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 :ملخص

النموذج ) التنبؤي استنادا على  التحكم  ( ثم MPCإن الهدف الرئيسي من هذا الموضوع يتلخص في دراسة وتنفيذ 

أداء  الطاقة الكهربائية بغرض تحسين  الكهربائية ومحولات  المحركات  المطبقة على  العصبونية الاصطناعية  الشبكات  على 

، بعض  MCأنظمتنا. نبدأ دراستنا بنبذة حول المحولات المصفوفبة والتحكم التنبؤي من خلال تقديم بعض الطوبولوجيات من  

وأ وتحسيناته  التنبؤي  التحكم  المستند  تطبيقات  التنبؤي  التحكم  تطبيق  تم  الاصطناعية.  العصبونية  الشبكات  على  لمحة  خيرا 

النموذج    شحنة  MPCCعلى  على  الاصطناعية  العصبونية  الشبكات  على  ثم    RLثم  البداية،  في  مموج  يغذيها  التي 

من   )MCطوبولوجيتين  النموذج  على  القائم  التنبؤي  التحكم  تطبيق  تم  ثم   .MPTC( و   )ANN-MPTC  آلة على  أيضاً   )

 تحفيز تعمل بواسطة مموج ثلاثي الدور ثم أجريت مقارنة بين التحكمين المقترحين لكل اختبار.

 :كلمات مفتاحية

 الشبكات العصبونية الاصطناعية ، دالة التكلفة، (MPC)،آلة لا تزامنية،التحكم التنبؤيC(M (مموج مصفوفي

Abstract: 

The main objective of this topic is to study and implement predictive control based (MPC) 

model, neural networks applied to electrical drive and power converters, in order to 

improve performances of ours systems. We begin our study with a state of the art on 

matrix converters and predictive control by presenting some topologies of the MC, some 

applications of predictive control and its improvements and finally a glimpse into artificial 

neural networks. Then, the model predictive current control (MPCC) and artificial neural 

networks based MPCC (ANN-MPCC) were applied to an RL charge fed by an inverter then 

by two topologies of the MC. Furthermore, a model predictive torque control (MPTC) and 

ANN-MPTC were also applied to the induction machine fed by a three-phase inverter. A 

comparison between the two proposed strategies was introduced for each test. 

Key words: 

Matrix Converter (MC), induction machine, Model Predictive Control (MPC), cost function, 

artificial neural network. 

Résumé : 

L’objectif principal de ce sujet est d’étudier et implémenter la commande prédictive 

à base du model (MPC) puis à base des réseaux de neurones appliqué à l’entrainement 

électrique et aux convertisseurs de puissance pour améliorer les performances de nos 

systèmes. Nous commençons notre étude par un état de l’art sur les convertisseurs 

matriciels et sur la commande prédictive en présentant quelques topologies du MC, 

quelques applications de la commande prédictive et ses améliorations et finalement un 

aperçu sue les réseaux de neurones artificiels. Ensuite, la commande prédictive du courant à 



base du modèle (MPCC) puis à base des réseaux de neurones artificiels a été appliquée à une 

charge RL alimentée par un onduleur au premier temps, et puis par deux topologies du MC. 

Ensuite la commande prédictive à base du modèle (MPTC) et ANN-MPTC a été aussi 

appliquée sur une machine à induction alimentée par un onduleur triphasé. Une 

comparaison entre les deux commandes proposées a été établie pour chaque essai. 

Mots clés : 

Convertisseur Matriciel (MC), machine asynchrone, la commande prédictive à base du 

modèle (MPC), fonction de coût, les réseaux de neurones artificiels. 
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General introduction 

 In the last few decades, power electronic systems and electrical drives have drawn 

significant revolution in a broad range of industrial applications. This is mainly due to the 

advancement in power semiconductor devices, converter topologies, control methods, and 

micro-controller resources [1]. The control of power converters has been extensively 

studied, and new control schemes are presented every year. Most prominently, the 

development of control methods is progressing well for the newly emerged sophisticated 

applications which may have multiple control targets, system constraints, and 

functionalities, …etc.[2].The overall revolution in power electronic systems and electrical 

drive applications become possible because of the migration of control platform from 

analog to digital system. At first microprocessor technology was introduced as a digital 

platform in the early 1970s, and then become popular during the 1990s [3]. Nowadays, 

digital signal processors (DSPs) and field programmable gate arrays (FPGAs) have emerged 

as powerful technology that allow us to implement the advanced control methods [4], [5] ,  

   Three-phase induction motors (IMs) were used for high power, variable speed drives  and 

traction systems in railways replacing DC machines[6] due to their increased robustness 

and reduced cost and maintenance requirements. In addition, precise control of the IM 

torque/speed is perfectly possible thanks to the development of new power devices and 

digital signal processors [7]. 

    Several control schemes have been proposed for the control of power converters and 

drives among these control schemes, Model predictive control (MPC). The MPC was 

originally introduced in the process industry with success for several decades [8]. The 

complex model and slow dynamics of the process industry made it compatible with the 

available control platform for the implementation [9], [10], however, there are many 

disadvantages with this control method. Among these disadvantages are relatively low 

computation efficiency [11] and huge amount of real-time calculations [1]. For this reason, 

most of the methods used to overcome these disadvantages are accomplished by replacing 

another strategy more preferment. 

Recently, several studies have suggested the application of the technique of artificial 

intelligence like neural networks, fuzzy logic and genetic algorithms to replace hysteresis 

controller of the inverter[12][6]. The artificial neural networks (ANNs) are capable of 
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learning the desired mapping between the inputs and outputs signals of the system without 

knowing the exact mathematical model of the system. The ANNs are excellent estimators 

in nonlinear systems [11] 

     Artificial neural networksare introduced also to replace the model predictive control. 

The ANN are used for their properties of learning capability and generalization to improve 

the control performance of the system and to overcome the disadvantages of the MPC.  

This thesis is organized into four chapters;they are summarized as follows: 

The first chapter is dedicated to an overview of the matrix converters by citing the 

different topologies proposed in the literature then,the model predictive torque control 

(MPC) is introduced and its main drawbacks are presented.The chapter is concluded with 

an overview of artificial neural network. 

The second chapter is devoted to the analysis and the simulation of neural network based 

predictive current control applied to a two-level three-phase inverter feeding an RL-

load.An evaluation of its performance is proposed. Then a comparison between the two 

strategies is established. The chapter is concluded by a real time implementation of the 

ANN-MPC. 

In the third chapter, a neural network model predictive torque control (MPTC) of an 

induction machine driven by an inverter is developed. The chapter is started by presenting 

the MPTC and its working principle. After that, the modeling of the induction machine 

then,the presentation the training steps withdetails is introduced. This chapter is concluded 

with a comparison between the two strategies. 

The last chapter of this thesis is dedicated to the analysis and the simulation of the 

two topologies of the matrix converter (direct and indirect).A neural network based 

predictive current control is applied to the matrix converter-fed RL load. The performance 

of proposed strategy is evaluated. This chapter is also concluded with a comparison 

between the two strategies. 

The general conclusion concerns a brief synthesis of the work carried out with the main 

obtained results and some perspectives. 
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CHAPITRE I: CHAPTER ONE 

Introduction 

Model predictive control (MPC) has become one of the well-established modern control 

methods for converter topologies, where a high-quality voltage with low total harmonic 

distortion (THD) is needed. Although it is an intuitive controller, easy to understand and 

implement, it has the significant disadvantage of requiring a large number of online 

calculations for solving the optimization problem. On the other hand, the application of 

model-free approaches such as those based on artificial neural networks approaches is 

currently growing rapidly in the area of power electronics and drives. Broadly speaking, the 

use of neural networks for the control of dynamical systems was proposed in the early 

nineties[13]. 

This chapter is divided into two main parts, the first is devoted to the state of the art 

of the converter, and the second part is devoted to the state of the art of the Model 

Predictive Control (MPC) based on neural network. Where some converter topologies, some 

applications of the control strategy were presented, and an overview of the neural network as 

an enhancement of MPC. 

I.1 State of the art of the inverters 

An inverter refers to a power electronic device that converts power in DC form to AC form 

at the required frequency and voltage output. 

I.2 Three Phase Inverter 

     A three-phase inverter converts a DC input into a three-phase AC output. Its three 

arms are normally delayed by an angle of 120° so as to generate a three-phase AC supply. 

The inverter switches each has a ratio of 50% and switching occurs after every T/6 of the 

time T. The switches S1 and S4, the switches S2 and S5 and switches S3 and S6 

complement each other. 
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   The figure below shows a circuit for a three phase inverter. It is nothing but three single 

phase inverters put across the same DC source. The pole voltages in a three phase inverter 

are equal to the pole voltages in single phase half bridge inverter.[14] 

 

Figure I- 1 : Three phase inverter topology 

I.3 State of the art of matrix converters 

  The majority of industrial application request AC-AC power conversion, this necessity is 

exponentiallyincreasing. For generating variable amplitude, frequency, phase voltages and 

currents , power electronics converters are involved[15]. Matrix converter (MC) is an all-

switch power converter with interesting properties such as controllable input power factor, 

bidirectional power flow, and high quality sinusoidal input and output current waveforms. 

The absence of a huge electrolytic capacitor in matrix converters is considered as a more 

reliable and compact solution for AC-AC power conversion[16] , it benefits from the 

possibility of a compact design [17]. There are two main types for the MC, direct matrix 

converter (DMC) and indirect matrix converter (IMC). The appliance of those converters 

are extensive: motor drive, FACTS devices, distributed generation systems, and wind 

energy conversion systems. [18] 
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Figure I- 2: Classification of power converters 

I.3.1 Direct matrix converter 

   Direct Matrix converter, which uses the principle of single stage AC- AC conversion 

without the need of energy storage elements, it is able to convert AC voltage into another 

AC voltage [19]. They offer inherent advantages such as bi-directional power flow, nearly 

sinusoidal input and output waveform Also the input power factor, output current 

amplitude , frequency are controllable .Finally they have a compact design and they do not 

need DC-link capacitors for energy storage [20].  

