الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Ecole Supérieure des Sciences Appliquées d'Alger

وزارة التعليم العالي والبحث العلمي المدرسة العليا في العلوم التطبيقية بالجزائر

Département du second cycle

Mémoire de Fin d'Etudes

En vue de l'obtention du diplôme de Master

Filière : Génie des Procédés
Spécialité : Procédés Organiques

Thème:

Etude de la colonne de distillation dépropaniseur installée au niveau du Complexe GL1K

Présenté par : Gharbaoui Abir

Encadrée par : BERKACHE Kamel

Soutenu le : 24/06/2023 Devant le jury composé de :

Mr. KHERFI Hamza MCA ESSA-Alger President

Mme. BOUDERDARA Nabila MCB ESSA-Alger Examinatrice

Mr. BERKACHE Kamel MCA ESSA-Alger Encadreur

Binôme N°: 18PO/MASTER/2023

Résumé

Cette étude se concentre sur la distillation fractionnée du gaz naturel liquéfié et l'analyse de la colonne de déisopentaniseur. En utilisant le logiciel HYSYS, nous calculons le nombre de plateaux requis pour assurer l'efficacité du processus. Cette recherche nous permet de mieux comprendre l'importance de la distillation dans le traitement du gaz naturel et renforce nos compétences en modélisation et en utilisation d'outils informatiques.

Abtract

The focus of this study is on the fractional distillation of liquefied natural gas and the analysis of the deisopentanizer column. Through the utilization of the HYSYS software, we conduct calculations to determine the optimal number of trays required for optimal efficiency. This research deepens our understanding of the significance of distillation in natural gas processing and strengthens our skills in modeling and utilizing sophisticated computational tools.

ملخص

هدف هذه الدراسة هو شرح نظرية التقطير وجمع البيانات والمعلومات التقنية المتعلقة بجهاز إزالة البروبان، وذلك للتحقق من عدد الصواني المطلوبة في الجهاز باستخدام برنامج المحاكاة. تساهم هذه الدراسة في فهم أهمية عملية التقطير في معالجة الغاز الطبيعي المسال وتعزز قدراتنا في التصميم والنمذجة واستخدام الأدوات الحاسوبية المتعلقة.

Remerciements

Tout d'abord, je remercie le Dieu, le tout puissant de m'avoir donné le courage et la volonté pour réaliser ce travail.

Je tiens à remercier en premier lieu mon encadrant M, Berkache pour sa rigueur, sa disponibilité et ses qualités humaines, Je n'oublierai pas de remercier les membres de jury qui m'ont fait le grand honneur d'évaluer ce travail.

Nous tenons également à exprimer notre sincère gratitude au président du jury et l'examinatrice, Mr. KHERFI Hamza et Mme. BOUDERDARA Nabila, pour leurs précieux commentaires et leurs critiques constructives, qui ont grandement amélioré la qualité globale de ce projet ainsi que le temps qu'ils ont consacré à étudier ce travail.

Je tiens à exprimer mes sincères remerciements à l'équipe du complexe GL1K du Sonatrach pour leur accueil chaleureux et leur soutien tout au long de mon stage pratique. Leur expertise et leur engagement ont grandement contribué à mon apprentissage et à mon développement professionnel.

Je suis reconnaissante envers mon co-encadrant, M. Ouldjaoui, pour son encadrement attentif, ses conseils avisés et sa disponibilité constante. Ses précieuses orientations m'ont permis d'acquérir une compréhension approfondie des opérations au sein du complexe Sonatrach.

Je souhaite également exprimer ma gratitude envers M. Siab pour son soutien précieux. De la recherche du stage jusqu'à la fin de cette expérience.

А. Gharbaoui.

Dédicace

À la personne qui a toujours été ma lumière dans l'obscurité, qui a guidé mes pas avec sagesse et qui m'a soutenue de tout son cœur, ma très chère maman, que Dieu te protège.

À celui qui a toujours cru en moi et m'a encouragé à poursuivre mes rêves, mon cher papa.

À mes chers frères et sœurs, vous êtes les étoiles qui illuminent ma vie.

À mes beaux-frères et belles-sœurs.

À mes chers neveux et nièces, votre amour et votre innocence font briller mon cœur chaque jour.

À mes amies Wissem, Sadia, Chaima, Meriem, Fadi et Nadjet merci pour chaque précieux instant passé ensemble.

À ma promotion, Procédé Organique 2023.

Je dédie cet humble mémoire.

GHARBAOUI Abir

Table des matières

Résuméii
Remerciementsiii
Table des matièresv
Liste des abréviationsvii
Liste des tableauxviii
Liste des figuresix
Introduction1
Chapitre 1 Présentation de la colonne de distillation dépropaniseur
1.1 Définition et principes de la distillation fractionnée
1.2 Fonctionnement de la colonne de distillation dépropaniseur
1.2.1 Rôle de la colonne de dépropaniseur dans l'unité de fractionnement3
1.2.2 Description de processus
1.2.3 Présentation des dispositifs connexes
Chapitre 2 Partie calcul
2.1 Introduction8
2.2 Présentation de la méthode Shortcut Distillation9
2.3 Détermination du nombre de plateau théorique minimum
2.4 Evaluation du nombre de plateaux réels pour la colonne de dépropaniseur13
2.5 Interprétations
Conclusion
Annexe A : PFD du dépropaniseur

Annexe B : Datasheet de la simu	ulation de la dépropar	niseur à 37 plateaux.	17
Bibliographie			20

Liste des abréviations

GL1K : Gaz naturel liquéfié pole 1 SKIKDA.

