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Abstract :  

A quadcopter drone is a complex mechatronic system. This study highlights the recent developments in UAVs, with 

a particular focus on quadruple-type multi-rotor UAVs. These UAVs have gained attention due to their suitable 

performance, wide applications, advantages in hover ability, maneuverability and low cost of implementation. 

However, designing an efficient controller to ensure the robust flight capabilities of the quadrotor remains a 

challenge. This work addresses these challenges by presenting a comprehensive approach to the dynamic modeling 

and control design of a quadrotor. First, an overview of the UAV configuration, a review of the literature on 

quadrotor control methods, and in particular adaptive control. Second, we explain the details of modeling the 

quadrotor drone, including the mathematical model derived using Euler-Newton formalism. Also, we design the 

control laws to stabilize and track using PID and Backstepping controllers. Simulations were performed using 

MATLAB Simulink for various controllers scenarios to validate the results. Finally, we make a scenario where a 

quadrotor has an asymmetric geometry and varying mass, using a control approach with an adaptive method to 

estimate unknown system parameters. The research concludes with an evaluation of the work and offers 

perspectives for future research. 

Keywords: UAV, control, quadrotor, modeling, simulation, PID, Backstepping, Adaptive flight control. 

 

Résumé : 

Un drone Quadcopter est un système mécatronique complexe. Cette étude met en lumière les développements 

récents des drones, avec un accent particulier sur les drones multi-rotors de type quadruple. Ces drones ont attiré 

l'attention en raison de leurs performances appropriées, de leurs applications étendues, de leurs avantages en 

termes de capacité de vol stationnaire, de maniabilité et de leur faible coût de mise en œuvre. Cependant, concevoir 

un contrôleur efficace pour assurer les capacités de vol robustes du quadrirotor reste un défi. Ce travail aborde ces 

défis en présentant une approche globale de la modélisation dynamique et de la conception de contrôle d'un 

quadrirotor. Tout d'abord, un aperçu de la configuration du drone, une revue de la littérature sur les méthodes de 

contrôle du quadrirotor, et en particulier le contrôle adaptatif. Deuxièmement, nous expliquons les détails de la 

modélisation du drone quadrirotor, y compris le modèle mathématique dérivé à l'aide du formalisme d'Euler-

Newton. En outre, nous concevons les lois de contrôle pour stabiliser et suivre à l'aide de contrôleurs PID et 

Backstepping. Des simulations ont été réalisées à l'aide de MATLAB Simulink pour différents scénarios de contrôleurs 

afin de valider les résultats. Enfin, nous créons un scénario où un quadrirotor a une géométrie asymétrique et une 

masse variable, en utilisant une approche de contrôle avec une méthode adaptative pour estimer des paramètres 

système inconnus. La recherche se conclut par une évaluation des travaux et offre des perspectives pour des 

recherches futures. 

Mots clés: UAV, contrôle, quadrotor, modélisation, simulation, PID, Backstepping, Adaptive flight control. 

 

:   ملخص

ز بشكل خاص على   الدراسةالطائرة بدون طيار هي نظام ميكاترونيك معقد. تسلط هذه  كير
ي الطائرات بدون طيار، مع الير

ة فز الضوء على التطورات الأخير

ي 
ز
، والتطبيقات الواسعة والمزايا ف ز . اكتسبت هذه الطائرات بدون طيار الاهتمام بسبب أدائها الممير  القدرة على  الطائرات بدون طيار من النوع الرباعي

يًا. يعالج هذا العمل  التحليق والتكلفة المنخفضة للتنفيذ. ومع ذلك، فإن تصميم وحدة تحكم فعالة الطائرة بدون طيار رباعية المحرك لا يزال يمثل تحد

 ، نظرة عامة على تكوين الطائرات
ً
ي رباعي المحركات. أولا

بدون طيار   هذه التحديات من خلال تقديم نهج شامل للنمذجة الديناميكية وتصميم التحكم فز

ح تفاصيل نمذجة الطائ . ثانيًا ، نشر ي
ي الرباعي المحرك، بالاخص التحكم التكيفز

ي ذلك  واعطاء بعض الطرق للتحكم  فز
رة بدون طيار الرباعية المحرك، بما فز

ز التحكم لتحقيق الاستقرار والتتبع باستخدام وحدات  ا ، قمنا بتصمم قوانير
ً
ي المشتق باستخدام شكلية أويلر ونيوتن. أيض

التحكم  النموذج الرياضز

اجع. تم إجراء عمليات المحاكاة   ي والتكاملىي والتفاضلىي و التحكم بالير باستخدام برنامج ماطلاب لمختلف السيناريوهات لوحدات  بالانحراف التناسب 

ا، قمنا بعمل سيناريو حيث يكون للرباعي هندسة غير متماثلة وكتلة متفاوتة، باستخدام نهج تحكم مع   . التحكم المختلفة للتحقق من صحة النتائج ً أخير

ي المستقبل. 
 طريقة تكيفية لتقدير معلومات النظام الغير المعروفة. ويختتم البحث بتقييم للعمل ويقدم منظورات للبحث فز

.  ،اجعبالير  ي
التحكم التكيفز ي و التكاملىي و التفاضلىي  المحركات، نمذجة،التحكم، طائرة رباعية     كلمات مفتاحية  : التحكم، التحكم بالانحراف التناسب 
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Nomenclature

x, y, z = longitudinal, lateral and vertical motions, (m)

ϕ, θ, ψ = roll, pitch and yaw angles, (rad)

p, q, r = roll, pitch and yaw rates, (rad / s)

RE = Assumed inertial terrestrial reference

RB = reference related to quadrotor

REB = The homogeneous transformation matrix from RE to RB

Ix, Iy, Iz = roll, pitch and yaw inertia moments, (Kg.m2)

CL, CD = lift and drag force coefficients

Uz = lift force, (N)

Uϕ, Uθ, Uψ = roll, pitch and yaw moments, (N.m)

m = mass, (Kg)

Kfdx = drag force coefficient w.r.t x

Kfdy = drag force coefficient w.r.t y

Kfdz = drag force coefficient w.r.t z

Kfax = aerodynamic friction coefficient w.r.t x

Kfay = aerodynamic friction coefficient w.r.t y

Kfaz = aerodynamic friction coefficient w.r.t z

ωi = rotor velocity, (rad) / s)

Jr = rotor inertia, (N.m / rad / s2)

d = distance, (m)

g = gravity acceleration, (m / s2)
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General introduction

In recent years, there has been significant development in Unmanned Aerial Vehicles (UAVs).

Various types of drones with different structures, favorable performance, and wide applica-

tions have emerged. Among them, multi-rotors have gained attention due to their advantages

in hovering ability, maneuverability, simple structure, and cost-effectiveness [37]-[27]. The

quadcopter, in particular, is widely used in aerial photography, inspection, surveillance, cargo

transportation, precision agriculture, and more [19]. Furthermore, the design of multi-rotors

with more rotors, such as hexacopters and octocopters, is rapidly evolving, providing increased

lift and flight duration [28]-[15]. However, additional rotors result in a larger size, limiting their

use in certain areas. Despite their advantages, designing an effective controller to ensure robust

flight capabilities for multi-rotor drones remains challenging [35].

The following main reasons contribute to the difficulty [34]-[39]:

1-Multi-rotor drones are under-actuated systems with six degrees of freedom but only four

control inputs.

2-The system is complex, nonlinear, and strongly coupled, with the dynamics of translation

and rotation interacting with each other.

3-Uncertainties, unmodeled dynamics, and external disturbances always affect system sta-

bility and control performance.

These challenges have captured the attention of many researchers, leading to the introduc-

tion of various control methods aimed at addressing these issues.

The objectives of this work are:

1-Dynamic modeling of a quadrotor with vertical takeoff and landing.
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General introduction

2-Designing a controller for the stabilization and control of this type of multi-rotor.

The first chapter introduces the classification of UAVs and the composition of the quadrotor.

It also provides a review of recent literature on the different approaches used for quadrotor

control, with a focus on adaptive control.

In the second chapter, the modeling of a quadrotor drone is detailed to design the control

laws and validate them. The Euler-Newton formalism is applied to derive the mathematical

model. The low-level modeling of the rotors is also presented.

The third chapter focuses on the design of control laws for stabilizing and tracking the

trajectory with the PID and the Backstepping controllers. In this study, simulations were

conducted using MATLAB Simulink to express the results. A hierarchical control approach

was proposed, employing a cascade structure that decomposes the system dynamics into two

subsystems: translation and rotation. Dynamic inversion was employed to control the rotor

speeds.

In the fourth chapter, we consider the scenario where the quadrotor has non-symmetric

geometry and the mass varies due to energy consumption from the battery, leading to unknown

system parameters. To address this, we employed the backstepping control approach with an

adaptive method. In MATLAB/Simulink, we estimated the new parameters of the system to

account for these variations.

Finally, the work concludes with an assessment and perspectives of our research.
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1.1 Introduction

Pilot autonomous aerial vehicles or Unmanned Aerial Vehicles (UAVs) have become a real

center of interest. In recent years, their use has increased considerably. Today, they are used

for civil and military applications, for multiple tasks such as aerial photography, videography,

topography, cartography, payload transport, agriculture, rescue, surveillance, etc.

In this chapter, we present the classification of drones, the different components of the

quadrotor, the control techniques applied to the quadcopter and the adaptive control.

1.2 Classification of drones

The drones are classified on several criteria :

1.2.1 According to the aerodynamic shape

Nowadays, aeronautics engineers design and manufacture different aerodynamic shapes of

drones. They can be classified into three types, fixed wing, flapping wing, and rotary wing

(multi-rotor). Multirotors are classified according to the number of rotors and their positioning.

The quadrotor studied in this work is a multi-rotor of four rotors.

1.2.2 Depending on the landing method

There are two types, HTOL and VTOL :

HTOL: is an extension of fixed-wing drones, they have a high cruising speed and a classic

horizontal landing.

VTOL: they often use a vertical propulsion system. This type of drone can take off and

land vertically and does not need a runway to take off.
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1.2.3 Based on Weight and Range

Some researchers and organizations have classified drones based on weight and range. Table

1.1 presents the list of unmanned aerial vehicles based on weight and range [32].

Table 1.1: Unmanned aerial Vehicles classification based on weight and range

Type Maximum Weight Maximum Range Category

Nano 200 g 5 km Fixed wing,multirotor

Micro 2 kg 25 km Fixed wing,multirotor

Mini 20 kg 40 km Fixed wing,multirotor

Light 50 kg 70 km Fixed wing,multirotor

Small 150 kg 150 km Fixed wing

Tactical 600 kg 150 km Fixed wing

MALE 1000 kg 200 km Fixed wing

HALE 1000 kg 250 km Fixed wing

Heavy 2000 kg 1000 km Fixed wing

Super Heavy 2500 kg 1500 km Fixed wing

1.3 Drone application area

Drones, also known as unmanned aerial vehicles (UAVs), have emerged as versatile tools with

diverse applications across various industries. These remotely piloted or autonomous aircraft

have revolutionized numerous sectors by providing innovative solutions and enhancing efficiency

in a wide range of tasks. Let’s explore some of the key application areas of drones.

Military domain

Military drones are employed in contemporary warfare and serve to eliminate strategic targets

without endangering the pilots. A use that is still disputed in the army because it puts a cold

distance between the operator and his target, between the control screen and the eliminated

target. The United States is the largest user of combat drones, which entered their armies in

the 1990s. It was for example in 1994 that the Predators made their first test flights and were

launched the following year in the Balkan. These devices which have a range of 1250 km can
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be launched in reconnaissance without weapons or be equipped with weapons. In general, the

drone has a triple use in contemporary armies: surveillance (inside and outside), reconnaissance

of the terrain for ground, and air [26].

(a) Predator Drone [20] (b) Black Hornet mini drone [7]

Figure 1.1: Examples of the military drones

Civil domain

• Agriculture: agriculture is experiencing a new mutation that is characterized by IT,

communications, robotics, or even data collection. agriculture uses drones to map, analyze

and process crops. This is not just the application of new technologies, but an information

revolution, which can lead to more accurate and efficient farm management systems [21].

