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Abstract:

The main objective of this thesis to conduct a survey on Model Predictive Control
(MPC). The survey begins with a brief history of industrial MPC technology and its
development in terms of theoretical aspects. A general MPC control algorithm is presented
and explained. Then, the application of MPC in power electronics is investigated. To finish
this survey, some particular applications of MPC are explained and presented.

Key words:
Model Predictive Control (MPC), cost function, non-linear control.

Résumé :

L'objectif principal de cette these est de mener une étude sur la commande a base de
modele (MPC). L’étude commence par un bref historique de la technologie de MPC dans
I’industrie et de son développement en termes d'aspects théoriques. Un algorithme de contréle
MPC général est présenté et expliqué. Ensuite, 1'application du MPC dans 1'électronique de
puissance est étudiée. Pour terminer cette these, certaines applications particulieres de MPC
sont expliquées et présentées.

Mots clés :

Commande predictive a base du modele (MPC), function de cofit, commande non-linéaire.
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Introduction

I. Introduction

Several control schemes have been proposed for the control of power converters and
drives. Among these, hysteresis and linear controls with pulse-width modulation (PWM)
are the most established in the literature [1]-[3]. However, with the development of faster
and more powerful microprocessors, the implementation of new and more complex control
schemes became possible [4]-[6]. Some of these new control schemes for power converters

include fuzzy logic, sliding mode control, and predictive control [3].

Model predictive control (MPC) has been widely adopted in industry as an effective
means to deal with multivariable constrained control problems [7]. Although the ideas of
MPC were developed in the 1960s as an application of optimal control theory, industrial
interest in these ideas started in the late 1970s [8]. Since then, MPC has been successfully
applied in the chemical process industry, where time constants are long enough to perform

all the required calculations [9].

This survey begins with a historical background and the development of MPC,
where the first applications of this control strategy are described alongside the major

developments of its theoretical aspects

MPC describes a wide family of controllers, not a specific control strategy. Various
applications of MPC of power converters and other predictive control schemes are studied

in this survey.
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Historical background

II. Historical background

The first applications of MPC in the industry segment can be traced back to the
processing industry (petrochemical industry in particular) [7], [8]. The idea was published
in the late 1970s in two papers: “Model Predictive Heuristic Control” where the authors
described successful applications of the control strategy and reported successful
applications to a dozen large-scale industrial processes including a fluid catalytic cracking
column and “Dynamic Matrix Control” where engineers from Shell reported applications
to a fluid catalytic cracker [10], [11].

However, earlier applications can be seen in some computer-based supervisory
control in petrochemical industries, which date back to 1950s [7], [12] as shown in Figure
1. As an example, the data from a fluid catalytic cracking unit at El Segundo were sent
via teletype to an IBM 7090 mainframe computer, located in San Francisco. The optimal
process settings were computed and sent back to El Segundo every 15-20 minutes, which
were then implemented manually by the operators [7], [12]. After this approach showed
successful results, on-site process computer was installed to remove the need for the

telecommunication and automate the adjustments [7].

But the high cost of such computer-based control at the time, kept it from spreading
within the process industries [9]. In the meantime, the idea of the MPC was still being

reported in the literature [10], [11].

Reference

l/'(ll
Y Plant
Optimizer Z—

Input
uft)

Measurements

Figure 1: Computer-based supervisory control

With the advancement in microprocessor technology in the mid-70s and the
research papers published around that time, the use of model-based computer control

spread rapidly across refineries and petrochemical plants in the Western world [7], [12].
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Thanks to the diverse companies that used this type of control, different approaches
immerged like Model algorithmic control (MAC) and identification and command
(IDCOM) [13]. And eventually, the community agreed to the denomination that is Model
Predictive Control (MPC). These algorithms were heuristic in nature. They employed
time-domain response-based models, e.g. finite impulse response (FIR) and truncated step
response (T'SR) and were completely deterministic without any explicit disturbance model,

and lacked stability guarantees and systematic tuning guidelines [7].

As mentioned before, despite the relatively few applications of the computer-based
supervisory control due to the high cost of computations back then, the adaptive control
independently from the process industry community saw a rise of its own version of MPC
called Generalized Predictive Control (GPC) [7]. The GPC was intended to offer a new
alternative to the self-tuning regulator [14], [15] in contrast to the previous Dynamic
matrix control that was conceived to handle multivariable constrained control problems
typical of the oil and petrochemical industries [10]. The GPC employed a transfer function
model, which makes the application of multivariable control problems quite hard and the
inclusion of constraints was not possible [7]. As a result, GPC went largely unnoticed by

the industry.

