13

I.4.1.1 Installation . 15

I.4.1.2 Networking Characteristics 17

I.4.2 OpenNebula Cloud . 18

I.4.2.1 Installation . 19

I.4.2.2 Networking Characteristics 21

I.5 Conclusion . 22

Contents

II Needs Analysis and Choice of the SDN Solution 23

II.1 Introduction . 24

II.2 Overview about SDN . 24

II.2.1 Definition . 24

II.2.2 OpenFlow . 25

II.2.3 SDN on Cloud Computing . 26

II.2.4 Why SDN ? . 26

II.3 Requirements of the Solution . 27

II.4 Choice of the Solution . 27

II.4.1 OpenDaylight . 28

II.4.2 OVS-DPDK . 29

II.4.3 ONOS . 31

II.5 Comparaison between the Solutions . 32

II.6 Conclusion . 34

III Implementation of ONOS SDN Controller . 35

III.1 Introduction . 36

III.2 The Architecture . 36

III.3 The integration . 37

III.3.1 SDN-Virtualization Part . 37

III.3.1.1 Open Network Operating System (ONOS) 38

III.3.1.2 Open vSwitch . 43

III.3.1.3 OVS-ONOS . 48

III.3.2 SDN-Cloud Part . 48

III.4 Conclusion . 51

IV Results and Discussion . 53

IV.1 Introduction . 54

IV.2 Tests of the Solution . 54

IV.2.1 Virtual Machines Isolation . 54

IV.2.1.1 Reactive Forwarding . 54

IV.2.1.2 Intent Framework . 55

IV.2.1.3 Implementation . 55

IV.2.2 Necessary Commands . 58

IV.2.3 ONOS REST API . 61

IV.3 Problems Experienced and Solutions . 62

IV.3.1 Problems . 62

IV.3.2 Solutions . 63

IV.4 Propositions for a Real Implementation . 64

IV.5 Conclusion . 65

General Conclusion . 66

Contents

Appendices . 68

Bibliographies . 75

Webographies . 76

Abstract .

List of Figures

I.1 Comparison between Traditional and Virtual Computer Architecture [3] 5

I.2 Comparison between the Two Types of Hypervisors[5] 7

I.3 Concepts of Host and Guest within Hypervisor Based Virtualization [6] . 8

I.4 Virtual Machine Architecture within Hardware Host 9

I.5 Comparison between VM and Container Architectures[8] 9

I.6 Migration of VMs from Overloaded Host to Host with Free Ressources

on the Same Cluster[10] . 10

I.7 Cloud Computing Service Providers . 10

I.8 Icosnet Cloud Architecture . 13

I.9 KVM Logo . 13

I.10 Exemples of Libvirt API Commands . 14

I.11 Virt-manager . 15

I.12 Verify the VT and the KVM’s Support 15

I.13 Adding Users and Verifying API Installation 16

I.14 Verification of libvirtd Status . 16

I.15 Illustration of a Virtual Network Architecture Generated by KVM 17

I.16 Screenshot of (ip address) Command Displaying Network Interfaces

Informations . 17

I.17 KVM Networking Modes . 18

I.18 OpenNebula Logo . 18

I.19 Key Features Offered by OpenNebula[13] 19

I.20 OpenNebula Daemon Properly Started 19

I.21 OpenNebula Sunstone GUI . 20

I.22 OpenNebula KVM Host Node . 20

I.23 Opennebula Network[13] . 21

I.24 Creating a new VM . 21

II.1 Comparison between Traditional and SDN Architecture 24

II.2 Software defined Networking Architecture 25

II.3 SDN within Cloud Computing . 26

II.4 OpenDaylight Logo . 28

II.5 ODL Environment . 28

II.6 ODL’s Command Line Program . 29

II.7 ODL’s Problems . 29

II.8 OVS Logo . 30

I

List of Figures

II.9 Open vSwitch’s Components . 30

II.10 OVS-DPDK’s Problem . 31

II.11 ONOS Logo . 32

III.1 The Suggested Architecture by Integrating SDN 36

III.2 Projection of the SDN Architecture on the Infrastructure 37

III.3 SDN-Virtualization Part . 37

III.4 Adding SDN User . 38

III.5 Java Version . 38

III.6 Maven Version . 39

III.7 ONOS Service Running . 40

III.8 ONOS CLI . 41

III.9 ONOS GUI . 42

III.10 ONOS Activated Applications . 43

III.11 OVS Service . 44

III.12 Screnshoot of ”ip a” Cammand Displaying OVS Switch 44

III.13 OVS Configuration . 44

III.14 Creating an OVS VNET . 45

III.15 The Virtual Network Interface of the New VM Attached to OVS Virtual

Network . 47

III.16 Attachment the OVS Bridge to the ONOS Controller 48

III.17 SDN-Cloud Part . 49

III.18 Opennebula Front-end Configuration with OVS 50

III.19 VNET Open vSwitch . 50

III.20 Managing the Controlled Network via OpenNebula Sunstone 51

IV.1 Reactive Forwarding within ONOS . 54

IV.2 The Types of ONOS Intents . 55

IV.3 Displaying the Creation of the VMs Using the Command ”ovs-vsctl show” 55

IV.4 Displaying the Two VMs on ONOS GUI 56

IV.5 Connection Establishment between the 2 VMs by activating the FWD . . 56

IV.6 Disconnection between the VMs because of the FWD Deactivation 57

IV.7 Intent’s Flow . 57

IV.8 VMs Connected through Intent . 58

IV.9 Network View: Connectivity Requests Cause Flow [19] 58

IV.10 GUI ONOS Network Overview . 59

IV.11 Cluster’s Informations . 59

IV.12 Routing and Security Configurations . 60

IV.13 Managing Intents . 60

IV.14 ONOS API . 61

IV.15 ONOS Flows . 62

IV.16 Issue of Incompatibility between the Versions 62

IV.17 Effect of the Nested Virtualization . 63

II

List of Figures

IV.18 ONOS Cluster[18] . 64

IV.19 Implementation of an OpenNebula Virtual Router 64

IV.20 Implementation of the Proxy[20] . 65

A.1 VirtualBox’s Snapshot . 69

A.2 Creation of a Virtual machine Using virt-manager 70

A.3 Switching OS to Desktop . 71

A.4 OS Desktop . 71

A.5 MariaDB Back-end . 72

A.6 OpenNebula Sunstone . 73

III

List of Tables

II.1 Comparison between the SDN Solutions 33

IV

List of Acronyms

API Application Programming Interface

CLI Command Line Interface

CPU Central Processing Unit

CSP Cloud Service Provider

FWD Forwarding

GUI Graphical User Interface

IaaS Infrastructure as a Service

IBM International Business Machines Corporation

IP Internet Protocol

ISP Internet Service Provider

IT Information Technology

JSON JavaScript Object Notation

KVM Kernel-based Virtual Machine

LTS Long-Term Support

MAC Media Access Control

NAT Network Address Translation

NETCONF Network management protocol

NIC Network Intrtface Card

ODL OpenDaylight

OF OpenFlow

ONF The Open Networking Forum

ONOS Open Network Operating System

OS Operating System

V

List of Acronyms

OVS Open vSwitch

PaaS Platform as a Service

QEMU Quick Emulator

QoS Quality Of Service

RAM Random Access Memory

REST Representational state transfer

SaaS Software as a Service

SAN Storage Area Network

SDN Software Defined Networking

SSH Secure Socket Shell

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

VM Virtual Machine

VMM Virtual Machine Monitor

VMs Virtual Machines

VNC Virtual Network Computing

VNET Virtual Network

VNIC Virtual Network Interface Card

VT Virtualization Technology

VXLAN Virtual eXtensible Local Area Network

XML Extensible Markup Language

VI

General Introduction

During the few years, the world has completely changed, in view of the information

technology (IT) landscape, according to the appearance of many emergence of revolu-

tionary technologies such as virtualisation and cloud computing. These lasts are two

interconnected state-of-the-art technology that has innovated the IT industry.

Virtualisation is a process that enables more powerful use of physical computer hardware.

It allows the division of the computing resources (processors, memory, storage, etc.) of a

single physical infrastructure into several virtual computers, commonly known as virtual

machines, micro virtual machines or containers.

While cloud computing consists of hosting and using data on remote servers, that

are managed by the cloud service providers (CSP), via the Internet. It offers access,

orchestration and management of the shared computing resources using a software, rather

than owning a local host device. Whereas the CSP sells such accessible services.

The combination of these two aspects has created a new beneficial business for the

internet service provider (ISP) and especially for the CSP around the world. In Algeria,

ICOSNET was one of them. It offers cloud services designed to suit client infrastructure’s

needs and size, through its data centers located in Algeria. The only private ISP in

Algeria has a technical team responsible of the infrastructure cloud, which is constantly

developing and keeping up to date with the latest technology in this field. That is why

they suggest including software defined networking (SDN) on their own cloud.

The software defined networking is a cutting-edge technology that serves to centralize

the management and the control of the network by separating the data forwarding and

the network control, then using a software to administrate rather a virtual or a physical

network. In our case, SDN is used to control a virtual network formed of a cluster running

on three separated servers.

Context and Problematic

Considering that during this project, Icosnet uses a public cloud named OpenNebula,

in the cloudy side. And in the second side, the Kernel-based Virtual Machine (KVM)

hypervisor as a tool of virtualisation. But the conjunction of these two software creates

1

General Introduction

some limits. And the SDN controller is supposed to solve it. Among these limits:

• The decentralisation of the network configurations on the hardware, sometimes the

same configurations repeat on many devices.

• Human contribution to network management increased the possibility of fatal errors.

Especially, that Icosnet hosts data of many big companies.

• Absence of a graphical user interface (GUI) to clearly observe the architecture of

the virtual network and all the changes on its configurations.

• The inability to isolate virtual instances on the same virtual network (VNET) from

each other, and the obligation of creating a new VNET on OpenNebula for each

instance in order to isolate it. Which is an exhausting and impractical action.

Knowing that, the isolation of a virtual machine from the internal network is a

major aspect of security.

Goals and Contributions

In the end of our dissertation, we are supposed to:

• Firstly, having a basic virtual infrastructure composed of virtual machines created

using KVM hypervisor and attached to its bridge, through the public cloud Open-

Nebula Sunstone.

• Secondly, carry out the study of needs and the appropriate SDN solution for this

architecture.

• Thirdly, the integration of the solution on the basic virtual infrastructure and ap-

plying the necessary modifications.

• Finally, testing the functioning of the SDN controller, applying the network config-

uration, especially isolation of the virtual machines (VMs), and suggesting require-

ment for the real implementation.

Dissertation Organization

It is structured into 4 chapters, such that:

• Chapter I: ”Generalities within Icosnet Cloud Architecture”

Involved an overview about both virtualisation within the Kernel-based Virtual

Machine and cloud computing within the public cloud OpenNebula. Also, review

the current cloud infrastructure architecture used by Icosnet and its limitations.