• Cinematograph: In recent years, drones for filming have come a long way with im-

proved mechanisms and high-resolution cameras. Drones have become an integral part

of filmmaking. In the past, filmmakers were forced to use helicopters and cranes to get

that aerial shot that adds more excitement to a movie. The video quality of these small

cameras, attached to the drones themselves, has improved dramatically over the years

[23].

• Transport and logistics: Drones have appeared recently in the field of logistics, and

many companies have been interested in them for several years. Right now they are in the
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spotlight because we are going through a period of rapid market growth for this technol-

ogy. Logistics companies are developing them with the aim of making them operational

in the next few years. For example, Amazon first became interested in drones when it

launched its Prime Air program in 2013. The project’s goal is to deliver packages within

30 minutes of ordering to an address 10 miles away. Over the past few years, Amazon has

conducted test flights in multiple locations around the world to operate drones as soon as

the law permits. Over the next few years, drones will be in everyday use just like trucks

are today [30].

Figure 1.2: Phoenix 4 AG 10L [11]

(a) DJI Mini 2 [4] (b) K60 Pro [9]

Figure 1.3: Examples of the cinematograph drones
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(a) DHL delivery [2] (b) Mini drone for delivery [3]

Figure 1.4: Examples of the Transport and logistics drones

1.4 Advantages and disadvantages of drones

1.4.1 Advantages

• Maintain an environment.

• Cost saving technology.

• Aerial imagery quality.

• Easy to control.

• Security.

• Minimize obvious hazards and health risks.

• Areas of action that change depending on the scenario.

• Remote access to dangerous or impassable areas.

1.4.2 Disadvantages

• The weather conditions, and more specifically the wind, must be within the limits of the

drone to guarantee a good result for your sequences.
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• drones really don’t like rain. On the other hand, they tolerate snow, cold and very high

altitudes (under certain conditions).

• Drones are easy to hack.

• Slow data transfer.

• Night flights are limited depending on conditions. (Night flights are defined as taking

place 30 minutes before or after sunrise or sunset.

• overflights of major cities are subject to local restrictions and the necessary prior autho-

rizations. (especially near airports).

1.5 Description and composition of the quadrotor

The quadrotor is a multi-rotor of four rotors attached to a rigid frame. it has several char-

acteristics (mechanically simple, vertical take-off and landing, hovering, more payload, longer

flight time, high maneuverability, faster). it consists of:

1.5.1 Frame

The frame is designed to support the weight of other components. it gives the aerodynamic

shape of the drone to ensure its stability. it must be strong and light. the materials used for

its manufacture are generally carbon fibers and aluminum.

1.5.2 Motors

A brushless DC motor (BLDC) is a synchronous electric motor that is powered by direct

current and has an electronically controlled commutating system instead of a brush-based

mechanical commutating system. In this type of motors, the current and the torque, the voltage,

and the speed of rotation are linearly related. Each motor drives a propeller. brushless motors

are listed according to their KV(Figure 1.6), which corresponds to the number of revolutions
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carried out per minute and per volt. Without them, there would be no multi-rotor drones.

They do not use brushes to distribute energy to the rotor. The magnets spin, and the coils are

static, causing less friction and wearing parts except for the shaft. The brushless motors have

an efficiency of close to 90% and do not require maintenance. there are two kinds: rotating

squirrel cage motors, the most common because they offer good torque and fixed squirrel cage

motors that can be embedded in a fuselage [22].

(a) Frame [8] (b) Quadrotor configuration +

Figure 1.5: The configuration and the frame of quadrotor

Figure 1.6: Brushless DC motor (1400kV) [10]
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1.5.3 The propellers

The quadrotor operates with two normal-pitch propellers (clockwise, CW) and two reverse-

pitch propellers (counterclockwise, CCW). The materials used, in increasing order of price and

performance, are nylon (plastic), wood (typically beech), and carbon fiber. Wooden propellers

have the advantage of being less dangerous in case of impact. Metal propellers, reserved for

general aviation, are used for large drones. The propeller can be of fixed size or foldable, which

makes it less fragile and allows for space-saving during transport. They are classified based on

the product size × step, where the size is the length in inches of the propeller and the pitch is

the horizontal distance traveled in inches by the propeller in each revolution.

Figure 1.7: Propellers used for quadrotor [13]

1.5.4 Variable speed drives

The speed variators on ESC (Electronic speed controller) are electronic circuits, they transform

the direct current of the battery to an alternating current in precise impulses to operate the

brushless motors. They are characterized by a value in amperes (ex: 30A) which indicates the

maximum intensity that they can withstand during the flight. It is modeled as a three-phase

DC-AC inverter which transforms the DC voltage (PWM signal) in its input to a three-phase

voltage in its output.
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Figure 1.8: ESC (Electronic speed controller) [6]

1.5.5 Battery

The batteries are the source of energy for the various components of the quadrotor. If circuits

of different voltages coexist on board, it is always lighter and more practical to power them

by the flight battery alone (possibly adding transformers), rather than by other batteries. the

battery must have an optimal weight/power ratio. The ”Lithium Polymer” category meets this

requirement. A LiPo cell provides a voltage of 3.7V. On a drone, batteries with 3 or 4 cells are

generally used. The capacity, voltage and discharge coefficient are indicated in their box.

Figure 1.9: LiPo batterie (20000mAh) [12]

1.5.6 Flight controller

It is an electronic card, it receives the information measured by the sensors and transmits

electrical impulses to the speed variators of the motors. It contains a microprocessor, memory,
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interfaces I/O and sometimes integrated sensors. It is programmed through algorithms to

manage the flight in an autonomous or semi-autonomous way.

Figure 1.10: NAZA flight controller for quadrotor [5]

1.5.7 The sensors

Different sensors are used to measure acceleration, speed, altitude, attitude and translate

them into electrical current sent to the flight controller.

Example

— The accelerometers: three sensors (one per axis) to measure the accelerations of the

translation movement.

— Gyroscopes: three gyros (one per axis) to measure the angular rotation speed on each

axis.

— The compass: to measure the intensity of the earth’s magnetic field and determine

north.

— The GPS module: it allows geolocation of the drone in longitude, attitude and altitude.
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(a) Gyroscope (b) GPS module (c) Accelerometer

Figure 1.11: The sensors [1]

1.6 Quadrotor control

The design of a flight controller consists in synthesizing control laws which calculate the inputs

of the quadrotor actuators to produce the forces and torques which act and make it possible to

obtain a desired behavior [16].

The flight control approaches proposed in the literature for quadrotor control can be clas-

sified into three categories: linear controllers, non-linear controllers and intelligent controllers.

1.6.1 Linear controllers

In this type, the command synthesis is based on a linear approximation of the quadrotor’s

dynamic model.

For quadrotor control, the PID controller has been implemented either alone or as part of

a hierarchical structure of a control algorithm. The quadrotor dynamics are decomposed into

two subsystems: rotational dynamics and translational dynamics.

The control is then designed in two loops: an inner loop for attitude control and an outer

loop for position control.

The cascade control strategy using PID controllers is the most commonly used in practice.

It has been applied for quadrotor flight control. A combination of PID controllers has been

used for attitude control of a quadrotor [14].
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1.6.2 Non-linear controllers

Backstepping control

The backstepping technique is based on a recursive algorithm for controlling linear and nonlin-

ear systems, It allows the synthesis of control laws by defining associated Lyapunov functions. A

non-linear controller is derived using backstepping techniques and implemented on a quadrotor.

Simulation results have shown good performance of the proposed control strategy [36].

One of the problems with the Backstepping controller is its sensitivity to model uncertainties,

as complete information about the model is explicitly required for its implementation [25]. This

modification is beneficial for both robustness and performance in the presence of unmodeled

disturbances. Even under unknown degradation of the propulsion system during maneuvers,

the proposed controller was able to maintain the stability of the quadrotor. However, the

controller still relies on accurate knowledge of the model and quadrotor states [29].

Sliding mode control

Sliding mode control is a type of variable structure control that can be applied to both linear

and nonlinear systems. The basic principle is to drive the system onto a stable hypersurface

called the sliding surface, and then ensure convergence on the sliding surface towards the desired

equilibrium point. A synthesis of sliding mode control laws was presented. The objective was to

stabilize a quadrotor for trajectory tracking. The proposed control strategy was tested through

simulations, and the results obtained were satisfactory [33].

The main drawback of this control method is the peculiar dynamic behavior around the

sliding surface, known as the chattering phenomenon due to the discontinuous ”sign” function

in the control law. To address this issue, a saturation function is often employed to mitigate

this inconvenience. However, the stability of the system depends on the choice of the control

law gain. If the gain is not chosen correctly, the system may become unstable.
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Predictive command

The basic principle of predictive control is to use an explicit model of the system in the control

algorithm in order to predict the future behavior at the output. control laws are calculated by

solving constrained optimization problems to minimize tracking error over a finite time interval

called the prediction horizon.

The design of a model predictive controller for attitude control of a quadrotor is introduced.

the indoor and outdoor experiments carried out show promising results [31].

1.6.3 Intelligent controllers based on learning

The controllers of this type are based on fuzzy logic and artificial intelligence. A fuzzy linear

controller is proposed to improve the altitude flight performance of a quadrotor. The control

strategy was tested by simulation. The quadrotor followed the desired altitude, but the system

response time was not satisfactory. A neural network-based real-time controller is proposed for

trajectory tracking while carrying loads. The results obtained are validated experimentally by

implementing the controller on a DSP board. They are good and robust compared with a PID

controller [18].

1.6.4 State of the art of the adaptive flight controller

Adaptive flight control is a type of control technology used in aviation to deal with uncer-

tainties, variances, and changes in aircraft dynamics and ambient variables. It tries to change

control rules and settings in real-time to maintain stability and performance in the face of

uncertainty. The main concept underlying adaptive flight control is to include a parameter es-

timating mechanism that continually updates the aircraft’s model parameters. This estimating

process can be based on a variety of approaches, including adaptive filters, adaptive observers,

and adaptive algorithms, which continually analyze the system’s reaction and alter the control

inputs appropriately.

Adaptive flight control allows the aircraft to retain stability, maneuverability, and track-
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ing accuracy even when faced with unknown disturbances, changing flying circumstances, or

fluctuations in the aircraft’s characteristics by modifying the control rules depending on the

estimated parameters.

Both manned and unmanned aircraft systems have routinely used adaptive flight control.

It has increased resilience, fault tolerance, and the capacity to manage different flight regimes

and operating situations. To maintain safe and dependable flight operations, the design and

implementation of adaptive flight control systems must be carefully considered and validated

[38].

Illustrative example

In this section, we explain how to simulate a model reference adaptive controller in MATLAB.

The motivation for creating this post comes from the fact that MATLAB implementation of

model reference adaptive controllers is usually omitted in control theory books. However,

implementation is far from trivial and there are a number of pitfalls that can potentially lead

us to misleading conclusions.

Figure 1.12: A MRAC system for the first-order plant

We focus on a simple first-order system, Consider the control of the unstable plant [24]:

ẋ = x+ 3u (1.1)
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Where y is an output of the system that we want to control, u is an output of a controller

(referred to as the control input), and a and b are constants determining the system dynamics.

We assume that constants a and b are unknown during the control design procedure.

The goal of the Model Reference Adaptive Controller (MRAC) is to compute the control

input such that the system output is as close as possible to an output of a reference model.

The reference model is a model that specifies the desired system behavior. That is, the output

of the reference model is the desired system output that we want to achieve in practice. During

the design process of MRAC, it is assumed that the reference model is known. Accordingly,

for the model (1.1), using the previously designed adaptive controller. The plant parameters

a = −1,b = 3 are assumed to be unknown to the adaptive controller. The reference model is

chosen to be:

ẋm = −4xm + 4r (1.2)

Where ym is the output of the reference model, r is the input of the reference model. We

assume that am and bm the parameters of the reference model are known. The signal r is

known. Since r is known, we can simulate the reference model (1.2) to generate the output of

the reference model ym. i.e., am = 4, bm = 4. The adaptation gain γ is chosen to be equal to

2. The initial values of both parameters of the controller are chosen to be zero, indicating no

a priori knowledge. The initial conditions of the plant and the model are both zero.