During the late 1980’s, researchers founded a theoretical approach for the MPC:
the state-space representation model in continuous time. However, discrete-time models
are required for implementation.

Sus {x[k: + 1] = Azx[k] + Bulk] o)
ylk + 1] = Cx[k] + Du[k] '
Sys is the model of the discrete model of the system described by the linear discrete-

time difference equations where:

o z[i] € R™ is the an n-column vector that contains the state variables and n is
the number of states;

e ufi] € R™ is the an m-column vector that contains the control inputs and m is
the number input variables;

o yli] € R? is the a p-column vector that contains the output variables and p is

the number output variables.

The cost function, or the optimization criterion, is given by:

12
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J = 2T[N,|Pz[N,] + Y [2T[i]Qx[i] + u”[i] Ruli]] (1.2)
i=1
J is the cost function and P, @) and R are its weighting matrices of appropriate

dimensions. The cost function depends on the inputs, the states, the length of the control
horizon and the length of the prediction horizon. the notations x and u are used to
distinguish the predicted state and computed input from the actual state z and

implemented input w.

At each sample time, the control input is determined by solving the following
optimization with the initial state x[0] set equal to the measured (or estimated) state
value:

min J(U,z[k],N,,N,,)

e N, 1 pr+¥m
Ué{'u,[k]}k:” m

(L.3)

Where N, denotes length of the prediction horizon and N,, denotes the length of

the control horizon.
According to [7] and [16], this representation assures the following:

e Stability: The stability can be proven using the fact that the optimal cost function
Jo(z[k]) (infinite horizon) qualifies as a Lyapunov function. Though in practice,
the length of the prediction and control horizon must be finite to ensure feasibility.
Alternate stability conditions and stabilization techniques have been reported in
the literature [17]-[20].

e Robustness: Most control systems are subject to uncertainties, model mismatch
and/or unknown disturbances. However, MPC, being a feedback control method,
has some inherent robustness since no unmeasured disturbance is acting on the
system [16];

e Nonlinear control: Most of the stability results for the constrained linear systems

apply to nonlinear systems without modification [21], [22].

To summarize, more standardized and mathematical properties like stability were
successfully established [7], [12]. Meanwhile, in industries, applications continued to
flourish and small startup vendors got bought out by household names [7]. An important
attraction of MPC is the flexibility that the use of on-line optimization affords in specifying

the performance measure and constraints.

13
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After that and once again, thanks to the technological advancement, a major shift
was seen in the applications of the MPC and interest in the application of MPC in power
electronics has increased considerably over the last decade. A significant number of
applications involving motor drives, renewable energy applications, energy storage
applications [3], [5], [6], [23]-[27] and vehicle traction control [28] are now being reported

in the literature.
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ITI. Model Predictive Control

In general, the main characteristic of predictive control is the use of an explicit
model of the system for predicting the future behavior of the controlled variables based
on measurements that reflect on the current state of the system [3], [8]. This information
is used by the controller to obtain the optimal actuation, according to a predefined

optimization criterion.

Q\ Past Horizon
<«

Figure 2: Prediction horizon

Where N,, = 6 denotes the prediction horizon. The optimal sequence of controlled
variables U, is chosen such that the predicted output sequence Y tracks the output
reference Y. Out of the sequence U, only the first element wu,, is applied to the system

during one sampling period.

The key element of the MPC is the use of a model of the system for predicting the
future behavior of the controlled variables in a predefined horizon in time. This predictive
future behavior is used by the controller to obtain the optimal actuation configuration,
according to a predefined optimization criterion, which is the “cost function”. Then, the

optimal actuation is obtained by minimizing this cost function.
The working principle of MPC can be described by the following steps:

1. Measure and/or estimate the controlled variables, ¢, ;
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2. Predicted the behavior of the controlled variables for each valid switching state of
the converter, ¢, ;
Evaluate the cost function and choosing an optimal actuation, x,,,;

4. Select, store and apply of the optimal state that minimizes the cost function at

the next sampling instant 7T',.

Using MPC it is possible to avoid the cascaded structure which is typically used in

a linear control scheme, obtaining very fast transient responses.

Nonlinearities in the system can be included in the model, avoiding the need to
linearize the model for a given operating point, and improving the operation of the system
for all conditions. It is also possible to include restrictions on some variables when

designing the controller to best satisfy the scope statement.