• Chapter II: ”Needs Analysis and Choice of the SDN Solution”

Discuss the concepts of software defined networking in the cloud environment, and

study the suitable solution on such environment, according to the needs analysis.

2

General Introduction

• Chapter III: ”Implementation of ONOS SDN Controller”

Detail the implementation and the configuration of whole open network operating

system (ONOS) SDN solution and open vSwitch (OVS) between KVM and Open-

nebula.

• Chapter IV: ”Results and Discussion”

Examine the capabilities of the new realizable architecture, its issues, and practical

solutions by performing some tests.

• We conclude with a general summary of all the achieved work, valorisation of efforts

and drawn attention to the difficulties faced. In the end, proposing some perspectives

to ameliorate the solution.

3

Chapter I

Generalities within Icosnet Cloud

Architecture

4

Chapter I. Generalities within Icosnet Cloud Architecture

I.1 Introduction

In this chapter, we will briefly discuss the process of both virtualisation and cloud

computing technologies, their general concepts and tools. Then, we will highlight the

KVM hypervisor and the OpenNebula cloud, its installations, configurations and uses.

Furthermore, we will review in detail Icosnet cloud architecture.

Drawing your attention to the fact that this work is a real cloud infrastructure project

at Icosnet, in addition to being my end of studies project. I worked on it during my

internship in coordination with the supervisors there, who provided for me the necessary

tools to succeed in such an innovative project.

I.2 Virtualization

I.2.1 Definition

Virtualization was an inevitable result of the growing capability of datacenter technology

and the continuing pressure to reduce technology costs[1]. To remove ambiguity, virtu-

alization defined as a framework or methodology of dividing the resources of a computer

hardware: Central Processing Unit (CPU), Random Access Memory(RAM), storage, Net-

work Interface Card (NIC), etc, into multiple execution environments, by applying one or

more concepts or technologies such as hardware and software partitioning, time-sharing,

partial or complete machine simulation, emulation, quality of service, and many others.

Furthermore, virtualization is a layer of abstraction that breaks the standard paradigm

of computer architecture, decoupling the operating system from the physical hardware

platform and the applications that run on it[2]. (Figure A.6)

Figure I.1: Comparison between Traditional and Virtual Computer Architecture [3]

I.2.2 Why Virtualization ?

Virtualization provides notable benefits, here some of its key advantages:

• Cost Savings: By combining several physical servers into one virtual environment,

virtualization can lower hardware expenses. This lessens the need for additional

gear and the related expenses of electricity, cooling, and upkeep. Thing that makes

virtualization an eco-friendly approach to IT.

5

Chapter I. Generalities within Icosnet Cloud Architecture

• Improved Efficiency: By enabling the use of different operating systems and appli-

cations on a single physical server, virtualization can increase the effectiveness of IT

operations. As a result, less new hardware and related expenses are needed.

• Increased Availability: By enabling redundancy and failover capabilities, virtual-

ization can improve the availability of applications and services. This makes sure

that even if one of the physical servers breaks down, the applications and services

are still accessible.

• Improved Security: By isolating applications and services from one another, vir-

tualization can enhance security. This lowers the chance that one application or

service will negatively impact another.

• Improved Mobility: By enabling the migration of services and applications from one

physical server to another and from a state to another, virtualization can enhance

mobility. This makes it possible to relocate software and services to new data centers

or locations and to an old state. Through a variety of functionalities, including

snapshot (see Appendix A.1), copy, clone, and back up of the virtual system.

I.2.3 Type of Virtualization

Virtualization appears in a variety of kinds that come together to build the infrastructure

that supports the virtual environment:

• Server Virtualization: This type of virtualization permits multiple operating sys-

tems and applications to run on the same hardware, by partitions a physical server

into various virtual servers[4].

• Desktop Virtualization: Through this kind of virtualization, many users can access

their own virtual desktops from any device, wherever they may be.

• Application Virtualization: This type of virtualization allows the running of ap-

plications on any hardware, irrespective of the underlying operating system (for

example, running a Linux application in a Windows environment).

• Storage Virtualization: This kind of virtualization allows multiple physical storage

devices to be managed as a single virtual entity.

• Network Virtualization: This type of virtualization permits the creation and the

management of multiple virtual networks with its own addressing as a single entity

on top of a physical network infrastructure. It covers virtual network interface card

(VNIC), virtual switches and virtual routers, etc. Often, it uses SDN to control

traffic.

• Security Virtualization: Multiple security policies may be applied to various virtual

network segments using this kind of virtualization, and specially firewalling.

6

Chapter I. Generalities within Icosnet Cloud Architecture

I.2.4 Important Concepts in Virtualization

I.2.4.1 Virtual Machine Monitor (Hypervisor)

The virtual machine monitor (VMM) is the major key tool for virtualization, it is

a software that provides a layer of abstraction between the physical hardware and the

virtual system, allowing the creation and the management of several virtual instances

with isolated operating systems from each other, simultaneously and on a single physical

machine. There exists two types of hypervisor:

a) Hypervisor type I

Also known by bare metal, it operates directly on the hardware, turning it into an

instrument for controlling the operating system. Then, on the top of this hypervisor,

the guest OSes operate. This kind has direct access to the hardware resources, which

allows for efficient performance and resource management. For example : ESXi from

VMware , KVM the free hypervisor for Linux .

b) Hypervisor type II

Also known by host metal, it works inside another operating system. For example:

VirtualBox, Open Source software published by Oracle.

Figure I.2: Comparison between the Two Types of Hypervisors[5]

I.2.4.2 Host and Guest

The host is the physical machine host server; the underlying hardware that provides

virtualized resources, such as CPU, RAM, storage and network I/O, and so on. While

the guest is a completely separate and independent instance of an operating system and

application software, that emulates the functionality of a physical computer system. The

guest can take different forms, such as a virtual machine (VM) when its OS runs on the

top of hosts infrastructures or a container when it shares the host’s OS kernel. Guest can

exist on a single physical machine but is usually distributed across multiple hosts for load

balancing1.

1Distributing the computing workload within hosts

7

Chapter I. Generalities within Icosnet Cloud Architecture

Figure I.3: Concepts of Host and Guest within Hypervisor Based Virtualization [6]

I.2.4.3 Virtual Machine

Virtual machine (VM) is a type of guests, i.e. it is an instance of an operating system

created by a Virtual Machind Monitor (VMM) on the top of host infrastructure and

enables a computer to behave like another computer. Every virtual machine contains

a unique set of virtual hardware (CPU, memory, network interfaces, and disk storage)

that is used to run an operating system and other programs. This enables customers to

execute many applications and operating systems on the same machine, frequently with

heterogeneous operating systems, without having to invest in additional physical hosts.

Its main properties within a datacenter consist on[7]:

• Partitioning: Distribute system resources among virtual machines while running

different operating systems on a single physical host machine.

• Insulation: Isolate fault and security management at the hardware level.

• Encapsulation: Saving a virtual machine’s whole state to files will enable easy mov-

ing and copying of the VM.

• Hardware independence: Any VM can be created or moved to any physical server.

I.2.4.4 Containers

Virtualization by containerization consists of partitioning directly at the level of the

operating system. Each container so runs in its own environment while utilizing the same

host OS. Because of this, containers are typically used to virtualize a program rather than

a whole server2.

I.2.4.5 Cluster

A cluster is a logical grouping of hosts (often three hosts: master, standby and worker3)

2During this thesis, we will focus especially on the hypervisor virtualization. So, we won’t place much
emphasis on virtualization by containerization

3Worker host is the responsible for balancing between master and standby host in case the master

8

Chapter I. Generalities within Icosnet Cloud Architecture

Figure I.4: Virtual Machine Architecture within Hardware Host

Figure I.5: Comparison between VM and Container Architectures[8]

with the same kind of CPU and shared a common storage domains. According to reg-

ulations set forth on the cluster and settings on the virtual machines, virtual machines

are dynamically assigned to any host in a cluster and may be moved between them. The

cluster is he greatest level at which power and load-sharing regulations can be established.

It is an efficient method that safeguards against hardware and software malfunctions and

guarantees high availability of servers and the network[9].

server fails or overloads.

9

Chapter I. Generalities within Icosnet Cloud Architecture

Figure I.6: Migration of VMs from Overloaded Host to Host with Free Ressources on the
Same Cluster[10]

I.3 Cloud Computing

I.3.1 Definition

Cloud Computing consists of hosting and exploiting data on distant servers through the

Internet. Rather than employing personal computers or local servers to run programs,

cloud computing allows the use of shared computing resources. In most cases, it involves

the utilization of virtualized resources, such as servers, storage, networks, software, and

services, that are provided through the Internet (”the cloud”). Cloud computing eliminates

the need for hardware and software by enabling users to access data and apps from any

device with an Internet connection. It eliminates, also, the need for clients to configure

or manage resources themselves, so they only pay the CSP for what they use.

Figure I.7: Cloud Computing Service Providers4

4Google,MS, AMZ, VMware, OpenNebula are all Cloud Computing Service Providers each in his own
way. But it should be noted that OpenNebula is a cloud management platform, i.e. a tool for cloud
computing. And it hasn’t its own data center.

10

Chapter I. Generalities within Icosnet Cloud Architecture

I.3.2 Types of Cloud Computing

There are three principal types of cloud computing[11]:

• Public Cloud: Public clouds are shared infrastructure systems offered by a third-

party cloud service provider and made available online to several customers or or-

ganizations

• Private Cloud: Private clouds offer additional control, customisation, and security

because they are specialized infrastructure that is exclusively used by one company.

• Hybrid Cloud Hybrid Cloud is a combining between public and private cloud. It

aims to handle the needs or limits of an organization while maximizing the advan-

tages of both cloud deployment strategies.

I.3.3 Types of Cloud Services

There are three principal types of cloud services[11]:

• Infrastructure as a service (IaaS): It consists on offering infrastructure servers and

virtual machines (VMs), storage, networks, operating systems from a cloud provider.

while client should manage both OS and applications.

• Platform as a service (PaaS): It offers a platform and environment for clients to

build, deploy, and manage applications without the complexity of infrastructure

management. It is dedicated especially to developers and organizations looking to

develop their own platform, through its flexibility.

• Software as a service (SaaS): It provides software applications over the internet.

While the provider is responsible on providing the whole application, and take care

of any upkeep, such as software updates and security patches.