Since the plant parameters were known, the following values of control parameters:

a∗r =
bm
b

a∗y =
a− am
b

(1.3)

Two different reference signals are used in the simulation:

• r(t) = 4. It is seen from Figure 1.14 that the tracking error converges to zero but the

parameter error does not Figure 1.15.
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Figure 1.13: First ordre system, r = 4

Figure 1.14: Tracking performance, r = 4
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Figure 1.15: Parameter estimation, r = 4

• Now r(t) = 4 sin(3t). It is seen from Figures 1.17 and 1.18 that both the tracking error

and parameter error converge to zero.

Figure 1.16: Tracking performance, r = 4 sin(3t)
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Figure 1.17: Tracking performance, r = 4 sin(3t)

Figure 1.18: Parameter estimation, r = 4sin(3t)
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Where the control law is :

u(t) = k̂1x(t) + k̂2r(t) (1.4)

And

˙̂k1 = −γre (1.5a)

˙̂k2 = −γye (1.5b)

Figure 1.19: The control law, r = 4

Figure 1.20: The control law, r = 4sin(3t)

22



Chapter 1. State of the Art

Note that, in the above adaptive control design, although the stability and convergence of

the adaptive controller are guaranteed for any positive γ, am, and bm, the performance of the

adaptive controller will depend critically on γ. If a small gain is chosen, the adaptation will

be slow and the transient tracking error will be large. Conversely, the magnitude of the gain

and, accordingly, the performance of the adaptive control system, are limited by the excitation

of unmodeled dynamics, because too large an adaptation gain will lead to very oscillatory

parameters.

Implementing adaptive flight control in a quadrotor can provide several benefits

– Robustness to uncertainties: Quadrotors operate in dynamic and uncertain envi-

ronments where variations in wind, payload, or sensor measurements can affect their

performance. Adaptive flight control can help the quadrotor handle these uncertainties

by continuously estimating and updating the system parameters, allowing it to adapt and

maintain stability and performance.

– Improved maneuverability: Quadrotors are highly maneuverable aerial vehicles, and

adaptive flight control can enhance their maneuvering capabilities. By continuously ad-

justing the control inputs based on real-time parameter estimates, adaptive flight control

enables the quadrotor to respond quickly and accurately to changing flight conditions,

enabling precise trajectory tracking and agile maneuvers.

– Fault tolerance: In the event of component failures or degradation, adaptive flight

control can help compensate for these faults. By continuously adapting the control laws

based on the estimated parameters, the quadrotor can adjust its behavior and maintain

stability, even in the presence of faults or failures in its subsystems.

– Performance optimization: Adaptive flight control allows the quadrotor to optimize

its performance by adjusting the control parameters based on the real-time estimation of

the system’s characteristics. This optimization can lead to improved efficiency, reduced

energy consumption, and enhanced flight characteristics.
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– Adaptability to varying flight regimes: Quadrotors may operate in different flight

regimes, such as hovering, vertical ascent/descent, or aggressive maneuvers. Adaptive

flight control can dynamically adjust the control laws and parameters to suit the spe-

cific flight regime, ensuring optimal performance and stability across various operating

conditions.

– Enhanced safety: By continuously monitoring and adapting to changes in the environ-

ment and system behavior, adaptive flight control can improve the safety of quadrotor

operations. It enables the quadrotor to handle unexpected disturbances or variations,

reducing the risk of accidents or instability.

Overall, implementing adaptive flight control in a quadrotor can enhance its robustness,

maneuverability, fault tolerance, performance, adaptability, and safety, enabling it to operate

effectively in challenging and uncertain environments.

1.7 Conclusion

In this chapter, we give an overview of the different kinds of drones, their different types, their

advantages and disadvantages and the fields of their use. Afterward, we presented the state of

the art of the different commands used for the stabilization and tracking of the trajectory of the

quadrotor. Also, we have talked about adaptive flight control and its benefits on the quadrotor.

Moreover, we explained the behavior of adaptive control in an example of the first-order system

and we implemented the control law obtained by MRAC’s approach to the system using Matlab

Simulink to express the advantage of adaptive control and simulate the dynamics of the system.

In the next chapter, we’ll model the quadrotor.
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2.1 Introduction

In this chapter, we are interested in modeling the dynamics of a quadrotor with configuration

’X’ having two plants of symmetry. The Euler-Newton approach is used, taking into account the

physical effects that affect its dynamics, namely aerodynamic effects, gravity, gyroscopic effects,

friction and the moment of inertia. The quadrotor has four propellers in a cross configuration

where two pairs of propellers turn contrarily. Altering the speeds of the second and fourth

propellers produces a bank rotation and lateral displacement. The first and third propeller

velocities are reversed, which causes pitch rotation and the associated longitudinal displacement.

The motion of the heading is more challenging since it depends on the counter-torque produced

by each set of propellers. To limit the complexity of the dynamics modeling, the following

assumptions are considered:

• The quadrotor structure is rigid and symmetrical.

• The propellers are rigid.

• The center of the mass and the origin of the body reference frame coincides.

• Thrust and forces are proportional to the square propellers velocity rotation.

Using these assumptions, it is feasible to describe the flight dynamics as that of a rigid body

under aerodynamic forces caused by the rotation of the propellers.

2.2 Reference frames and passage matrices

For the dynamic modeling of the drone, two reference frames are used, one fixed and the other

mobile.

Let E = {O, xe, ye, ze} be the fixed inertial reference frame linked to the earth where O is

the origin of the reference frame, x is oriented towards true north, y towards the east and z

downwards.
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Let B = {O′, xe, ye, ze} be the mobile frame associated with the quadrotor whose origin O’

is located at the center of gravity of the drone, xb represents the longitudinal axis of the drone,

yb the lateral axis and zb perpendicular to the plane (xb, O, yb) and facing down.

As the quadcopter is a system with six degrees of freedom, we must define three position

variables and three attitude variables. The position of frame B associated with the quadrotor

with respect to the inertial frame E expressed in E is denoted ξ = (x, y, z)T where x, y and

z are respectively the longitudinal, lateral and vertical positions. The attitude of frame B

associated with the quadrotor with respect to the inertial frame E expressed in E is given by

the EULER angles and denoted η = (ϕ, θ, ψ)T .For simplicity, the notations sin(.), tan(.) and

cos(.) are abbreviated respectively by ”s”,”t” and ”c”.

(a) Roll (b) Pitch (c) Yaw

Figure 2.1: EULER Angles

• Roll motion: rotation around the xb axis by the matrix Rϕ.


xb

yb

zb

 =


1 0 0

0 cϕ sϕ

0 -sϕ cϕ



xe

ye

ze

 (2.1)

• Pitch motion: rotation around the yb axis by the matrix Rθ.

27



Chapter 2. Quadrotor Dynamics Modeling


xb

yb

zb

 =


cθ 0 sθ

0 1 0

-sϕ 0 cθ



xe

ye

ze

 (2.2)

• Yaw motion: rotation around the zb axis by the matrix Rψ.


xb

yb

zb

 =


cψ sψ 0

-sψ cψ 0

0 0 1



xe

ye

ze

 (2.3)

By the multiplication of the three previous matrices, we obtain the passage matrix which

makes it possible to pass from the fixed inertial frame of reference E to the mobile frame of

reference B where R is the homogenous matrix transformation.


xb

yb

zb

 =


cθcψ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ

cθcψ cψsθsϕ+ cψcϕ sψsθcϕ− cψsϕ

−sθ sϕcθ cϕcθ



xe

ye

ze

 (2.4)

R ∈ R3×3 is a Direction Cosine Matrix and it satisfies the following properties:

R ·RT = RT ·R = I3 (2.5a)

det(R) = 1 (2.5b)

R−1 = RT (2.5c)

Where RT is the transpose matrix of R, R−1 is the inverse matrix of R and I is the identity

matrix.
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2.3 Kinematic modeling

Kinematic modeling is used to establish the relationship between the translational and rota-

tional speeds of the drone expressed in the fixed inertial frame of reference E as a function of

the speeds expressed in the mobile frame of reference B.

Let:

• ξ̇ = (ẋ, ẏ, ż)T : the linear speed of the quadrotor expressed in the frame of reference E.

• V = (u, v, w)T : the linear speed of the quadrotor expressed in the frame of reference B.

• η̇ = (ϕ̇, θ̇, ψ̇)T : the angular speed of the quadrotor expressed in the reference frame E.

• Ω = (p, q, r)T :the angular speed of the quadrotor expressed in the reference frame B.

The relationship that connects the two linear speeds of the quadcopter is as follows:

ξ̇ = RTV (2.6)

To find the angular velocity state of the drone, we must take into account the different

rotations:


p

q

r

 = RϕRθRψ


0

0

ψ̇

+RϕRθ


0

θ̇

0

+Rϕ


ϕ̇

0

0

 (2.7)

Where: 
p

q

r

 =


1 0 −sθ

0 cϕ sϕcθ

0 −sϕ cϕcθ



ϕ̇

θ̇

ψ̇

 (2.8)
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This passing matrix, which we refer to as RA, enables us to go from the η̇ speed to the Ω

speed.

Where:

R−1
A =


1 sϕtθ cϕtθ

0 cϕ −sϕ

0 sϕ
cθ

cϕ
cθ

 (2.9)

Where:

η̇ = R−1
A ω (2.10)

So:

ϕ̇ = p + sϕtθq + cϕtθr (2.11a)

θ̇ = cϕq − sϕr (2.11b)

ψ̇ =
sϕ

cθ
q +

cϕ

cθ
r (2.11c)

2.4 Dynamic modeling

Equations relating to forces, moments, and quadrotor accelerations may be established by

dynamic modeling.

The following notation is used to distinguish between physical values represented in different

reference frames :

— XE: for the graders expressed in the fixed inertial frame of reference.

— XB: for the graders expressed in the mobile inertial frame of reference.

2.4.1 Translation dynamics

Applying the fundamental principle of dynamics (Newton’s second law):
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FE = mξ̈ = maE (2.12)

With:

— FE: is the sum of the external forces acting on the quadrotor and expressed in the fixed

inertial reference frame E.

— m: is the total mass of the quadrotor.

— aE: is the quadrotor acceleration expressed in the fixed inertial reference frame.

To express this equation in the mobile reference frame B, we use the transposed passage

matrix RT :

RTFB = mRTaB = mRT

(
dV

dt

)
E

(2.13)

so:

FB = m

((
dV

dt

)
B

+ Ω× V

)
(2.14)

The equation of the translational dynamics expressed in the moving frame B is given by:

FB = mV̇ + Ω× V (2.15)

2.4.2 Rotational dynamics

Applying Newton’s second law:

ME = JΩ̇ (2.16)

With:
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— ME: is the sum of the external torques applied to the quadrotor.

— J : is the inertia matrix of the quadrotor expressed in the moving frame B and defined as

follows:

J =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 (2.17)

To express this equation in the moving frame B, we use the inverse passage matrix R−1
A :

R−1
A MB = R−1

A

(
dJΩ

dt

)
E

(2.18)

From where:

MB =

(
dJΩ

dt

)
E

+ Ω× JΩ (2.19)

The equation of the rotational dynamics expressed in the mobile frame B is:

MB = JΩ̇ + Ω× JΩ (2.20)

2.5 Forces and moments acting on the quadrotor

After the kinematic and dynamic modeling, the forces and moments applied on the quadrotor

are defined. the forces acting on the drone are gravity, drag, air friction, thrust, lift, the torques

produced by the propellers and the gyroscopic effect caused by the rotation of the propellers.

2.5.1 The forces

• The gravity
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The force of gravity (the weight) is applied to the quadrotor’s center of gravity, and

deflected towards the center of the earth along the ze axis.

Fg =


0

0

−mg

 (2.21)

Where g is gravity accelerator.

• Lift force

Each rotor’s thrust force is represented by Fi, where i = 1,.., 4. It is pointed in the opposite

direction of the axis ze and perpendicular to the plane of rotation of the propellers. The

sum of the thrust forces produced by the four rotors results in the overall lift force:

FL = F1 + F2 + F3 + F4 (2.22)

The expression of the thrust force Fi is given by:

Fi = KLω
2
i (2.23a)

KL = CTρr
4
pπ (2.23b)

With:

— KL: is is the lift coefficient.

— CT : is the thrust coefficient of the propeller.

— ρ: is the air density.

— rp: is the radius of the propeller.
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— ωi: is the angular velocity of rotor i.