In a control system it is important to reach a compromise between reference
following and control effort to ensure the feasibility of the algorithm implementation. In
power converters and drives, the control effort is related to the voltage or current
variations, the switching frequency, or the switching losses [3]. Using predictive control, it
is possible to consider any measure of control effort (switching frequency) in the cost

function, in order to reduce it using what is called a “soft constraint” [17].

Other type of constraint often has to be considered, like current limitations in motor
drives [29] to ensure the stability of the system, usually formulated as follows [3].

Essentially penalizing the switching state that violates a certain predefined condition.

o0 ) if ’ C]) ’ > C"H,(I,.’If
N J7 if ‘C])l S C"H,(I,.’If (1.4)
Where ¢, denotes the predicted value of the controlled variable, c,,,, is the maximum

allowed value for the controlled variable and J is the cost function.

II1.1. Model Predictive Control schemes used in power electronics

Predictive control is a very wide class of controllers that have found rather recent
application in the control of power converter. On the basis of modulation and switching
frequency, the predictive control can be subdivided into four parts [3], [30] as shown in

Figure 3.

The deadbeat control uses the model of the system to calculate, once every sampling

period, the required reference voltage in order to reach the reference value in the next
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sampling instant, hence the need of a modulation which requires a fixed switching

frequency, and it lacks the possibility of constraints inclusion [30].

Hysteresis-based predictive control strategies try to keep the controlled system
variables between the boundaries of a hysteresis area or space, while in trajectory-based
control, the principle is to force the system’s variables onto precalculated trajectories [3],
they both don’t require a fixed switching frequency since there is no modulation needed

because the required voltage is calculated based on suitable error boundaries.

MPC, also referred to as receding horizon control, is the only control technique
which has been extremely successful in practical applications in recent decades [30], recent
applications have been mentioned in historical background. An attractive feature of MPC
is that it can handle general constrained nonlinear systems with multiple inputs and
outputs in a unified and clear manner [3], [30]. MPC can be further subdivided into two
categories, continuous control set MPC (CCS-MPC) which requires a fixed switching
frequency and finite control set MPC (FCS-MPC) which doesn’t.

Predictive Control

Y A 4 A
Deadbeat control Hysteresis based Trajectory based Model Pr?ﬁigtci;‘;e Control
- Needs a modulator | | - No modulator - No modulator
- Fixed switching - Variable switching | | - Variable switching
frequency frequency frequency
- Low computations | |- Simple concepts - No cascaded
- Constraints not structure
included
¢ A4
MPC MPC
with continuous with finite control set
control set
- No modulator
- Needs a - Variable switching
modulator frequency
- Fixed switching - Online optimization
frequency - Low complexity
- Constraints can (N=1)
be included - Constraints can be
included

Figure 3: Classification of predictive control methods used in power electronics
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II1.1.1. Model Predictive Control of Matrix Converters
The matrix converter (MC) is a power converter topology that is capable of feeding
an AC-load by an AC-source directly without the need of a storage capacitor. Hence, this
configuration is appropriate for applications in which the converter volume and weight
must be minimized. The MC topology presents many advantages over the conventional
cascaded rectifier—inverter structure such as controllable power factor at the source side,
sinusoidal waveforms at the load and input side with low harmonic content and natural,

bi-directional power transfer.
The most relevant features of a MC are [3]:

The power circuit is compact.

2. It delivers voltages and currents to the load with high quality and without
restriction on the frequency.

3. It can generate sinusoidal input current and operate with unity power factor.

4. It allows power to flow from the source to the load and in the opposite direction.

This means it is very suitable for regenerative loads.

A considerable number of applications of MPC have been proposed for DMCs in
the literature [23], [24], [25], [31], [32], [33].

The Matrix Converter has been proposed by Guygyi-Pelly in 1976 [34], it is a forced
commutated converter which uses an array of controlled bidirectional switches as the main
power elements to create a variable output voltage system with unrestricted frequency. It
does not have any dc-link circuit or components and does not need any large energy storage

elements [35].

In [32], a control method with the features of MPC and space vector modulation
(SVM) is proposed for a direct matrix converter (DMC). The ability to control different
parameters simultaneously is granted by predictive control scheme. The constant
switching behavior of the SVM utilized in this method guarantees that a predictive based
control method can now be used where the traditional associated problems with input
filter sizing, harmonic performance, switching loss and hence thermal management design

can now be addressed in a more predictable and systematic way.

Another application of the MPC of a DMC can be found in [33], The method is
based on the fictitious DC-link concept, so basically it replaces the DMC with an

18
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equivalent converter, the Indirect Matrix Converter (IMC), in order to separate the control

of both input and output stages of the converter.

