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 :ملخص

توليف ببليوغرافي عن مساهمة شبكات الخلايا العصبية الاصطناعية في تحسين أداء الغرض من هذا الموضوع هو وضع  

 .التحكم القائم على النموذج التنبؤي المطبق على المحولات الثابتة

 

 والذكاء الاصطناعي الاصطناعية،العصيونيةشبكة الالنموذج،: التحكم التنبؤي القائم على الكلمات المفتاحية

 

 

 
Abstact 

The purpose of this topic is to make a bibliographical synthesis on the contribution of 

artificial neuron networks (ANN) for the improvement of the performance of predictive 

model-based control (MPC) applied on static converters. 

 

Keywords: model-based predictive control (MPC), artificial neuron network (ANN), 

artificial intelligence. 

 

Resumé 

Le but de ce sujet est de faire une synthèse bibliographique sur l’apport desréseaux de 

neurone artificiel (ANN) pour l’amélioration des performances de la commande prédictive à 

base dumodèle (MPC) appliquée sur les convertisseurs statiques. 

 

Mots clés : commande prédictive à base du modèle (MPC), réseau de neurone artificiel 

(ANN), intelligence artificielle. 
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Introduction 

In recent decades, control of electrical drives has been widely studied. Linear methods like 

proportional-integral (PI) controllers using pulse width modulation (PWM) and  nonlinear 

methods such as hysteresis control have been fully documented in the literature and 

dominate high performance industrial applications [1, 2]. The most widely used linear 

strategy in medium and low power electrical drives is field-oriented control (FOC) [3–4], in 

which a decoupled torque and flux control is performed by considering an appropriate 

coordinate frame. A nonlinear hysteresis-based strategy such as direct torque control (DTC) 

appears as a solution for medium and high power applications [4]. By the end of the 1970s, 

model predictive control (MPC) was being used in the petrochemical industry [5–6]. The 

term MPC does not imply a specific control strategy, rather it covers a wide variety of 

control techniques that make explicit use of a mathematical model of the process and a 

minimization of an objective function to obtain the optimal control signals [7]. The slow 

dynamics of chemical processes allow long sample periods, providing enough time to solve 

the online optimization problem. Nowadays, the use of digital signal processors (DSP) and 

the development of powerful and fast microprocessors have made it possible to use MPC in 

the power electronics field. The continuously increasing computational power of some 

common hardware platforms for Power Electronics applications. The first ideas about 

applying MPC to power converters surfaced in the 1980s [8,9]. The main concept is based 

on calculating the system’s future behavior to compute optimal values for the actuating 

variables. 

I.1 FSC-MPC in power electronics and drives 

Due to the broad range of MPC methods [10, 11], the MPC techniques applied to power 

electronics have been classified into two main categories: Classical MPC and finite control 

set MPC (FCS-MPC) or Finite-State MPC (FS-MPC) or direct MPC (DMPC) [11]. In the 

first type e.g., [12] and [11], the control variable is usually the converter output voltage, in 

the form of a duty cycle that varies continuously between its minimum and maximum 

magnitude, while an open-loop receding horizon optimization problem is solved at every 

sampling step to calculate this voltage. On the other hand, the second type, FCS-MPC, uses 

the inherent discrete nature of the power converter to solve the optimization problem. 



 
State of art 

 

2 

Here, the discrete-time model of the system is evaluated for every possible actuation 

sequence up to the prediction horizon𝑵𝒑. Then, the outcomes of these predictions are 

compared to the reference to select an actuation sequence that best fits the control 

objectives. Several works have reported the use of this technique on power converters such 

as the two-level voltage source inverter (2L-VSI) [13], three-level neutral-point-clamped 

(3LNPC) [14], cascade H-bridge inverter (CHB) [15], flying capacitor inverter (FCI) [16], 

and matrix converters (MC) [17], whereas the use on electrical drives fed by 2L-VSI and 

3L-NPC has been reported in [18–19] and [20,21] respectively. Each application and 

converter topology has its own control objectives but uses basically the same general 

control formulation [22]. In drive applications, FCS-MPC can be classified into two main 

categories according to the length of the prediction horizon: large prediction horizon𝑵𝒑 ≥