Ff is the resultant of the forces generated by the four rotors:

Ff =


cϕcψsθ + sϕsψ

cϕsθsψ − sϕcψ

cϕcθ


4∑

i=1

Fi (2.24)

• Drag force

The drag force produced by the resistance of the air on the propeller is parallel to the

plane of rotation of the propeller and oriented in the opposite direction of rotation. The

drag moment τi corresponding to the drag force:

τi = dω2
i (2.25a)

d = CDρr
5
pr

4
pπ (2.25b)

Where:

— d: is the coefficient of proportionality between the square of the rotational speed of

the rotor and the drag moment.

— CD: is the drag coefficient of the propeller.

• the frictional force of the air

The quadrotor moves in the air, the latter causes friction that is modeled by a simple and

effective model as follows:
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Fd =


−Kfdx 0 0

0 Kfdy 0

0 0 −Kfdz

 ξ̇ (2.26)

Fd denotes the resultant of the drag forces along (X, Y, Z) axis.

2.5.2 The torques

The rotors are placed at a distance d from the center of gravity of the quadrotor where 2d is

the wingspan of the drone. This causes roll, pitch and yaw torques that are defined as follows:

— Roll torque:

The roll torque notedMP allows the quadrotor to rotate around the xb axis, its expression

is given by:

MP = d (F3 − F1) (2.27)

— Pitch torque

The roll torque notedMQ allows the quadrotor to rotate around the yb axis, its expression

is given by:

MQ = d (F4 − F2) (2.28)

— Yaw torque:

The yaw movement is produced by causing a difference in the rotational speeds of the

four rotors.
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The yaw torque notedMR allows the quadrotor to rotate around the zb axis, its expression

is given by:

MR = CD
(
ω2
1 − ω2

2 + ω2
3 − ω2

4

)
(2.29)

Γf is the moment developed by the quadrotor according to the body fixed frame such as:

Γf =


d (F3 − F1)

d (F4 − F2)

CD
(
ω2
1 − ω2

2 + ω2
3 − ω2

4

)
 (2.30)

(a) Roll torque (b) Pitch torque

Figure 2.2: Roll and Pitch torques
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Figure 2.3: Yaw torque

— Aerodynamic frictions:

Γa = −Ar∥Ω∥2 (2.31)

Γa =


−Kfax 0 0

0 −Kfay 0

0 0 −Kfaz

 ∥Ω∥2 (2.32)

– Γa: is the Aerodynamic frictions.

– Ar: is the friction coefficient matrix.

2.5.3 Gyroscopic effect

Each rotor exerts a gyroscopic torque on the quadrotor. We denote it by Γg with i = 1, 2, 3, 4,

it is defined as follows:
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Γg =
4∑
i=1

Ω× Jr


0

0

(−1)i+1ωi

 (2.33)

Where Jr represents the rotor inertia.

Γg =


Jrθ̇Ω̄

−Jrϕ̇Ω̄

0

 (2.34)

Ω̄ = ω1 − ω2 + ω3 − ω4 (2.35)

2.6 Rotor dynamics

The rotor is a group of D.C. motors that a reducer uses to turn a propeller. The following

equations provide information on how the D.C. motor works:

V = RI + L
dI

dt
+Keω (2.36a)

KmI = JΓ
dω

dt
+KΓω

2 + Cs (2.36b)

Where:

— V : is the motor input tension.

— ω: is the rotational speed of the rotor.

— Ke and Km: represent the electrical and mechanical torque constant, respectively.
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— KΓ: is the load constant torque.

— R and JΓ: are the motor internal resistance and the rotor inertia, respectively.

— Cs: denotes the solid friction.

From equation 2.36, and as the inductance of the motors is small, it can therefore be neglected.

So, we can write the model of the rotor in the following form:

ω̇i = bV + β0 + β1ωi + β2ω
2
i (2.37)

Where: b = Km
RJΓ

, β0 =
−Cs
JΓ

, β1 =
−KeKm
RJΓ

, β2 =
−KΓ
JΓ

2.7 Quadrotor model

2.7.1 Modeling with the Newton-Euler formalism

Using the formalism of the Newton-Euler, the dynamics equations are written in the following

way:

mξ̈ = Ff + Fd + Fg (2.38a)

JΩ̇ = −Ω ∧ JΩ + Γf − Γa − Γg (2.38b)

Where ξ is the position of the quadrotor center of mass concerning the inertial frame E,m is

the mass of the structure and J ∈ R3×3 is a symmetric positive definite constant inertia matrix

of the quadrotor concerning the body fixed frame.

Consequently, the complete dynamics are as follows:
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• Translation motion :

ẍ =
1

m
[−Kfdxẋ+ (cϕsθcψ + sϕsψ)U1] (2.39a)

ÿ =
1

m
[−Kfdyẏ + (cϕsθsψ − sϕcψ)U1] (2.39b)

z̈ =
1

m
[−Kfdzż −mg + cϕcθU1] (2.39c)

• Rotational motion:

ṗ =
1

Ix

[
(Iy − Iz) rq −Kfaxp

2 − JrΩ̄q + U2

]
(2.40a)

q̇ =
1

Iy

[
(Iz − Ix) rp−Kfayq

2 + JrΩ̄p+ U3

]
(2.40b)

ṙ =
1

Iz

[
(Ix − Iy) pq −Kfazr

2 + U4

]
(2.40c)

Rotational kinematics is concerned with the quadrotor’s attitude movements. The

variables (ϕ̇, θ̇, ψ̇) describe the rotational velocity in the Earth-fixed reference frame. The

rotational velocity is, however, represented by the rates of roll, pitch, and yaw (p, q, r)

respectively, in the body reference frame. Equation (2.11) expresses the relationship

between these two sets of variables.

where U1, U2, U3 and U4 denote the system control inputs that are written according to

the angular velocities of the four rotors:

U1

U2

U3

U4


=



Kp Kp Kp Kp

−Kp 0 Kp 0

0 −Kp 0 Kp

CD −CD CD −CD





ω2
1

ω2
2

ω2
3

ω2
4


(2.41)
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The dynamic modeling developed above (2.39) and (2.40) is completed by the following

control inputs constraints:

0 ≤ U1 ≤ 4Kpω
2
max (2.42a)

−Kpω
2
max ≤ U2 ≤ Kpω

2
max (2.42b)

−Kpω
2
max ≤ U3 ≤ Kpω

2
max (2.42c)

−2CDω
2
max ≤ U4 ≤ 2CDω

2
max (2.42d)

2.7.2 Modeling with the Euler-Lagrange formalism

We present in this section the Euler-Lagrange approach to model the quadrotor. In this work,

the aim is to find Lagrangian (L). The kinetic energy (T ) is composed of two terms, The first

term is the kinetic energy of translation and the second term is the kinetic energy of rotation

and the potential energy (U).

The generalized coordinates of the quadrotor are described by:

q =

[
x y z ϕ θ ψ

]T
(2.43)

where ξ = [x y z]T represents the position of the center of mass of the quadrotor concerning

a fixed frame.

η = [ϕ θ ψ]T are the three Euler angles (yaw, pitch, roll) and represent the orientation of

the quadrotor. The Lagrangian is:

L(q, q̇) = Ttrans + Trot − U (2.44)

The kinetic energy of translation is given by:
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Ttrans =
1

2
mξ̇T ξ̇ (2.45)

The kinetic energy of rotation is given by:

Trot =
1

2
Jη̇T η̇ − Ω ∧ JΩ (2.46)

Where J represents the inertia matrix. The potential energy is given by:

U = mgz (2.47)

Where z is the vertical position, m represents the mass of the quadrotor.

The Lagrangian L is:

L(q, q̇) =
1

2
mξ̇T ξ̇ +

1

2
Jη̇T η̇ − Ω ∧ JΩ−mgz (2.48)

The dynamic model of the quadrotor is obtained from the Euler-Lagrange equations with

the generalized external force.

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+
∂D

∂q̇
=

 Fξ

Mη

 = Fext (2.49)

Where Fξ ∈ R3 is the translational force applied to the quadrotor due to control inputs

Fξ = [Fx Fy Fz]
T .

Fξ =


cϕcψsθ + sϕsψ

cϕsθsψ − sϕcψ

cϕcθ


4∑

i=1

Fi (2.50a)
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Fi = KLω
2
i (2.50b)

FL =
4∑

i=1

Fi (2.50c)

And Mη ∈ R3 is the generalized moments Mη = [Mϕ Mθ Mψ]
T and R is the transformation

matrix representing the orientation of the quadrotor.

Mη =


dKL (ω3 − ω1)

dKL (ω4 − ω2)

CD
(
ω2
1 − ω2

2 + ω2
3 − ω2

4

)
 (2.51)

And D ∈ R2 is the dissipation energy D = [Dξ Dη]
T

Dξ =


−1

2Kfdx 0 0

0 −1
2Kfdy 0

0 0 −1
2Kfdz

 ξ̇2 (2.52a)

Dη =


1
2Jrω̄ 0 0

0 −1
2Jrω̄ 0

0 0 0




θ̇2

ϕ̇2

ψ̇2

 (2.52b)

∂L

∂q̇
|ξ =

[
0 0 −mg

]T
(2.53a)

∂L

∂q̇
|η =

[
−ψ̇θ̇(Iyy − Izz) +Kfaxϕ̇

2 −ψ̇ϕ̇(Izz − Ixx) +Kfay θ̇
2 −θ̇ψ̇(Ixx − Iyy) +Kfazψ̇

2

]T
(2.53b)

∂D

∂q̇
=

[
Kfdxẋ Kfdyẏ Kfdzż −Jrω̄θ̇ Jrω̄ϕ̇ 0

]T
(2.53c)
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d

dt

(
∂L

∂q̇

)
=

[
mẍ mÿ mz̈ Ixxϕ̈ Iyyθ̈ Izzψ̈

]T
(2.53d)

the external force Fext is:

Fext =



FL (cϕcψsθ + sϕsψ)

FL (cϕsθsψ − sϕcψ)

FL (cϕcθ)

Mϕ

Mθ

Mψ


(2.54)

Then, the model of the quadrotor with the Euler-Lagrange formalism is:



mẍ

mÿ

mz̈

Ixxϕ̈

Iyyθ̈

Izzψ̈


+



0

0

mg

−ψ̇θ̇(Iyy − Izz) +Kfaxϕ̇
2

−ψ̇ϕ̇(Izz − Ixx) +Kfayθ̇
2

−θ̇ψ̇(Ixx − Iyy) +Kfazψ̇
2


+



Kfdxẋ

Kfdyẏ

Kfdzż

−Jrω̄θ̇

Jrω̄ϕ̇

0


=



FL (cϕcψsθ + sϕsψ)

FL (cϕsθsψ − sϕcψ)

FL (cϕcθ)

Mϕ

Mθ

Mψ


(2.55)

2.8 Conclusion

This chapter presented a mathematical modeling approach for the quadrotor UAV. The sys-

tem was modeled by subsystems (motion kinematics, motion dynamics, control efficiency and
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motor dynamics). We have thus obtained the relationship between the quadrotor’s movements

(position and orientation) and the voltages supplied to the four motors. We have used two

different types of formalism, Euler-Lagrange and Euler-Newton, to establish the mathematical

model of the UAV as a rigid body with two orthogonal planes of symmetry. We took into

account the force of friction with the air and the gyroscopic effect of the rotors on the quad-

copter to make the model as close as possible to reality. The development of the control law

is presented in the next chapter, based on this model. And we will validate the synthesized

control laws in a Simulink MATLAB R2021A simulation environment.
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3.1 Introduction

In this chapter, we present the control part of the quadrotor. Before moving on to the control of

the real system, we need to run simulations to validate the mathematical model and identify the

controller parameters. It would be difficult to control a quadrotor UAV without implementing a

control law. This must enable the calculation of the speed setpoint for each of the four motors,

to ensure drone stability while following a position and/or attitude (orientation) reference.

The objective of the chapter is to ensure that the quadrotor achieves a predefined trajectory

xd(t), yd(t), zd(t), ψd(t) while remaining stable along its mission. To achieve this, three controls

will be studied and synthesized, namely: a PID as a classical technique, a nonlinear control by

Backstepping, and finally an Adaptive control.