     Using the fully controlled bi-directional switches, that perform direct energy conversion 

without any energy storage elements in an intermediate link, to connect directly the inputs 

to the outputs. The matrix converter is also able to generate an adjustable input power 

factor regardless of the load [21] 

     The concept of a direct MC appeared in the literature as early as the 1970. Research 

started more extensive with the work of Venturini and Alesina in the 1980 [22] 

     The absence of the DC-link capacitor reduces the volume, enhances the efficiency, 

increases the lifetime and simplifies the control schemes. It only requires small filters to 

suppress the ripples generated by the switching actions [23] 
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Figure I- 3: Direct matrix converter (DMC) 

I.3.2 Indirect matrix converters 

  The IMC offers a set of advantages such as simpler commutation [24] , clamp circuit for 

overvoltage protection [25] , possibility of reducing the rectifier-stage switch count, while 

providing similar performance as that of direct matrix converter. Multi-modular topologies 

for IMC have been proposed that they allow for modification of output stage to meet 

different application requirements. Modern variable frequency drives powered by high 

switching frequency power converters, such as MC, have made it possible to an accurately 

and efficiently control AC machines.  

 

Figure I- 4: Indirect Matrix Converter (IMC) 
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I.3.3 Different structures of indirect matrix converters 

I.3.3.1 Conventional indirect matrix converters  

  The conventional IMC perform AC/DC/AC power conversion in two stages, namely, 

rectification and inversion stages in addition to a storage element which can be either a 

capacitor or an inductor [26].The rectifier stage, which is formed by six bidirectional 

switching, provides a fictitious DC link voltage with a variable average. The other six 

unidirectional switching forming the inverter stage, are synthesizes three-phase output 

voltages. [18] 

 

Figure I- 5: Structure of a conventional indirect matrix converter 

I.3.3.2 Sparse indirect matrix converters 

  The IMC topology has a complex control for the number of switches to handle. In order to 

reduce the number of transistors, one IGBT from each leg of the rectifier is eliminated, 

compared to the previous configuration to be sparse indirect matrix converters (SMC). 

    By an implementation of bidirectional IGBT switches connected to a diode bridge, where 

the number of the controlled components in the rectifier is reduced, a very sparse IMC 

structure is created .[27] 

     In ultra-sparse indirect matrix converters configuration, minimum number of switches 

are employed. There is a single switch by input. It does not allow bidirectional power flow 

due to the structure of the rectifier, which limits its practical application like aerospace.  

[27] 
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    The main advantage of minimizing number of switches is to simplify the development of 

the control of the converter. [28] 

 

 
Figure I- 6: Sparse matrix converter (SMC)         Figure I- 7: Very sparse matrix converter 

 

Figure I- 8: Ultra sparse matrix converter (USMC) 

I.3.3.3 Multilevel indirect matrix converters 

The multilevel MC can synthesize more than two-level output voltage to improve 

output performance in terms of reduced harmonic content. [29] .The conventional 

multilevel IMC topology was firstly based on the traditional IMC, but with six-switch 

inverter in the back replaced by a three-level neutral-point-clamped (NPC) inverter [30] . 

Then, the new multilevel IMC based on the combination of conventional NPC and 

cascaded-rectifier [31] in order to improve the voltage transfer ratio. 
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Figure I- 9: Multi level IMC 

I.4 State of the art of model predictive control 

I.4.1 Introduction 

   Model predictive control (MPC) has a long history in the field of control engineering. It is 

one of the few areas that has received on-going interest from researchers in both the 

industrial and academic communities [32] . The term Model Predictive Control does not 

designate a specific control strategy but a very ample range of control methods which make 

an explicit use of a model of the process to obtain the control signal by minimizing an 

objective function[33]. There are many applications of  predictive control successfully in 

use at the present time, not only in the industrial process but also in the applications on the 

control of a diversity of processes ranging , from robot manipulators [34] to clinical 

anesthesia[35],power converters and drives [36]. Thanks to the evolution of high processing 

microprocessors which surpassed the drawback of computational burden of the MPC [37].  

 

I.4.2 Development of MPC (History) 

    The author in [38] reviewed three decades of the MPC development. According to his 

research, the MPC was first used in industry such as oil and petrochemical industry, which 

dates back to the 1950s as a computer based supervisory control. At that time, MPC was a 

promising control strategy yet it was not widely embraced by other industrial process due 

to the computational power needed for the MPC until the mid-1970s, when several other 

techniques were introduced like Model Heuristic Predictive Control (MHPC) and Dynamic 
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Matrix Control (DMC). These two control algorithms are developed into Generalized 

Predictive Control (GPC), which is more robust, compared to the MHPC and DMC. 

   In the second decade of the MPC development, during the late 1980s, researchers founded 

a theoretical approach for the MPC: the discrete-time state-space representation model: 

{
𝑥[𝑖 + 1] = 𝐴𝑥[𝑖] + 𝐵𝑢[𝑖]

𝑦[𝑖 + 1] = 𝐶𝑥[𝑖] + 𝐷𝑢[𝑖]
 

   During this decade, researchers showed interest in studying the stability of the MPC for 

the first time. Which can be proven by considering the cost function of the MPC as a 

Lyapuno function [38]. 

 

I.4.3 Working Principal of MPC 

  Predictive control covers a very wide class of controllers that have found rather recent 

application in power converters. A classification for different predictive control methods is 

shown in the following Figure: 

 

Figure I- 10: Classification of predictive control methods used in power electronic 

   The optimization criterion in hysteresis-based predictive control is to keep the controlled 

variable within the boundaries of a hysteresis area, while in trajectory-based control the 

variables are forced to follow a predefined trajectory. In deadbeat control, the optimal 

actuation is the one that makes the error equal to zero in the next sampling instant. A more 

flexible criterion is used in model predictive control (MPC), expressed as a cost function to 

be minimized [39]. 
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      The difference between these groups of controllers is that deadbeat control and MPC 

with continuous control set need a modulator in order to generate the required voltage. 

This will result in having a fixed switching frequency. The other controllers directly 

generate the switching signals for the converter, do not need a modulator, and present a 

variable switching frequency [39]. 

    Nonlinearities in the system can be included in the model, avoiding the need to linearize 

the model for a given operating point, and improving the operation of the system for all 

conditions. It is also possible to include restrictions on some variables when designing the 

controller. These advantages can be very easily implemented in some control schemes, such 

as MPC, but are very difficult to obtain in schemes like deadbeat control [39]. 

I.4.4 MPC Strategy 

  The methodology of all the controllers belonging to the MPC family is characterized by 

the following strategy, represented in figure 

 

 

Figure I- 11: Working principle of MPC 

    MPC defines the control action by minimizing a cost function that describes the desired 

system behavior. This cost function compares the predicted system output with a reference. 

The predicted outputs are computed from the system model. In general, for each sampling 

time, the MPC controller calculates a control action sequence that minimizes the cost 

function, but only the first element of this sequence is applied to the system. Although 

MPC controllers solve an open-loop optimal control problem, the MPC algorithm is 
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repeated in a forward horizon fashion at every sampling time, thus, providing a feedback 

loop and potential robustness with respect to system uncertainties [36].   

I.4.5 MPC’s Elements 

 

Figure I- 12: Basic structure of MPC 

All the MPC algorithms possess common elements and different options can be chosen for 

each one of these elements giving rise to different algorithms. These elements are: 

-  Prediction Model  

-  Objective Function  

- Obtaining the control law 

I.4.6 Prediction Model 

   The model is the corner-stone of MPC [33]; a complete design should include the 

necessary mechanisms for obtaining the best possible model, which should be complete 

enough to fully capture the process dynamics and should also be capable of allowing the 

predictions to be calculated and at the same time, to be intuitive and to permit theoretic 

analysis. 

Practically every possible form of modeling a process appears in a given MPC formulation, 

the following being the most commonly used: 

• Transfer function.  

• State space.  

    Non-linear models can also be used to represent the process but the problem of their use 

springs from the fact that they cause the optimization problem to be more complicated. 
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Neural nets [40]as well as fuzzy logic [41] are other forms of representation used in some 

applications. 

I.4.7 Objective Function 

The various MPC algorithms propose different cost functions for obtaining the control law. 

The cost function definition is one of the most important stages in the design of an MPC, 

since it allows not only to select the control objectives of the application, but also to include 

any required constraints that  represents the desired behavior of the system [42]. This 

function considers the references, future states (or predicted states), and future actuations. 

In case of a multivariable system, the cost function may be written as 

 

J=∑ 𝜆𝑖
𝑛
𝑖 |𝑥𝑖

∗ − 𝑥𝑖
𝑝| 

 

While: 

n  :  is the number of controlled variables 

𝑥𝑖 :  is the controlled variable(It is not written in the function but , it is just to mention the 

controlled variable ) 

𝑥𝑖
∗ ∶ is the reference value of the controlled variable 

𝑥𝑖
𝑝: is the predicted value of the controlled variable  

𝜆𝑖: is the weighting factor 

 

   The weighting factor allows for adjusting the importance of each controlled variable 

according to its priority in the scope statement 

   The selected actuation is the one that minimizes the cost function, it is stored so that it 

can be applied to the converter in the upcoming sampling period [43] 

 

I.4.8 Obtaining the control law 

    In order to obtain values u (t + k | t) which is mentioned in Figure I-11 it is necessary to 

minimize functional J. To do this the values of the predicted outputs y(t + k | t) are 

calculated in function of past values of inputs and outputs and of future control signals, 

making use of the model chosen and substituted in the cost function, obtaining an 
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expression whose minimization leads. An analytical solution can be obtained for the 

quadratic criterion if the model is linear and there are not constraints, otherwise an 

iterative method of optimization should be used [44]. 