GNL : Gaz naturel liquéfié.

KBR: KELOG BROWN & ROOT.

HYSYS: Hyprotech system.

PFD: Process flow diagramme (schéma de procédé).

PR: Peng Robinson.

Bar eff: bar effective.

Liste des tableaux

Tableau 1– les compositions de distillat et de résidu dans les 4 itérations	13
•	
Tableau 2- Comparaison de la composition du cas design et de la simulation HYSYS	à 37
plateaux	14
1	

Liste des figures

Figure 1-1 Schéma de la colonne de distillation.	3
Figure 1-2 Le système de dépropaniseur et ses équipements périphériques	4
Figure 1-3 Schéma du rebouilleur de type Kettle.	6
Figure 1-4 Schéma du condenseur.	7
Figure 2-1 : la liste des composants de tous les constituants présents dans le système	9
Figure 2-2 Sélection du modèle de Peng Robinson	10
Figure 2-3 Spécification des conditions de marche de la charge d'alimentation	10
Figure 2-4 Identification de toutes les parties de la colonne	11
Figure 2-5 Conditions de simulation et spécification des clés de fond et de tête de la colonne	e de
dépropaniseur.	12
Figure 2-6 Résultats de simulation pour le nombre minimal d'étages théoriques de la colonne	e de
dépropaniseur	12

Introduction

Le gaz naturel, qui provient de Hassi R'mel en Algérie, subit une série de traitements divers avant d'être utilisé dans les différentes branches de l'industrie. Parmi ces traitements, la distillation est l'un des processus les plus importants, car il permet de séparer les fractions d'hydrocarbures contenues dans le gaz naturel. Le complexe GL1K utilise la distillation fractionnée, également appelée rectification, du gaz naturel liquéfié, car les composants de ce gaz ont des points d'ébullition très proches.

La distillation atmosphérique est effectuée dans une colonne munie d'un certain nombre de plateaux perforés et munis de clapets, en général de 30 à 50 plateaux, qui conduisent à une distillation fractionnée. Les fractions de gaz naturel obtenues sont utilisées dans diverses industries, telles que la production d'électricité, la fabrication de plastiques et de produits chimiques, et même dans le secteur automobile.

Le travail que nous présentons se compose de deux chapitres. Le premier chapitre a pour objectif de définir le principe de la distillation et de décrire le processus de la colonne de dépropaniseur et ses équipements. Le deuxième chapitre consiste à calculer et à vérifier le nombre de plateaux de la colonne déisopropaniseurr à l'aide du logiciel HYSYS. Ces calculs sont essentiels pour garantir l'efficacité et la rentabilité du processus de distillation fractionnée dans le complexe GL1K.

Chapitre 1

Présentation de la colonne de distillation

dépropaniseur

1.1 Définition et principes de la distillation fractionnée

La distillation fractionnée est un procédé de séparation des composants d'un mélange liquide, basé sur les différences de points d'ébullition de ces composants.

Le principe de la distillation fractionnée repose sur la vaporisation du mélange dans une colonne de distillation, et sur la condensation sélective des différents constituants du mélange, en fonction de leur point d'ébullition. Plus précisément, cette méthode consiste à chauffer le mélange à une température proche de son point d'ébullition et à le vaporiser. La vapeur ainsi produite est ensuite introduite dans une colonne de distillation, où elle est mise en contact avec un liquide de refroidissement, appelé le réfrigérant, qui condense la vapeur en liquide. Les constituants du mélange liquide se séparent ainsi en fonction de leur température d'ébullition respective. Les constituants ayant une température d'ébullition plus élevée se condensent près du bas de la colonne, tandis que ceux ayant une température d'ébullition plus basse se condensent plus haut dans la colonne [1].

La distillation fractionnée est particulièrement utile lorsque les composants à séparer ont des points d'ébullition très proches, tels que dans le cas de la distillation du gaz naturel liquéfié. Le nombre de plateaux utilisés dans la colonne de distillation dépend de la complexité du mélange et de la précision requise dans la séparation des constituants.

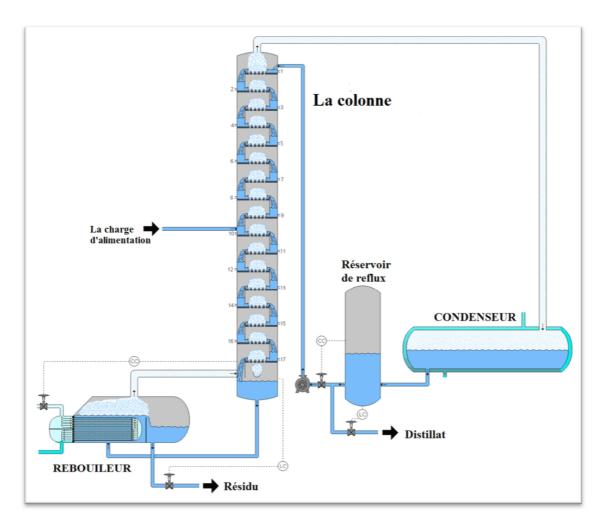


Figure 1-1 Schéma de la colonne de distillation.

1.2 Fonctionnement de la colonne de distillation dépropaniseur

1.2.1 Rôle de la colonne de dépropaniseur dans l'unité de fractionnement

Le dépropaniseur 07-MD04 est la troisième colonne de distillation de l'unité de fractionnement. Elle est utilisée pour produire du propane de qualité pour les applications de réfrigération et pour maintenir la teneur en propane dans les produits de fond dans les limites requises pour respecter les spécifications de qualité du butane dans la colonne de débutaniseur.