3.2 General command structure

Figure 3.1: Quadrotor control structure flowchart

Quadrotor control is achieved by a cascade structure consisting of two loops. The con-

troller of the internal loop related to attitude dynamics is responsible for tracking the drone’s

orientation reference, i.e. to follow angles ϕd, θd and ψd, and the external loop linked to po-
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sition dynamics, which position dynamics, which generates the reference roll and pitch angles

and the total lift force required to position the drone at a given altitude. The derivatives

of the quadrotor’s position and orientation form its complete dynamics. The overall system

can be subdivided into two subsystems, describing the dynamics of rotation and translational

dynamics.

In Figure 3.1, we present a simplified synoptic diagram explaining the controller structure

of a quadrotor UAV. The translational motion controller (x, y) outputs the desired orientation

(ϕd, θd) of the quadrotor due to the coupling between these variables. The synthesis of a second

controller then stabilizes the attitude on the desired heading. For example, to hover, the roll

and pitch angles must be maintained at zero. Tilting the machine causes it to move in the (x,

y) plane. Hence the importance of the attitude controller.

In the first case, the control of orientation and altitude is the simplest to realize, since

it is completely independent of the control of other degrees of freedom. As it is completely

independent of the control of other degrees of freedom.

In the second case, all three position coordinates plus yaw are controlled. However, this

latter control mode uses both the roll and pitch orientation controllers. In short, the control

signals from the three position controllers define a lift force vector in the inertial reference

frame. The orientation of this force defines the setpoint sent to the roll and pitch controllers.

3.3 Command synthesis model

Quadrotor control can be achieved by various approaches, including model-based approaches.

Model-based control approaches exploit, as their name suggests, the model for control law

synthesis. However, using the complete model to satisfy the control objective may be unneces-

sary, or even costly in terms of computing capacity (computing time and memory space). For

this reason, we use simplified models to develop control laws, known as ”synthesis models”.

Simplification is based on assumptions that are more or less respected during system evolution.

In the case of the quadrotor, on the assumption that it performs angular movements of low
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amplitude, the angular velocity vector Ω expressed in the body reference frame can be reduced

to :

Ω =


p

q

r

 ≃


ϕ̇

θ̇

ψ̇

 (3.1)

Let’s take as attitude control inputs: U2, U3 and U4 the roll, pitch and yaw torques respec-

tively. The synthesis model for attitude control is given by :

ϕ̈ =
1

Ix

[
θ̇ψ̇ (Iy − Iz)−Kfaxϕ̇

2 − Jrϖθ̇ + U2

]
(3.2a)

θ̈ =
1

Iy

[
ϕ̇ψ̇ (Iz − Ix)−Kfayθ̇

2 + Jrϖϕ̇+ U3

]
(3.2b)

ψ̈ =
1

Iz

[
ϕ̇θ̇ (Ix − Iy)−Kfazψ̇

2 + U4

]
(3.2c)

As for position control, the new model uses as control inputs U2, U3 and U4 for position

control in x, y and z.

The synthesis model for position control is given by:

ẍ =
1

m
[−Kfdxẋ+ uxU1] (3.3a)

ÿ =
1

m
[−Kfdyẏ + uyU1] (3.3b)

z̈ =
1

m
[−Kfdzż −mg + cϕcθU1] (3.3c)

Where:

ux = (cϕsθcψ + sϕsψ) (3.4a)
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uy = (cϕsθsψ − sϕcψ) (3.4b)

Using the expressions for ux and uy given in (3.4), we obtain the desired angles ϕd and θd

as follows:

ϕd = arcsin (uxsψd − uycψd) (3.5a)

θd = arcsin

(
uxcψd + uysψd

cϕd

)
(3.5b)

3.4 PID controller

PID control is one of the most basic and frequently implemented types of control in the

industry. The advantages of the PID controller are its simple structure and low requirements

on the system model (error-based control). The PID controller aims to minimize the current

error e(t) = r(t) - y (t), where r(t) is a desired value, called reference or setpoint, and y(t)

is a measured value of the process output (figure 3.2). Since the process output is used by

the controller to calculate a control signal which is fed back into the process, a closed loop is

formed.

The controller output is made up of three terms that give it its name:

3.4.1 Proportionnel

The term P (Proportional) is an amplification of the error where:

P = Kpe(t) (3.6)

The proportional gain Kp, is a constant. If Kp is high, the control signal will be large and

the error will be large, making the controller sensitive and resulting in reduced stability and

large overshoot. Since the proportional term is an amplification of the error, it will get smaller
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and smaller as the error approaches zero. The steady-state error depends on the size of Kp; a

high value of Kp will give a low steady-state error. In theory, an infinite gain would leave a zero

steady-state error. In many implementations, the proportional part has the greatest influence

on the control signal.

3.4.2 Integrator

The term I (Integrator) depends on the accumulated differences of old errors where:

I = KI

∫ t

0

e(τ )dτ (3.7)

The integral gain Ki, is a constant. By integrating the error signal, the output will reach the

reference faster, and the steady-state error mentioned above is eliminated. The disadvantage

is that the integral part can increase too quickly, causing the control signal to become larger

than necessary to keep the error at zero, and since the I term can only become smaller if the

error is negative, this will lead to an overshoot.

3.4.3 Derivator

The D term (Derivator) is proportional to the derivative of the error where:

D = KD
d

dt
e(t) (3.8)

The gain of the derivative KD is a constant. By looking at the derivative, it is possible

to predict the future to correct for rapid changes and thus prevent overshoot and introduce

stability into the closed-loop system. Since the derivative of the error is used, the D term is

likely to amplify noise and therefore can be dangerous to use without proper filtering.

The total output of the PID controller is:
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u(t) = Kpe(t) +KI

∫ t

0

e(τ )dτ +KD
d

dt
e(t) (3.9)

It is not necessary to use the three terms of the PID regulator, any combination of the terms

P , I and D is possible.

Figure 3.2: Closed loop PID control block diagram

3.4.4 Objective of the command

In our case, the objective is to design a classical (PID) controller for trajectory tracking. The

controller parameters will be set empirically. However, the quadrotor is a six-degree-of-freedom

robot, but the PID structure is mono-variable. Thus, we develop here a set of PIDs for all

quadrotor measured variables.

Figure 3.3 shows the control structure when a (x, y, z, ψ) trajectory is planned. In general,

stabilization of a quadrotor is achievable by a PD controller for each degree of freedom. However,

a residual error is not canceled out at altitude z when the quadrotor is stationary, due to the

effect of its weight. For this reason, a PD controller is designed for every degree of freedom

except the altitude for which a PID controller has been chosen.
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Figure 3.3: Block diagram of the PID command applied to the quadrotor

3.4.5 Control laws

In the quadrotor, we have to control six variables (6 DOF). The PID control laws for these

variables are given by :

• Pilotage loop

U2(t) = KPϕeϕ(t) +KIϕ

∫ t

0

eϕ(τ)dτ +KDϕėϕ(t); eϕ(t) = ϕd(t)− ϕ(t)

(3.10a)

U3(t) = KPθeθ(t)+KIθ

∫ t

0

eθ(τ)dτ+KDθėθ(t); eθ(t) = θd(t)−θ(t) (3.10b)

U4(t) = KPψeψ(t) +KIψ

∫ t

0

eψ(τ)dτ +KDψėψ(t); eψ(t) = ψd(t)− ψ(t)

(3.10c)

• Guidance loop

Ux(t) = KPxex(t)+KIx

∫ t

0

ex(τ)dτ+KDxėx(t); ex(t) = xd(t)−x(t) (3.11a)
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Uy(t) = KPyey(t)+KIy

∫ t

0

ey(τ)dτ+KDyėy(t); ey(t) = yd(t)−y(t) (3.11b)

U1(t) = KPzez(t)+KIz

∫ t

0

ez(τ)dτ+KDzėz(t); ez(t) = zd(t)−z(t) (3.11c)

3.5 PID control implementation

We will present the simulation results from the application of the PID control technique seen

previously on the quadrotor.

The simulation platform used is Simulink MATLAB R2021A. The simulation model of

the quadrotor implemented in Simulink is complete without any simplification. The physical

parameters of the quadrotor UAV are listed in the following table [17]:

Table 3.1: The physical parameters of the quadrotor

Parameter Value

Mass (Kg) 0.486

Distance d( m) 0.25

Ix
(
N.m/rad/s2

)
3.8278× 10−3

Iy
(
N.m/rad/s2

)
3.8278× 10−3

Iz
(
N.m/rad/s2

)
7.6566× 10−3

Kfax(N/rad/s) 5.5670× 10−4

Kfay(N/rad/s) 5.5670× 10−4

Kfaz(N/rad/s) 6.3540× 10−4

Kfdx(N/m/s) 5.5670× 10−4

Kfdy(N/m/s) 5.5670× 10−4

Kfdz(N/m/s) 6.3540× 10−4

Lift force coefficient Kp( N.m/rad/s) 2.9842× 10−5

Drag force coefficient CD( N.m/rad/s) 3.2320× 10−7

Rotor inertia Jr
(
N.m/rad/s2

)
2.8385× 10−5

54



Chapter 3. Control design techniques

3.5.1 Implementation

The block diagram of the quadrotor simulation model in Matlab Simulink is shown in Figure

3.4.

Figure 3.4: The block diagram of the quadrotor simulation model

The block diagram of the PID control simulation model in Matlab Simulink applied to the

quadrotor is shown in Figure 3.5.

Figure 3.5: The block diagram of the PID control
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The block diagram of dynamic inversion control is shown in Figure 3.6.

Figure 3.6: Block diagram of dynamic inversion control

The rotor parameters are shown in the following table [17]:

Table 3.2: The rotor parameters

β0 189.63

β1 6.0612

β2 0.0122

b 280.19

3.5.2 Trajectory tracking

The Parameters of the PID controller are shown in the following table:
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Table 3.3: The Parameters of the PID controller

Kp Ki Kd

Ux 0.07 0 0.5

Uy 0.1 0 0.7

U1 18 8 12

U2 1 0 0.8

U3 0.5 0 4

U4 1.2 0 1.2

Example of the command Ux of the PID controller in Matlab Simulink:

Figure 3.7: Longitudinal motion (x) PID controller

The first scenario

The quadrotor will fly at an altitude of 25m. We have set the duration of the mission to 50

seconds. The trajectory is given by the equations:

xd = sin(0.25t+ 30) m (3.12a)
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yd = cos(0.25t+ 30) m (3.12b)

zd = 25 m (3.12c)

And the ψd is a Pulse input with amplitude π
8
, and period 25 seconds and pulse width 50% of

the period.

Figure 3.8 shows the evolution of the quadrotor position along the three axes x, y and z by

the PID controller.

Figure 3.8: Generation of the desired trajectory by PID control
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Figure 3.9 illustrates the evolution of the attitude (roll, pitch and yaw angles) of the quadro-

tor during the realization of the desired trajectory.

Figure 3.9: The attitude of the quadrotor achieving the desired trajectory
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Figure 3.10 shows the result of the 3D helical trajectory by the PID controller.

Figure 3.10: 3D helical trajectory by the PID controller (where z = t)

Now we present the commands of PID control, as well as the angular speeds of the four

rotors.

Figure 3.11 present the commands U1, U2, U3 and U4 of PID control and Figure 3.12 present

the rotational speeds of the four rotors during the execution of the desired trajectory.
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Figure 3.11: The commands of the PID control technique

Figure 3.12: The rotational speeds of the four rotors
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The second scenario

The ”circle of runway” navigation scenario or also called aerodrome circuit is a maneuver that

aircraft make around the runway in a rectangular shape, with turns to the left, and at a desired

height above the aerodrome. In the case of these simulations, we set the duration of the mission

to 50 seconds. The reference trajectory is given by the equations:

xd(t) =



0 m for t ∈ [0; 5[

5 m for t ∈ [5; 20[

−7 m for t ∈ [20; 50]

(3.13a)

yd(t) =



0 m for t ∈ [0; 15[

5 m for t ∈ [15; 35[

−7 m for t ∈ [35; 50]

(3.13b)

zd(t) =


5 m for t ∈ [0; 40[

0 m for t ∈ [40; 50[

(3.13c)

And the ψd is a Pulse input with amplitude π
8
, and period 25 seconds and pulse width 50% of

the period. To generate the planned trajectory, we used the block Signal builder.