I.3.4 Benefits of Cloud Computing

Here are only the tip of cloud computing’s iceberg of potential:

• Cost Efficiency

• High flexibility

• Availability

• Environment friendlly

• Easy backup and restore

• Heigh performance

• Excellent accessibility

11

Chapter I. Generalities within Icosnet Cloud Architecture

• More Secure

I.3.5 Relation between Virtualization and Cloud Computing

Virtualization is the key component of an improved cloud computing. Despite the fact

that both two technologies could exist one far from the other, but the combination of them

is the crucial key for CSP to enhance the services offered on their data centers. Admit-

ting that virtualization is the physical foundation layer of services, while cloud computing

offers access, orchestration and management of these services.

I.4 The Cloud Architecture of Icosnet

In keeping up to date with modern technologies, and whiting the creation and exploita-

tion of its data center, Icosnet follows the approach of applying a combination between

hypervisor virtualization and cloud computing, in order to offer a high quality of services

as a CSP to its clients. So on the one hand, virtualisation is ensured by Kernel-based

Virtual Machine (KVM) hypervisor. On the other hand, cloud computing is guaranteed

by the use of the public cloud OpenNebula.

Technically, the data center of Icosnet uses a cluster of three physical servers linked to a

storage bay (SAN, Storage Area Network)5 and managed by OpenNebula Sunstone. So as

to create a KVM cluster managed by openNebula, KVM hypervisor is properly installed

on each host server with an openNebula KVM node driver. And, in another separated

virtual machine created on another platform, the OpenNebula front end is deployed. Also,

an ssh link is established between the OpenNebula public cloud and the KVM cluster, to

enable passwordless login on the system. For the purpose of that, all nodes and front-end

can interact to one another through SSH without any manual intervention.

Then, all the servers are connected to a physical router that offers routing and NAT

capabilities. Followed by a physical firewall to filter the inbound and outbound traffic.

Knowing that, they don’t need to use a physical switch because of the presence of a virtual

switch on each server. This virtual bridge is automatically created while installing and

configuring KVM.

To create a service or a virtual machine, the network administrator uses OpenNebula

Sunstone to send orders to the KVM hypervisor, which create the instance on a specified

host server. Through the cloud, a necessary configuration must be done, including assign-

ing private internet protocol address (IP address) and VNET6, computing resources and

determine an OS template, according to the clients requirements.

5Generally, servers are used to store its operating systems, necessary applications such KVM and
temporary data. While SAN store virtual machines files and data that needs to be shared by multiple
servers (snapshots, clone, and backup)

6Virtual Network

12

Chapter I. Generalities within Icosnet Cloud Architecture

Figure I.8: Icosnet Cloud Architecture

In order to conduct a needs study, we try to approach this architecture by creating

a test environment using two client-server virtual machines. One machine is considered

as a host server including the KVM hypervisor, and the second machine is considered

as the machine which contains the public cloud OpenNebula. Then an SSH linked is

established between the two machines as required. Both of them use an Ubuntu 22.04

Long-Term Support (LTS) server OS, which is the latest LTS version of Ubuntu, because

of its stability, long-term support, flexibility and its large integration with the cloud.

Knowing that, Icosnet gives VM access to two VMs, I do the disk extension and the

switching from server OS to desktop OS before using them. (For more information about

the two process, please refer to Appendices A.3)

I.4.1 KVM Hypervisor

Figure I.9: KVM Logo

KVM is the acronym of ”Kernel-based Virtual Machine”

which is the Linux open-source virtualization module. It

is considered as an hypervisor type I, because it enables

the Linux machine to function as a host running a number

of separated VMs known as guests. It is merged into the

mainline Linux kernel since Linux2.6.20 version. Each VM

is built as a typical Linux process, scheduled by the default Linux scheduler,and equipped

with specific virtual hardware such a network card, graphics adapter, CPU(s), memory,

and disks[12].

KVM offers many features including:

13

Chapter I. Generalities within Icosnet Cloud Architecture

• Full virtualization: The full virtualization offered by KVM enables the operation of

numerous virtual machines on a single physical server.

• High performance: KVM offers near-native performance, enabling high-performance

virtual machines.

• Scalability: A single physical server can accommodate up to thousands of virtual

computers using KVM.

• Security: Each virtual machine is protected from the others due to the robust

isolation that KVM provides.

• Open source: KVM can be customized and integrated with other open source

projects because it is open source.

• Support for multiple operating systems: Many operating systems such as Linux,

Windows, and Mac OS X are supported by KVM.

• Easy to use: By integrating a simple graphical user interface and command line

tools, KVM is simple to operate.

KVM needs two special package: the emulator QEMU and th API Libvirt. Qemu7

is an hypervisor type I used with KVM through ”kvm-qemu” to emulate various hard-

ware components, such as CPUs and I/O devices. While Libvirt API is used to unify

the KVM management, it provides CLI utilities like virsh, virt-manager, and virt-install

commands, which provides hundreds of options to manage every aspect of the virtual

machines communicate with the virtualization infrastructure.

Figure I.10: Exemples of Libvirt API Commands

A GUI utility called virt-manager is used to manage virtual machines using KVM:

7QEMU is an hypervisor but can be used as an emulator with KVM to improve virtualization capa-
bilities, and because KVM is a bare-metal VMM that provides hardware virtualization capabilities and
doesn’t offer a software to manage it

14

Chapter I. Generalities within Icosnet Cloud Architecture

Figure I.11: Virt-manager

I.4.1.1 Installation

To install KVM on Ubuntu 22.04 LTS, we need to follow these steps:

1. Check if the CPU supports Virtualization technology(VT), using:

$ egrep -c ’(vmxsvm)’ /proc/cpuinfo

If we get number ̸= 0, the CPU supports VT. Otherwise, it does not support VT.

2. Check the host system’s CPU specifications and capabilities, using:

$ apt install cpu-checker

3. Check if the system supports KVM, using:

$ kvm-ok

Figure I.12: Verify the VT and the KVM’s Support

4. Downlaod the necessary packages, using:

15

Chapter I. Generalities within Icosnet Cloud Architecture

$ sudo apt install qemu-kvm libvirt-daemon-system

$ sudo apt install libvirt-clients bridge-utils

5. Add user to both Libvirt and KVM groups, using:

$ sudo adduser root libvirt

$ sudo adduser root kvm

6. Verify the installation of libvirt API, using:

$ sudo virsh list-all

Figure I.13: Adding Users and Verifying API Installation

7. Check the status of the libvirtd8 service, using:

$ sudo systemctl status libvirtd

Figure I.14: Verification of libvirtd Status

8The ”libvirtd” service is a daemon that manages the communication between virtualization solutions
KVM and the libvirt API

16

Chapter I. Generalities within Icosnet Cloud Architecture

I.4.1.2 Networking Characteristics

When libvirt and KVM are properly installed, a new virtual device is added simulta-

neously which is a virtual bridge. And while creating an new VM (To delve deeper into

the process of creating a VM, please refer to Appendix A.2) , a new VNET which corre-

sponds to the virtual network interface card (VNIC) with a new IP address according to

the networking mode used are added .

Figure I.15: Illustration of a Virtual Network Architecture Generated by KVM

Figure I.16: Screenshot of (ip address) Command Displaying Network Interfaces
Informations

There exist three principal networking modes for communication between the guests

and the KVM host:

17

Chapter I. Generalities within Icosnet Cloud Architecture

(a) Bridged Networking Mode (b) Network Address Translation Mode

(c) Macvtap Networking Mode

Figure I.17: KVM Networking Modes

I.4.2 OpenNebula Cloud

Figure I.18: OpenNebula
Logo

OpenNebula is an open source cloud and edge computing

platform. It is a cloud management platform for building

and managing private, public and hybrid clouds. It com-

bines hypervisor virtualization and container technologies

with multi-tenancy, auto-provision and elasticity to offer

applications and services on-demand[13]. It provides a cen-

tralized interface for deploying, monitoring and managing

virtualized computing resources, including virtual machines,

storage, and networking[14].

OpenNebula provides a single, feature-rich and flexible platform that unifies manage-

ment of IT infrastructure and applications, preventing vendor lock-in and reducing com-

plexity, resource consumption and operational costs. It uses a modular architecture,

allowing users to add custom functionality through plugins and APIs. It supports various

hypervisors, such as KVM[13].

Throughout our project, we use the stable version 6.6 of OpenNebula as a public

cloud with the KVM hypervisor. OpenNebula uses a module called ”vmm exec” to

18

Chapter I. Generalities within Icosnet Cloud Architecture

Figure I.19: Key Features Offered by OpenNebula[13]

communicate with KVM using the libvirt communication protocol. Exactly, it uses the

VMM(Verification Methodology Manual) protocol. It resembles a driver. The vmm exec

sends commands to KVM to start, stop, monitor and manage virtual machines.

I.4.2.1 Installation

The installation of OpenNebula consists on:

• Cloud single front end installlation:

Involving MySQL/MariaDB database installation, OpenNebula community edition

software downloading, OpenNebula Daemon configuration, managing the oneadmin

user, starting services and openning firewall’s ports on the first machine.(To delve

deeper on the complete installation, please refer to Annexe A.4)

To verify installtion, we run command: $ oneuser show

Figure I.20: OpenNebula Daemon Properly Started

We login in through the Sunstone GUI via the link : http://<frontend address>:9869

19

Chapter I. Generalities within Icosnet Cloud Architecture

(a)

(b)

Figure I.21: OpenNebula Sunstone GUI

• KVM node installlation: Involving OpenNebula software and KVM Node Package

installation on the second machine, Passwordless SSH configuration from Front-end

to hypervisor Node an Adding the Host with Sunstone.(To delve deeper on the

complete installation, please refer to Annexe A.4)

Figure I.22: OpenNebula KVM Host Node

20

Chapter I. Generalities within Icosnet Cloud Architecture

I.4.2.2 Networking Characteristics

To manage and monitor the host, and to transfer the Image files. For our tests, We use

the simple virtual network mode which is bridged mode.

Figure I.23: Opennebula Network[13]

So after creating a VNET using bridged mode, we create template for the VM, then the

VM instance itself:

(a) Screenshot on OpenNebula Sunstone Front end

(b) Screenshot on KVM Node

Figure I.24: Creating a new VM

21

Chapter I. Generalities within Icosnet Cloud Architecture

I.5 Conclusion

In conclusion, this chapter delves into various aspects of virtualization and cloud com-

puting, with a specific emphasis on the KVM hypervisor and the OpenNebula public

cloud. The chapter explores the implementation details, networking specifications, and

the application of these technologies through the cloud architecture of Icosnet. By success-

fully creating a prototype of the basic architecture of Icosnet, we have laid the foundation

for delivering a comprehensive needs analysis and selecting the appropriate SDN solution,

in the next chapter. This enables us to optimize the network infrastructure and enhance

overall performance.

22

Chapter II

Needs Analysis and Choice of the SDN

Solution

23

Chapter II. Needs Analysis and Choice of the SDN Solution

II.1 Introduction

Through this chapter, we aim to provide a comprehensive understanding of the concept

of software defined networking (SDN) in general, with a specific focus on its application

in cloud computing. We will conduct a needs analysis and conclude by selecting the

appropriate solution for Icosnet’s cloud architecture.