Le système dépropaniseur et ses équipements associés sont représentés par le schéma simplifié de la page suivante [2].

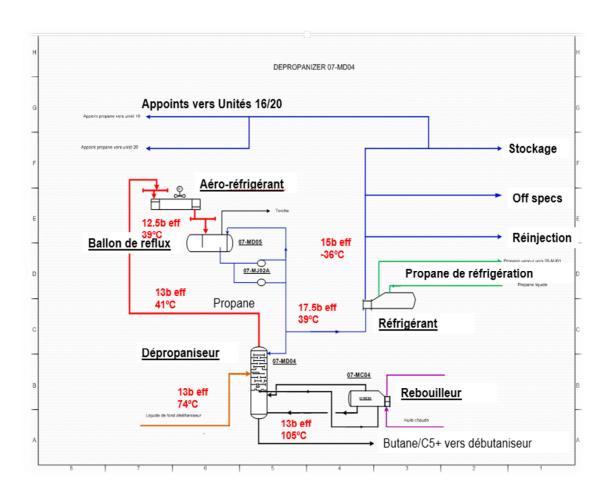


Figure 1-2 Le système de dépropaniseur et ses équipements périphériques.

1.2.2 Description de processus

Le dépropaniseur 07-MD04 est alimenté par le dééthaniseur 07-MD02, qui fournit des hydrocarbures liquides à une pression de 24 bar eff et une température de 101°C. Ces hydrocarbures sont ensuite détendus à 13 bar eff et à une température d'environ 74°C avant d'être introduits au-dessus du 16ème plateau du dépropaniseur. Cette colonne de distillation

est équipée de 37 plateaux étanches qui améliorent la séparation des composants légers et lourds.

Le rebouillage est nécessaire pour limiter la teneur en propane dans les produits de fond du dépropaniseur afin de respecter les spécifications de qualité du butane sortant de la tête du débutaniseur. Pour cela, le dépropaniseur dispose d'un rebouilleur de type Kettle à tubes et à calandre, qui utilise de l'huile chaude pour le réchauffage. Un plateau de soutirage au fond du dépropaniseur permet de diriger le liquide vers le rebouilleur. À l'intérieur du rebouilleur, une chicane permet au liquide d'inonder les tubes tout en laissant un espace suffisant pour permettre aux vapeurs de circuler vers la colonne.

Les vapeurs de tête du dépropaniseur sont condensées à travers le condenseur 07-MC05 de type aéro-réfrigérant à air induit, puis collectées dans le ballon de reflux du dépropaniseur 07-MD05. Une partie de ces liquides venant de ce dernier ballon est évacuée vers la colonne par les pompes 07-MJ02/A pour servir de reflux, tandis que le reste des liquides est évacué vers le refroidisseur de propane 07-MC15. Le débit de reflux assure une meilleure qualité du produit de tête afin de répondre aux spécifications prévues.

Le refroidisseur de propane 07-MC15 est de type Kettle, qui utilise le propane liquide BP venant du système de réfrigération de propane externe comme réfrigérant. Les liquides de propane sont refroidis à -36 °C dans cet échangeur avant d'être envoyés, soit au ballon de réinjection de GPL 07-MD08, soit au bac de stockage de propane 76-MF01. L'appoint en propane vers la réfrigération de l'unité 16 et vers le propane externe de réfrigération de l'unité 20 vient de l'aval du refroidisseur de propane.

En cas de produits hors-spécification (off-spec) de propane en amont du refroidisseur de propane, des dispositions existent pour les envoyer vers le ballon de détente de GNL de démarrage/Bupro 65-MD05 pour élimination. De même, des dispositions existent pour envoyer le propane hors-spec venant de l'aval du refroidisseur de propane vers le bac de stockage des hors-spec 67-B-03 des unités existantes [3].

1.2.3 Présentation des dispositifs connexes

1.2.3.1 Rebouilleur du dépropaniseur

Le rebouilleur du dépropaniseur 07-MC04 est un échangeur de type Kettle qui utilise de l'huile chaude comme source de chaleur pour faire descendre les hydrocarbures liquides provenant du plateau de soutirage du dépropaniseur 07-MD04. Ces hydrocarbures liquides descendent ensuite par gravité le long de la calandre du rebouilleur. Afin de surveiller le niveau des hydrocarbures liquides du côté de la calandre de l'échangeur, le niveau à glace 07-LG-1241 est utilisé. En effet, un niveau élevé de liquide dans le rebouilleur peut indiquer une mauvaise vaporisation des hydrocarbures.

Les vapeurs d'hydrocarbures provenant du rebouilleur sont renvoyées en dessous du plateau de soutirage du dépropaniseur, tandis que le liquide débordant de la chicane est renvoyé vers le fond du dépropaniseur. Pour maintenir la température de fond de colonne, le régulateur de température 07-TIC-1375 agit en cascade avec le régulateur de débit 07-FIC-1068 qui règle le débit d'huile côté tubes en agissant sur la vanne 07-FV-1068.

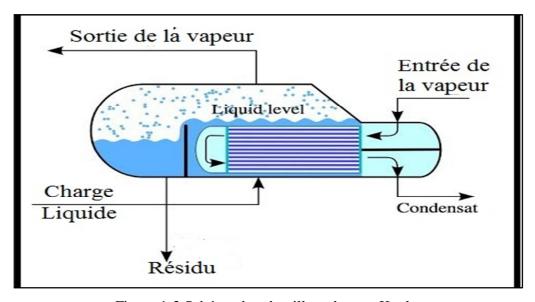


Figure 1-3 Schéma du rebouilleur de type Kettle.