Figure 3.13 shows the evolution of the quadrotor position along the three axes x, y and z

by the PID controller.
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Figure 3.13: Generation of the desired trajectory by the PID controller

Figure 3.14 illustrates the evolution of the attitude (roll, pitch and yaw angles) of the

quadrotor during the realization of the desired trajectory.
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Figure 3.14: The attitude of the quadrotor achieving the desired trajectory

Figure 3.15 shows the result of the 3D visualization of the trajectory by the PID controller.
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Figure 3.15: 3D visualization of the trajectory by the PID controller

Now we present the commands of the PID controller, as well as the angular speeds of the

four rotors.

Figure 3.16 present the commands U1, U2, U3 and U4 of the PID controller and Figure 3.17

present the rotational speeds of the four rotors during the execution of the desired trajectory.
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Figure 3.16: The commands of the PID controller technique

Figure 3.17: The rotational speeds of the four rotors
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3.6 Backsepping controller

The backstepping technique was developed in the early 90s. The arrival of backstepping

control gave a new lease of life to the control of nonlinear systems, which despite the great

progress made, lacked general approaches. Backstepping is a systematic, recursive method

for synthesizing nonlinear control laws based on Lyapunov’s stability principle, which can be

applied to a wide range of nonlinear systems.

The basic idea behind Backstepping control is to make looped systems equivalent to Lyapunov-

stable cascaded first-order subsystems, leading to asymptotic global stability. In other words,

it’s a multi-stage method. At each stage of the process, a virtual control is generated to ensure

convergence of the system towards its equilibrium state. This can be achieved using Lya-

punov functions, which ensure step-by-step stabilization of each synthesis step. It should be

remembered that Backstepping is characterized by:

• It applies to looped systems with strict feedback, i.e. the derivative of each component of

the state vector must be a function of the preceding components and depend additively

on the following component.

• We start with the first differential equation of the ẋ1 system, which is further away from

the control input U , and complete the control law only in the last step.

• In our case, we can synthesize the control laws for the control loop (U2, U3, U4) and the

guidance loop (Ux, Uy, U1), forcing the system to follow the desired trajectory.

Purpose of the Control

In the context of trajectory tracking the control objective will be a pursuit problem, we want

the state x(t) to follow a time-varying setpoint xd(t) and that when t tends to tf .

Description of design steps

The Backstepping controller design method is mainly based on Lyapunov’s stability theory

of dynamical systems. The essence of the theory is presented in (Khalil, 1992). In our work,

67



Chapter 3. Control design techniques

we have to consider the quadrotor roll synthesis nonlinear state model to illustrate the design

method:

ϕ̈ =
1

Ix
[(Iy − Iz)θ̇ψ̇ −Kfaxϕ̇− Jrω̄θ̇ + U2] (3.14)

Consider the state vector:

X =


ϕ ϕ̇ θ θ̇ ψ ψ̇ x ẋ y ẏ z ż

T (3.15)

From (3.2) and (3.3) and (3.13), we obtain the following state representation:

ẋ1 = x2 (3.16a)

ẋ2 = a1x4x6 + a2x
2
2 + b1Uϕ (3.16b)

ẋ3 = x4 (3.16c)

ẋ4 = a4x2x6 + a5x
2
4 + b2Uθ (3.16d)

ẋ5 = x6 (3.16e)

ẋ6 = a7x4x2 + a8x
2
6 + b3Uψ (3.16f)

ẋ7 = x8 (3.16g)

ẋ8 = a9x8 + Ux
Uz
m

(3.16h)

ẋ9 = x10 (3.16i)

ẋ10 = a10x10 + Uy
Uz
m

(3.16j)

68



Chapter 3. Control design techniques

ẋ11 = x12 (3.16k)

ẋ12 = a11x12 +
Cx1Cx3

m
Uz − g (3.16l)

a1 =

(
Iy − Iz
Ix

)
, a2 =

−Kfax

Ix
, a3 =

−Jr
Ix

(3.17a)

a4 =

(
Iz − Ix
Iy

)
, a5 =

−Kfay

Iy
, a6 =

Jr
Iy

(3.17b)

a7 =

(
Ix − Iy
Iz

)
, a8 =

−Kfaz

Iz
, a9 =

−Kftx

m
(3.17c)

a10 =
−Kfty

m
, a11 =

−Kfzz

m
(3.17d)

b1 =
d

Ix
, b2 =

d

Iy
, b3 =

1

Iz
(3.17e)

Hence the equation (3.12) becomes in the following state form:

ẋ1 = x2 (3.18a)

ẋ2 = a1x4x6 + a2x
2
2 + a3x4ω̄ + b1U2 (3.18b)

• First step

Let’s define the first variable in the procedure e1 to be the error between the state and the

desired state such that e1 = x1 − x1d. The derivative concerning time is:

ė1 = x2 − ẋ1d = x2 − x2d (3.19)

And a second Backstepping variable denoted z1 = x2 − x̄2 with x̄2 a virtual control law to be

determined later. To find this control law we construct a partial Lyapunov function of quadratic
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type :

V1(e) =
1

2
e21 (3.20)

Its derivative concerning time is:

V̇1(e1) = e1.ė1 = e1(x2 − ˙x1d) (3.21)

x̄2 is chosen such that V̇1(e1) is negative definite:

x̄2 = ˙x1d − k1e1 (3.22)

Where k1 > 0 is a positive regulation constant. Noting that x̄2 was chosen so as to have

V̇1(e1) < 0. Substituting x̄2 into V̇1(e1) we find:

V̇1(e1) = e1.(−k1e1 + z1) = −k1e21 + e1.z1 (3.23a)

z1 = x2 − ẋ1d + k1e1 (3.23b)

For global stability, the last term e1.z1 will be eliminated in the next step.

• Second step

We now need to define a new system from this new state. It is typically referred to as the

“augmented system”. We also note that in the second design step, the x1state will no longer

appear. This is implicitly taken into account via the error state. The augmented system can

be written as follows:

ė1 = −k1e1 + z1 (3.24a)

ż1 = a1x4x6 + a2x
2
2 + b1U2 − ẍ1d + k1ė1 (3.24b)
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Consider the candidate Lyapunov function V2(e1, z1) of the augmented system:

V2(e1, z1) = V1(e1) +
1

2
z21 (3.25)

Its derivative concerning time is:

V̇2(e1, z1) = e1ė1+ z1ż1 = e1(−k1e1+ z1) + z1(a1x4x6+ a2x
2
2+ b1U2− ẍ1d+ k1ė1)

(3.26)

By choosing the following controller for roll:

U2 =
1

b1
(−a1x4x6 − a2x

2
2 − e1 + ẍ1d − k1ė1 − k2z1) (3.27)

We obtain :

V̇2(e, z1) = −k1e2 − k2z
2
1 (3.28)

With : k1, k2 are positive tuning gains.

This ensures that the system is Globally Asymptotically Stable (GAS). Our control objective

has therefore been achieved.

Following the same steps for the roll controller, the control input U3 responsible for gen-

erating the pitch rotation and U4 responsible for generating the yaw rotation are given by:

U2 =
1

b1
[−a1x4x6 − a2x

2
2 − e1 + ẍ1d − k1(−k1e1 + z1)− k2z1] (3.29a)

U3 =
1

b2
[−a4x2x6 − a5x

2
4 − e2 + ẍ4d − k3(−k3e2 + z2)− k4z2] (3.29b)

U4 =
1

b3
[−a7x2x4 − a8x

2
6 − e3 + ẍ6d − k5(−k5e3 + z3)− k6z3] (3.29c)

The altitude command U1, the longitudinal and lateral commands (Ux, Uy) are obtained using
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the same approach described previously, we find :

Ux =
m

Uz
[−a9x8 + ẍd + k7(−k7e7 + e8) + k8e8 + e7] (3.30a)

Uy =
m

Uz
[−a10x10 + ÿd + k9(−k9e9 + e10) + k10e10 + e9] (3.30b)

U1 =
1

cosx1. cosx3
[−a11x12+ g+ z̈d+ k11(−k11e11+ e12) + k12e12+ e11] (3.30c)

The zi represent the tracking errors for the state variables and the different ki are adjustment

gains for each degree of freedom.

Figure 3.18: Block diagram of the backstepping controller applied to the quadrotor
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3.7 Backstepping control implementation

We will present the simulation results from the application of the Backstepping control tech-

nique seen previously on the quadrotor.

The simulation platform used is Simulink MATLAB R2021A. The simulation model of the

quadrotor implemented in Simulink is complete without any simplification.

3.7.1 Implementation

The block diagram of the Backstepping controller simulation model in Matlab Simulink applied

to the quadrotor is shown in Figure 3.19.

Figure 3.19: The block diagram of the Backstepping controlller
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3.7.2 Trajectory tracking

Example of the command U2 of the Backstepping controller in Matlab Simulink:

Figure 3.20: The control input U2 of the Backstepping controller

The first scenario

The quadrotor will fly. We have set the duration of the mission to 50 seconds. The trajectory

is given by the equations:

xd = sin(0.25t+ 30) m (3.31a)

yd = cos(0.25t+ 30) m (3.31b)

zd = t (3.31c)

And the ψd is a Pulse input with amplitude 1, and period 20 seconds and a pulse width 50%

of the period.
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Figure 3.21 shows the evolution of the quadrotor position along the three axes x, y and z

by the Backstepping controller.

Figure 3.21: Generation of the desired trajectory by the Backstepping controller

Figure 3.22 illustrates the evolution of the attitude (roll, pitch and yaw angles) of the

quadrotor during the realization of the desired trajectory.
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Figure 3.22: The attitude of the quadrotor achieving the desired trajectory
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Figure 3.23 shows the result of the 3D helical trajectory by the Backstepping controller.

Figure 3.23: 3D helical trajectory by the Backstepping controller (where z = t)

Now we present the control inputs of Backstepping control, as well as the angular speeds of

the four rotors.

Figure 3.24 present the control inputs U1, U2, U3 and U4 of PID control and Figure 3.25

present the rotational speeds of the four rotors during the execution of the desired trajectory.
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Figure 3.24: The control inputs of the Backstepping controller

Figure 3.25: The rotational speeds of the four rotors for z = t, ψ = 1
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The second scenario

The ”circle of runway” navigation scenario or also called aerodrome circuit is a maneuver that

aircraft make around the runway in a rectangular shape, with turns to the left, and at a desired

height above the aerodrome. In the case of these simulations, we set the duration of the mission

to 50 seconds. The reference trajectory is given by the equations:

xd(t) =



0 m for t ∈ [0; 5[

5 m for t ∈ [5; 20[

−7 m for t ∈ [20; 50]

(3.32a)

yd(t) =



0 m for t ∈ [0; 15[

5 m for t ∈ [15; 35[

−7 m for t ∈ [35; 50]

(3.32b)

zd(t) =


5 m for t ∈ [0; 40[

0 m for t ∈ [40; 50[

(3.32c)

And the ψd is a Pulse input with amplitude π
8
, and period 25 seconds and pulse width 50%

of the period. To generate the planned trajectory, we used the block Signal builder.

Figure 3.26 shows the evolution of the quadrotor position along the three axes x, y and z

by the Backstepping controller.
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Figure 3.26: Generation of the desired trajectory by the Backstepping controller

Figure 3.27 illustrates the evolution of the attitude (roll, pitch and yaw angles) of the

quadrotor during the realization of the desired trajectory.

80



Chapter 3. Control design techniques

Figure 3.27: The attitude of the quadrotor achieving the desired trajectory

Figure 3.28 shows the result of the 3D visualization of the trajectory by the Backstepping

controller.
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Figure 3.28: 3D visualization of the trajectory by the Backstepping controller

Now we present the control inputs of the Backstepping controller, as well as the angular

speeds of the four rotors.

Figure 3.29 present the control inputs U1, U2, U3 and U4 of the Backstepping controller

and Figure 3.30 present the rotational speeds of the four rotors during the execution of the

desired trajectory.
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Figure 3.29: The control inputs of the Backstepping controller technique

Figure 3.30: The rotational speeds of the four rotors
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3.7.3 Simulation results

Figure 3.31: 3D visualization of the trajectory by the Backstepping and the PID controllers

Figure 3.32: 3D helical trajectory by the Backstepping and PID controllers
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For the bouth simulations of PID and Backstepping controllers and with a different scenar-

ios, the Figures (3.8), (3.13), (3.21) and (3.26) depict the evolution of the quadrotor’s position

along the three axes (x, y, and z) using the Backstepping and PID controllers. According to

these figures, it is evident that the quadrotor’s position converges to the reference position with

nearly zero steady-state errors, indicating excellent precision.