II.2 Overview about SDN

Switches on physical networks route information in the form of packets based on the

combined knowledge of different elements. Routing tables are built up by exchanging

topology and state information across different network devices. Network problems cause

temporary disruption as devices try to discover new paths, which can lead to data loss

and routing delays. In light of the fact that every new technology is developed to address

a specific need or solve an issue. The SDN technology emerges to solve specially such a

problem and others.

II.2.1 Definition

The Open Networking Forum (ONF)1 defines SDN as follows:

“Software-Defined Networking (SDN) is an emerging architecture that is

dynamic,manageable, cost-effective, and adaptable, making it ideal for the

high-bandwidth, dynamic nature of today’s applications. This architecture decouples the

network control and forwarding functions enabling the network control to become directly

programmable and the underlying infrastructure to be abstracted for applications and

network services. The OpenFlow protocol is a foundational element for building SDN

solutions[15].”

Simply put, SDN is a networking architecture that permits the centralized management

and control of a network into a single entity ”controller” that is driven by application pro-

gramming interfaces (APIs). As a result, it separates the control plane, which determines

how the network should behave, from the data plane, which implements those decisions.

Using several protocols and technologies.

Figure II.1: Comparison between Traditional and SDN Architecture

1A working groups that aim to accelerate the use of SDN and OpenFlow technologies through coop-
eration, standardization activities, and the creation of open-source solutions

24

Chapter II. Needs Analysis and Choice of the SDN Solution

In general, software defined networking functionalities can be categorized into three

planes. These are as follows:

• Data Plane: It involves the various network devices (such as switches, access points,

routers, and firewalls), which send and receive information to and from the controller

across a southbound APIs.

• Control Plane: It includes the controller, which is the central component of an SDN

architecture and which allows for centralized management and control, automation,

and policy enforcement across the network environments.

• Application Plane: The controller and the applications and policy engines commu-

nicate with one another via northbound APIs, making an SDN appear to be a single

logical network device.

Figure II.2: Software defined Networking Architecture

II.2.2 OpenFlow

OpenFlow protocol (OF) is the language used by the central controller to communicate

changes to network equipment, switchs2. It works on the transmission control protocol

(TCP). The standard protocol is TCP 6633 for OF V1.0 and 6653 for OF V1.3+, while

the latest version used in the industry is V1.5. whereas, OF channel between the switch

and the controller is successfully established only after a successful TCP 3-way handshake.

Furthermore, the essential part of the OF protocol is the flow table which is similar to

the media access control (MAC) table of a traditional switch. It saves flow coming from

the controller that instructs the SDN switch what to do with a packet when it arrives at

an incoming port. The switch will compare certain factors, such as an IP address, port

number, MAC address, VLAN ID, etc., and choose the best matching flow entry from the

table, carrying out the action linked to that entry. The corresponding action is carried out

if a match is discovered. If a match cannot be made “TABLE MISS”, the switch forwarde

the packet to the SDN controller, which will then decide on the best course of action and

update the flow table.

2In the context of SDN, a switch refers to any network device that can use the OF protocol, not just
layer 2 devices in the OSI model

25

Chapter II. Needs Analysis and Choice of the SDN Solution

II.2.3 SDN on Cloud Computing

Besides that sdn has emerged as a powerful approach for implementing network ar-

chitectures in physical networks. It penetrated both virtualization and cloud computing

environment. Whether on the physical network infrastructure or on the virtualized net-

work infrastructure, the technical concept of SDN still the same. So, SDN controllers

by using application programming interfaces (APIs) communicate with all the virtual

appliances to manage and direct network traffic.

Figure II.3: SDN within Cloud Computing

II.2.4 Why SDN ?

The way we design and maintain networks is changing due to the use of software defined

networking. SDN has been adopted by businesses more and more as a result of its many

beneficial features, among its benefits:

• Cost Reduction: By obviating the need for expensive networking hardware. Since

the intelligence is centralized at the SDN controller, it enables businesses to employ

less expensive hardware for better effect. Knowing that, some SDN solutions are

offered for free, and others come with a paid license such VMware NSX.

• Ease of Management: Network planning and setup are made easier with a single

management panel that provides improved visibility into network resources. And,

configuration’s faults will be reduced progressively.

• Centralized Network Processing: It provides a single product for all networking

demands and concentrates decision-making power at the controller, simplifying net-

work components and reducing complexity. consequently, it provides services quicker

and with greater agility.

• Overhead Reduction: By using the different methods of isolation that are accessible

in the SDN, which is an important concept in the delivery of virtual machines,

to provide separation for customer workloads. For example, setting up VLANs

on various networking can be complex, but service providers can quickly isolate

customer virtual machines with SDN.

26

Chapter II. Needs Analysis and Choice of the SDN Solution

• Improved Network Security: It make it simple to identify and respond to security

threats by implementing security policies and monitoring network traffic from a

central console. The problem of creating a single point of attack is also present,

although this is resolved by applying clustering process on a virtual environment.

• Traffic Control: Managers of data centres can gain from utilising a single man-

agement solution to centralise networking control. Simultaneously, SDN offers a

number of isolation options, such as establishing firewalls and ACLs at the NIC

level of virtual machines. The SDN management panel also allows to set traffic

rules, which aids in giving a complete control over network traffic.

II.3 Requirements of the Solution

For this project, Icosnet imposed a number of requirements to be met when choosing

the right SDN solution. These requirements were based on the experience gained from

the use of the NSX-t the paid SDN solution from VMware on another platform. They are

numerated as follows:

1. The solution must be compatible with the existing architecture. In other words,

with both KVM hypervisor and OpenNebula public cloud. SO, the SDN solution’s

testes must well work on the previous prototype prepared.

2. The solution must be capable of being integrated on the OpenNebula Sunstone.

3. The solution must be for free, open source and with a good documentation’s avail-

ability.

4. The controller must be capable of providing a high performance isolation between

different virtual instances. Either by using virtual local area network (VLAN),

virtual extensible local area network (VXLAN) or another process. For guaranteed

east-west disconnection.

5. In order to permit north-south connection, the solution must provide efficient net-

work configuration control by providing both NAT and routing protocol control.

6. The solution must offer robust firewalling rule control in order to give security

configuration control. So enabling the possibility of developing the solution in the

future and include additional security features.

II.4 Choice of the Solution

There are several SDN solutions that satisfy these requirements and differ to some extent

in certain criteria. In order to select the most suitable solution to be deployed in the data

center, a comparison between the most efficient solutions has been made.

By performing extensive researches, we have adapted to these three controllers:

27

Chapter II. Needs Analysis and Choice of the SDN Solution

II.4.1 OpenDaylight

Figure II.4: OpenDaylight
Logo

OpenDaylight (ODL) is an open source software defined

networking platform that makes use of open protocols to

offer network device monitoring and centralized program-

matic control[16]. Prior to being hosted by the Linux Foun-

dation, it was previously developed in 2013 as a joint effort

between the International Business Machines corporation

(IBM) and Cisco. It can be deployed on Linux-based distri-

butions such as CentOS, Red Hat, and Ubuntu, as well as

on Windows-based systems. ODL is a powerful and flexible

SDN controller platform, that serves as a base for develop-

ing and automating networks of any size.

OpenDaylight includes an OpenFlow plugin, which enables communication with OpenFlow-

enabled network devices. It includes a southbound plugin for routing protocols. Thus,

ODL controller can be used on both virtual and physical infrastructure networks.

In addition to offering the requirements already mentioned, it offers a user interface

for the control and the supervision of network components. Which makes it ideal to use

in our project, this is why I try to install and manipulate Sulfur-SR3 version the 16th

release(16.03) of ODL (it was the latest stable version). OpenDaylight is a Java3 program,

so we need to install java and maven. I used java 11.0.17 and maven 3.9.0 (II.5).

Figure II.5: ODL Environment

Then I had properly installed it, following the instruction provided on the official web

site:

But I still can’t access to the OpenDaylight DLUX (OpenDaylight User Interface),

3Java is the programming language, and Java Runtime Environment (JRE) is the environment in
which Java programms are running. While Apache Maven is a build automation tool for maintaining
Java programms

28

Chapter II. Needs Analysis and Choice of the SDN Solution

Figure II.6: ODL’s Command Line Program

because of the absence of ”odl-http-service” feature on this stable version and the unavail-

ability of its package on the ODL official web site. So, we skip this solution.

(a)

(b)

Figure II.7: ODL’s Problems

II.4.2 OVS-DPDK

Open vSwitch (OVS) is a software designed to be a multi-layer virtual switch of produc-

tion level. The open source Apache 2.0 licence governs OVS. It is intended to maintain

support for industry-standard management interfaces and protocols while enabling signif-

icant network automation through programmatic extension[17].

OVS was made to facilitate distribution across several physical servers in addition to

29

Chapter II. Needs Analysis and Choice of the SDN Solution

exposing common control and visibility interfaces to the virtual networking layer. Open

vSwitch supports many Linux-based virtualization technologies such: KVM and Virtual-

Box. It supports both VLAN and VXLAN.

Figure II.8: OVS Logo

It has two modes of operation. The switching and forwarding functions are handled

only by the first mode, known as normal mode. The second one, flow mode which uses

the flow table to determine the packet forwarding rules. The OVS Controller is primarily

in charge of managing this flow table, which enables great automation and abstraction

when adding or removing control flows to accommodate network requirements[14].

The principal components of OVS are:

• Openvswitch-switch: The switch is implemented by the daemon ovs-vswitchd and

a flow-based switching Linux kernel module.

• ovsdb-server: It is a small database server that ovs-vswitchd contacts to inquire

more about its configuration.

• Openvswitch-switch-dpdk: It enables the utilization of the Data Plane Development

Kit (DPDK), which consist on collection of libraries and drivers for quick user-space

packet processing.

• Openvswitch-testcontroller: It is a simple useful SDN controller that can be used

on tests though not for production, generally used with Mininet4. It can control a

number of switches using openflow protocol.

Figure II.9: Open vSwitch’s Components

4It is an emulator that allows the creation of realistic virtual network instances for tests

30

Chapter II. Needs Analysis and Choice of the SDN Solution

Data Plane Development Kit (DPDK) devices can be combined with Open vSwitch, to

increase capacities and optimise virtual switch performances. It is a software framework

that offers a collection of libraries and drivers for quickening user space packet processing.

So, DPDK lead to high performance of networking control, i.e. it boosts Sdn utilization.

Despite that Open vSwitch provides a power full virtual switch either for data centers,

it doesn’t offer its proper graphical user interface which complicates its use. Then, its

proper controller doesn’t offer a high performance of openflow control. So, we won’t use

all the SDN solution, but we appreciate the use of its virtual switch. Knowing that, we

get a lot of problems while linking OVS with DPDK. So, we avoid its utilization, because

we aim to use the resulting solution on a reeal datacenter that hosts virtual instances of

important clients and we won’t risk.