 2 and short prediction horizon N p = 1. An example of a large prediction horizon FCS-MPC 

formulation can be found in [23]. Where a finite state model of a stator current control 

scheme is presented(PCC). In [24, 21] the same technique is used, but torque and stator 

flux are controlled.A comprehensive comparison between the steady state performance of 

short and largeprediction horizon FCS-MPC with respect to FOC using PWM is presented 

in [25]. The main performance criteria is the compromise between switching losses and 

stator current (and torque) harmonic distortion achieved by each method. As expected, 

longer prediction horizons yield better steady state performance than horizon one. 

However, when larger prediction horizons or more complex converter topologies are 

considered, the number of calculations grows significantly. The use of only one-step 

prediction is a less demanding alternative in terms of computational effort and it is chosen 

in the current work as a benchmark to assess the transient performance of FCS-MPC 

method against FOC with linear controllers and PWM, [26]. In the recent years, the 

application of the FCS-MPC in Power Electronics has been tested and proven both 

theoretically and experimentally. However, the implementation of FCSMPC in the 

different power converters has given rise to some questions, such as the stability of the 

control scheme with short and long horizons [27, 28], steady-state error issues [29], 

weighting factors calculation and the switching frequency operation. Some of these open 

questions are collected in [30]. A distinctive feature of the FCS-MPC approach is the 

control flexibility that allows controlling current, voltage, torque, flux and other variables 

by designing a suitable cost function.  
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I.2 Model predictive control 

In Model-based Predictive Control or Model Predictive Control (MPC), the controller 

uses the previous and current values to predict the future behavior, it can be computed in a 

defined prediction horizon. The optimum switching state is selected according to the 

minimization of a cost function. This scheme can be implemented by considering the 

inverter control in the algorithm, otherwise a modulator is needed (Classical MPC or 

continuous control-set MPC or Explicit MPC).  

 

Figure I- 1 :Working principle of MPC 

I.2.1 Continuous control-set model predictive control 

The total response of the system is computed by summing the natural and forced 

response. This addition is calculated until the so-called prediction horizon 𝑁𝑝 is reached. 

Then, the optimization is carried out by minimizing the cost function for control action 

variable. The selection of the structure of the cost function depends on the variables which 

are controlledand their references. Linear and quadratic cost functions are usually selected 

with the corresponding weighting factors, which may penalize the reference tracking with 

respect to the control effort. In theory, MPC is able to approximate the performance over 

an infinite prediction horizon. Unfortunately, the constrained optimization problem needs 

to be solved online to find a controller output. It has computational complexity, which 
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increases with the prediction horizon. As a consequence, the optimization horizon allows to 

trade off performance versus online computational effort 

I.2.2 Finite control-set model predictive control 

FCS-MPC is based on the discrete nature of the converter. In FCS-MPC, the optimal 

control input among a finite set of control actions, the viable combination of the switching 

states, are chosen [31]. Due to the advantages of not requiring a modulation strategy and 

simplicity, FCS-MPC is extensively adopted in many applications, such as control of power 

electronic converters [32–33]. 

I.3 Cost function 

The most common terms in a cost function are the ones that represent a variable following 

a reference. Some examples are current control, torque control, power control. These terms 

can be expressed in a general way as the error between the predicted variable and its 

reference 

I.3.1 MPC’s Elements 

 

Figure I- 2 :Basic structure of MPC 

All the MPC algorithms possess common elements and different options can be chosen for 

each one of these elements giving rise to different algorithms. These elements are: 

-  Prediction Model  

-  Objective Function  

- Obtaining the control law 
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   All this makes the existing MPC algorithms suffer from a major challenge: relatively low 

computation efficiency [34] and huge amount of real-time calculations [35]. 

I.4 Optimization algorithm 

The minimization of the cost function is performed by an exhaustive search for all 

feasible converter actuation. The proposed control strategy can be described in the 

following sequence: 

• Step 1 Measurement: Sampling to get measurable state variables 𝒙(𝑘). 