If the system is not linear but nonlinear, we can use linear MPC and still benefit from the 

proprieties of the convex optimization problem , the available method to use this case are 

the adaptive and gain scheduled MPC , the way these controllers deal with a nonlinear 

system is based on linearization. If the system is nonlinear and that cannot be 

approximated well then we have to use nonlinear MPC, this method is the most powerful 

on as, it uses the most powerful on as, it uses the most accurate representation of plant.   

I.4.9 The major problem of the MPC 

     The Model Predictive Control (MPC) is a well-established technique for process control 

that has been applied to electrical systems, so after the three decades of the gradual 

development, so what remains now?  [45] 

   At present, the MPC suffer from many problems, such as the lack of systematic handling 

of uncertainty. Therefore, it is necessary to improve the predictionaccuracy for mismatched 

prediction models. The other problem is howto design the cost functions and the weight 

coefficients [46][47] .One of the other drawback of MPC is that it requires the optimization 

problem to be solved online 

   All this makes the existing MPC algorithms suffer from a major challenge: relatively low 

computation efficiency [48] and huge amount of real-time calculations [13]. 

 

I.4.10 Different methods of improving MPC’s performance 

 

a- The authors proposed in [46] Luenberger model-based predictive torque control (LM-

PTC) of induction machine to compensate the prediction error caused by the mismatched 

parameters. The prediction error is eliminated actively by modifying the prediction model 

itself with a correction compensation term based on an open-loop predictive model of 

traditional (T-PTC). Inspired by the idea of closed-loop Luenberger observer, in the torque 

and flux prediction, the feedback correction part is introduced into the prediction equations 
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for LM-PTC. Secondly, the steady prediction errors of T-PTC and LM-PTC are respectively 

analyzed with mismatched parameter.  

 

b- In [49], the author studied the  possibility of reducing the MPC incertitude by 

proposing  a predictive-control-based direct power control (DPC) with an adaptive online 

parameter identification technique for AC-DC active front ends (AFEs). This approach 

calculates the input inductance and the resistance in the model parameters using the 

sampled input currents and input voltages every sampling period based on least-squares 

estimation. Therefore, the AFE generates sinusoidal input currents, and it mitigates a 

performance degradation resulting from the model uncertainty of the MPC. 

 

c- In the paper [50] a discrete-time model for an induction machine with time 

varying components was proposed to improve the accuracy of the MPC control strategy 

compared to the Euler discretization approach. The machine model is updated at every 

sampling instant and used to predict the future current and flux values for each voltage 

vector produced the least torque and stator flux magnitude errors , then it will be applied 

during the next sampling time. It is also possible to include additional constraints in the 

cost function such as reduction of the switching frequency [51] and imposed spectrum [52]. 

 

d- In order to solve the parameter dependence problem in model predictive 

control, an improved model predictive current control (MPCC) method based on the 

incremental model for surface-mounted permanent magnet synchronous motor (SPMSM) 

drives is proposed in paper [53], where the results of simulation show that it can effectively 

reduce the parameter sensitivity of the MPCC. Firstly, an analysis of the parameter 

sensitivity of the conventional MPCC method is established. Then,an incremental 

prediction model is introduced to eliminate the use of permanent magnetic flux linkage in 

the prediction model. Therefore, in order to improve the anti-parameter-disturbance 

capability of the MPCC method, an inductance disturbance controller is presented to 

update accurate inductance information for the whole control system in real time. 

 

e-  In paper [54] , the combination of a finite-control-set MPC (FCS-MPC) with a 

system identification is proposed. The method does not require high-frequency signal 
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injection, but uses the measured values already required for the FCS-MPC. An evaluation 

of the least squares-based identification on a laboratory test showed that the model 

accuracy and thus the control performance could be improved by an online update of the 

prediction models. 

I.5 Model predictive control based on neural network 

  In the last few decades, there has been a significant evolution of traditional control 

techniques in parallel with the appearance of modern tools associated with artificial 

intelligence. It should be noticed that most of classical model-based control methods, 

including nonlinear ones, require the knowledge of the controlled system by means of set of 

algebraic and differential equations, Moreover, complete mathematical models describing 

the systems are often very complex and their parameters need to be known. In real 

applications, some parameters may be hard to measure or their identification is very 

complicated. In order to overcome these problems, it is beneficial to use artificial 

intelligence techniques, such as neural networks, fuzzy logic and genetic algorithms , which 

do not need the controlled system models and use expert knowledge or experimental data 

for controller training [55]. 

Recently, based on a biological prototype of the human brain, the neural networks have 

attracted considerable attention for modeling uncertain, nonlinear, and complex systems, 

owing to their learning and adaptation capabilities [56], [57]. In general, the structures of 

neural networks can be classified as feed-forward NN and recurrent NN [58] 

I.5.1 Overview of neural networks 

  In general, ANN systems are capable of “learning” trends in a given data set and 

establishing input–output relationships based strictly on a “test” set of data. 

I.5.1.1 The construction of ANN systems  

The basic element in neural network systems is called a neuron. The neuron accepts one 

input𝑥 , and produces an output value 𝑦, based on the (generally) nonlinear function. 

However, there is no way to determine beforehand which choice of this function will 

produce the best results for a particular problem. A complete multilayer neural network 
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system is constructed by combining neurons in series (from left to right) and parallel (from 

top to bottom). [59] 

 

Figure I- 13: A three-layer neural network system 

A layer is defined to be a set of parallel-connected neurons, or “nodes.” The hidden and 

output layers are identical in both form and functionality; they give the network its ability 

to “learn” complex nonlinear relationships between inputs and outputs. [59] 

I.5.1.2 The ANN’s working principle  

ANN’s perform their calculations using the nonlinear functions and simple multiplying 

factors, called weights that are associated with a pathway between any two neurons.In its 

basic form, this model can be expressed as an iterative composition of input-output 

functions of the form [60] 

𝑓(𝑥⃗) = ℎ (𝑤0 +∑𝑤𝑖𝑥𝑖

𝑀

𝑖=1

) 

Where ℎ(𝑥) is an activation function ,  𝑥⃗= {𝑥1, 𝑥2, · · · , 𝑥𝑀 } is the input vector of the 

ANN with M elements, 𝑤𝑖 are the weights for each input xi , and 𝑤0 is a bias or correction 

factor. The objective of the ANN training phase is to optimize some cost function by 

finding optimal values for the 𝑤𝑖 and  𝑤0 [60].  The weights are updated in a manner such 

that the complete network “learns” to produce a specific output for a specific input. The 

process of adjusting the weights to achieve a specified accuracy level is referred to as 

“training.” [61] 
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I.5.1.3 The training of ANN  

The major justification for the use of ANN’s is their ability to “see” and “learn” 

relationships in complex data sets that may not be easily perceived by human engineers. 

An ANN system performs this function as a result of “training” which, in words, is a 

process of repetitively presenting a set of training data (typically a representative subset of 

the complete set of data available) to the network and adjusting the weights so that each 

input data set produces the desired output[61]. 

I.5.1.4 Learning Algorithm Categorization 

Neural networks are trained by two main types of learning algorithms: supervised and 

unsupervised learning algorithms. 

Supervised Learning: a supervised learning algorithm adjusts the strengths or weights 

of the inter-neuron connections according to the difference between the desired and actual 

network outputs corresponding to a given input. Thus, supervised learning requires a 

"teacher" or "supervisor" to provide desired or target output signals. The network employs 

a special one-step procedure during "learning" and an iterative procedure during recall.[62] 

Unsupervised Learning: unsupervised learning algorithms do not require the desired 

outputs to be known. During training, only input patterns are presented to the neural 

network which automatically adapts the weights of its connections to cluster the input 

patterns into groups with similar features. [62] 

I.5.1.5 Classes of neural network   

a- The feed-forward neural net  

FNN tend to be straightforward networks that allow signals to travel one way only, from 

input to output. There are no feedback (loops); i.e. the output of any layer does not affect 

that same layer. Most of the works on nonlinear MPC (NMPC) use FNN, for example  In 

[63] , S.Tiwari, R. Naresh, and R. Jha  realize a neural network model predictive controller, 

by using the FNN, for predictive control of the power system to improve its transient 

stability. Yan and Wang in [64] introduce a robust MPC based on a FNN  The results show 

that this robust MPC could improve computational efficiency and shed a light for real-time 
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implementation. However, the main drawback of FNN that their capability for 

representing nonlinear systems is limited [58] 

 

 

Figure I- 14: The feed-forward neural network 

b- The recurrent neural net  

RNN can have signals traveling in both directions by introducing loops in the network. 

They are capable of providing long-range predictions even in the presence of measurements 

noise due to their structures. Therefore, RNN are better suited to model nonlinear systems 

for MPC. Pan and Wang in  [65]  use an echo state network to identify unknown nonlinear 

dynamical systems for NMPC. The results show that the echo state network-based NMPC 

can reach the global convergence. RNN improved performance in terms of global 

convergence and reduced model complexity [66].Examples of recurrent networks 

include the Hopfield network [Hopfield, 1982], the Elman network [Elman, 1990] 

and the Jordan network [Jordan, 1986]. [62] 

 

 

Figure I- 15: Simple recurrent neural network 
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c- Self-organizing neural network  

 

The class of methods that have been often termed "self-organizing maps" (SOM) involve 

iterative procedures for associating a finite number of object vectors (inputs) with a finite 

number of representational points [67].  A self-organizing neural network consists of two 

parts: main part and control part. The main part, structurally, is the same as an ordinary 

3-layered feed-forward neural network, but each neuron in its hidden layer contains a signal 

from the control part, the main part is trained by a supervised learning and learns input-

output mapping. The control part consists of a self-organizing map (SOM) network  [68] 

whose outputs associate with the hidden neurons in the main part one by one and control 

the firing strength; the control part is trained by an unsupervised learning [69]. 