Figure 4: 8x3 Direct Matriz Converter

The results show that both input and output variables are controlled and respond
quite well to variations of the references both in transient and steady state and that the
operation with a unity power factor is possible and very easy to implement with such

control scheme.

In 1989, the indirect matrix converter was introduced by Holtz and Boelkens [34].
The IMC requires separate stages for the voltage and current conversions but without an
energy storage element in the intermediate link [36], that is why v, is called fictitious dc-

link, or virtual dc-link.

Several applications of MPC have been proposed for IMCs in the literature [24],
[25], [31], [37].

Researchers in [24] proposed a three-level indirect matrix converter controlled FCS-
MPC to achieve load current reference tracking of a RL-load and instantaneous reactive
power minimization even under unbalanced supply voltage to demonstrate the robustness
of the control system. The control algorithm evaluates 48 possible commutation states of
the IMC and chooses specifically the switching states that minimize the cost function. In
order to ensure minimum instantaneous reactive power, dedicated cost function has been

designed to cater the unbalance voltage supply.
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The experimental results proved an excellent load current reference tracking with
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Figure 5: 3x3 Indirect Matriz Converter

low ripple current and the reactive power minimization has been attained by empirical
adjustment of the weighting factor. They concluded that the system behavior is highly

changeable with the values of the weighting factor in the cost function.

Another application of the MPC of an IMC can be found in motor drives [25] where
researchers reduced the torque ripple by exploiting one of the advantages of predictive

control, the weighting factor adjustment.

IV. Particular applications of Model Predictive Control
Some earlier applications have been mentioned before, the following are fairly

recent, particular applications of modern-day MPC.

IV.1. Modulated Model Predictive Control

The classic MPC presents a variable switching frequency which could produce high
ripple in the controlled waveforms or resonances in the input filter [31], or generate a
control signal with a frequency that is higher than the maximum switching frequency of

the power switches, which affects the performance of the system.

To overcome this problem, the Modulated MPC (M2PC) has been proposed. This
solution maintains all the characteristics of MPC (such as fast transient response ,multi-
objective control using only one feedback loop, easy inclusion of non-linearities and

constraints of the system, the flexibility to include other system requirements in the
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controller) adding the advantages of working at fixed switching frequency, thus improving

the quality of the controlled waveforms.

The M2PC utilizes the SVM vector sequence and calculates the duty cycles for each
voltage vector based on the minimization of the cost function. Fixed switching frequency
is ensured in this case as the sequence of the vectors chosen by the control will be applied
within one sampling interval. The difference between a classical MPC and the M2PC is in

the application time of the vectors.

The operation at fixed switching frequency is accomplished by emulating space
vector modulation using predictive control [31]. By merging space-vector modulation
(SVM) within MPC the cost function is used for the optimal selection of the vectors and
the respective duty cycles in a sampling instant which are then applied to the converter

in the next sampling period [38], [32].

IV.1.1. Applications of Modulated Model Predictive Control
In [32], researches investigate the use of M2PC to control a direct matrix converter.

The block diagram of their work is presented in the following figure.

A reference current is imposed upon the system and the controller is designed using
the system model so that the load current tracks the reference. The measured currents are
then used to predict the value of current at (k+1). The reference and predicted currents
are then used to calculate the cost function which in turn is used to derive the duty cycles

for the selected voltage vectors [32].

The study carried a comparison between M2PC, conventional MPC and the
Proportional-Integral (PI) control. The control strategies were applied to a matrix
converter feeding an RL load. The results show that the PI controller generates the lowest
value of the THD of the output current but it has considerably the highest rise-time. Both
predictive control schemes have better transient performance, the rise-time of the M2PC

is a little slower but has better quality of the load current.

In [31], a M2PC for an IMC has been proposed. The main objective of this paper
is to operate with a unity power factor using two different methods. The control scheme

is shown in the following figure.
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Figure 6: Control block diagram for M2PC strategy for a DMC /32/

At every sampling instant T, two active vectors are selected for the rectifier and
two active vectors and one zero vector for the inverter as well as their respective duty
cycles. The switching sequence of the two selected vectors of each side is predefined [31].
And in each method, the switching sequence that minimizes the respective cost function

is selected.

Both methods offer a highly satisfying tracking of the load current to its respective

reference, with almost sinusoidal waveforms and a very low THD.

IV.2. Model Predictive Control with extended prediction horizon
MPC with extended prediction horizon is mostly used for delay compensation [3].

This delay can be caused by measurement instruments or estimators.