Figure II.10: OVS-DPDK’s Problem

II.4.3 ONOS

Open Network Operating System (ONOS) is an open source SDN controller. It is

especially created to meet the needs of network service providers, it offers high levels

of scalability, availability and performance. ONOS SDN serves as the control plane for

both enterprise networks and service provider networks including campus LANs and data

centre networks.

The ONOS is made to offer ease of support for new network services, and provision

of SDN control for legacy OpenFlow-enabled devices. Service providers can grow their

networks and add fresh components with the help of ONOS without impacting the rest

of the system. Its distributed architecture decreases the risk of network failure, resulting

in high network availability.

ONOS has a large community which has actively participated in its development. A new

version of ONOS is published almost every three months, and its source code is written

in Java.

31

Chapter II. Needs Analysis and Choice of the SDN Solution

Figure II.11: ONOS Logo

The open network operating system SDN solution provides several features[18], which

include:

• High Availability and Resiliency: Which is a crucial key for CSP, stabilize the

network connection using multiple mechanisms such clustering.

• Performance at Scale: It is buildings and architectures to offer an extreme efficiency.

It is able to control and manage several devices and supports millions of applications

intent search queries while maintaining less than 50 millisecond response time (or

better) for network events, at its northbound interface.

• Modular Software: ONOS has been modularized to make software easier to read,

test, maintain, and customize, with over 135 platform extensions available. It offers

a lot of applications, and keep growing with each platform release.

• Northbound Abstractions: By using the API, ONOS simplifies the creation, de-

ployment, and operation of configuration, management, and control applications.

• Southbound Abstractions: ONOS abstracts device characteristics for easy adapta-

tion to legacy or new devices. ONOS southbound supports P4, OpenFlow, CLI,

Network Management Protocol NETCONF, RESTCONF, Simple Network Man-

agement Protocol (SNMP), CLI, BGP and more,

• GUI Framework and Base UI: The ONOS GUI gives users access to a multi-layer

network view and enables them to explore various network aspects such as connec-

tion, state, faults, and more.

In additions to Icosnet requirements, ONOS controller offers several other functionalities.

Which make it the suitable controller to use.

II.5 Comparaison between the Solutions

We sum up the features of all the solutions on the following table: (table II.1)

32

Chapter II. Needs Analysis and Choice of the SDN Solution

OpenDaylight
Open vSwitch

- DPDK
ONOS

Compatible with KVM

Compatible with
OpenNebula

Open source

For free

With GUI

Isolation between
virtual instances

Networking (routing
protocols and NAT)

Doesn’t allow
routing
protocols

Firewalling

Robustness within a
datacenter

Availability of
documentations

Table II.1: Comparison between the SDN Solutions

33

Chapter II. Needs Analysis and Choice of the SDN Solution

II.6 Conclusion

As seen in this chapter, software defined networking is the cutting-edge technology that

resolve traditional networking’s structural limitations. SDN separates the control plane

from the data plane and allowing a centralised network devices control and management.

In addition of its usage on physical infrastructure, SDN storm the cloud infrastructure

and a lot of solutions has developed. ODL, OVS and ONOS are among them.

Moreover, during this chapter, we tried to highlight the specifications of each solution,

by applying a comparison between them according to our structure requirements. As a

result, the controller ONOS is the suitable controller while the OVS offers a high bridging

performance with the advent of openflow protocol compared to Linux bridges which have

a huge limitation with the configurations of openfLow protocol.

So we decide to combine the two solutions ONOS controller and OVS switch, and we

eliminate the utilization of KVM bridge. In order to improve the cloud infrastructure and

centralize the networking control. In the next chapter, we will focus on the implementa-

tions of these choices on the prototype of Icosnet cloud architecture.

34

Chapter III

Implementation of ONOS SDN

Controller

35

Chapter III. Implementation of ONOS SDN Controller

III.1 Introduction

Across this chapter, we will implement the whole chosen olutions including both OVS

bridge and ONOS controller on the basic cloud infrastructure. So, the rest of the chapter

includes their installation, their configuration and their connection to the KVM hypervisor

and the OpenNebula public cloud.

III.2 The Architecture

In order to improve and centralize the cloud networking, we have opted to the SDN

technology. We discussed, in the previous chapter, the solutions that exist within a

virtualized environment, and we choose the combination of ONOS SDN controller and

OVS bridge to offer an enhanced quality. The utilisation of ONOS controller aims to

centralize management and control of the network using an API. While the utilisation

of OVS switch aims to replacing the Linux bridge which is generated automatically with

the KVM, to resolve the issue that KVM bridge doesn’t allow OpenFlow protocol and to

improve the quality of service (QoS) because OVS switch works in two modes switching

and forwarding mode and flow mode.

Here is an image (III.1) that illustrates the suggested architecture:

Figure III.1: The Suggested Architecture by Integrating SDN

Before implementing the solution on the real cluster, we will test it on the prototype

prepared during the first chapter. So, the first Ubuntu 22.04 LTS machine that contains

the public cloud OpenNebula will keep its initial status, i.e. no modification will be done

on Opennebula front end’s installation, and no new driver will be installed. We will just

change some configuration thereafter. However, on the second Ubuntu 22.04 LTS machine,

both OVS virtual switch and ONOS SDN controller are installed and configured, then the

virtual machines already created and linked to the KVM bridge will be migrated to OVS

switch and the KVM bridge will be ignored. We will be able, also, to link the new virtual

machines created directly to Open vSwitch. After that, we will set up The ONOS SDN

36

Chapter III. Implementation of ONOS SDN Controller

controller to control all the virtual infrastructure, using OpenFlow protocol which works

on TCP.

Our proposition is inspired by the standard architecture of software defined networking.

Here is an illustration where we project the SDN architecture on the prototype:

Figure III.2: Projection of the SDN Architecture on the Infrastructure

III.3 The integration

In order to simplify the work and easly detect configurations errors, While the in-

tegration, we work on two approaches: SDN-Virtualization and SDN-Cloud. The first

one consists on configuring the whole bloc (controller and Ovs switch), and the second

approach consists on configuring the bloc with OpenNebula public cloud.

III.3.1 SDN-Virtualization Part

Firstly, Open Network Operating System SDN controller will be installed. Secondly,

Open vSwitch switch will be installed too. Thirdly, we configure OVS to take into con-

sideration the ONOS as its controller. In this part, the presence of OpenNebula is totally

ignored to simplify things, then the controller tests are applied using a manual manage-

ment.

Figure III.3: SDN-Virtualization Part

37

Chapter III. Implementation of ONOS SDN Controller

III.3.1.1 Open Network Operating System (ONOS)

a) Requirement [18]

The following prerequisites should be satisfied in order to provide a basic execution

environment:

• 2 core CPU

• 2 GB RAM

• 10 GB hdd

• 1 NIC (any speed)

The following ports of the machine must be open in order for ONOS to provide

the associated functionalities:

• Port 8181: For REST API and GUI

• Port 8101: To access the ONOS CLI

• Port 6653: For OpenFlow

• Port 9876: For intra-cluster communication (communication between target

machines)

Running ONOS as root is not advised. Scripts used to operate ONOS as a service

require a special unprivileged user (typically user ”sdn”) set up in the system. So,

the sdn user is creat it and added to the sdn group using:

$ sudo adduser sdn --system --group

Figure III.4: Adding SDN User

ONOS is a platform built on Java. So, Java must be installed. These commands

are used to install and verify its installation:

$ sudo apt update

$ sudo apt install default-jdk

Figure III.5: Java Version

38

Chapter III. Implementation of ONOS SDN Controller

We need to install the last version of Apache Maven 3.9.1 which serves as the

build tool and manages dependencies of ONOS, using: $ cd /opt/

$ wget link_to_zip file_of_(apache-maven-3.9.1-bin.zip)

$ sudo unzip apache-maven-3.9.1-bin.zip

$ sudo mv apache-maven-3.9.1 maven

We set up environment variables for Maven1, including necessary path to locate

Java environment and the Maven installation directory for a better performance,

using this commande:

$ sudo nano /etc/profile.d/maven.sh� �
export JAVA_HOME =/usr/lib/jvm/default -java

export M2_HOME =/opt/maven

export MAVEN_HOME =/opt/maven

export PATH=${M2_HOME }/bin:${PATH}� �
$ source /etc/profile.d/maven.sh

Figure III.6: Maven Version

Then, we install both curl2 and git3 using:

$ sudo apt install git $ sudo apt-get install curl

ONOS should be installed under (/opt) directory:

$ sudo mkdir /opt

$ cd /opt

b) Installation

1A project management tool primarily used for developing Java applications
2It provides a command-line utility for sending or receiving data to or from a server. It supports many

protocols such as HTTP, HTTPS, FTP, and more
3Git is a distributed version control system that programmers use to collaborate while improving

source code

39

Chapter III. Implementation of ONOS SDN Controller

We opt installing the latest Long Term Supported (LTS) Release which is ONOS

2.7.0 version named X-Wing (LTS) version. We install the ONOS tar.gz format,

untar the ONOS archive and rename the extracted directory, using:

$ sudo wget -c link_to_ONOS_2.7.0.tar.gz

$ sudo tar xzf onos-2.7.0.tar.gz

$ sudo mv onos-2.7.0 onos

ONOS is running using its start-stop script: $ /opt/onos/bin/onos-service start

In production environments, it is required to configure ONOS to start running as

a real Linux service according to our Ubuntu 22.04 LTS version. In order that the

OS can start it automatically as part of the boot process and can restart it in case

of caching, using these commands:

$ sudo cp /opt/onos/init/onos.initd /etc/init.d/onos

$ sudo update-rc.d onos defaults

$ sudo cp /opt/onos/init/onos.conf /etc/init/onos.conf

$ sudo cp /opt/onos/init/onos.service /etc/systemd/system/

$ sudo systemctl daemon-reload

$ sudo systemctl enable onos

ONOS options are configured, by adding the default user ”sdn” and activate some

necessary applications using: $ sudo nano /opt/onos/options� �
ONOS_USER=sdn

ONOS_APPS=drivers ,openflow ,gui2� �
We check the status of the ONOS service and we start it using:

$ sudo systemctl status onos.service

$ sudo systemctl start onos.service

Figure III.7: ONOS Service Running

40

Chapter III. Implementation of ONOS SDN Controller

Allowing the ”ssh-rsa” algorithm to be used for host key authentication during the

Secure Shell (SSH) handshake process, by running:

$ cd /opt/onos/bin/ $ sudo nano ~/.ssh/config� �
HostKeyAlgorithms +ssh -rsa� �
Finally, we start interacting with ONOS via:

• Command Line Interface (CLI):

while the default login credentials are onos / rocks.