 

 

 
 

Figure I- 16: Diagram of a Self-Organizing Map 

I.5.2 How ANN Systems are applied 

  ANN systems must be applied to problems for which a suitable amount of training data 

exists; it may come from historical records from measured data. The system will only 

perform as well as it has been trained [61].  In our case, the objective is to drive a three- 

phase’s inverter. Therefore, we use MPC as an expert or a teacher for generating the data 

required for training off-line the proposed neural network using standard supervised 

learning, under full state observation of the system, once the off-line training is performed, 
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the trained ANN can successfully control the output voltage of the inverter, without the 

need of using MPC at test time. 

 

 
 

Figure I- 17: An overview of the proposed control strategy 

I.6 Conclusion 

       In this chapter, a state of the art of the major elements of our work is presented. 

      At the beginning, we talked about the AC-AC converters which are divided into direct 

and indirect converters, which have different structures where each one has its special 

requirements and issues. 

Secondly, a section briefly describes the model predictive control, including a historical 

development, its working principle with some examples of its applications. The MPC suffers 

from the concern of the relatively low computation efficiency. Therefore, we highlight the 

methods of performance’s improvement of the MPC.The neural network is one of the most 

promoted solutions.The last section was dedicated to present an overview of ANN and how 

it could improve the model predictive control. 
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CHAPITRE II: CHAPTER TWO 

Introduction 

     In recent years, model predictive current control (MPC) has been proposed as an 

interesting alternative for the control of power converters and drives. This control 

technique uses a model of the system to calculate predictions of the future behavior of the 

system for a given set of possible actuations for a predefined time horizon[70].Inother 

hand, a major drawback of MPC is that it requires the optimization problem to be solved 

online, which involves a huge amount of real-time calculations. However, different 

solutions have been introduced in order to address this problem [13].In particular, ANN-

based controllers and estimators which have been widely used in identification and control 

of power converters and motor drives.  

This chapter presents a neural network based on MPC scheme for a three-phase, two-level, 

inverter-fed RL-load. The modeling of the two-level voltage source inverter (2LVSI) and of 

the load will be presented, the working principle, procedure training will be explained and 

simulation results will be shown. 

II.1 Artificial neural network based MPCC 

In this chapter we present a new control scheme for a two-level converter based on 

combining MPC and feed-forward ANN, with the aim of getting lower THD and improving 

the steady and dynamic performance of the system. First, MPCC is used, as an expert in 

the training phase to generate data required to train the proposed neural network. Then, 

once the neural network is fine-tuned, it can be successfully used online for controlling, 

without the need of using MPCC. The proposed ANN-based control strategy is validated 

through simulation, using MATLAB/Simulink tools, taking into account different 

conditions. 
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II.2 System modeling 

II.2.1 Inverter model 

 

Figure II- 1 : Voltage source inverter power circuit 

Considering a generic two-level, three-phase power inverter, there are six switches that 

generate the output. Moreover, the two switches of each leg of the converter operate in a 

complementary mode, in order to avoid the occurrence of short-circuit conditions. The 

three control signals named Sa, Sb, Sc forms a total of 23=8 feasible switching states of the 

converter. The valid switching states with the corresponding phase and line voltages are 

presented in Table I  

Where  

• VDCis the DC source voltage.  

• va, vb and vc are the phase-to-neutral (M) voltages of the inverter 

• u1, u2 and u3 are the phase-to-neutral (N) voltages of the load 

• S1, …, S6 are the gate signals 

Thus, eight switching states can be determined by three main gating signals:  Sa, Sb, and 

Sc, expressed as follows: 

 𝑆𝑎 = {
1 if𝑆1on and𝑆4off
0 if𝑆1off and𝑆4on
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 𝑆𝑏 = {
1 if𝑆2on and𝑆5off
0 if𝑆2off and𝑆5on

 (II.1) 

   

 𝑆𝑐 = {
1 if𝑆3on and𝑆6off
0 if𝑆3off and𝑆6on

  

 

By applying Kirchhoff’s first law we get:  

 {

𝑢1 = 𝑣𝑀𝑁 + 𝑣𝑎
𝑢2 = 𝑣𝑀𝑁 + 𝑣𝑏
𝑢3 = 𝑣𝑀𝑁 + 𝑣𝑐

 (II.2) 

Adding the three equations we get: 

 𝑣𝑀𝑁 = −
1

3
(𝑣𝑎 + 𝑣𝑏 + 𝑣𝑐) (II.3) 

 

Replacing 𝑣𝑀𝑁 in (II.2) and considering that the load is balanced, we result in the following 

system that will be implemented in MATLAB: 

 (

𝑢1
𝑢2
𝑢3
) =

1

3
𝑉𝐷𝐶 (

2
−1
−1

−1
2
−1

−1
−1
2
)(

𝑆𝑎
𝑆𝑏
𝑆𝑐

) (II.4) 

 

Table II- 1: Feasible switching states of the two-level four-leg inverter 

𝑆𝑎 𝑆𝑏 𝑆𝑐 𝑢1 𝑢2 𝑢3 

0 0 0 0 0 0 

1 0 0 
2

3
𝑉𝐷𝐶 

−1

3
𝑉𝐷𝐶 

−1

3
𝑉𝐷𝐶 

1 1 0 
1

3
𝑉𝐷𝐶 

1

3
𝑉𝐷𝐶 

−2

3
𝑉𝐷𝐶 

0 1 0 
−1

3
𝑉𝐷𝐶 

2

3
𝑉𝐷𝐶 

−1

3
𝑉𝐷𝐶 

0 1 1 
−2

3
𝑉𝐷𝐶 

1

3
𝑉𝐷𝐶 

1

3
𝑉𝐷𝐶 

0 0 1 
−1

3
𝑉𝐷𝐶 

−1

3
𝑉𝐷𝐶 

2

3
𝑉𝐷𝐶 

1 0 1 
1

3
𝑉𝐷𝐶 

−2

3
𝑉𝐷𝐶 

1

3
𝑉𝐷𝐶 

1 1 1 0 0 0 
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II.2.2 Load model 

The application of Kirchhoff’s first law to the RL-load in Figure II.1 gives: 

 

{
 
 

 
 𝑢1 = 𝐿

𝑑𝑖𝑎
𝑑𝑡
+ 𝑅𝑖𝑎

𝑢2 = 𝐿
𝑑𝑖𝑏
𝑑𝑡
+ 𝑅𝑖𝑏

𝑢3 = 𝐿
𝑑𝑖𝑐
𝑑𝑡
+ 𝑅𝑖𝑐

 (II.5) 

 

By transforming (II.5) into Laplace domain as transfer functions, to get a model for this 

RL load for simulation in MATLAB/Simulink environment we get:  

 

{
  
 

  
 
𝑖𝑎
𝑢1
=

1

𝑠𝐿 + 𝑅
𝑖𝑏
𝑢2
=

1

𝑠𝐿 + 𝑅
𝑖𝑐
𝑢3
=

1

𝑠𝐿 + 𝑅

   (II.6) 

 

 To achieve a precise control strategy, a forward Euler method discretization of the 

system (II.5) is used to accurately predict the future values of the output current at the 

sampling period Ts. So 
di

dt
 is replaced by 

i[k+1]−i[k]

Ts
 and after some arrangements, (II.5) 

becomes: 

 

{
 
 

 
 𝑖𝑎[𝑘 + 1] = (1 −

𝑅𝑇𝑠
𝐿
) 𝑖𝑎[𝑘] +

𝑢1𝑇𝑠
𝐿

𝑖𝑏[𝑘 + 1] = (1 −
𝑅𝑇𝑠
𝐿
) 𝑖𝑏[𝑘] +

𝑢2𝑇𝑠
𝐿

𝑖𝑐[𝑘 + 1] = (1 −
𝑅𝑇𝑠
𝐿
) 𝑖𝑐[𝑘] +

𝑢3𝑇𝑠
𝐿

 (II.7) 

 

Where, in the control algorithm, ia[k] is evaluated as the measured current of phase a at 

the sample k and ia[k + 1] is evaluated as the predicted value of the current of phase a at 

the samplek + 1. 

II.2.3 Model predictive control 

In this section, the goal is to control the load current. MPC exploits the discrete-time model 

of the inverter to predict the future behavior of the current, for each switching state. 
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Thereafter, the optimum switching state𝑥𝑜𝑝𝑡 is selected, based on the minimization of the 

cost function, and directly fed to the power switches of the converter in each sampling 

interval Ts.[71] 

We choose the cost function to be minimized to achieve the lowest error between the 

predicted current and the reference values; which is expressed as: 

𝐽 = |𝑖𝑎[𝑘 + 1] − 𝑖𝑎
∗ [𝑘 + 1]| + |𝑖𝑏[𝑘 + 1] − 𝑖𝑏

∗[𝑘 + 1]| + |𝑖𝑐[𝑘 + 1] − 𝑖𝑐
∗[𝑘 + 1]| (II.8) 

 

Where 𝑖𝑎
∗ [𝑘 + 1], 𝑖𝑏

∗[𝑘 + 1] and 𝑖𝑐
∗[𝑘 + 1] are the reference values of the phase currents at 

the sample 𝑘 + 1. 

The MPC steps can be described in the algorithm shown in Figure II.2. The algorithm 

starts with the measurement current at the beginning of the sampling time.  Once the 

variables are available, the model is evaluated for the first switching state obtaining the 

predicted variables, which are used in the cost function. Depending on the result, the 

switching state is selected or discarded and the loop is repeated. Once the switching states 

were evaluated, the selected   one   is   applied   to the converter.   

 

  The MPCC scheme uses finite number of valid switching states of the inverter in order to 

find the 𝑥_𝑜𝑝𝑡 by using the following steps: 

 

1) Measure the controlled variable 𝑖[𝑘]and estimate 𝑖∗[𝑘 + 1]. 

2)  Apply the optimal switching state (computed in the previous sampling period) to 

calculate the output voltage of the inverter 𝑣[𝑘] using the inverter model. 