1.2.3.2 Condenseur du dépropaniseur

Le condenseur du dépropaniseur 07-MC05, un aéro-réfrigérant à tirage induit, est constitué de trois batteries de trois ventilateurs/batteries. Chaque batterie est équipée d'un ventilateur, dont un est équipé d'un moteur à vitesse variable qui reçoit un point de consigne de vitesse du régulateur de pression 07-PIC-1061A via les convertisseurs de signaux 07-PY-1061A3/A6/A9.

Les vapeurs provenant de la tête du dépropaniseur 07-MD04 sont condensées dans ce condenseur avant d'être collectées dans le ballon de reflux du dépropaniseur 07-MD05. Le régulateur de pression 07-PIC-1061A agit sur la vitesse du ventilateur en cas de haute ou basse pression dans le système dépropaniseur. Lorsqu'il y a une haute pression, le régulateur de pression augmente la vitesse du ventilateur pour condenser plus de vapeurs, tandis que lorsqu'il y a une basse pression, il diminue la vitesse du ventilateur pour condenser moins de vapeurs.

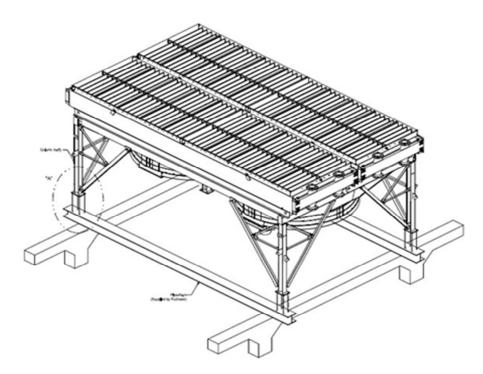


Figure 1-4 Schéma du condenseur.

Chapitre 2

Partie calcul

2.1 Introduction

Dans un premier temps, nous avons réalisé une simulation de la colonne de dépropaniseur installée au GNL-1-K en utilisant le logiciel HYSYS. Ce logiciel de simulation est largement utilisé dans l'industrie du pétrole et du gaz pour la conception de procédés, la vérification de la faisabilité d'un procédé, la détermination des conditions opératoires optimales, ainsi que pour l'analyse de données de procédé.

Dans notre cas, nous avons utilisé HYSYS pour déterminer le nombre minimum de plateaux théoriques nécessaires pour la colonne de dépropaniseur, en utilisant la méthode de Shortcut Distillation.

L'objectif de la partie calcul est de simuler la colonne de dépropaniseur 07-MD04 pour déterminer le nombre optimal de plateaux, en utilisant la méthode de Shortcut Distillation pour estimer le nombre minimum de plateaux théoriques nécessaires. Les résultats de la simulation seront comparés aux données réelles de l'usine pour valider la précision de la méthode.

2.2 Présentation de la méthode Shortcut Distillation

La méthode Shortcut Distillation est une méthode simplifiée de calcul de colonne de distillation. Elle utilise des données thermodynamiques pour estimer le nombre minimal de plateaux nécessaires pour atteindre une séparation spécifique des composants dans la colonne. Cette méthode est souvent utilisée pour estimer rapidement le nombre de plateaux nécessaires pour une colonne de distillation avant d'entreprendre des simulations plus détaillées [4].

Voici les étapes à suivre pour déterminer le nombre minimal de plateaux nécessaires pour la colonne de distillation à l'aide de la méthode Shortcut Distillation :

<u>Etape 1</u>: Ouvrir le logiciel Hysys et créer la liste des composants de tous les constituants présents dans le système.

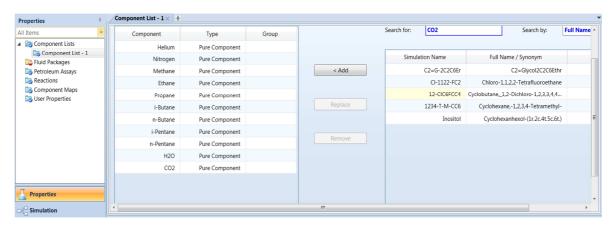
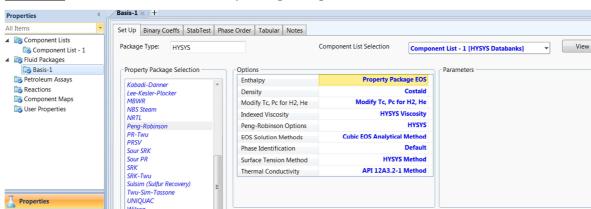



Figure 2-1 : la liste des composants de tous les constituants présents dans le système

Etape 2 : Choisir le modèle thermodynamique auquel vous travaillez avec.

→[= Simulation

Figure 2-2 Sélection du modèle de Peng Robinson

Etape 3 : Dans la palette de Hysys, choisir la flèche bleue appelée "Material Stream" et fournir toutes les conditions : pression, température et fraction molaire de la charge d'alimentation de la colonne de distillation de dépropaniseur et remplir la composition de cette charge.