$ cd /opt/onos/

$./bin/onos start

$./bin/onos-service list

$./bin/onos -l onos

Figure III.8: ONOS CLI

41

Chapter III. Implementation of ONOS SDN Controller

• Graphical user interface (GUI):

(a)

(b)

Figure III.9: ONOS GUI

c) Configuration

In order to properly configure ONOS controller, some applications must be acti-

vated, initially, such as OpenFlow and Reactive Forwarding. (FigureIII.10)

Thereafter, the rest of the configuration of ONOS with Open vSwitch will be done

after the complete installation of OVS.

42

Chapter III. Implementation of ONOS SDN Controller

(a)

(b)

Figure III.10: ONOS Activated Applications

III.3.1.2 Open vSwitch

a) Requirement

There is no need to install all the requirements individually while using ”apt get

install” which automatically manages package dependencies.

b) Installation

The installation consiste on downloading both ”openvswitch-switch ”and ”openvswitch-

common ”packages that includes the core userspace components of the switch. Then

starting openvswitch-switch service Using :

43

Chapter III. Implementation of ONOS SDN Controller

$ sudo apt-get install openvswitch-switch

$ sudo apt-get install openvswitch-common

$ sudo systemctl start openvswitch-switch.service

Figure III.11: OVS Service

c) Configuration

The Open vSwitch switch should be created and a physical interface of manage-

ment should be linked to it using these commands:

$ sudo ovs-vsctl add-br ovsbr0

$ sudo ovs-vsctl add-port ovsbr0 ens192

Figure III.12: Screnshoot of ”ip a” Cammand Displaying OVS Switch

$ sudo ovs-vsctl show $ sudo ovs-ofctl show ovsbr0

Figure III.13: OVS Configuration

44

Chapter III. Implementation of ONOS SDN Controller

A bridged Open vSwitch virtual network that link the VMs to the Open vSwitch

switch should be created from an XML file :

$ sudo nano ovs-network.xml� �
<network >

<name >ovs </name >

<uuid >f58cad29 -0455 -439a-b533 -8362669 cec92 </uuid >

<forward mode=’bridge ’/>

<bridge name=’ovsbr0 ’/>

<virtualport type=’openvswitch ’/>

</network >� �
$ sudo virsh net-define ovs-network.xml

$ sudo virsh net-start ovs

$ sudo virsh net-autostart ovs

$ sudo virsh net-list --all

$ sudo virsh list --all

Figure III.14: Creating an OVS VNET

In order to add the VM to OVS VNET:

• For VM already existed and attached to KVM bridge:

It is necessary to modify the XML file of the VM already created to change

the KVM bridge with the OVS switch using:

$ sudo virsh edit VM� �
<interface type=’network ’>

<mac address = ’52:54:00:84: c7:4c’/>

<source network=’ovs ’/> <----- modify here

<model type=’virtio ’/>

<address type=’pci ’ domain=’0x0000 ’ bus=’0x01 ’

slot=’0x00 ’ function=’0x0 ’/>

45

Chapter III. Implementation of ONOS SDN Controller

</interface >� �
$ sudo virsh start VM

$ virsh list

• For new VM created:

Precise the ovs as mode of networking on the XML file of the new VM using:

$ sudo nano name_of_the_file.xml� �
<domain type=’kvm ’>

<name >name_of_the_VM </name >

<memory unit=’KiB ’ >2097152 </ memory >

<vcpu placement=’static ’>2</vcpu >

<os>

<type arch=’x86_64 ’ machine=’pc -i440fx -2.1’>hvm </

type >

<boot dev=’hd ’/>

<boot dev=’cdrom ’/>

</os>

<devices >

<disk type=’file ’ device=’cdrom ’>

<driver name=’qemu ’ type=’raw ’/>

<source file=’/home/user/Downloads/ubuntu

-22.04.2 -live -server -amd64.iso ’/>

<target dev=’hdc ’ bus=’ide ’/>

</disk >

<disk type=’file ’ device=’disk ’>

<driver name=’qemu ’ type=’qcow2 ’/>

<source file=’/home/user/myvm.qcow2 ’/>

<target dev=’vda ’ bus=’virtio ’/>

<address type=’pci ’ domain=’0x0000 ’ bus=’0x00 ’

slot=’0x04 ’ function=’0x0 ’/>

</disk >

<interface type=’network ’>

<mac address = ’52:54:00:01:02:03 ’/ >

<source network=’ovs ’/>

<model type=’virtio ’/>

<address type=’pci ’ domain=’0x0000 ’ bus=’0x00 ’

slot=’0x03 ’ function=’0x0 ’/>

</interface >

<serial type=’pty ’>

<target port=’0’/>

</serial >

46

Chapter III. Implementation of ONOS SDN Controller

<input type=’mouse ’ bus=’ps2 ’/>

<graphics type=’vnc ’ port=’-1’ autoport=’yes ’/>

</devices >

</domain >� �
$ cd /home/user/

$ sudo qemu-img create -f qcow2 myvm.qcow2 20G

$ sudo virsh define name_of_the_file.xml

$ sudo sudo virsh start name_of_the_VM

$ sudo ovs-vsctl show

Then we configure manually the IP address of OVS switch using :

$ sudo ip addr add 10.1.0.2/24 dev ovsbr0

$ sudo ip link set up dev ovsbr0

And the IP address of the VM created using ”netplane” commands.

(a) ” ip a ”

(b) ” ovs-vsctl show ”

Figure III.15: The Virtual Network Interface of the New VM Attached to OVS Virtual
Network

47

Chapter III. Implementation of ONOS SDN Controller

III.3.1.3 OVS-ONOS

Here are the necessary commands for attachment of the controller to the switch:

$ sudo ovs-vsctl set Bridge ovsbr0 protocols=OpenFlow10

$ sudo ovs-vsctl set-controller ovsbr0 tcp:10.250.11.85:6633

$ sudo ovs-vsctl show

$ sudo ovs-ofctl show ovsbr0

$ sudo ovs-dpctl show

(a) OVS CLI (b) ONOS CLI

(c) ONOS GUI

Figure III.16: Attachment the OVS Bridge to the ONOS Controller

So, the SDN-Virtualization part is correctly established manually using line commands.

Some tests of features will be done on the next chapter. While in the next section, we

will integrate the OpenNebula cloud. So, rather than using commands configurations, the

orchestrator will offset this.

III.3.2 SDN-Cloud Part

In this part, the necessary configuration of OpenNebula to could be attached to the

48

Chapter III. Implementation of ONOS SDN Controller

bloc (Open vSwitch switch + ONOS controller) will be done. So we principaly interest

to this part:

Figure III.17: SDN-Cloud Part

Firstly, The Open vSwitch network drivers must be configured on the OpenNebula Front-

end by calculating VLAN-ID (all the VMs attached to the same OVS VNET will get the

same VLAN-ID) on ”/etc/one/oned.conf ” , using oneadmin user:

$ sudo nano /etc/one/oned.conf� �
VLAN_IDS = [

START = "2",

RESERVED = "0, 1, 4095"

]� �
And by adjusting some parameters in ” /var/lib/one/remotes/etc/vnm/OpenNebulaNet-

work.conf ” :

$ sudo nano /var/lib/one/remotes/etc/vnm/OpenNebulaNetwork.conf� �
:arp_cache_poisoning true

:keep_empty_bridge true

:ovs_bridge_conf

:stp_enable true� �
$ su oneadmin

$ onehost sync -f

Secondly, there is no necessary configurations to do on the ONOS controller.

49

Chapter III. Implementation of ONOS SDN Controller

(a)

(b)

Figure III.18: Opennebula Front-end Configuration with OVS

Thirdly, in order to attach each VM to Open vSwitch, the creation and the network

configuration of the VNET should be done on OpenNebula Sunstone. We attach the

bridge created on OVS to the VNET, then we create the VM normally :

Figure III.19: VNET Open vSwitch

Here is the change that appears after deleting the bridge and the VM creating in the

previous section, and creating a virtual machine linked to OVS VNET via OpenNebula

sunstone:

50

Chapter III. Implementation of ONOS SDN Controller

(a)

(b)

(c) ONOS GUI (d) OVS CLI

Figure III.20: Managing the Controlled Network via OpenNebula Sunstone

III.4 Conclusion

At the end of this chapter, the whole chosen solution is appropriately implemented

between the cloud and the hypervisor. Firstly, we decide the suitable architecture. Sec-

ondly, both ONOS controller and OVS virtual switch are installed on the host according

to the requirements. Thirdly, The configuration is done following two approaches to avoid

complication. Finally, via OpenNebula Sunstone we can correctly create and attach the

51

Chapter III. Implementation of ONOS SDN Controller

virtual machines to Open vSwitch VNET and control the virtual network using ONOS

controller.

So, the conception and the deployment of the ONOS SDN Controller is well done, we

will perform some tests and discuss the issues occurred at the last chapter.

52

Chapter IV

Results and Discussion

53

Chapter IV. Results and Discussion

IV.1 Introduction

In the previous chapter, we integrate both Open vSwitch virtual switch and ONOS

controller on the prototype used, within the OpenNebula cloud and the KVM virtual

machine monitor. While within this chapter, we aim to analyse its capabilities and issues

by performing some tests and to propose some solutions.

IV.2 Tests of the Solution

IV.2.1 Virtual Machines Isolation

The isolation between the clients VMs was the crucial need and requirement of the

solution. According to the work achieved, the isolation is ensured through the ONOS

Reactive Forwarding (FWD) application and Intent Framework.

IV.2.1.1 Reactive Forwarding

Reactive Forwarding on the Open Network Operating System controller refers to a

mechanism that allows the controller to dynamically handle and react to network traffic

by installing flow rules on network switches based on incoming packets.

A packet-in message is sent to the controller by the switch whenever a packet arrives at

a switch and there is no flow rule in place to handle it. The controller then examines the

packet to decide what should happen next. Reactive forwarding prevents the requirement

to send every packet to the controller for processing by installing a flow rule in the switch

to handle future packets with similar characteristics.

This reactive approach helps reduce controller overhead and improves network efficiency.

In other words, reactive forwarding is a dynamic forwarding strategy employed by ONOS

SDN controllers using OpenFlow protocol.

Figure IV.1: Reactive Forwarding within ONOS

54

Chapter IV. Results and Discussion

IV.2.1.2 Intent Framework

The Intent Framework is a fundamental component of the ONOS SDN controller. It

provides a high-level abstraction for defining the desired behaviour of the network in

terms of intents, which represent the connectivity requirements or flow paths between

network devices. It allows specifying network behaviour in form of policies, rather than

mechanisms. Furthermore, it describes the desired outcome rather than how the outcome

should be reached.