3) For every switching state of the converter, predict (using the mathematical model) 

the behavior of current in the next sampling interval 𝑖[𝑘 + 1] 

4) Evaluate the cost function, or error, for each prediction as, for instance:   

𝐽 = |𝑖[𝑘 + 1] − 𝑖∗[𝑘+]1]| 

5)  Select the switching state that minimizes the cost function, 𝑆𝑜𝑝𝑡, and store it so 

that it can be applied to the converter in the next sampling period 
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Figure II- 2 : Flow diagram of MPCC 

Then in implementation, we should express, the currents and the output voltage of the 

inverter in 𝛼𝛽 coordinate system, to simplify and minimize the computation time as follow  

𝑣 =
2

3
(𝑣𝑎 + 𝑎𝑣𝑏 + 𝑎

2𝑣𝑐) (II.9) 

𝑖 =
2

3
(𝑖𝑎 + 𝑎𝑖𝑏 + 𝑎

2𝑖𝑐) 
(II.10) 

Startup 

Measure 𝑖[𝑘] 

𝑗
= 0 

𝑗 = 𝑗 + 1 

𝑖[𝑘 + 1] = (1 −
𝑅𝑇𝑠
𝐿
) 𝑖[𝑘] +

𝑣[𝑘]𝑇𝑠
𝐿

 

𝐽 = |𝑖[𝑘 + 1] − 𝑖∗[𝑘
+ 1]| 

Store optimal value 

𝑗 = 8? no 

yes 

Apply optimal 

vector 𝑣[𝑘] 
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Where: 

𝑎 = 𝑒
𝑗2𝜋

3 = −
1

2
+ 𝑗

√3

2
 

𝑖𝛼 = 𝑅𝑒(𝑖) 

𝑖𝛽 = 𝐼𝑚(𝑖) 

 

Instead of calculating the output voltage of the inverter for each possible switching state at 

every iteration, we can calculate them in advance and apply them to the load model. 

 

 

Table II- 2: Possible switching states and output vector voltage 

𝑆𝑎 𝑆𝑏 𝑆𝑐 𝑣 

0 0 0 𝑣0 = 0 

1 0 0 𝑣1 =
2

3
𝑉𝐷𝐶 

1 1 0 𝑣2 =
1

3
𝑉𝐷𝐶 + 𝑗

√3

2
𝑉𝐷𝐶 

0 1 0 𝑣3 =
−1

3
𝑉𝐷𝐶 + 𝑗

√3

2
𝑉𝐷𝐶 

0 1 1 𝑣4 =
−2

3
𝑉𝐷𝐶 

0 0 1 𝑣5 =
−1

3
𝑉𝐷𝐶 − 𝑗

√3

2
𝑉𝐷𝐶 

1 0 1 𝑣6 =
1

3
𝑉𝐷𝐶 − 𝑗

√3

2
𝑉𝐷𝐶 

1 1 1 𝑣7 = 0 
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Figure II- 3 : Voltage vectors in the complex plane 

In order to reduce the number of calculations for the output current, we can transform the 

three equations in (II.1) into one equation using (II.1). We obtain: 

 𝑖[𝑘 + 1] = (1 −
𝑅𝑇𝑠
𝐿
) 𝑖[𝑘] +

𝑣𝑇𝑠
𝐿

 (II.11) 

 Thus, the cost function (II.1) becomes: 

 

 𝐽 = |𝑖[𝑘 + 1] − 𝑖∗[𝑘 + 1]| (II.12) 

 

The output voltage vectors of the inverter are stored and selected rather than calculated 

each sampling period of the algorithm. The calculation of the cost function is a subtraction 

of two one-dimensional complex variables rather than three-dimensional variables. So, the 

number of calculations is considerably reduced. 

II.3 The proposed artificial neural networks architectures 

   The ANN based on MPCC combinesthe advantages of both neural network and model 

predictive control, for current control and it undergoes two main steps: (i) we use MPC as 

an expert or a teacher for generating the data required for training off-line the proposed 

neural network using standard supervised learning, under full-state observation of the 

system; (ii) once the off-line training is performed, the trained ANN can successfully control 

the switching, without the need of using MPC at test time. 
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In this chapter, we focus on two different types, perceptron neural network using the hard-

limit as active function and feed forward back-propagation which use as activation 

function Levenberg-Marquardt (trainLm). Though the training data collected from MPC 

algorithm are the same for both networks, their data processing varies due to the different 

requirement of NN outputs. [13] 

II.3.1 Perceptron neural network 

 

  The perceptron is a linear combiner that quantizes its output to one of two discrete values. 

In single-layer perceptron, the input signals 𝑝𝑘 are scaled by a set of adjustable 

weights𝑤𝑘to generate an intermediate output signal𝑦 , which is then processed by a hard 

limiter, resulting in the quantized binary output 𝑎. This binary output is then compared to 

the desired response (target), which is also a binary signal, generating an error that is used 

in a feedback strategy to adapt the weights. The input signals can be binary-valued or they 

can be drawn according to a continuous distribution. [72] 

 

(a) 

 

(b) 

 

Figure II- 4 : (a) perceptron neural network scheme, (b) the activation function hard-lim 

The output unit uses the Hard-limit (threshold) function as an activation function, thus 

implementing a two-class classification task onto the space {0, 1} 

𝑎 = ℎ𝑎𝑟𝑑𝑙𝑖𝑚(𝑛) {
1        𝑖𝑓 𝑦 > 0
0        𝑖𝑓 𝑦 < 0

 

Where:  𝑦 is the output of the trained ANN.  
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II.3.2 Artificial Neural Network Fitting (fitnet) 

MATLAB R2015a [nnstart] wizard has been used to create and train a network and 

afterward test the network. Neural network is trained by using Levenberg-Marquardt 

(trainlm), unless there is not enough memory, in which case scaled conjugate gradient back-

propagation (trainscg) will be used. These algorithms display competitive advantages over 

one another. 

    Artificial Neural Network Fitting (fitnet) is used for static fitting problems with 

standard two layer feed forward neural network trained with Levenberg- Marquardt (LM) 

algorithm, denoted by ‘trainlm’, works faster when it trains a moderate-sized feed forward 

neural network that can hold up to several hundred weights [23] and supports the training 

with validation and test vectors, The data are randomly divided into 70% training, 15%   

testing and 15 % validation. The training data are used to adjust network weight as per 

error. The validation data are used for network generalization and to halt training when 

generalization stops improving. The testing data have no effect on training and it provides 

an independent measure   of network performance during and after training. The hidden 

layer neurons are increased when network is not performing well after training. The 

training stops automatically when generalization stops improving as indicated by an 

increase in the mean square error (MSE) of the validation data samples. [72] 

II.4 ANN training procedure 

    The ANN takes as inputs the measured current𝑖 , the reference current 𝑖∗ , all expressed 

in 𝛼𝛽 coordinates. The real and imaginary parts of these variables are separately fed to the 

neural network, bringing the total number of input features to four i.e., inputs =4. The 

outputs of the ANN are the three control signals Sa, Sb, Sc. 

The training data, which have been collected by MPC, comprises10 experimental 

conditions; in each experience we choose a specific value of resistance (R= 5, 10, 15, 20, 25, 

30, 35, 40, 45, 50 Ω) with different values of current of reference𝑖∗,  

 

    For each experimental condition, the simulation is run using MPC. Then, the input 

features of the neural network and their targets are stored for training. 
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  As a consequence, the total dataset consists of 500010 instances, which is the same for 

both networks. This dataset has been divided into two parts: 70% randomly selected for 

training purposes, and 30% for testing and validation when we used a fitnet training, as 

opposed to the perceptron method where 100% of the data has been used for training 

purposes. Their data processing varies due to the different requires of NN outputs. NN 

fitting net has no limits for the output elements so we had to add a saturation + round 

blocks on Simulink compared with NN perceptron which provide binary outputs (0 and 1).  

 

 

Figure II- 5 : General topology of the 15-neuron hidden layer feed-forward ANN 

 

Figure II- 6 : General topology of single layer perceptron neural network 

The following table presents the NN training parameters 

Table II- 3 : the training parameters 

 Perceptron Feed forward back-propagation 

Epochs  1 1000 

iterations 1 278 

Training time  48 mn 27mn 

MSE 0.78262 0.058118 

regression - 0.81175 

Hidden layers Single layer One hidden layer (15 nodes) 
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Figure II- 7 :  (a) fitting neural network performances, (b) fitting neural network regression 

 Figures (II-7) and (II-8) indicate the best validation performance, which was taken, for the 

fitnet training case, from epoch 278 with the lowest validation error of 0.058118, while for 

the perceptron neural network the best validation was taken from the first training 

iteration with the lowest validation error of 0.78262. 

Figure II- 8: (a) confusion matrix of PNN, (b) training performance of PNN 

 

 

(a) 

 

 

(b) 

  (a) 

 

 

(b) 
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      To clearly improve the training performance of perceptron neural network, it gives a 

confusion matrix shown in  Figure II-8 which is obtained from the training code, each row 

in matrix corresponds to an output class (i.e. Sa, Sb and Sc), and the columns are the target 

classes which are taken from the sample data. The green cells in the diagonal of the matrix 

identify the number and percentage of correctly classified data points (at the final training 

iteration), while all other red cells indicate the incorrect classifications. On the other hand, 

five light-grey blocks in the last column, row include the specific prediction accuracies for 

every class/feature. As shown in FigureII.8, the 2nd and 3rd classes have very low accuracies 

so, we may adjust the training data set of 2ndand 3rd classes to pursue a better training 

performance. However, in this study, we cannot change to the data affected becauseall 

training data are obtained under certain conditions with sinusoidal references thus; it is 

very hard to manually determine which inputs can get its data.  

II.5 Simulation Results and analysis 

  This section provides a comprehensive study and evaluation of the two proposed control 

strategies, taking into account different loads under various operating conditions. 