Design Ratin	g Worksheet Performance Dyna	mics		
Worksheet	Name	alimentation 3	D 03	R 03
Conditions	Vapour	0,5647	0,0000	0,0000
Properties	Temperature [C]	74,25	40,39	99,04
Composition	Pressure [kPa]	1402	1391	1419
	Molar Flow [kgmole/h]	1509	735,5	773,5
	Mass Flow [kg/h]	8,054e+004	3,243e+004	4,812e+004
	Std Ideal Liq Vol Flow [m3/h]	145,5	64,03	81,49
	Molar Enthalpy [kJ/kgmole]	-1,242e+005	-1,180e+005	-1,452e+005
	Molar Entropy [kJ/kgmole-C]	132,4	97,23	109,8
	Heat Flow [kJ/h]	-1,874e+008	-8,681e+007	-1,123e+008
	Name	Qc 03		
	Vapour	<empty></empty>		
	Temperature [C]	<empty></empty>		
	Pressure [kPa]	<empty></empty>		
	Molar Flow [kgmole/h]	<empty></empty>		
	Mass Flow [kg/h]	<empty></empty>		
	Std Ideal Liq Vol Flow [m3/h]	<empty></empty>		
	Molar Enthalpy [kJ/kgmole]	<empty></empty>		
	Molar Entropy [kJ/kgmole-C]	<empty></empty>		
	Heat Flow [k]/h]	-3 967e+007		

Figure 2-3 Spécification des conditions de marche de la charge d'alimentation

<u>Etape 4</u>: Dans la palette de Hysys, choisir la colonne Shortcut Distillation et suivre les étapes suivantes :

1. Identifier toutes les parties de la colonne.

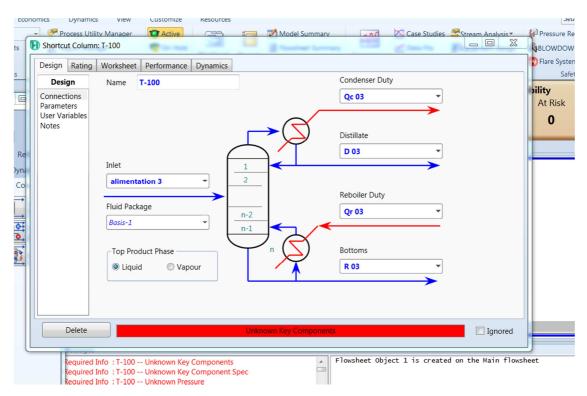


Figure 2-4 Identification de toutes les parties de la colonne

2. Préciser le nom et la composition du composant léger dans le fond (light key in bottom) et du composant lourd dans le distillat (heavy key in distillate). Préciser également la pression de condenseur et de rebouilleur.

Ensuite, dans le reflux ratio, il apparaît le taux de reflux minimal (Minimum reflux ratio) avec le nombre : 2.290 et pour trouver le rapport de reflux externe (External reflux ratio), multiplier ce nombre par 1.3 et le résultat obtenu est 2.977.

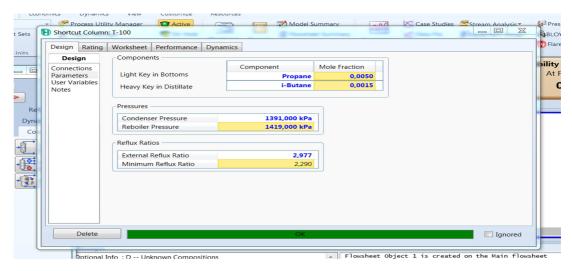


Figure 2-5 Conditions de simulation et spécification des clés de fond et de tête de la colonne de dépropaniseur.

3. Dans l'onglet Performances, le nombre minimal de plateaux nécessaires s'affiche.

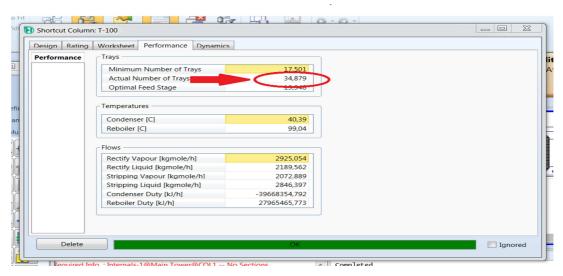


Figure 2-6 Résultats de simulation pour le nombre minimal d'étages théoriques de la colonne de dépropaniseur.

2.3 Détermination du nombre de plateau théorique minimum

Selon la simulation réalisée à l'aide de la méthode de Shortcut distillation, le nombre minimum de plateaux théoriques nécessaires pour la colonne de dépropaniseur est de 34 plateaux.

2.4 Evaluation du nombre de plateaux réels pour la colonne de dépropaniseur

Dans le but de déterminer le nombre de plateaux réel de la colonne de dépropaniseur 07-MD04, nous avons effectué quatre itérations de simulation en faisant varier le nombre de plateaux. Pour chaque itération, nous avons noté les compositions du distillat et du résidu. Après, nous avons comparé les résultats obtenus à partir de notre simulation à ceux du cas design. Les résultats de ces simulations sont présentés dans les tableaux ci-dessous :

Tableau 1– les compositions de distillat et de résidu dans les 4 itérations.