Another cause of the delay can also be the future reference, because it is compared
to the predicted value at the cost function after calculating the predicted values of the
controlled variables, which in some cases, requires significant computational time. These
calculations cause the reference given to the algorithm (or microprocessor) to be different

from the actual reference at that instant.
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) Application of the o
Calculation . New sampling instant
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Figure 7: Timing of different tasks of MPC

Where:

e 7, denotes the time required to acquire a new reference and measurments;
e 7, denotes the time required to calculate the predicted values of the controlled

variables for each possible switching state.

Let € be an instant between 7, and 7,. If the reference varies with time, it is clear
that ref e #ref t, , especially when the sampling frequency is not much higher than the
frequency of the reference. This error can deteriorate the performance of the system if not

considered in the design of the controller

A simple solution to compensate this delay is to take into account the calculation
and/or measurement time and apply the selected switching state at the proper sampling
instant [39]. For that, an extended prediction horizon is needed and the tasks shown in

Figure 7 are modified as follows [32]:

Measure and/or estimate controlled variables, ¢;;

N

Calculation of the predicted variables for each valid switching state using the
mathematical model of the system, ¢, ;
Evaluation of the cost function and choosing an optimal actuation x,;

Redo step 2 while replacing the measured value by ¢, that corresponds to z,,,

Calculation of the predicted variables for each valid switching state, ¢,

Evaluation of the cost function for each valid switching state;

NS ok w

Selection and application of the optimal state that minimizes the cost function.

It is obvious that this solution requires heavy computational efforts, the
computational complexity grows exponentially with the length of the prediction horizon

and the number of controlled variables.

Another approach is adjust (or estimate) the reference [40]. For sinusoidal
references and large sampling times, the use of extrapolation methods for the reference

can compensate the delay in the reference tracking in predictive control schemes [3].
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A possible solution is to calculate the one-step-ahead prediction using the actual
current reference in the nth-order formula of the Lagrange extrapolation [41] given by:

n

h+1)=) -1t [nj 1] rlk+1—4] (L5)

7=0

1 . . . .
Where [n—; } denotes the combinatorial operator. This method requires the

storage of the most recent n values.

IV.2.1. Applications of MPC with extended prediction horizon
In [42], researchers used the first solution to reduce torque ripples of an induction
machine driven by a two-level voltage-source inverter (2LVSI). They adopted the Model
Predictive Torque Control (MPTC) with an extended prediction horizon.

According to their simulation results, by extending the prediction horizon,
important drive quality indices, such as the torque ripple, and the total harmonic
distortion (THD) of the stator currents are reduced and the controller is able to improve
its closed-loop performance, both under steady state and transient state operating

conditions, while enhancing its robustness and stability.

In [3], the authors calculated the future references using the extrapolation (I.5).
Where they applied the Model Predictive Current Control (MPCC) to a 2L VSI feeding a
resistive-inductive (RL) load. The results show that the estimation of future references

achieved an improvement in the waveform of the output current.

These simple compensation methods allow inclusion of the delay in the predictive

control schemes and avoid the appearance of large ripples in the controlled variable.

IV.3. Non-linear Model Predictive Control

Many systems are inherently nonlinear. The inherent nonlinearity, together with
higher product quality specifications and tighter environmental regulations require to
operate systems over a wide range of operating conditions and often near the boundary of
the admissible region [21]. Under these conditions linear models are often not sufficient to

describe the process dynamics adequately and nonlinear models must be used [43].

While linear model predictive control is popular since the 70s of the past century,
only since the 90s there is a steadily increasing interest from control theoreticians as well

as control practitioners in nonlinear model predictive control (NMPC) [21]. Nonlinear
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predictive control is the extension of the well-established linear predictive control to the

nonlinear world.

Whereas linear MPC refers to a family of MPC schemes in which linear models are
used to predict the system dynamics, NMPC refers to MPC schemes that are based on
nonlinear models and/or consider general nonlinear constraints. Though, the working
principle is pretty much the same. In NMPC the input applied to the system is usually
given by the solution of an optimization problem [22] i.e., a cost function. Nonlinear

continuous time systems are described by the following nonlinear differential equation:

zt =f(zt,ut), 0 =z, (1.6)
Where z t € R" and v ¢ € R™ denote the vector of states and inputs, respectively. u and
z are often given by box constraints of the form [21]:

U={ueR"|u

X={ueR"|z

a"nd x’nly(l,.'li

min

Su< umm'}
4 .7
<z < x’"},(},!l?} ( )

are usually finite constant vectors.

min

Where u U, T

min’ “max’ min

IV.3.1. Stability of Non-linear Model Predictive Control
According to the authors of [21] and [22], the ideal NMPC strategy achieves closed-
loop stability independent of the choice of the parameters and, if possible, approximates
the infinite horizon NMPC scheme as good as possible (N, and N, in (I.3) are set to co),
which is the first approach to achieve stability. However, normally the solution of a
nonlinear infinite horizon optimal control problem cannot be calculated, or at least not

sufficiently fast.