    To verify the proposed ANN-based control strategy (model predictive current control) 

and compare its performance with the conventional MPC, we used MATLAB 

(R2020a)/SIMULINK software components to implement the SIMULINK model and the 

simulations results of the system are shown in the figures bellow 

 

  

(a) 
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(b) 

  

(c) 

 

Figure II- 9 : Simulation results of current control of a two-level inverter-fed RL-load: 

Reference and output current of phase A and their zoom. (a): MPCC, (b): PNN, (c): fitnet 

  

(a) 
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(b) 

  

(c) 

Figure II- 10 : Simulation results of current control of a two level inverter-fed RL-load 

Output current and output voltage spectra expressed as percentages of fundamental 

magnitude,|𝐈∗| = 𝟑 𝐀 and 𝐟∗ = 𝟓𝟎 𝐇𝐳 with (a) MPC, (b) fitnet, (c) PNN 

  
(a) 
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(b) 

  
(c) 

 

Figure II- 11: Simulation results of current control of a two-level inverter-fed RL-load: 

Output voltage of the inverter and 50 ×the load current of phase A with: (a) MPC, (b) 

fitnet, (c) PNN 

 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure II- 12: Simulation results of current control of a two-level inverter-fed RL-load: 

output current of phase A with PNN and fitnet (NFTOOL) for different magnitude and 

different frequencies 

 

 

 

Figure II- 13 : Comparison of the THD of the output current obtained by the three 

proposed control strategies, for some cases given in Table below, under 

different operating conditions. 
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Table II- 4 : A comparison between the two proposed control strategies under different 

operating conditions 

 VDC R I 
THD 

MPC 

THD 

PERCEPTRON FITNET 

S1 300 10 4 1.46 1.17 0.86 

S2 300 20 3.5 1.57 1.40 0.99 

S3 300 30 2 2.76 2.12 2.03 

S4 300 40 3.5 1.56 1.56 0.99 

S5 300 50 3 1.93 1.76 1.18 

S6 300 60 2 2.55 2.34 1.94 

S7 350 40 3 2.08 1.65 1.18 

S8 350 50 3.5 1.93 1.58 0.98 

S9 350 60 2 2.67 2.26 1.91 

S10 500 50 3 2.88 1.59 1.14 

 

 

Figure II-9 shows the simulation steady performance of the MPC controller, PNN, and 

fitnet controller. For Fig II-9((a), (b), (c)), the outputs currents are controlled to track their 

references (different magnitudes and frequencies), the output current of MPC oscillates 

around its reference forming a ripple, or a band, around the reference while in the ANN-

controllers almost are superimposed. The output current ranges from (2A, 50Hz) to (3A, 

25Hz) then (2A, 100Hz). The ANN-controllers can track theirs references with fast 

dynamic response. In addition, both of the ANN-controllers have good wave form current 

effect compared to the MPC. Also, it can be noticed that current of fitnet is smoother than 

PNN. 

 

Figure II-10 represents the output current and output voltage harmonic spectrum of the 

MPC, PNN, and fitnet controllers expressed as percentages of fundamental magnitude with 

a fixed reference frequency and magnitude. This figure clearly shows that ANN-controllers 

can achieve good THD results compared to MPC, it can be seen that the output current 

quality of ANN-based approach is improved significantly, with a current THD of 1.7737% 

for PNN, 1.3039% for fitnet compared to 2.3738% for MPC. 
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Figure II-11 represents the output voltage of the inverter and 50 ×the load current of 

phase A of the MPC, PNN and fitnet controllers. This figure clearly shows that the form of 

output voltages obtained using MPC is better than that obtained using the ANN-

controllers but in some conditions, it can be noticed that fitnet controller achieves better 

results. 

 

Figure II-12 is a comparison of the output current of the two strategies, the comparison did  

on different conditions : magnitudes (1A ,2A, 2.5A, 3.7A), different frequencies (60Hz, 

100Hz, 200Hz), different values of Vdc (300V, 250V, 400V, 500V) and different values of 

resistance (50Ω, 20Ω ,40Ω) shown in Figure II-12 (a,b,c,d) following  . We can see that the 

current follows its new reference quickly after any change in its magnitude and frequency 

despite the variations of the resistance and Vdc value. This result proves the flexibility, 

efficiency of proposedd strategies. 

 

Figure II-13 is a Histogram gives statistical information about the THD of the current 

output of the three controls strategies. The histogram was created using information shown 

in Table II-4. It is observed that THD current obtained by proposed strategy improvesits 

performance to outperform that of MPC particularly that’s obtained by fitnet strategy. For 

example, (THD) ANN-fitnet of cases S3, S5, S8, is decreased to be 2.03%, 1.18%, 0.98%, 

2.35%, 3.86%, respectively.  

As anticipated, the performance of the ANN-based MPC outperforms that of MPC, which 

can be noticed in lower THD and less settling time to reach steady-state particularly shown 

on fitnet. Moreover, in sample (10), it is noticed that THD of ANN-controllers achieves a 

good result in Vdc= 500V  although when the range of data Vdc value fixed on 300 V. 

II.6 Comparison of the three methods 

  The advantages and disadvantages of the proposed methods are summarized as follow:  

regarding the computation burden, the ANN-controllers method has the lowest 

computation, this is the key advantage of the ANN compared to the MPC method. For the 

control performance, the THD of output current of the fitnet is the best. However, ANN-

controllers have a better ability to handle the input variables, which beyond the training 
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data range. The waveform of output voltages obtained using MPC are better than that 

obtained using the ANN-controller. 

II.7 Implementation of ANN-MPCC 

In order to verify the theoretical developments, emphasize the appeal of the proposal 

ANN control based on model predictive control, and to study how the technique can reduce 

the burden calculation and how the technique can operate with frequency as well as in 

power converters. An implementation test have been done in CDER laboratory. 

II.7.1.1  Materials and Methods 

We used the following hardware equipment to design the test bench developed for this 

project: 

- The C2000 DIMM100 Experimenter's Kit “DSP card “ 

- Laptop with MATLAB/Simulink  

- Oscilloscope 

- Cables  
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Figure II- 14 : laboratory materials 

     For neural network implementation, we used the software Matlab/Simulink with TI 

(Texas Instrument) development tools. First, it is necessary to make a Simulink model 

which will be compiled and then loaded to the DSP card.It is important to design the 

following blocks (algorithms): neural network block (the same as the one used in 

simulation), digital output (GPO blocs), current references. 
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II.7.1.2 Results 

To obtain Implementation, results in DSP card, theused frequency was 40 KHz.  

 

Figure II- 15 : The blocs used for implementation Test 

 
Figure II- 16 :the blocs that will be used for real implementation 
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Figure II- 17 : the PWM signals (a) 

The Implementation results of neural network (type perception) show that the controller 

can be easily implemented in the DSP and it can work even beyond 40 KHz. 

II.8 Conclusion 

In this chapter, a novel control strategy using an artificial neural network control using 

two methods, to generate a high-quality sinusoidal output current of a three-phase inverter 

with an RL load has been successfully developed and simulated, under various operating 

conditions.  

The output current of the inverter is directly controlled, without the need for the 

mathematical model of the inverter, considering the whole system as a black box. In this 

work, MPC has been used for two main purposes: (i) generating the data required for the 

off-line training of the proposed ANN, and (ii) comparing its performance with the 

proposed ANN-based controller for various conditions. Simulation results, based on a test 

with different references beyond the training data range, shows that the proposed ANN-

based controllers give better performances than MPC in terms of a lower THD. Fitnet 

provides a better control performance compared to PNN. 
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CHAPITRE III: CHAPTER THREE 

Introduction 

The induction machine is currently the most used machine in industrial field and 

gradually replacing the DC machine. However, the induction machine is a multivariate 

system. It is characterized by a nonlinear model, which makes the control very 

complicated. The Model Predictive Torque Control (MPTC) strategy is a developed drive 

control technique of induction machines. It is characterized by a fast dynamic response, 

simple implementation and robustness essentially to the rotor parameter variation. 

However, the MPC has the main disadvantages such as electromagnetic torque, stator flux 

ripples and the burden calculation. Therefore, many methods are used to overcome these 

disadvantages, for example, replacing it with a neural block. The artificial neural networks 

are capable to explore multivariate correlations between the outputs and inputs variables 

without knowing the mathematical model of the system [73][74] 

In this chapter, the proposed strategy: Artificial neural network-based Model 

Predictive Torque Control (MPTC) scheme has been applied to the system (inverter + 

machine), which is one of the most common electrical motor drive. The control scheme is 

described in details from machine modeling to simulating the system along with inverter 

model that is described in the previous chapter. 

III.1 Artificial neural network based MPTC 

In this chapter we developed a strategy of an intelligent control based on neural 

network for induction motor control-based model predictive torque control (MPTC). The 

proposed control consists of an estimation of stator flux vector and electromagnetic torque, 

with the aim of getting a better dynamic performance of the system. First, MPTC is a 

selection of a voltage vector which results in a stator flux 𝜑𝑠 and electromagnetic torque 

𝑇𝑒𝑚 that satisfies the objective of the control. To do so, the control scheme uses models of 

the converter and the machine to calculate predictions of the controlled variables which are 

then compared to their references at each sampling period. The voltage vector is selected 

based on predefined conditions that are implemented in the cost function. This strategy of 
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control is used, as an expert, in the training phase to generate data required for training the 

proposed neural network. Then, once the neural network is fine-tuned, it can be 

successfully used online for controlling, without the need of using MPTC. The proposed 

ANN-based control strategy is validated through simulation, using MATLAB/Simulink 

tools, taking into account different conditions.  

III.2 System modeling 

In the control of any power electronics drive system to start with a mathematical model of 

the plant is required. This model should have a structure that fully describes the behavior 

of the machine and, on the other hand, it should be practical for the implementation of the 

MPC algorithm. 