The Backstepping controller exhibits the best response times for position convergence along

all three axes in this simulation.

Figures (3.9), (3.14), (3.22) and (3.27) illustrate the attitude evolution (roll, pitch, and yaw

angles) of the quadrotor during the execution of the desired trajectory. From these figures, it

is noticeable that the roll and pitch angles achieved by the drone are not the same, which can

be attributed to the commands Uϕ and Uθ.

In this case, there are no reference angles to evaluate the performance of the obtained angles.

Convergence and return to zero for the roll and pitch angle curves are faster with PID control,

but notable self-oscillations are observed, which explains the superior response time for this

control.

Figures (3.12), (3.17), (3.25) and (3.30) present the rotational speeds of the four rotors

during the execution of the desired trajectory. The angular speeds of the four rotors are equal

during the hovering phases, at a speed of 200 rad/s.

Motors 2 and 4 contribute to a pitching moment and the first displacement along the x-axis.

The same occurs at t = 12 sec.

During lateral movement (displacement along the y-axis at t = 7 sec and t = 17 sec), all

four motors contribute to the rolling moment. The same occurs at t = 35 sec when the drone

executes a yaw rotation.

The obtained results do not exactly correspond to expectations, which are influenced by the

control allocation matrix, not being precisely calculated (pseudo-inverse). This explains the

occurrence of motor speeds at inappropriate instants related to the movements associated with

those motors.

The magnitude of the speed reflects the energy consumed by the corresponding control.
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The faster the motors rotate, the higher the consumption.

Furthermore, the Euler angles, including roll, pitch, and yaw, approached zero, indicating

the stabilization of the quadcopter’s orientation. The nullification of Euler angles is a crucial

requirement for maintaining Stable flight. The control law effectively tackled the complex

dynamics and uncertainties associated with the quadcopter system, resulting in minimized

oscillations and rapid convergence of the Euler angles to zero.

The achieved stability in both altitude and Euler angles indicates the successful design and

implementation of the backstepping and the PID controllers. The simulation results demon-

strate theThe simulation results demonstrate the robustness and efficiency of the control laws

in ensuring a Stable flight, thereby enhancing the quadcopter’s overall performance and ma-

neuverability.

3.8 Conclusion

In this chapter, we designed the control laws using two methods: PID and Backstepping

to ensure the stability and trajectory of the four motors. Also, we applied these control laws

to all-wheel drives. In the simulation, both PID and Backstepping had to follow the desired

paths. The results confirm the effectiveness of Backstepping and PID control laws in reference

tracking. Moreover, PID is a linear command which means there are non-linear elements in the

command. This leads to a less stable flight, which is why we added a backstepping command to

eliminate the nonlinear elements for a more stable flight. Second, we fit the law of background

control in addressing the complex dynamics and uncertainties inherent in quadcopter systems

for stable flight. In the next chapter, we will see the contribution of an adaptive flight control

strategy on modeling and attitude stabilization.
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Adaptive Flight Control
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4.1 Adaptive Flight Control

Adaptive backstepping is a control design methodology that is used to design controllers for

nonlinear systems. It is a recursive design procedure that uses Lyapunov functions to ensure the

stability of the closed-loop system. The backstepping approach provides a recursive method for

stabilizing the origin of a system in strict-feedback form. The adaptive backstepping approach

has been an effective tool in the control of uncertain linear systems. However, its traditional

recursive non-linear design is complicated, especially for a plant whose relative degree is high.

The main idea behind backstepping control is to transform the system into a canonical form that

facilitates the design process of the feedback controller. The main advantage of adaptive control

over backstepping control is its adaptability to changes in the system’s dynamics, making it

suitable for applications where the system’s dynamics vary over time.

Adaptive sliding mode for rotor

The model of the rotor in the following form [17]:

ω̇ = bV + β0 + β1ω + β2ω
2 (4.1)

The control law:

V =
1

b
(ω̇ − β0 − β1ω − β2ω

2) (4.2)

The new control law is:

V = hω̇ + λ1 − λ2ω + λ3ω
2 (4.3)

where: h = 1
b , λ1 = −β0

b , λ2 = −β1
b , λ3 = −β2

b

To synthesize the adaptive control law V , it is assumed that the full state vector components

are available through the measure and that the sign of h is known. We assume also that the

parameters h and λi are unknown constants.

Now, let us choose a sliding surface σ1 such as:
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σ1 = w − v1 (4.4a)

v1 = wd − ke (4.4b)

e = wd − w (4.4c)

where e represent the error between the desired angular velocity and the real angular veloc-

ity, wd is the desired angular velocity and k denotes a real positive parameter. Now a candidate

Lyapunov positive definite function V1(σ) is defined:

V1 =
1

2
σ21 (4.5a)

V̇1 = σ1

[
1

h
(V − λ1 − λ2ω − λ3ω

2)− v1

]
(4.5b)

The non-linear dynamic of the rotor is written in the following way [7]:

hyn) +
n∑
i=1

aifi(x, t) = u (4.6)

• Sliding mode control

Consider the control law :

u = hy(n)r − ks+
n∑
i=1

aifi(x, t) (4.7)

For our adaptive control, the control law (4.7) is replaced by :

u = ĥy(n)r − ks+
n∑
i=1

âifi(x, t) (4.8)
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Slotine suggests choosing the following adaptation law:

˙̂h = −γsign(h)sy(n)r (4.9a)

˙̂ai = −γsign(h)sfi (4.9b)

By replacing in (4.5b):

u = ĥ [ω̈d − kė− kσ] + λ̂1 + λ̂2ω + λ̂3ω
2 (4.10)

The following figures are the simulation of the rotor with adaptive sliding mode control:

Figure 4.1: Rotor with adaptive control
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Figure 4.2: Rotor speed tracking

Figure 4.3: Parameters estimation

Analysis of Simulation Results:

Upon synthesizing adaptive sliding mode control based on Slotine’s book and applying the

control laws to the rotor system, we conducted simulations to evaluate the performance of the

control strategy. The primary objective was to track the reference velocity while addressing

the nonlinearities and uncertainties in the system.

91



Chapter 4. Adaptive Flight Control

The simulation results revealed satisfactory tracking of the reference velocity, indicating the

effectiveness of the adaptive sliding mode control in achieving the desired tracking objective.

However, an issue arose in the steady state, resulting in shattering behavior. This can be

attributed to the discontinuity of the sign function employed in the control law. The shattering

phenomenon can be problematic as it leads to oscillations and instability in the system.

Furthermore, we examined the estimation results of the system’s parameters, specifically

the convergence of the three parameters (λi) to their real values. The estimation algorithm

demonstrated successful convergence. However, one parameter, denoted as ’h’, did not con-

verge to its real value. This discrepancy can be attributed to the adaptation gain used in the

control strategy. Adjusting the adaptation gain using optimization techniques could potentially

improve the convergence of ’h’ to its true value.

4.1.1 Description of design steps for the quadrotor

To synthesize adaptive control laws, it is assumed that some uncertainty remains concerning

the main coefficients w.r.t the aerodynamic moments, inertia matrix and mass of the system.

It is also assumed that the full-state vector components are available through the measure and

that the sign of b1 is known.

Now, let us consider roll dynamics expressed from (3.14a) and (3.14b) such as:

ẋ1 = x2 (4.11a)

ẋ2 = a1x4x6 + a2x
2
2 + a3x4ω̄ + b1U2 (4.11b)

Where a1, a2, a3 and b1 are considered unknown parameters.

Let z1 be a new coordinate and ξϕ the tracking error related to roll angle such as:

z1 = ξϕ = ϕ− ϕd (4.12)

• First step
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Let V1(z1) be a candidate positive definite Lyapunov function:

V1(z1) =
1

2
z21 (4.13)

Whose time-derivative V̇1(z1) is rendered negative definite:

V̇1(z1) = −c1z21 c1 > 0 (4.14)

By a stabilizing function x2d which is the desired value of x2 defined as a virtual control as

follows:

x2d = ϕ̇d − c1z1 (4.15)

Since x2 is just a state variable, let z2 be the corresponding error variable:

z2 = x2 + c1z1 − ϕ̇d (4.16)

And ż2 its time derivative which can be expressed in the following form:

h1ż2 = λ1x4x6 + λ2x
2
2 + Uϕ − h1

[
ϕ̈d − c1 (z2 − c1z1)

]
(4.17)

With :

h1 =
1

b1
λ1 =

a1
b1

λ2 =
a2
b1

λ3 =
a3
b1

• Second step

To synthesize the control law Uϕ, let us try to achieve this objective by augmenting the

already existing Lyapunov function V1(z1) with a quadratic term in the error variable z2. Con-

sequently, the augmented Lyapunov function V2(z1, z2) is introduced as follows:
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V2(z1, z2) =
1

2
z21 +

|h1|
2
z22 (4.18)

Its time derivative is rendered negative definite:

V̇2(z1, z2) = −c1z21 − |c2|z22 ≤ 0 , h1c2 > 0 (4.19)

By the stabilizing control law Uϕ chosen as follows:

Uϕ = − sgn (h1) z1 − c2z2 − λ1x4x6 − λ2x
2
2 + h1

[
ϕ̈d − c1 (z2 − c1z1)

]
(4.20)

Of course, the control law (3.38) can not be implemented, since λi et h1 are unknown

parameters. Instead, one can employ the certainty equivalence principle in which unknown

parameters are replaced by their estimates λ̂i and ĥ1. It results:

Uϕ = − sgn (h1) z1 − c2z2 − λ̂1x4x6 − λ̂2x
2
2 + ĥ1

[
ϕ̈d − c1 (z2 − c1z1)

]
(4.21)

And the time derivative of V2(z1, z2) becomes:

V̇2 = −c1z21 − |c2| z22 + z2 sgn (h1)
[
λ̃1x4x6 + λ̃2x

2
2 + λ̃3Ω̄x4 − h̃1

(
ϕ̈d − c1 (z2 − c1z1)

)]
(4.22)

Where λ̃i and h̃1 denote the estimation errors:

λ̃i = λi − λ̂i (4.23a)

h̃1 = h1 − ĥ1 (4.23b)

Replacing the control law (3.39) in (3.35), we get the new closed-loop dynamics expressed as
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follows:

ż2 = − 1

|h1|
z1 −

c2
h1
z2 +

1

h1

[
λ̃1x4x6 + λ̃2x

2
2 + λ̃3Ω̄x4 − h̃1

(
ϕ̈d − c1 (z2 − c1z1)

)]
(4.24)

This yields:

ż = Az +
1

h1
λ̃TϕW (x, Ω̄) (4.25)

With:

λ̃Tϕ =
[
λ̃1, λ̃2, λ̃3, h̃1

]
(4.26a)

W (x, Ω̄) =
[
x4x6, x

2
2, Ω̄x4, ϕ̈d − c1 (z2 − c1z1)

]T
(4.26b)

ż1

ż2

 =


−c1 1

− 1
|h1| − c2

h1




z1

z2

 = Az (4.26c)

• Third step

Since the third term of (3.40) is indefinite and contains the estimation errors λ̃i and h̃1, we can

not conclude anything about the stability of (3.36). Therefore, we augment V2(z1, z2) with a

quadratic terms in the parameters errors λ̃i and h̃1 to obtain the following Lyapunov function

V3(z1, z2, λ̃ϕ):

V3(z1, z2, λ̃ϕ) =
1

2
z21 +

|h1|
2
z22 +

1

2γϕ
λ̃Tϕ λ̃ϕ (4.27)

Where γϕ > 0 is the adaptation gain according to the roll dynamics. The time derivative

of V3(z1, z2, λ̃ϕ) is as follows:
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V̇3 = z1ż1 + |h1| z2ż2 −
1

γϕ

[
h̃1

˙̂
h1 +

3∑
i=1

λ̃i
˙̂
λi

]

= −c1z21 − |c2| z22 + λ̃1

[
z2 sgn (h1)x4x6 −

˙̂
λ1
γϕ

]

+λ̃2

[
z2 sgn (h1)x

2
2 −

˙̂
λ2
γϕ

]

−h̃1

[
z2 sgn (h1)

(
ϕ̈d − c1 (z2 − c1z1)

)
+

˙̂
h1
γϕ

]
(4.28)

The terms of (3.46) containing λ̃ϕ components are still indefinite. However, the situation is

much better than in (3.40). In fact, the dynamics of estimation errors vector ˙̃λϕ = − ˙̂
λϕ appears

explicitly. Note that, with the appropriate choice of
˙̂
λϕ, the indefinite term can be canceled.