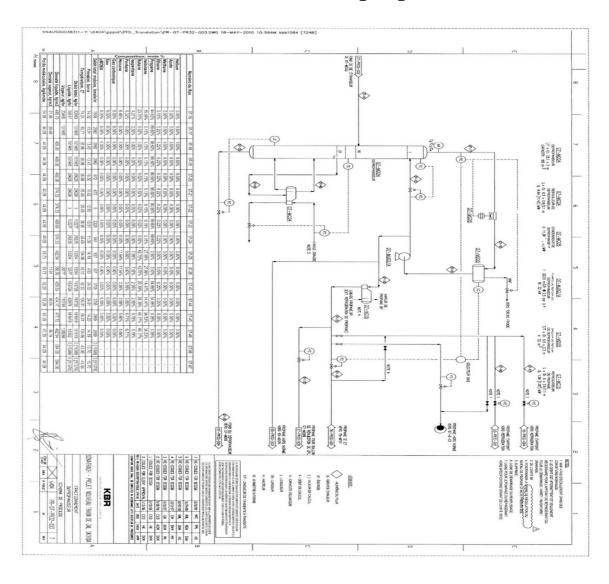
Nombre d	le plateau	34	35	36	37
Composition Méthane		0	0	0	0
de distillat	Ethane	0.22	0.22	0.22	0.22
(mole %)	propane	91.37	99.60	99.63	99.66
	Isobutane	5.68	0.18	0.14	0.11
	Butane	2.72	0	0	0
	Isopentane	0	0	0	0
	Pentane	0	0	0	0
	Hexane	0	0	0	0
Composition	Méthane	0	0	0	0
de résidu	Ethane	0	0	0	0
(mol %)	Propane	8.34	0.54	0.51	0.46
	Isobutane	27.86	33.09	33.12	33.16
	Butane	47.98	50.56	50.55	50.57
	Isopentane	0.9	0.9	0.9	0.9
	Pentane	1.13	1.13	1.13	1.14
	Hexane	13.78	13.78	13.78	13.78

Tableau 2– Comparaison de la composition du cas design et de la simulation HYSYS à 37 plateaux.

		Cas design	Simulation par hysys à 37	Ecart
			plateaux	
Composition	Méthane	0	0	0
de distillat	Ethane	0.22	0.22	0
(mole %)	propane	99.60	99.66	0.06
	Isobutane	0.15	0.11	0.04
	Butane	0.02	0	0.02
	Isopentane	0	0	0
	Pentane	0	0	0
	Hexane	0	0	0
Composition	Méthane	0	0	0
de résidu	Ethane	0	0	0
(mol %)	Propane	0.5	0.48	0.02
	Isobutane	27.98	33.15	5.17
	Butane	42.70	50.56	7.86
	Isopentane	7.59	0.9	6.69
	Pentane	9.60	1.13	8.47
	Hexane	11.64	13.78	2.14

2.5 Interprétations

- Tableau 01 : Les compositions de distillat et de résidu dans les 4 itérations montrent que sur le 37ème plateau, la quantité de distillat est supérieure aux autres itérations. Ainsi, nous pouvons en conclure que le nombre idéal de plateaux pour obtenir une bonne quantité de propane est de 37 plateaux.
- Tableau 02: Le tableau comparatif entre la composition du cas design et la simulation par HYSYS à 37 plateaux montre que l'écart est minime entre les deux cas. Cela indique que 37 plateaux pour la colonne de dépropaniseur est un nombre idéal pour obtenir une bonne séparation entre les composants et que la simulation HYSYS est cohérente avec les données PFD du KBR.


Conclusion

Après avoir mené cette étude, nous avons pu approfondir notre compréhension du processus de distillation fractionnée du gaz naturel liquéfié. En utilisant des outils tels que le logiciel HYSYS et en nous familiarisant avec les différents documents, nous avons réussi à calculer le nombre de plateaux nécessaires dans la colonne de déisopentaniseur du complexe GL1K.

Cette expérience nous a permis de mieux comprendre l'importance de la distillation dans le traitement du gaz naturel et les différentes étapes nécessaires pour obtenir des composants utiles pour l'industrie. Nous avons également réalisé l'importance de l'utilisation d'outils informatiques pour faciliter ces calculs complexes.

En fin de compte, cette étude nous a donné une vision approfondie du traitement du gaz naturel et nous a permis de développer nos compétences en matière de calcul et d'utilisation de logiciels de modélisation. Ces compétences seront certainement utiles pour notre future carrière d'ingénieur en industrie.

Annexe A: PFD du dépropaniseur

Annexe B : Datasheet de la simulation de la dépropaniseur à 37 plateaux

1			Case Na	ame: simulation mas	ter abir.hsc	
3	@aspentech Compa	any Name Not Avallable d, MA	Unit Set	: SI		
4	USA		Date/Tir	ne: Sun Jun 11 18:	16:54 2023	
5 6			Dutom		10.04 2020	
7		Distillat	ion:	T-101 @Main	(continu	ed)
9			SUMI	MARY		
10		allmentation 3-2	001111			
12		-				
13	Hellum (kgmole/h)	0.0000				
14	Nitrogen (kgmole/h) Methane (kgmole/h)	0.0000				
16	Ethane (kgmole/h)	1.6504				
17	Propane (kgmole/h)	736.5685				
18 19	I-Butane (kgmole/h) n-Butane (kgmole/h)	257.2956 391.1421				
20	I-Pentane (kgmole/h)	6.9481				
21	n-Pentane (kgmole/h)	8.7801				
23	n-Hexane (kgmole/h) CO2 (kgmole/h)	106.6151				
24	H2O (kgmole/h)	0.0000				
25			Prod			
26 27	Flow Basis:	Pro	Molar oduct Co	mpositions	The composition	option is selected
28		DISTILLAT		воттом		
29	Flow Rate (kgmole/h)	735.1787		773.8213		
30 31	Hellum	0.0000		0.0000		
32	Nitrogen	0.0000		0.0000		
33	Methane	0.0000		0.0000		
35	Ethane Propane	0.0022		0.0000		
36	I-Butane	0.0010		0.3316		
37	n-Butane	0.0000		0.5055		
38 39	i-Pentane n-Pentane	0.0000		0.0090		
40	n-Hexane	0.0000		0.1378		
41	002	0.0000		0.0000		
42	H2O Flow Basis:	0.0000	Molar	0.0000	The composition	notion is selected
44	row cass.		Produc		The composition	opion is service
45		DISTILLAT		воттом		
46 47	Flow Rate (kgmole/h)	735.1787		773.8213	•	
48	Hellum (kgmole/h)	0.0000		0.0000		
49	Nitrogen (kgmole/h)	0.0000	- :	0.0000	- :	
50 51	Methane (kgmole/h) Ethane (kgmole/h)	0.0000 1.6504	:	0.0000		
52	Propane (kgmole/h)	732.7916		3.7769		
53	I-Butane (kgmole/h)	0.7262		256.5694		
54 55	n-Butane (kgmole/h)	0.0105	- :	391.1316 6.9481	:	
56	I-Pentane (kgmole/h) n-Pentane (kgmole/h)	0.0000		8.7801		
57	n-Hexane (kgmole/h)	- :	106.6151			
58 59	CO2 (kgmoleih) H2O (kgmoleih)	:	0.0000	:		
60	Flow Basis:	0.0000	Molar		The composition	option is selected
61			roduct R	ecoveries		
62 63	Flow Rate (kgmole/h)	735.1787		BOTTOM 773.8213		
64	The state (symmetry)					
65	Hellum (%)	0.0000		0.0000		
66 67	Nitrogen (%) Methane (%)	0.0000		0.0000		
68	Ethane (%)	100.0000		0.0000		
69	Aspen Technology Inc.	Asp	en HYS)	/S Version 9		Page 8 of 25
	Licensed to: Company Name Not Available					* Specified by user.