•  Step 2 Apply: Set the optimal actuation 𝒖𝑜𝑝𝑡(𝑘) found in the previous loop 

iteration. 

•  Step 3 Extrapolate: Extrapolate the discrete-time model using 𝒖𝑜𝑝𝑡(𝑘) to 

estimate∆𝒚(𝑘 +  1). 

• Step 4 Predict: Predict the control variables for every possible actuation vector 

𝒖(𝑘 +  1), using ∆𝒚(𝑘 +  1) as an initial condition for ∆𝒚(𝑘 +  2). 

• Step 5 Optimize: Select optimal𝒖𝑜𝑝𝑡. Return to Step 1. 

 In drive applications there exist some variableswhich its measurement is a hard or 

unpractical, e.g., measurement of fluxes in an inductionmachine. For this reason, an 

estimation step is needed in the algorithm. 

I.5 The major problem of the MPC 

     The Model Predictive Control (MPC) is a well-established technique for process control 

that has been applied to electrical systems, so after the three decades of the gradual 

development, so what remains now?  [36] 

   At present, the MPC suffer from many problems, such as the lack of systematic handling 

of uncertainty. Therefore, it is necessary to improve the predictionaccuracy for mismatched 

prediction models. The other problem is howto design the cost functions and the weight 

coefficients [37][38] .One of the other drawback of MPC is that it requires the optimization 

problem to be solved online 
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CHAPITRE II:  

II.1 Artificial neural network 

ANN is a non-linear statistical data modelling tool mimicking the neural structure of 

the human brain. NNs are composed of simple elements operating in parallel. These 

elements are inspired by biological nervous systems. As in nature, the network function is 

determined largely by the connections between elements. ANN is trained to perform a 

particular function by adjusting the values of the connections (weights) between elements. 

Each such single element is called a neuron. Neurons are arranged in different layers 

including input layer, hidden layer(s) and output layer. The number of neurons and layers 

in an ANN model determine the degree ofcomplexity of the network.  

II.2 Histories 

Non-analytical methods discussed in the thesis consider identified system as a “black box” 

and identify parameters of the model by using a set of data gatheredfrom system’s input 

and output. When these methods are used, the structure ofthe model has to be chosen 

before starting the identification procedure or turnedduring it by a predefined algorithm. 

The structure of the model significantlydepends on its application. For model based control 

considered in this work, itshould satisfy the needs of the control algorithm. 

The history of developing technical systems based on interconnection of nodes representing 

mathematical models of biological neurons takes its start from the year 1943 when 

McCulloch and Pitts proposed a mathematical model of the neurons [39]. This model is 

called an artificial neuron and is used in the most artificial neural networks based 

applications until nowadays. This model proposed almost 65 years ago is also a major basic 

element in systems discussed in this thesis. Learning machine built by Edmonds and 

Minsky in 1951 can be considered as the first artificial neural network simulator. This 

neural network learning machine, called SNARC (Stochastic Neural-Analog Reinforcement 
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Computer), was based on Hebb’s ideas [40] replicating mathematically what happens when 

synaptic transmissions occur in the brain [41]. Nevertheless the real beginning of neural 

networks (NNs) and NN-based learning the invention of a simple neuron like learning 

network by Rosenblatt [42] in 1962. This simplest layered fully connected neural network 

is called perceptron. Today multilayer perceptron is still the most popular and the most 

widespread neural network structure because of its very good and proofed [43] 

approximation capabilities.It has to be mentioned that very little research was done in the 

area until about the 1980s mainly because of high computational complexity of training 

the networks that are capable of solving difficult problems. However, many of the artificial 

neural networks in use today are still based on the early advances of the McCulloch-Pitts 

neuron and the Rosenblatt perceptron. The majority of practical neural network based 

control applications utilize multilayer perceptron as the structure of the network. 