As shown in the Figure below, the three-phase induction machine has basically two parts: 

fixed part, called a stator,built up of high-grade alloy steel laminations to reduce eddy 

current losses. It has three main parts, namely the outer frame, the stator core, and a stator 

winding. A mobile part, called rotor, is not powered, it is short-circuited and it can be of 

two kinds: 

• Wire-wound (with rings), is used when variable speed is required. The rotor carries a 

3-phase insulated winding. Depending upon the requirement any external resistance 

can be added in the rotor circuit.  

• Squirrel cage, almost 90% of induction motors have squirrel cage rotors. The rotor 

consists of a cylindrical laminated core with axially placed parallel slots for carrying 

the conductors. As the rotor bar ends are permanently short circuited, it is not 

possible to add any external resistance in the rotor circuit. 
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Figure III- 1 : Schematic representation of the three-phase asynchronous machine 

We are interested in the squirrel cage asynchronous motor; this is because the squirrel cage 

rotor has a simple and rugged construction. In order to establish a simple relation between 

the supply voltage of motor and its currents, simplifying assumptions must be introduced 

as:  

 

• The air gap is of uniform thickness and the notching effect is negligible; 

• We neglect the eddy current and the saturation of the magnetic circuit and its 

hysteresis, which leads to a sinusoidal magnetic field; 

• The resistance of the windings does not vary with the temperature and we neglect 

skin effect (uniform current density in the conductor section); 

• We only consider the first space harmonic created by each of the phases of the two 

frames (neglecting space harmonics that do not contribute to the average torque. 

This assumption entails a sinusoidal magneto-motive force (MMF) distribution) 

Among the important consequences of these hypotheses, we can cite: 

• The flux is additive; 

• Self-inductance is constant; 
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• The law of sinusoidal variation of mutual inductances between the windings of the 

stator and rotor as a function of the electrical angle of their magnetic axes. 

III.2.1 Electrical equations 

  The electric equations of the asynchronous squirrel cage machine (short-circuited rotor), 

are written as follows: 

 
Stator: 

{
 
 

 
 𝑣𝑎𝑠 = 𝑅𝑠𝐼𝑎𝑠 +

𝑑𝜑𝑎𝑠

𝑑𝑡

𝑣𝑏𝑠 = 𝑅𝑠𝐼𝑏𝑠 +
𝑑𝜑𝑏𝑠

𝑑𝑡

𝑣𝑐𝑠 = 𝑅𝑠𝐼𝑐𝑠 +
𝑑𝜑𝑐𝑠

𝑑𝑡

 

Or in vector form: [𝑉𝑠𝑎𝑏𝑐] = [𝑅𝑠][𝐼𝑠𝑎𝑏𝑐] +
𝑑[𝜑𝑠𝑎𝑏𝑐]

𝑑𝑡
 

(III.1) 

 

Rotor: 

{
 
 

 
 𝑣𝑎𝑟 = 𝑅𝑟𝐼𝑎𝑟 +

𝑑𝜑𝑎𝑟

𝑑𝑡
= 0

𝑣𝑏𝑟 = 𝑅𝑟𝐼𝑏𝑟 + 
𝑑𝜑𝑏𝑟

𝑑𝑡
= 0

𝑣𝑐𝑟 = 𝑅𝑟𝐼𝑐𝑟 + 
𝑑𝜑𝑐𝑟

𝑑𝑡
= 0

 

Or in vector form: [𝑉𝑟𝑎𝑏𝑐] = [𝑅𝑟][𝐼𝑟𝑎𝑏𝑐] +
𝑑[𝜑𝑟𝑎𝑏𝑐]

𝑑𝑡
= [
0
0
0
] 

(III.2) 

Where: 

• 𝑣𝑎𝑠 , 𝑣𝑏𝑠, 𝑣𝑐𝑠, 𝑣𝑎𝑟 , 𝑣𝑏𝑟 and 𝑣𝑐𝑟 are the three stator and rotor voltages 

• 𝑖𝑎𝑠, 𝑖𝑏𝑠, 𝑖𝑐𝑠, 𝑖𝑎𝑟 , 𝑖𝑏𝑟 and 𝑖𝑐𝑟  are the three stator and rotor currents 

• 𝜑𝑎𝑠, 𝜑𝑏𝑠, 𝜑𝑐𝑠, 𝜑𝑎𝑟 , 𝜑𝑏𝑟 and 𝜑𝑐𝑟  are the fluxes through the three phases of the stator 

and the rotor 

III.2.2 Magnetic equations 

The magnetic equations of the asynchronous squirrel cage machine are written as follows: 

 

Stator: {
𝜑𝑎𝑠 = 𝐿𝑠𝐼𝑎𝑠 + 𝑀𝑠𝐼𝑏𝑠 + 𝑀𝑠𝐼𝑐𝑠 + 𝑀1𝐼𝑎𝑟 + 𝑀3𝐼𝑏𝑟 + 𝑀2𝐼𝑐𝑟
𝜑𝑏𝑠 = 𝑀𝑠𝐼𝑎𝑠 + 𝐿𝑠𝐼𝑏𝑠 + 𝑀𝑠𝐼𝑐𝑠 + 𝑀2𝐼𝑎𝑟 + 𝑀1𝐼𝑏𝑟 + 𝑀3𝐼𝑐𝑟
𝜑𝑐𝑠 = 𝑀𝑠𝐼𝑎𝑠 + 𝑀𝑠𝐼𝑏𝑠 + 𝐿𝑠𝐼𝑐𝑠 + 𝑀3𝐼𝑎𝑟 + 𝑀2𝐼𝑏𝑟 + 𝑀1𝐼𝑐𝑟

 

 

(III.3) 

   

Rotor: {
𝜑𝑎𝑟 = 𝐿𝑟𝐼𝑎𝑟 + 𝑀𝑟𝐼𝑏𝑟 + 𝑀𝑟𝐼𝑐𝑟 + 𝑀1𝐼𝑎𝑠 + 𝑀2𝐼𝑏𝑠 + 𝑀3𝐼𝑐𝑠
𝜑𝑏𝑟 = 𝑀𝑟𝐼𝑎𝑟 + 𝐿𝑟𝐼𝑏𝑟 + 𝑀𝑟𝐼𝑐𝑟 + 𝑀3𝐼𝑎𝑠 + 𝑀1𝐼𝑏𝑠 + 𝑀2𝐼𝑐𝑠
𝜑𝑐𝑟 = 𝑀𝑟𝐼𝑎𝑟 + 𝑀𝑟𝐼𝑏𝑟 + 𝐿𝑟𝐼𝑐𝑟 + 𝑀2𝐼𝑎𝑠 + 𝑀3𝐼𝑏𝑠 + 𝑀1𝐼𝑐𝑠

 (III.4) 
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Where: 

𝑀1 = 𝑀𝑠𝑟 cos(𝜃) 

𝑀2 = 𝑀𝑠𝑟cos(𝜃 − 2𝜋/3) 

𝑀3 = 𝑀𝑠𝑟cos(𝜃 + 2𝜋/3) 

• 𝐿𝑠 : stator inductance 

• 𝑅𝑠 : stator resistance 

• 𝐿𝑟 : rotor inductance 

• 𝑅𝑟 : rotor resistance 

• 𝑀𝑠 : mutual inductance between two stator windings 

• 𝑀𝑟 : mutual inductance between two rotor windings 

• 𝑀𝑠𝑟 : magnitude of the inductance between the stator and the rotor 

III.2.3 Mechanical equation 

The mechanical equations of the asynchronous squirrel cage machine are written as follows: 

 

 

𝑑Ω

𝑑𝑡
=  
1

𝐽
 (𝑇𝑒𝑚 − 𝑇𝐿 − 𝑘𝑓Ω) 

(III.5) 

Where: 

• Ω : mechanical speed 

• 𝐽 : moment of inertia of the mechanical shaft 

• 𝑇𝑒𝑚 : electromagnetic torque 

• 𝑇𝐿 : load torque 

• 𝑘𝑓 : dry friction coefficient 

The problem with this model established so far (systems (III.1), (III.2), (III.3) and (III.4)) 

is the linear dependence of the system which can be presented a three-axis coordinate 

system. Thought we will have a number of equations, inputs and outputs, makes the model 

inappropriate for implementation. 
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A linearly dependent system allows to describe three physical quantities by only two 

variables. Hence, a complex variable can replace the three-phase systems as shown in 

Figure III- 2 

For example, instead of representing the stator currents by a three-equation system, we can 

represent it using only one equation 

 𝑖𝑠 =
2

3
(𝑖𝑎𝑠 + 𝑎𝑖𝑏𝑠 + 𝑎

2𝑖𝑐𝑠) where: 𝑎 = 𝑒
𝑗2𝜋

3  (III.6) 

Instead of: 

 {

𝑖𝑎𝑠 = 𝐼𝑠sin(𝜃) 

𝑖𝑏𝑠  = 𝐼𝑠sin(𝜃 − 2𝜋/3)
𝑖𝑐𝑠  = 𝐼𝑠sin(𝜃 + 2𝜋/3)

 (III.7) 

 

 

Figure III- 3 : Coordinate transformation 

  This coordinate transformation shown above is used for the other electrical and 

electromagnetic variables. Thus, the equations of an induction machine can be represented 

in any arbitrary reference frame rotating at an angular pulse 𝜔𝑘. The variable 𝜔 denotes 

the rotor angular speed: 

 

 𝑣𝑠 = 𝑅𝑠𝑖𝑠 +
𝑑𝜑𝑠
𝑑𝑡

+ 𝑗𝜔𝑘𝜑𝑠 (III.8) 

 𝑣𝑟 = 𝑅𝑟𝑖𝑟 +
𝑑𝜑𝑟
𝑑𝑡

+ 𝑗(𝜔𝑘 − 𝜔)𝜑𝑟 = 0 (III.9) 

 𝜑𝑠 = 𝐿𝑠𝑖𝑠 + 𝐿𝑚𝑖𝑟 (III.10) 

 𝜑𝑟 = 𝐿𝑚𝑖𝑠 + 𝐿𝑟𝑖𝑟 (III.11) 
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 𝑇𝑒𝑚 =
3

2
𝑝𝑅𝑒(𝜑𝑠̅̅ ̅𝑖𝑠) = −

3

2
𝑝𝑅𝑒(𝜑𝑟̅̅ ̅𝑖𝑟) =

3

2
𝑝𝐼𝑚(𝜑𝑟̅̅ ̅𝑖𝑠) (III.12) 

 

Where: 

• 𝜔 : rotor angular speed (𝜔 = 𝑝Ω) 

• 𝑝 : number of pole pairs 

• 𝜑̅ : the complex conjugate value of 𝜑 

In order to develop an appropriate control strategy, it is convenient to write the equations 

of the machine in terms of state variables[75][39]. The stator current 𝑖𝑠and the rotor flux 

vectors 𝜑𝑟 are selected as state variables. 