1	Case Name: simulation master abir.hsc											
2	(A)t	Compa	ny Name Not A	vailable				ister abir.nsc				
3	aspentec	Bedford USA	I, MA		Unit Set	t ;	SI					
5					Date/Ti	me:	Sun Jun 11 18	8:16:54 2023				
6 7				Distillet	i.a.	T 404	@Main	/aantinu	۸۵۱			
8				Distillat	ion.	1-101	@iviain	(continue	eu)			
9	SUMMARY											
10 11	DISTILLAT BOTTOM											
12	Propane (%))		99.4872			0.5128					
13	i-Butane (%)			0.2823			99.7177					
14 15	n-Butane (% i-Pentane (%			0.0027			99.9973)				
16	n-Pentane (%			0.0000			100.0000					
17 18	n-Hexane (%	b)		0.0000			0.0000)				
19	CO2 (%) H2O (%)			0.0000			0.0000					
20					OLUMN	PROFILES	ı	'				
21 22	Reflux Ratio:	2.977	Reboil Ratio:		2.210		Flows Option is	s Selected	Flow Basis:	Molar		
23	TORIGA FACILO.	2.511	Neboli Nailo.	Co		ofiles Flow		- Coloctou	, low busis.	ivioidi		
24		Temp	Pres	Net Liq		Net Vap		Net Feed	Net Draws	Duty		
25 26	Condenser	(C) 40.4	(kPa) 1391	(kgmole/h) 2189		(kgmole/h	1)	(kgmole/h)	(kgmole/h) 735.2	(kJ/h) 3.96e+007 *		
27	1_Main Tower	40.5	1391	2189		2924				5.500 1001		
28	2Main Tower	40.7	1392	2188		2924						
29 30	3_Main Tower 4 Main Tower	40.8 40.9	1393	2187 2185		2924 2922						
31	4_Main Tower 5_Main Tower	41.1	1393	2182		2922						
32	6Main Tower	41.3	1395	2177		2917						
33	7_Main Tower	41.7	1396	2169		2912						
34 35	8_Main Tower 9 Main Tower	42.3 43.1	1396 1397	2158 2143		2905 2894						
36	10_Main Tower	44.2	1398	2121		2878						
37	11_Main Tower	45.7	1399	2094		2856						
38 39	12_Main Tower 13_Main Tower	47.7 50.0	1400	2062		2829 2797						
40	14_Main Tower	52.8	1400	1992		2762						
41	15_Main Tower	55.6	1402	1961		2728						
42 43	16_Main Tower 17 Main Tower	58.4 60.9	1403 1403	1933 1902		2696 2668						
44	18_Main Tower	63.6	1403	1841		2638						
45	19Main Tower	67.6	1405	2451		2576		1509				
46	20_Main Tower	68.3	1406	2452		1677						
47 48	21Main Tower 22Main Tower	69.2 70.4	1407	2453 2455		1678 1679						
49	23Main Tower	71.8	1408	2458		1681						
50	24Main Tower	73.6	1409	2463		1684						
51 52	25_Main Tower 26_Main Tower	75.5 77.7	1410 1410	2471 2481		1689 1697						
53	27_Main Tower	79.9	1411	2492		1707						
54	28Main Tower	82.0	1412	2505		1719						
55 56	29_Main Tower 30_Main Tower	84.0 85.8	1413 1414	2518 2530		1731 1744						
57	31_Main Tower	87.3	1414	2540		1756						
58	32Main Tower	88.6	1415	2547		1766						
59	33_Main Tower	89.7	1416	2553		1774						
60 61	34Main Tower 35Main Tower	90.6 91.4	1417	2557 2556		1780 1783						
62	36_Main Tower	92.3	1418	2544		1783						
63	37_Main Tower	94.0	1419	2484		1770						
64 65	Reboiler	99.0	1419	Co	lump Pro	1710 files Ener	nv		773.8	2.80e+007 *		
66			Temperature			nthalpy		Vap Enthalpy	He	at Loss		
67			(C)		(kJ/k	gmole)		(kJ/kgmole)		(kJ/h)		
68 69	Condenser Aspen Technology I	no	40.38	A =		e+005 YS Version	2.0	-1.044e+005		Page C of 25		
υð	Licensed to: Company Nam			ASP	C111115	o version	19			Page 9 of 25		

Licensed to: Company Name Not Available

* Specified by user.