Numerous examples and research results can be found in literature demonstrating very 

good approximation, identification and adaptation abilities of this type of neural networks 

and their relevance to controlsystems design. Majority of research is pointed to 

approximation capabilities of neural networks and application of this property in technical 

systems. At the same time significantly lower attention is paid to the structure of the 

neural network. During the last 20 years multilayer perceptron has shown its very good 

approximation capabilities and applicability for solving a lot of complex problems from 

very different fields and therefore it is too general to be the best in each particular 

application. 

II.3 ANN modeling approach 

There are many challenges in the building operation of neural networks model, which can 

besummarized as follows: 

• Finding the best neural network type. 

• Finding the best training algorithm. 

• Finding the best activation function. 

• Finding the system order. 
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• Finding the number of the neurons in the hidden layer. 

II.4 Model predictive control based on neural network 

  In the last few decades, there has been a significant evolution of traditional control 

techniques in parallel with the appearance of modern tools associated with artificial 

intelligence. It should be noticed that most of classical model-based control methods, 

including nonlinear ones, require the knowledge of the controlled system by means of set of 

algebraic and differential equations,. Moreover, complete mathematical models describing 

the systems are often very complex and their parameters need to be known. In real 

applications, some parameters may be hard to measure or their identification is very 

complicated. In order to overcome these problems, it is beneficial to use artificial 

intelligence techniques, such as neural networks, fuzzy logic and genetic algorithms , which 

do not need the controlled system models and use expert knowledge or experimental data 

for controller training [43]. 

Recently, based on a biological prototype of the human brain, the neural networks have 

attracted considerable attention for modeling uncertain, nonlinear, and complex systems, 

owing to their learning and adaptation capabilities [44], [45]. In general, the structures of 

neural networks can be classified as feed-forward NN and recurrent NN [46] 

II.4.1 Overview of neural networks 

  In general, ANN systems are capable of “learning” trends in a given data set and 

establishing input–output relationships based strictly on a “test” set of data. 

II.4.1.1 The construction of ANN systems  

The basic element in neural network systems is called a neuron. The neuron accepts one 

input𝑥 , and produces an output value 𝑦, based on the (generally) nonlinear function. 

However, there is no way to determine beforehand which choice of this function will 

produce the best results for a particular problem. A complete multilayer neural network 

system is constructed by combining neurons in series (from left to right) and parallel (from 

top to bottom). [47] 

 



 
State of art 

 

9 

 

Figure II- 1: A three-layer neural network system 

A layer is defined to be a set of parallel-connected neurons, or “nodes.” The hidden and 

output layers are identical in both form and functionality; they give the network its ability 

to “learn” complex nonlinear relationships between inputs and outputs. [47] 

II.4.1.2 The ANN’s working principle  

ANN’s perform their calculations using the nonlinear functions and simple multiplying 

factors, called weights that are associated with a pathway between any two neurons.In its 

basic form, this model can be expressed as an iterative composition of input-output 

functions of the form [47] 

𝑓(�⃗�) = ℎ (𝑤0 + ∑ 𝑤𝑖𝑥𝑖

𝑀

𝑖=1

) 

Where ℎ(𝑥) is an activation function ,  �⃗�= {𝑥1, 𝑥2, · · · , 𝑥𝑀 } is the input vector of the 

ANN with M elements, 𝑤𝑖 are the weights for each input xi , and 𝑤0 is a bias or correction 

factor. The objective of the ANN training phase is to optimize some cost function by 

finding optimal values for the 𝑤𝑖 and  𝑤0 [47].  The weights are updated in a manner such 

that the complete network “learns” to produce a specific output for a specific input. The 

process of adjusting the weights to achieve a specified accuracy level is referred to as 

“training.” [48] 
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II.4.1.3 The training of ANN  

The major justification for the use of ANN’s is their ability to “see” and “learn” 

relationships in complex data sets that may not be easily perceived by human engineers. 

An ANN system performs this function as a result of “training” which, in words, is a 

process of repetitively presenting a set of training data (typically a representative subset of 

the complete set of data available) to the network and adjusting the weights so that each 

input data set produces the desired output [49]. 

II.4.1.4 Learning Algorithm Categorization 

Neural networks are trained by two main types of learning algorithms: supervised and 

unsupervised learning algorithms. 