ONOS Intent forms the foundation for the scalability of ONOS in terms of network

management and control. While creating an intent, it is translated into flow entries and

installed in the switch’s flow table, allowing the switch to forward packets according to

the defined intents without involving the controller for every packet.

Figure IV.2: The Types of ONOS Intents

IV.2.1.3 Implementation

In order to isolate all the virtual machines and connect just 2 VMs created on the KVM

host, these steps should be followed:

• 2 VMs are created with the same manner as in the previous chapters

Figure IV.3: Displaying the Creation of the VMs Using the Command ”ovs-vsctl show”

• The VMs are automatically controlled by ONOS SDN controller.

55

Chapter IV. Results and Discussion

Figure IV.4: Displaying the Two VMs on ONOS GUI

Figure IV.5: Connection Establishment between the 2 VMs by activating the FWD

• The connection between the 2VMs is established by activating the Fwd. (FigIV.5)

• The 2 VMs are disconnected because reactive forwarding is deactivating using.

$ onos@root > app deactivate org.onosproject.fwd

56

Chapter IV. Results and Discussion

Figure IV.6: Disconnection between the VMs because of the FWD Deactivation

• An intent is created between the two hosts using :

onos@root> add-host-intent 52:54:00:01:02:03/None

52:54:00:01:02:05/None

(a)

(b)

Figure IV.7: Intent’s Flow

57

Chapter IV. Results and Discussion

• The connection is again established throught the intent:

Figure IV.8: VMs Connected through Intent

In this way, all the virtual machines are isolated, even if they are in the same subnet,

and only the VMs wanting to connect via intent ping each other.

IV.2.2 Necessary Commands

The CLI and GUI are the most important and useful interfaces for managing the virtual

network. The GUI is a web application that provides a visual interface for the ONOS

controller. On the other hand, the CLI is the main interface for configuring and managing

the various aspects of running ONOS instances via numbers of commands which used to:

• Provide a detailled overview about the controlled network:

$ onos@root > summary

$ onos@root > nodes

$ onos@root > devices

$ onos@root > hosts

$ onos@root > flows

Figure IV.9: Network View: Connectivity Requests Cause Flow [19]

58

Chapter IV. Results and Discussion

Figure IV.10: GUI ONOS Network Overview

$ onos@root > masters

Figure IV.11: Cluster’s Informations

• Get informations and configure network routing and security, using:

59

Chapter IV. Results and Discussion

(a) BGP Routing

(b) Virtual Proxy

Figure IV.12: Routing and Security Configurations

• Delete intents, using:

$ onos@root > remove-intent -p org.onosproject.cli intent_ID

Figure IV.13: Managing Intents

60

Chapter IV. Results and Discussion

IV.2.3 ONOS REST API

To facilitate the management and configuration of the network, ONOS provides various

access tools, including the Representational State Transfer Application Programming In-

terface (REST API). This API allows for the addition and removal of network rules and

can be accessed at” http://localhost:8181/onos/v1/”. By examining the source code of

this application, we can extract the following API endpoints:

• GET: Get all rules

• POST: Add a new rule

• DELETE: Remove a rule

Figure IV.14: ONOS API

Rather than using ONOS CLI for configuration, we can simply use ”curl” command or

Postman to send rules to the Rest API, under the form of JavaScript Object Notation

(JSON) or Python file. This method is designed more for programmers to customise the

solution.

Here is an example of how configuring NAT using curl and json file:� �
curl -X POST --user onos:rocks --header ’Content -Type:

application/json ’ --header ’Accept: application/json ’ -d

’{

"priority ": 40000,

"isPermanent ": true ,

"selector ": {

"ipv4Src ": "10.0.0.10/24" ,

"ethType ": "0x0800"

},

"treatment ": {

"setField ": {

"ipv4Dst ": "203.0.113.10"

},

61

Chapter IV. Results and Discussion

"setField ": {

"ethDst ": "12:34:56:78:9a:bc"

},

"nat": {

"natAction ": "dnat",

"natAddresses ": [

{

"networkAddress ": "203.0.113.10" ,

"prefixLength ": 24

}

]

} } } }’ ’http :// localhost :8181/ onos/v1/flows/of :0000005056

a4bb51?appId=org.onosproject.openflow ’� �

Figure IV.15: ONOS Flows

IV.3 Problems Experienced and Solutions

IV.3.1 Problems

Several challenges were encountered throughout this project, including:

• The challenge of unknowing the appropriate and compatible versions between ONOS,

OVS and OpenNebula and the appropriate version of openFlow (10, 13, 15) that

provides the necessary recommendations, because of the lack of the information.

Figure IV.16: Issue of Incompatibility between the Versions

62

Chapter IV. Results and Discussion

• Icosnet’s security requirement that obliges closing some ports and disabling some

protocols fearing of cyberattacks on the two VMs, which disable, for example, Open-

Nebula Fire-edge public endpoint access.

• Nested Virtualization of the two VMs used as a prototype, disable a lot of features

and engender compilation problems. For example, while opening the VM’s ports for

remote access, the ONOS controller is able to control the devices on the first layer

of abstraction, which endanger security problems.

(a) ONOS GUI

(b) OVS CLI

Figure IV.17: Effect of the Nested Virtualization

IV.3.2 Solutions

In real implementations, the controller will be used directly on the server hardware,

63

Chapter IV. Results and Discussion

which eliminates the main obstacle of nested virtualisation, and console access reduces

security risks. We were compelled to test many product versions to create a matrix of

compatibility.

IV.4 Propositions for a Real Implementation

During our project, we integrate the solution only on one KVM host machine, i.e. the

controller on the KVM server. While on the production environment, Icosnet hosts its

machines within a KVM cluster. In order to ensure a high availability and load balancing

of controllers, it is recommended to realize an SDN cluster too.

Figure IV.18: ONOS Cluster[18]

Our approach using the virtual switch and the controller proved to be effective at the

switching level, i.e., at the second layer of the OSI model of the computer network, while

Icosnet still use a physical router and firewall. In order to centralize all the network and

improve the performances, we propose eliminating the hardware and replacing them with

an OpenNebula virtual router and an ONOS proxy.

Figure IV.19: Implementation of an OpenNebula Virtual Router

64

Chapter IV. Results and Discussion

Figure IV.20: Implementation of the Proxy[20]

IV.5 Conclusion

Through this chapter, we evaluate the performance of the solution already integrated

by performing the tests of isolation between the virtual machines, and by manipulating

some commands via both ONOS GUI and REST API. Then, we highlight the problems

faced during this project, and its solutions. Finally, some requirements are proposed for

well executing the solution on the production environment.

65

General Conclusion

In this end-of-study project, the engineering methodologies, and theoretical aspects that

we acquired throughout our Networks and Telecommunications studies were applied to

solve a real-world technical problem in Icosnet’s datacenter, the Algerian cloud computing

service provider.

Cloud computing and virtualization are two cutting-edge technologies that continue to

develop in profound and unprecedented ways due to advances in technology and hardware

costs. As part of its strategy to remain at the forefront of current developments, Icosnet

has decided to develop its cloud platform by integrating a software-defined networking

solution. Our project aims to respond to this need.

In the dissertation, we took a closer look at the different types of network virtualization,

its fundamental concepts, and tools. Next, we explained in more detail how to manage

and orchestrate a virtual network using cloud tools. Next, we analyzed Icosnet’s cloud

in-depth, with a focus on the kernel-based virtual machine monitor (KVM) and the Open-

Nebula public cloud, both used in its data center. A prototype test was then created to

evaluate the specific area of the landscape under study.

The concept and technologies of software defined networking using the OpenFlow proto-

col to centralize and control virtual network flows are then discussed, in order of preparing

a needs study and the choice of a coherent and suitable SDN solution. This study led

to the integration of the entire Open vSwitch virtual switch block and Open Network

Operating System SDN controller into the prototype.

Finally, in addition to centralizing, controlling, and simplifying network administration

using the ONOS API, the specifications required by the company have been tested, in

particular the isolation between virtual machines. In this way, we were able to implement

control of the second layer of the computer network OSI model.

Several challenges were encountered throughout the project. In particular, we encoun-

tered problems with the nested virtual environment used for testing, which resulted in

certain functionalities being disabled. In addition, we encountered difficulties due to the

lack of documentation and similar projects, as well as security issues when connecting a

controller to another machine within Icosnet’s local network.

This project represents exclusive use of the OpenNebula cloud and KVM hypervisor for

66

General Conclusion

the first time, adding significant value for the company given the high cost of deploying

such solutions.

For future work, we plan to control the third layer of the OSI model of the computer

network to manage routing protocols, and network address translation, and eliminate the

need for physical hardware by integrating a virtual router on OpenNebula. Furthermore,

security can be controlled by creating a virtual proxy and controlled using ONOS.

67

Appendices

68

Appendix A

Complementary Informations

A.1 Snapshot

A virtual machine snapshot is a copy of a virtual machine’s state and data at a certain

moment. It comprises the VM’s network interface cards, discs, RAM, and power state. A

snapshot can be used to duplicate the same virtual machine or restore it to a previous state.

Snapshots are helpful for testing, VM migration, and backup and restore procedures.

Figure A.1: VirtualBox’s Snapshot

A.2 Creating VM Using Virsh Commands or virt-manager:

To create On KVM, it is possible to use both virt-manager or libvirt API via virsh

commands:

69

Appendix A. Complementary Informations

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.2: Creation of a Virtual machine Using virt-manager

• Using virt-manager: We follow these steps

Then, we complete the rest of the installation of the operating system.

• Using libvirt API:We use theses commands to create an Ubuntu 22.04 LTS machine:� �
$ sudo qemu -img create -f qcow2 VM_KVM 20G

$ sudo apt install virtinst

$ sudo virt -install --name VM_KVM

70

Appendix A. Complementary Informations

--os-type=Linux

--os-variant=ubuntu22 .04

--vcpu=4

--ram =4096

--disk path=/home/user/VM_KVM.img ,size =20

--graphics spice

--cdrom =/home/user/Downloads/ubuntu -22.04.1 -live -

server -amd64.iso

--network bridge:virbr0� �
Then, we complete the rest of the installation of the operating system via Virtual

Network Computing (VNC) access.