1					Case Name	Case Name: simulation master abir.hsc						
2 3 4 5	@aspente	ch	Bedford, MA	ic Not / (Valiable	Unit Set:	Unit Set: SI						
5			USA		Date/Time:	Date/Time: Sun Jun 11 18:16:54 2023						
6												
7 8				Dist	illation: T-	101 @N	Иai	n (continued)				
9					COLUMN PRO	FILES						
11			Tem	perature	Liq Enthalp	ıy		Vap Enthalpy	Heat Loss			
12				(C)	(kJ/kgmole			(kJ/kgmole)	(kJ/h)			
13 14	1Main Tower 2 Main Tower			10.54 10.65	-1.181e+00			-1.045e+005 -1.045e+005				
15	2Main Tower 3Main Tower			10.76	-1.182e+00			-1.045e+005				
16	4_Main Tower			10.89	-1.183e+00			-1.046e+005				
17	5_Main Tower		4	1.08	-1.184e+00	15		-1.046e+005				
18	6Main Tower			11.34	-1.187e+00			-1.047e+005				
19	7_Main Tower			11.72	-1.190e+00			-1.049e+005				
20 21	8Main Tower 9Main Tower			3.06	-1.195e+00			-1.051e+005 -1.054e+005				
22	10 Main Tower			H4.17	-1.211e+00			-1.058e+005				
23	11_Main Tower			15.69	-1.223e+00			-1.064e+005	-			
24	12_Main Tower			7.65	-1.238e+00			-1.071e+005				
25	13Main Tower		5	50.04	-1.254e+00	15		-1.080e+005				
26	14Main Tower		5	52.75	-1.271e+00	15		-1.091e+005				
27	15Main Tower		5	5.59	-1.287e+00	15		-1.101e+005				
28	16_Main Tower			68.35	-1.300e+00			-1.110e+005				
29	17_Main Tower			60.94	-1.311e+00			-1.118e+005	-			
30 31	18_Main Tower			3.56	-1.322e+00			-1.124e+005 -1.127e+005				
32				67.59 68.31	-1.346e+005 -1.349e+005			-1.127e+005 -1.131e+005				
33	21_Main Tower			9.23	-1.353e+005		-1.131e+005 -1.135e+005					
34	22_Main Tower			0.40	-1.358e+005		-1.1336+005 -1.141e+005					
35	23_Main Tower			1.84	-1.364e+005		-1.148e+005					
36	24_Main Tower		7	3.57	-1.371e+00	15		-1.157e+005				
37	25_Main Tower		75.54		-1.378e+00	15		-1.167e+005				
38	26Main Tower			7.69	-1.386e+00	15		-1.179e+005	-			
39	27_Main Tower			9.89	-1.394e+00			-1.191e+005				
40	28Main Tower			32.04	-1.401e+00			-1.204e+005	-			
41	29_Main Tower			84.03	-1.407e+00			-1.215e+005				
42 43	30_Main Tower 31_Main Tower			85.80 87.32	-1.412e+00		-1.226e+005 -1.234e+005					
44	32_Main Tower			88.59	-1.419e+00		-1.242e+005					
45	33_Main Tower			9.65	-1.422e+005			-1.247e+005	-			
46	34_Main Tower			90.56	-1.423e+00			-1.251e+005				
47	35_Main Tower		9	1.38	-1.424e+005			-1.253e+005				
48	36Main Tower											
49	37_Main Tower			3.97	-1.429e+00			-1.254e+005				
50	Reboiler		9	99.04	-1.452e+00	15		-1.255e+005				
51 52					FEEDS / PRO	DUCTS						
53	Flow Basis:				Molar							
54			Stream	Туре	Duty	State		Flows	Enthalpy	Temp		
55		0.5		-	(kJ/h)			(kgmole/h)	(kJ/kgmole)	(C)		
56 57	Condenser	QC DISTILI	_AT	Energy Draw	4.0e+007 *	Liquid		735 *	 -1.2e+005 *	40.38*		
58	1_Main Tower											
59	2_Main Tower											
60	3Main Tower											
61	4Main Tower											
62	5_Main Tower											
63	6_Main Tower											
64 65	7_Main Tower 8 Main Tower											
66	9 Main Tower											
67	10_Main Tower											
68	11_Main Tower											
69	Aspen Technology	/ Inc.			Aspen HYSYS \	/ersion 9			Page 10	of 25		
	Licensed to: Company Name Not Available "Specified by user.											

69 Aspen Technology Inc.
Licensed to: Company Name Not Available

Page 10 of 25
* Specified by user.

Bibliographie

- [1] S. Ray and G. Das, "Chapter 11 Distillation," in *Process Equipment and Plant Design*, S. Ray and G. Das, Eds., ed: Elsevier, 2020, pp. 281-350.
- [2] "KBR Manuel de formation," ed, 2013.
- [3] "SECTION 1-3:DEPROPANISEUR UNITE 07, DOCUMENT NO.: PP-AAA-PP1-123," in *MANUEL OPERATOIRE VOLUME II*, KBR, Ed., ed, 2013
- [4] N. Chemmangattuvalappil, S. Chong, and D. C. Y. Foo, "Chapter 13 Basics of process simulation with Aspen HYSYS*," in *Chemical Engineering Process Simulation (Second Edition)*, D. C. Y. Foo, Ed., ed: Elsevier.