Given that infinite horizon NMPC schemes are impractical, finite prediction and
control horizons are considered. One approach to ensure stability in finite horizon NMPC,
otherwise known as FCS-NMPC, is to add equality or inequality constraints and suitable
additional penalty terms in the cost function. These are considered as hard constraints,
also known as stability constraints [21]. This implies explicitly that the state z ¢ should

obey to the scope statement.

Another approach is the terminal constraint or zero terminal equality constraint

[22], the constraint is expressed as:

T <t + %) =0 (L.8)
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Where T, is the time step, or sampling period. This allows the cost function to be qualified

as a Lyapunov function [16], [44].

IV.3.2. Applications of non-linear Model Predictive Control
Areas with the largest number of reported NMPC applications include chemicals,

polymers, and air and gas processing [9].

The authors of [43] proposed a model predictive online optimization scheme for the
engine torque control problem. The control-oriented model is based on the intake air
charging dynamics and torque generation model which are derived from the mean value
model. In order to reduce the tracking error induce by the insufficient accurate predictive
model, an embedded integrator about the tracking error is designed. Then, the online
optimization algorithm namely continuation and generalized minimum residual method
(C/GMRES) is adopted to solve the nonlinear optimal problem.

The utilization of dynamic driving test system has been progressively popular in
the automotive community in both research and industrial applications [44]. Test system
platforms with various mechanical structures have been intended to target specific
applications and markets. The driver sensations are replicated by these platforms [45],
while the mechanical imperatives must be fulfilled to keep away from incidents [46], which

causes a highly nonlinearity in the system.

A survey that was published in the year 2003 revealed that the number of
applications of linear MPC largely exceed the number of applications of NMPC [9], this
reflects on practical problems encountered in the latter control scheme, which are
considerably more challenging than those associated with linear MPC, and computational
complexity of NMPC algorithms [9], [21].
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V. Conclusion

Four decades ago, since the Dynamic Matrix Control was first introduced [10], the
research community showed interest in MPC [7]. Since then, MPC technology has
progressed steadily and its scope of application expanded from process industry, where
time constants are long enough to perform all the required calculations [9], all the way to
power electronics and motor drives applications, where time constants are exponentially
shorter [3].

Current generation MPC technology offers significant new capabilities thanks to
the technological advancement of microprocessors, but several limitations still remain. For
instance, the delay caused by measurements and calculations time. Nevertheless, the delay

compensation is still a subject of research [39], [42], [47].

MPC covers a wide family of control schemes. This thesis presents an overview of

different predictive control methods, alongside with some applications.

The general philosophy underlying predictive control is that by embedding “process
knowledge” into the controller, improved performance can be attained. MPC now has a

broad range of applications thanks to its advantages:

e very simple and intuitive concepts;
e multivariable case can be easily considered;
e eagsy inclusion of constraints and non-linearities;

e robustness.

27



References

References

1]

[10]

[11]

J. Holtz, “Pulsewidth modulation for electronic power conversion,” Proceedings of
the IEFE, vol. 82, no. 8, pp. 1194-1214, 1994.

Q. Lei, F. Z. Peng, and B. Ge, “Pulse-width-amplitude-modulated voltage-fed quasi-
Z-source direct matrix converter with maximum constant boost,” 2012, pp. 641-646.

J. Rodriguez and P. Cortes, Predictive control of power converters and electrical
drives, vol. 40. John Wiley & Sons, 2012.

A. M. Dadu, S. Mekhilef, and T. K. Soon, “Lyapunov model predictive control to
optimise computational burden, reference tracking and THD of three-phase four-leg
inverter,” IET Power Electronics, vol. 12, no. 5, pp. 1061-1070, 2019.

M. Abdelrahem, Z. Zhang, R. Kennel, H. Eldeeb, and C. Hackl, “Simple and robust
direct-model predictive current control technique for pmsgs in variable-speed wind
turbines,” 2017, pp. 1-6.