A.3 Switch OS server - desktop

Using these commands:

$ sudo apt install tasksel

$ sudo tasksel

Figure A.3: Switching OS to Desktop

$ adduser name_of_user

Figure A.4: OS Desktop

71

Appendix A. Complementary Informations

A.4 OpenNebula installation

Firstly, we set up MySQL/MariaDB Back-end database, using these commands:

$ sudo apt update

$ sudo apt -y install mariadb-server

$ sudo mysql_secure_installation

$ sudo mysql -u root -p

$ MariaDB [(none)]> CREATE USER ’oneadmin’ IDENTIFIED BY ’oneadmin’;

$ MariaDB [(none)]> GRANT ALL PRIVILEGES ON opennebula.* TO ’oneadmin’;

$ MariaDB [(none)]> SET GLOBAL TRANSACTION ISOLATION LEVEL READ COMMITTED

Figure A.5: MariaDB Back-end

Then, we configure the packaging tools on the Front-end host to include OpenNebula

repositories, using these commands:

$ sudo apt-get update

$ sudo apt-get -y install gnupg wget apt-transport-https

$ wget -q -O- https://downloads.opennebula.io/repo/repo2.key gpg –dearmor|
> /etc/apt/trusted.gpg.d/opennebula.gpg

$ echo "deb https://downloads.opennebula.io/repo/6.6/Ubuntu/22.04 stable

opennebula" > /etc/apt/sources.list.d/opennebula.list

$ sudo apt-get update

$ apt-get -y install opennebula opennebula-sunstone opennebula-fireedge

opennebula-gate opennebula-flow opennebula-provision

$ sudo nano /etc/one/oned.conf� �
DB = [BACKEND = "mysql",

SERVER = "localhost",

PORT = 0,

USER = "oneadmin",

PASSWD = "oneadmin",

72

Appendix A. Complementary Informations

DB_NAME = "opennebula",

CONNECTIONS = 25,

COMPARE_BINARY = "no"]� �
After that, we install a complete OpenNebula Front-end from binary packages

available in the software repositories already configured:

$ sudo -u oneadmin /bin/sh

$ echo ’oneadmin:oneadmin’ > /var/lib/one/.one/one_auth

$ exit

$ sudo nano /etc/one/sunstone-server.conf� �
:public_fireedge_endpoint: http :// @_IP_Public� �

$ systemctl start opennebula opennebula-sunstone opennebula-fireedge

opennebula-gate opennebula-flow

$ systemctl enable opennebula opennebula-sunstone opennebula-fireedge

opennebula-gate opennebula-flow

$ oneuser show

We log in through the Sunstone GUI via http://<frontend address>:9869

Figure A.6: OpenNebula Sunstone

After that, we configure OpenNebula KVM Node from the binary packages, using

these commands: $ apt-get -y install gnupg wget apt-transport-https

$ wget -q -O- https://downloads.opennebula.io/repo/repo2.key gpg –dearmor|
> /etc/apt/trusted.gpg.d/opennebula.gpg

$ echo "deb https://downloads.opennebula.io/repo/6.6/Ubuntu/22.04 stable

opennebula" > /etc/apt/sources.list.d/opennebula.list

$ apt-get update

$ apt-get -y install opennebula-node-kvm

$ systemctl restart libvirtd

73

Appendix A. Complementary Informations

$ hostname

$ sudo nano /etc/hosts� �
@_IP_OpenNebula_Front -end

@hostname_OpenNebula_Front -end� �
Finnaly, The OpenNebula Front-end connects to the hypervisor Nodes using SSH once

we configure passwordless SSH:

• Front-end:

$ hostname

$ sudo nano /etc/hosts� �
@_IP_OpenNebula_KVM -Node

@hostname_OpenNebula_KVM -Node� �
$ su - oneadmin

$ ssh-keyscan Hostname_OpenNebula_Front-end Hostname_OpenNebula_KVM-Node

>> /var/lib/one/.ssh/known_hosts

$ ssh-copy-id -i /var/lib/one/.ssh/id_rsa.pub Hostname_OpenNebula_KVM-

Node

• KVM Node:

$ su

$ sudo passwd oneadmin� �
$$$_PASSWORD_$$$� �

• front end:

$ su - oneadmin

$ scp -p /var/lib/one/.ssh/known_hosts @hostname_OpenNebula_KVM-Node:/var

/lib/one/.ssh/

$ scp -p /var/lib/one/.ssh/id_rsa @hostname_OpenNebula_KVM-Node:/var/lib

/one/.ssh/

Finally, we can properly create a remote KVM host and deploy Virtual machines.

74

Bibliographies

[1] Thomas Olzak et al. “Microsoft virtualization: master Microsoft server, desktop,

application, and presentation virtualization”. In: Syngress Publishing (2010).

[2] David Rule and Rogier Dittner. “The Best Damn Server Virtualization Book Pe-

riod: Including Vmware; Xen; and Microsoft Virtual Server”. In: Syngress Publishing

(2007).

[14] Omayma Belkadi et al. “An Integration of OpenDaylight and OpenNebula for Cloud

Management Improvement using SDN”. In: IEEE (2019).

[15] Sreenivas Subramanian Sriram Voruganti.“Software-Defined Networking (SDN) with

OpenStack”. In: Packt Publishing (2016).

[19] Pankaj Berde et al. “ONOS: towards an open, distributed SDN OS”. In: HotSDN

2014 - Proceedings of the ACM SIGCOMM 2014 Workshop on Hot Topics in Soft-

ware Defined Networking (2014).

75

Webographies

[3] The Company - Singapore Managed Cloud Hosting. url: https://www.secureax.

com/about-us/. (visited on 2023).

[4] Amazon Web Services (AWS). What Is Virtualization? - Cloud Computing Virtual-

ization Explained - AWS. url: https://aws.amazon.com/what-is/virtualization/.

(visited on 2023).

[5] Bimosaurus. 5 Mesin Virtualisasi Paling Populer untuk Kampus - Blog eCampuz.

Oct. 24, 2019. url: https : / / blog . ecampuz . com / 5 - mesin - virtualisasi -

terpopuler-untuk-kampus/. (visited on 2023).

[6] RisingStack Engineering. Operating System Containers vs. Application Containers.

url: https://blog.risingstack.com/operating- system- containers- vs-

application-containers. (visited on 2023).

[7] VMware Business Infrastructure Virtualization: Beyond Virtual Machines Servers |
VirtualizationWorks.com. url: https://www.virtualizationworks.com. (visited

on 2023).

[8] Vrapolinario. Containers vs. virtual machines. url: https://learn.microsoft.

com/en-us/virtualization/windowscontainers/about/containers-vs-vm.

(visited on 2023).

[9] 2.3.Clusters Red Hat Virtualization 4.4 | Red Hat Customer Portal. url: https:

//access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/

html/administration_guide/chap-clusters. (visited on 2023).

[10] NAKIVO. What Is Hyper-V Virtual Machine Load Balancing? Dec. 20, 2022. url:

https://www.nakivo.com/blog/hyper-v-virtual-machine-load-balancing/.

(visited on 2023).

[11] What Is Cloud Computing? | Microsoft Azure. url: https://azure.microsoft.

com / en - us / resources / cloud - computing - dictionary / what - is - cloud -

computing/. (visited on 2023).

[12] What is KVM? url: https://www.redhat.com/en/topics/virtualization/

what-is-KVM. (visited on 2023).

[13] OpenNebula 6.6 Documentation — OpenNebula 6.6.2 documentation. url: https:

//docs.opennebula.io/6.6/. (visited on 2023).

[16] Home - OpenDaylight. url: https://www.opendaylight.org/. (visited on 2023).

[17] Open vSwitch. url: http://www.openvswitch.org/. (visited on 2023).

[18] ONOS - ONOS - Wiki. url: https://wiki.onosproject.org/. (visited on 2023).

76

https://www.secureax.com/about-us/
https://www.secureax.com/about-us/
https://aws.amazon.com/what-is/virtualization/
https://blog.ecampuz.com/5-mesin-virtualisasi-terpopuler-untuk-kampus/
https://blog.ecampuz.com/5-mesin-virtualisasi-terpopuler-untuk-kampus/
https://blog.risingstack.com/operating-system-containers-vs-application-containers
https://blog.risingstack.com/operating-system-containers-vs-application-containers
https://www.virtualizationworks.com
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-clusters
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-clusters
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-clusters
https://www.nakivo.com/blog/hyper-v-virtual-machine-load-balancing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://docs.opennebula.io/6.6/
https://docs.opennebula.io/6.6/
https://www.opendaylight.org/
http://www.openvswitch.org/
https://wiki.onosproject.org/

Webographies

[20] Low-level Software Development Services Company - CodiLime. url: https://

codilime.com. (visited on 2023).

77

https://codilime.com
https://codilime.com

�
	
jÊÖÏ @

�
HAÓY

	
mÌ'@ Xð 	QÖÏ

�
éJ

	
�@Q

�
�
	
¯B

@
�
éºJ.

�
�Ë@

�
èP@X@

�
éJ.
�
¯ @QÓð

�
éK

	Q»QÓ ñë @

	
Yë

�
é�@PYË@

�
éK
Aî

	
E ¨ðQå

�
�Ó 	áÓ

	
¬YêË@

©Ó ONOS �
HAJ
m.

×Q�. Ë AK. XYjÖÏ @
�
éºJ.

�
�Ë@ Ég l .

×X ÈC
	
g 	áÓ . é

�
KA
	
K AJ
K.

	Q»QÓ É
	
g@X Icosnet

�
éJ
K. Aj�Ë@

. KVM
�
éJ

	
�@Q

�
�
	
¯B@

�
è 	Qêk.

B@ I.

�
¯@QÓ OpenNebula

�
éÓAªË@

�
éK. Aj�Ë@

	á�
K. , OVS ú

æ
	
�@Q

�
�
	
¯B@ ÈYJ. ÖÏ @

.
�
HAJ
m.

×Q�. Ë AK.
�
é
	
Q̄ªÖÏ @

�
HA¾J.

�
�Ë@ ,

�
éJ

	
�@Q

�
�
	
¯B@

�
è 	Qêk.

B@ I.

�
¯@QÓ ,

�
éJ

	
�@Q

�
�
	
¯B@ ,

�
éK. Aj�Ë@ :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

Abstract

The objective of this end-of-study project is to centralize and administer the virtual

network of Icosnet cloud service provider within its data center. This will be achieved

by integrating the ONOS software-defined network solution with the OVS virtual switch,

connecting the OpenNebula public cloud and the KVM hypervisor.

Keywords : Cloud, Virtualization, Hypervisor, Software Defined Networking.

Résumé

L’objectif de ce projet de fin d’étude est de centraliser et de contrôler l’administration

du réseau virtuel du fournisseur de services cloud Icosnet au sein de son centre de don-

nées. Cela sera réalisé en intégrant la solution de réseau défini par logiciel ONOS avec le

commutateur virtuel OVS, reliant le cloud public OpenNebula et l’hyperviseur KVM.

Mots clés : Nuage, Virtualisation, Hyperviseur, Réseau Défini par Logiciel.

	List of Figures
	List of Tables
	List of Acronyms
	General Introduction
	Generalities within Icosnet Cloud Architecture
	Needs Analysis and Choice of the SDN Solution
	Implementation of ONOS SDN Controller
	Results and Discussion
	General Conclusion
	Appendices
	Complementary Informations
	Bibliographies
	Webographies
	Abstract