Thus, we choose the adaptation laws as follows:

˙̂λϕ = γϕ sgn (h1)



0 x4x6

0 x22

0 −
[
ϕ̈d − c1 (z2 − c1z1)

]




z1

z2

 (4.29)

Which yields:

V̇3

(
z1, z2, λ̃ϕ

)
= −c1z21 − |c2| z22 ≤ 0 (4.30)

This implies that z = 0, λ̃ϕ = 0 equilibrium point of the closed-loop adaptive system

consisting of (3.43) and (3.46) is globally stable. Adaptive flight control and adaptation laws

related to pitch, heading and altitude dynamics are obtained by following the same steps

96



Chapter 4. Adaptive Flight Control

presented above, we get:

Uθ = − sgn (h2) z3 − c4z4 − λ̂4x2x6 − λ̂5x
2
4 + ĥ2

[
θ̈d − c3 (z4 − c3z3)

]
; c3, h2c4 > 0 (4.31a)

Uψ = − sgn (h3) z5 − c6z6 − λ̂7x2x4 − λ̂8x
2
6 + ĥ3

[
ψ̈d − c5 (z6 − c5z5)

]
; c5, h3c6 > 0 (4.31b)

Uz =
1

cosx1 cosx3

[
−λ̂11x12 − c12z12 − z11 + m̂ (z̈d + g − c11 (z12 − c11z11))

]
; c11, c12 > 0

(4.31c)

With:

˙̂λθ = γθ sgn (h2)



0 x2x6

0 x24

0 −
[
θ̈d − c3 (z4 − c3z3)

]




z3

z4

 (4.32a)

˙̂λψ = γψ sgn (h3)



0 x2x4

0 x26

0 −
[
ψ̈d − c5 (z6 − c5z5)

]




z5

z6

 (4.32b)


˙̂
λ11

˙̂m

 = γz


0 x12

0 − [z̈d + g − c11 (z12 − c11z11)]




z11

z12

 (4.32c)
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And

z3 = ξθ = θ − θd , z4 = x4 − θ̇d + c3z3 (4.33a)

z5 = ξψ = ψ − ψd , z6 = x6 − ψ̇d + c5z5 (4.33b)

z11 = ξz = z − zd , z12 = x12 − żd + c11z11 (4.33c)

Figure 4.4: Block diagram of the Adaptive backstepping flight command applied to the quadro-
tor

4.2 Adaptive Backstepping Flight Control implementa-

tion

We will present the simulation results from the application of the Adaptive Backstepping

Flight control technique seen previously on the quadrotor.
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The simulation platform used is Simulink MATLAB R2021A. The simulation model of the

quadrotor implemented in Simulink is complete without any simplification.

4.2.1 Implementation in the yaw angle

Suppose Ix is not equal to Iy, and the drag coefficient Kfaz is unknown. In such a scenario,

the previous control law is inadequate and fails to achieve the desired tracking angle yaw.

To address this issue, an adaptive approach law needs to be implemented in the yaw control.

The objective of this adaptive approach is to estimate the unknown parameters of the system

and control law. By continuously updating and adapting the control parameters based on the

estimated values, the adaptive approach law enables the system to better compensate for the

unknowns, ultimately improving the accuracy and effectiveness of the yaw control.

The block diagram of the Adaptive Backstepping flight control simulation model in Mat-

lab Simulink applied to the yaw control is shown in Figure 4.8. Adaptive flight control and

adaptation law equations related to heading dynamic are given by:

Uψ = − sgn (h3) z5 − c6z6 − λ̂7x2x4 − λ̂8x
2
6 + ĥ3

[
ψ̈d − c5 (z6 − c5z5)

]
; c5, h3c6 > 0 (4.34a)

˙̂λψ = γψ sgn (h3)



0 x2x4

0 x26

0 −
[
ψ̈d − c5 (z6 − c5z5)

]




z5

z6

 (4.34b)

4.2.2 Trajectory tracking and parameters estimation

In the simulation of the Adaptive Backstepping flight control, we will simulate the altitude z

and the angle ψ to make the heading of the quadrotor.
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Figure 4.5: The block diagram of Adaptive Backstepping flight control applied to the yaw
control

Figure 4.6: The estimator equation
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Figure 4.7: The U4 command equation

We have set the duration of the mission to 50 seconds. The reference trajectory is given by

the equations:

xd(t) =

 0 m for t ∈ [0; 50[ (4.35a)

yd(t) =

 0 m for t ∈ [0; 50[ (4.35b)

zd(t) =



0 m for t ∈ [0; 15[

20 m for t ∈ [15; 35[

5 m for t ∈ [35; 50[

(4.35c)
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And the ψd is a sine wave input with amplitude π
4
, and frequance 0.5 s−1. To generate the

planned trajectory, we used the block Signal builder.

Figure 4.8: The heading angle ψd and ψ outputs

Figure 4.9: The ϕ, θ angles and altitude z outputs

4.2.3 Results

The figures above illustrate the estimation of system parameters and outputs, with a specific

focus on achieving the desired output tracking rather than the convergence of parameter esti-

mation. The primary objective is to determine the appropriate adaptation gain, represented by

γi, for the yaw control law. Through iterative adjustments of the adaptation gain, the system
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Figure 4.10: The λ8, λ9 and h3 estimated outputs

aims to optimize the control law and improve the accuracy of the desired output tracking.

Additionally, the figure demonstrates that the control law for ψ, which represents the heading

angle, is deemed acceptable. This conclusion is drawn from observing the convergence of the

error between the desired and actual heading angles, which steadily approaches zero. This

outcome can be considered a positive result, indicating the effectiveness of the control law in

achieving the desired tracking.

4.2.4 Implementation in the altitude

The drag coefficient Kfdz is unknown. In such a scenario, the previous control law is

inadequate and fails to achieve the desired tracking altitude. To address this issue, an adaptive

approach law needs to be implemented in altitude control. The objective of this adaptive

approach is to estimate the unknown parameters of the system and control law. By continuously

updating and adapting the control parameters based on the estimated values, the adaptive

approach law enables the system to better compensate for the unknowns, ultimately improving

the accuracy and effectiveness of altitude control.

The block diagram of the Adaptive Backstepping flight control simulation model in Mat-

lab Simulink applied to altitude control is shown in Figure 4.2. Adaptive flight control and
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adaptation law equations related to altitude dynamic are given by:

Uz =
1

cosx1 cosx3

[
−λ̂11x12 − c12z12 − z11 + m̂ (z̈d + g − c11 (z12 − c11z11))

]
; c11, c12 > 0

(4.36a)
˙̂
λ11

˙̂m

 = γz


0 x12

0 − [z̈d + g − c11 (z12 − c11z11)]




z11

z12

 (4.36b)

Figure 4.11: The block diagram of Adaptive Backstepping flight control applied to altitude
control

4.2.5 Trajectory tracking and parameters estimation

In the simulation of the Adaptive Backstepping flight control, we will simulate the altitude z

and the angles ϕ,θ and ψ to make the stabilization of the quadrotor.
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Figure 4.12: The estimator equation

Figure 4.13: The U1 command equation

We have set the duration of the mission to 50 seconds. The reference trajectory is given by

the equations:

ϕd(t) =

 0 rad for t ∈ [0; 50[ (4.37a)

θd(t) =

 0 rad for t ∈ [0; 50[ (4.37b)
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ψd(t) =

 0 rad for t ∈ [0; 50[ (4.37c)

And the zd is a step input with a final value of 20 m, and step time 20 sec. And ϕd, θd and

ψd have initial values π
3
, π

6
and 1 respectively, to ensure the stability of hovering.

Figure 4.14: The altitude zd and z outputs
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Figure 4.15: The ϕ, θ and ψ angles outputs

Figure 4.16: The λ11 and the mass m estimated outputs

4.2.6 Results

– Altitude Motion Tracking: The study involved tracking the motion of the quadrotor in

terms of altitude or vertical displacement. This could refer to how well the quadrotor

maintained a specific height or how accurately it followed a desired altitude profile.

– Stability of Orientation Angles: The study also examined the stability of the quadrotor’s
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orientation angles. This typically refers to the ability of the quadrotor to maintain a

desired orientation (such as level flight) without excessive deviations or oscillations.

– Mass Variance and Unknown Parameters: The quadrotor had a variance in its mass due

to the mentioned factors, and the drag coefficient in the Z direction was also unknown.

Despite these uncertainties, the tracking position error was reported to be almost negli-

gible. This suggests that the control law used in the study demonstrated robustness in

the face of unknown parameters.

The results indicate that the adaptive control approach used in the study was effective in

estimating the quadrotor’s mass, even in the presence of variations and uncertainties. Ad-

ditionally, the control law demonstrated robustness by achieving accurate altitude tracking,

despite unknown parameters such as the mass and drag coefficient in the Z direction.

4.3 Conclusion

In conclusion, this chapter focused on the application of adaptive flight control to a quadrotor,

considering the variations in system parameters such as mass and the inertia moment about

the x and y axes. The development of adaptive control laws based on Lyapunov stability and

the dynamic nature of parameters proved crucial in ensuring robust and accurate control of the

quadrotor.

The adaptive control design employed backstepping techniques, allowing for the adjustment

of control parameters in response to changing system dynamics. By continuously adapting the

control laws to accommodate variations in the system, the quadrotor demonstrated improved

tracking performance and stability in various flight scenarios.

The simulation results showcased the effectiveness of the proposed adaptive control scheme.

The tracking error of the reference trajectory for both the z-axis and yaw angle converged to

zero, indicating precise trajectory following. Moreover, the hovering stabilization was success-

fully achieved, further validating the efficacy of the adaptive control approach.
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Overall, this study has demonstrated the importance and effectiveness of incorporating

adaptive control techniques in quadrotor flight control. By accounting for varying system

parameters, such as mass and inertia, the adaptive control laws presented in this chapter

have the potential to enhance the performance and robustness of quadrotor systems in real-

world applications. Further research and experimentation could explore the implementation

of adaptive control in other flight maneuvers and evaluate its performance in more complex

environments.
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In this work, we tackled the problem of stabilization and control for a multi-rotor of quad-

copêtre type. The objective of the thesis was to synthesize simple and robust control laws,

based on the results of recent work.

First, we identified the different components of the drone. Then, we did a bibliographic study

on the control approaches applied to the quadrotor drone, particularly the recent Adaptive flight

control. The literature on this subject is rich and the approaches proposed are diverse.

Before continuing our work, it was inevitable to establish a dynamic model. Based on the

Newtonian approach, we presented the kinematic and dynamic modeling of the quadrotor to

have a mathematical model close to reality by taking into account all the torques and forces

acting on our drone. In addition, low-level modeling is presented to obtain the differential

equations of the dynamics of the rotors to follow their rotation speeds during the flight.

A cascade control structure to control the dynamics of the six degrees of freedom quadrotor

was used. Three control methods are used for stabilization and trajectory tracking. The first

is a classic PID controller and the second is a non-linear Backstepping control and the third

is an Adaptive approach. To control the rotational speeds of the different rotors, a dynamic

inversion control based on Lyapunov’s stability theory was used.

The results of the simulation of the control laws synthesized and applied to the model of the

quadrotor and the dynamics of the rotors were presented in the last chapters. Different flight

scenarios are planned to show the effectiveness of the proposed control techniques in stabilizing

and following the desired trajectories.

For the rest of the work, we can list several perspectives:
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– The control methods proposed in this work are efficient at the theoretical level in simula-

tion. A promising prospect would be to implement them on board a quadrotor to carry

out real experimental tests.

– To exploit the redundancy property of the quadrotor, the synthesis of a fault-tolerant

control law would be beneficial to recover the drone in the event of a failure of one or

more actuators.

– The choice of the gains of the various approaches is difficult to find a compromise between

the various parameters of the six degrees of freedom.

– A group of drones can carry out missions more efficiently than a single drone In light of

this idea, our work could consider the control of multi-robot systems.
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