Supervised Learning: a supervised learning algorithm adjusts the strengths or weights 

of the inter-neuron connections according to the difference between the desired and actual 

network outputs corresponding to a given input. Thus, supervised learning requires a 

"teacher" or "supervisor" to provide desired or target output signals. The network employs 

a special one-step procedure during "learning" and an iterative procedure during recall.[50] 

Unsupervised Learning: unsupervised learning algorithms do not require the desired 

outputs to be known. During training, only input patterns are presented to the neural 

network which automatically adapts the weights of its connections to cluster the input 

patterns into groups with similar features. [50] 

II.4.1.5 Classes of neural network   

a- The feed-forward neural net  

FNN tend to be straightforward networks that allow signals to travel one way only, from 

input to output. There are no feedback (loops); i.e. the output of any layer does not affect 

that same layer. Most of the works on nonlinear MPC (NMPC) use FNN, for example  In 

[51] , S.Tiwari, R. Naresh, and R. Jha  realize a neural network model predictive controller, 

by using the FNN, for predictive control of the power system to improve its transient 

stability. Yan and Wang in [62] introduce a robust MPC based on a FNN  The results show 

that this robust MPC could improve computational efficiency and shed a light for real-time 
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implementation. However, the main drawback of FNN that their capability for 

representing nonlinear systems is limited [62] 

 

Figure II- 2: The feed-forward neural network 

b- The recurrent neural net  

RNN can have signals traveling in both directions by introducing loops in the network. 

They are capable of providing long-range predictions even in the presence of measurements 

noise due to their structures. Therefore, RNN are better suited to model nonlinear systems 

for MPC. Pan and Wang in  [63]  use an echo state network to identify unknown nonlinear 

dynamical systems for NMPC. The results show that the echo state network-based NMPC 

can reach the global convergence. RNN improved performance in terms of global 

convergence and reduced model complexity [64].Examples of recurrent networks 

include the Hopfield network [Hopfield, 1982], the Elman network [Elman, 1990] 

and the Jordan network [Jordan, 1986]. [62] 

 

 

 

Figure II- 3: Simple recurrent neural network 
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c- Self-organizing neural network  

 

The class of methods that have been often termed "self-organizing maps" (SOM) involve 

iterative procedures for associating a finite number of object vectors (inputs) with a finite 

number of representational points [63]. A self-organizing neural network consists of two 

parts: main part and control part. The main part, structurally, is the same as an ordinary 

3-layered feed-forward neural network, but each neuron in its hidden layer contains a signal 

from the control part, the main part is trained by a supervised learning and learns input-

output mapping. The control part consists of a self-organizing map (SOM) network  [64] 

whose outputs associate with the hidden neurons in the main part one by one and control 

the firing strength; the control part is trained by an unsupervised learning [65]. 

 

 

 
 

Figure II- 4 :Diagram of a Self-Organizing Map 

II.4.2 How ANN Systems are applied 

  ANN systems must be applied to problems for which a suitable amount of training data 

exists; it may come from historical records from measured data. The system will only 

perform as well as it has been trained [61].  In our case, the objective is to drive a three- 

phase’s inverter. Therefore, we use MPC as an expert or a teacher for generating the data 

required for training off-line the proposed neural network using standard supervised 

learning, under full state observation of the system, once the off-line training is performed, 

the trained ANN can successfully control the output voltage of the inverter, without the 

need of using MPC at test time. 
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Figure II- 5: An overview of the proposed control strategy 

II.5 Conclusion 

Artificial Intelligence (AI) techniques, particularly the neural networks, are recently 

having significant impact on power electronics. This thesis explores the perspective of 

neural network applications in the intelligent control for power electronics circuits. 

Neural network based model predictive control for linear and nonlinear systems fed many 

topologies of power converter (inverter, direct matrix converter, indirect matrix 

converter…) prove its performance in many terms such as: 

Improvement of output current in term lower THD compared to model predictive control, 

minimization of signals ripples m flux and torque in induction machine  

In nowadays neural network take its part in field of electrical engineering particularly on 

power converter. 
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