M. Abdelrahem, C. Hackl, R. Kennel, and J. Rodriguez, “Sensorless Predictive Speed
Control of Permanent-Magnet Synchronous Generators in  Wind Turbine
Applications,” 2019, pp. 1-8.

J. H. Lee, “Model predictive control: Review of the three decades of development,”

International Journal of Control, Automation and Systems, vol. 9, no. 3, p. 415, 2011.

C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and
practice—a survey,” Automatica, vol. 25, no. 3, pp. 335-348, 1989.

S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control
technology,” Control engineering practice, vol. 11, no. 7, pp. 733-764, 2003.

C. R. Cutler and B. L. Ramaker, “Dynamic matrix control?? A computer control
algorithm,” 1980, no. 17, p. 72.

J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic control,”
Automatica (Journal of IFAC), vol. 14, no. 5, pp. 413-428, 1978.

28



References

[12]

[18]

[19]

[21]

T. M. Stout and T. J. Williams, “Pioneering work in the field of computer process
control,” IEEE Annals of the History of Computing, vol. 17, no. 1, pp. 6-18, 1995.

J. B. Froisy, “Model predictive control: Past, present and future,” Isa Transactions,
vol. 33, no. 3, pp. 235-243, 1994.

D. W. Clarke, C. Mohtadi, and P. Tuffs, “Generalized predictive control—Part I.
The basic algorithm,” Automatica, vol. 23, no. 2, pp. 137-148, 1987.

D. W. Clarke, C. Mohtadi, and P. Tuffs, “Generalized predictive control—part II
extensions and interpretations,” Automatica, vol. 23, no. 2, pp. 149-160, 1987.

A. Bemporad and M. Morari, “Robust model predictive control: A survey,” in
Robustness in identification and control, Springer, 1999, pp. 207-226.

E. G. Gilbert and K. T. Tan, “Linear systems with state and control constraints: The
theory and application of maximal output admissible sets,” IEFEE Transactions on
Automatic control, vol. 36, no. 9, pp. 1008-1020, 1991.

S. a Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback laws for a general
class of constrained discrete-time systems: Stability and moving-horizon
approximations,” Journal of optimization theory and applications, vol. 57, no. 2, pp.
265-293, 1988.

D. Chmielewski and V. Manousiouthakis, “On constrained infinite-time linear
quadratic optimal control,” Systems € Control Letters, vol. 29, no. 3, pp. 121-129,
1996.

M. Sznaier and M. J. Damborg, “Heuristically enhanced feedback control of
constrained discrete-time linear systems,” Automatica, vol. 26, no. 3, pp. 521-532,

1990.

F. Allgower, R. Findeisen, and Z. K. Nagy, “Nonlinear model predictive control: From
theory to application,” Journal-Chinese Institute Of Chemical Engineers, vol. 35, no.
3, pp. 299-316, 2004.

J. B. Rawlings, E. S. Meadows, and K. R. Muske, “Nonlinear model predictive
control: A tutorial and survey,” IFAC Proceedings Volumes, vol. 27, no. 2, pp. 185—
197, 1994.

29



References

23]

[26]

[27]

[28]

[29]

[30]

32]

S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model
predictive control for power converters and drives: Advances and trends,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 2, pp. 935-947, 2016.

H. M. Basri, K. Lias, and S. Mekhilef, “Digital Predictive Current Control Fed by
Three-Level Indirect Matrix Converter under Unbalanced Power Supply Condition.”

M. Uddin, S. Mekhilef, M. Rivera, and J. Rodriguez, “Predictive indirect matrix
converter fed torque ripple minimization with weighting factor optimization,” 2014,
pp- 3574-3581.

M. P. Akter, S. Mekhilef, N. M. L. Tan, and H. Akagi, “Modified model predictive
control of a bidirectional AC-DC converter based on Lyapunov function for energy
storage systems,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp.
704-715, 2015.

M. P. Akter, S. Mekhilef, N. M. L. Tan, and H. Akagi, “Model predictive control of
bidirectional AC-DC converter for energy storage system,” Journal of FElectrical
Engineering € Technology, vol. 10, no. 1, pp. 165-175, 2015.

F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat, “An MPC/hybrid system
approach to traction control,” IEEE Transactions on Control Systems Technology,
vol. 14, no. 3, pp. 541-552, 2006.

F. Wang, Z. Chen, P. Stolze, R. Kennel, M. Trincado, and J. Rodriguez, “A
comprehensive study of direct torque control (DTC) and predictive torque control
(PTC) for high performance electrical drives,” EPE Journal, vol. 25, no. 1, pp. 12—
21, 2015.

P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez,
“Predictive control in power electronics and drives,” IEEE Transactions on industrial
electronics, vol. 55, no. 12, pp. 4312-4324, 2008.

M. Rivera, U. Nasir, L. Tarisciotti, P. Wheeler, T. Dragicevic, and F. Blaabjerg,
“Predictive control strategies for an indirect matrix converter operating at fixed

switching frequency,” 2017, pp. 1-6.

M. Vijayagopal, P. Zanchetta, L. Empringham, L. De Lillo, L. Tarisciotti, and P.
Wheeler, “Control of a direct matrix converter with modulated model-predictive

30



References

[41]

control,” IEEFE Transactions on Industry Applications, vol. 53, no. 3, pp. 2342-2349,
2017.

M. Rivera, L. Tarisciotti, P. Wheeler, and S. Bayhan, “Indirect predictive control
strategy with fixed switching frequency for a direct matrix converter,” 2017, pp. 7332—
7337.

A. Benachour, “Commande sans capteur basée sur DTC d’une machine asynchrone
alimentée par Convertisseur Matriciel,” PhD, ENP, Algiers, 2017.

P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, “Matrix
converters: A technology review,” IEEE Transactions on industrial electronics, vol.

49, no. 2, pp. 276-288, 2002.

J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase
PWM AC-AC converter topologies,” IEEE Transactions on Industrial Electronics,
vol. 58, no. 11, pp. 4988-5006, 2011.

S. M. Uddin, S. Mekhilef, M. Rivera, and J. Rodriguez, “A FCS-MPC of an induction
motor fed by indirect matrix converter with unity power factor control,” 2013, pp.
1769-1774.

B. Majmunovié¢, T. Dragicevi¢, and F. Blaabjerg, “Multi objective modulated model
predictive control of stand-alone voltage source converters,” IEEE Journal of
Emerging and Selected Topics in Power Electronics, 2019.

F. Wang, Z. Zhang, R. Kennel, and J. Rodriguez, “Model predictive torque control
with an extended prediction horizon for electrical drive systems,” International

Journal of Control, vol. 83, no. 7, pp. 1379-1388, 2015.

C. Zheng, T. Dragicevi¢, B. Majmunovi¢, and F. Blaabjerg, “Constrained Modulated
Model-Predictive Control of an LC-Filtered Voltage-Source Converter,” [EFEE
Transactions on Power Electronics, vol. 35, no. 2, pp. 1967-1977, 2019.

A. Dekka, B. Wu, V. Yaramasu, R. L. Fuentes, and N. R. Zargari, “Model predictive
control of high-power modular multilevel converters—An overview,” IEEE Journal

of Emerging and Selected Topics in Power FElectronics, vol. 7, no. 1, pp. 168183,
2018.

31



References

[42] 1. Alevras, P. Karamanakos, S. Manias, and R. Kennel, “Variable switching point
predictive torque control with extended prediction horizon,” 2015, pp. 2352-2357.

[43] M. Kang and T. Shen, “Nonlinear model predictive torque control for IC engines,”
2014, pp. 804-809.

[44] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. Kolmanovsky, “The development
of model predictive control in automotive industry: A survey,” 2012, pp. 295-302.

[45] L. Fridman et al., “MIT advanced vehicle technology study: Large-scale naturalistic
driving study of driver behavior and interaction with automation,” IEEE Access, vol.
7, pp- 102021-102038, 2019.

[46] Y. Chen, “Algorithms and Applications for Nonlinear Model Predictive Control with
Long Prediction Horizon,” 2018.

[47] Y. Han, C. Gong, L. Yan, H. Wen, Y. Wang, and K. Shen, “Multi-Objective Finite
Control Set Model Predictive Control Using Novel Delay Compensation Technique
for PMSM,” IEEE Transactions on Power Electronics, 2020.

32



	TABLE OF CONTENTS
	TABLE OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	I. Introduction
	II. Historical background
	III. Model Predictive Control
	III.1. Model Predictive Control schemes used in power electronics
	III.1.1. Model Predictive Control of Matrix Converters


	IV. Particular applications of Model Predictive Control
	IV.1. Modulated Model Predictive Control
	IV.1.1. Applications of Modulated Model Predictive Control

	IV.2. Model Predictive Control with extended prediction horizon
	IV.2.1. Applications of MPC with extended prediction horizon

	IV.3. Non-linear Model Predictive Control
	IV.3.1. Stability of Non-linear Model Predictive Control
	IV.3.2. Applications of non-linear Model Predictive Control


	V. Conclusion
	References