From (III.11) we have: 

 𝑖𝑟 =
𝜑𝑟 − 𝐿𝑚𝑖𝑠

𝐿𝑟
 (III.13) 

By replacing (III.13) in (III.9) and by putting: 

 

𝜏𝑟 =
𝐿𝑟
𝑅𝑟

 

We get: 

 𝜑𝑟 + 𝜏𝑟
𝑑𝜑𝑟
𝑑𝑡

= −𝑗(𝜔𝑘 − 𝜔)𝜏𝑟𝜑𝑟 + 𝐿𝑚𝑖𝑠 (III.14) 

 

For the other equation, we replace 𝜑𝑠 in (III.8) by  (𝐿𝑠𝑖𝑠 + 𝐿𝑚𝑖𝑟): 

 

𝑣𝑠 = 𝑅𝑠𝑖𝑠 +
𝑑(𝐿𝑠𝑖𝑠 + 𝐿𝑚𝑖𝑟)

𝑑𝑡
+ 𝑗𝜔𝑘(𝐿𝑠𝑖𝑠 + 𝐿𝑚𝑖𝑟) 

 

Replacing (III.13) in (III.10) yields to: 

 

𝑣𝑠 = 𝑅𝑠𝑖𝑠 + 𝐿𝑠
𝑑𝑖𝑠
𝑑𝑡
+ 𝐿𝑚

𝑑𝑖𝑟
𝑑𝑡
+ 𝑗𝜔𝑘(𝐿𝑠𝑖𝑠 +

𝐿𝑚
𝐿𝑟
𝜑𝑟 −

𝐿𝑚
2

𝐿𝑟
𝑖𝑠) 

 

By putting: 

𝜏𝑠 =
𝐿𝑠
𝑅𝑠
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𝜎 = 1 −
𝐿𝑚
2

𝐿𝑠𝐿𝑟
 

𝑘𝑟 =
𝐿𝑚
𝐿𝑟

 

𝑅𝜎 = 𝑅𝑠 + 𝑅𝑟𝑘𝑟
2 

𝜏𝜎 = 𝜎𝐿𝑠/𝑅𝜎 

We get: 

 

𝑖𝑠 + 𝜏𝜎
𝑑𝑖𝑠
𝑑𝑡
= −𝑗𝜔𝑘𝜏𝜎𝑖𝑠 +

𝑘𝑟
𝑅𝜎
(
1

𝜏𝑟
− 𝑗𝜔)𝜑𝑟 +

𝑣𝑠
𝑅𝜎

 
(III.15) 

 

Equations (III.12), (III.14) and (III.15) form the model of the induction machine used in 

this thesis. It has two inputs and two outputs that are mandatory for the control scheme to 

work. 

 

{
 
 

 
 𝑖𝑠 + 𝜏𝜎

𝑑𝑖𝑠
𝑑𝑡
= −𝑗𝜔𝑘𝜏𝜎𝑖𝑠 +

𝑘𝑟
𝑅𝜎
(
1

𝜏𝑟
− 𝑗𝜔)𝜑𝑟 +

𝑣𝑠
𝑅𝜎

𝜑𝑟 + 𝜏𝑟
𝑑𝜑𝑟
𝑑𝑡

= −𝑗(𝜔𝑘 − 𝜔)𝜏𝑟𝜑𝑟 + 𝐿𝑚𝑖𝑠

𝑇𝑒𝑚 =
3

2
𝑝𝐼𝑚(𝜑𝑟̅̅ ̅𝑖𝑠)

 (III.16) 

 

 

Other outputs can be extracted from the model, such as stator flux, rotor flux and 

electromagnetic torque because these variables are calculated inside the block of the 

induction machine. However, for experimental purposes, the stator flux and the rotor flux 

are estimated using estimators. 

 

III.2.4 Cost function 

The aim of the MPC is to maintain the actual value of torque and flux with its 

reference value and reduce the ripple, by the selection of an appropriated voltage vector 

that will derive the system variables 𝑇𝑒𝑚(𝑘 + 1)and 𝜑𝑠(𝑘 + 1) as close as possible to the 

desired reference value. The selection of a cost function usually dependents on absolute 

error between the predictions and the reference value. Therefore, the cost function can be 

expressed as: 
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 𝐽 =
|𝑇𝑒𝑚
𝑝
− 𝑇∗|

𝑇𝑛𝑜𝑚
+
|𝜑𝑠
𝑝
− 𝜑𝑠

∗|

𝜑𝑠 𝑛𝑜𝑚
 (III.17) 

Where: 

• 𝑇𝑒𝑚
𝑝

          : the predicted value of the electromagnetic torque 

• 𝑇∗          : the reference value of the electromagnetic torque 

• 𝑇𝑛𝑜𝑚        : the nominal value of the electromagnetic torque 

• 𝜑𝑠
𝑝
          : the predicted value of the stator flux 

• 𝜑𝑠
∗          : the reference value of the stator flux 

• 𝜑𝑠 𝑛𝑜𝑚     : the nominal value of the stator flux 

III.2.5 Working principle 

   The execution of the MPTC algorithm can be divided in three main steps: Estimation of 

the variables that cannot be measured, Prediction of the future plant behavior and 

Optimization of the single cost function according to a reference condition. The MPTC 

scheme is shown in figure bellow  

 

Figure III- 4 : MPTC scheme 

   Firstly, it computes the current values of the variables that cannot be measured, as the 

rotor flux and the stator flux. The predictive model computes the future values of 
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controlled variables, the electromagnetic torque and stator flux, in the next sampling 

period(𝑘 + 1)𝑇𝑠. These predictions are calculated for every actuating possibility given by 

the inverter topology. Then the model chooses the optimum switching state𝑥𝑜𝑝𝑡, which 

minimizes the corresponding cost function. The function contains the control law to reach 

the torque and stator flux references according to the references. 

In order to further reduce the computational effort, only one out of two nil vectors of the 

2LVSI is considered (the possible switching states of the converter are listed in Table II-1 
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Figure III- 5 : Flow diagram of the MPTC 
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III.3 Implementation 

   Due to the discrete nature of digital controllers, probably the most common and simple 

method to obtain a discrete-time representation for a continuous-time system is the Euler 

approximation of time derivatives. The obtained model corresponds to a first order Taylor 

expansion  

  Choosing the stationary reference frame, 𝜔𝑘 = 0, eliminates both multipliers in the 

internal feedback loops of the rotor winding and the stator winding [76]. 

After discretization and some arrangements of (III.12), (III.14), (III.15), and (III.16) we 

get: 

 

We introduce the weighting factors𝜆𝑇 and  𝜆𝜑 

Where:        𝜆𝑇 =
1

𝑇𝑛𝑜𝑚
and𝜆𝜑 =

1

𝜑𝑠 𝑛𝑜𝑚
 

 

 The cost function, thus, becomes: 

 

 𝐽 = 𝜆𝑇|𝑇𝑒𝑚[𝑘 + 1] − 𝑇𝑟𝑒𝑓| + 𝜆𝜑||𝜑𝑠[𝑘 + 1]| − 𝜑𝑠 𝑟𝑒𝑓| (III.18) 

 

   The model used to estimate the stator flux is derived from the equation (III.8), given that 

the reference frame is stationary we get: 

 
𝑑𝜑𝑠
𝑑𝑡

= 𝑣𝑠 − 𝑅𝑠𝑖𝑠 (III.19) 

 

We can estimate the rotor flux 𝜑𝑟 by replacing 𝑖𝑟 by its expression from (III.10) in (III.11), 

we get: 

 

 𝜑𝑟 =
𝐿𝑟
𝐿𝑚
𝜑𝑠 + (𝐿𝑚 −

𝐿𝑟𝐿𝑠
𝐿𝑚

) 𝑖𝑠 (III.20) 

As shown in Figure III- 4,the Proportional-Integral (PI) controller receives the error signal 

of the mechanical speed and computes the torque reference for the predictive controller. 
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By transforming (III.5) to Laplace domain we get: 

 
Ω

𝑇𝑒𝑚 − 𝑇𝑙
=

1

𝐽𝑠 + 𝑘𝑓
 (III.21) 

Where:  𝑠 is the Laplace operator  

 

Figure III- 6 : PI speed controller 

 By considering the load torque 𝑇𝐿 as a nil disturbance [77] , the transfer function (III.21), 

in closed loop, becomes: 

 Ω =
𝑘𝑝

𝐽
×

𝑠 +
𝑘𝑖

𝑘𝑝

𝑠2 +
𝑘𝑝+𝑘𝑓

𝐽
𝑠 +

𝑘𝑖

𝐽

Ω𝑟𝑒𝑓 (III.22) 

The denominator of (III.22) is a second order system of the form: 

 

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2 

By identification we get: 

{
𝑘𝑖 = 𝐽𝜔𝑛

2

𝑘𝑝 = 2𝜉𝜔𝑛 − 𝑘𝑓
 

 

Where: 

• 𝜉 : damping coefficient 

• 𝜔𝑛 : natural circular pulse 

III.4 Artificial neural network training principle 

    Artificial neural networks use a dense interconnection of computing nodes to 

approximate nonlinear functions. Each node constitutes a neuron, performs the 
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multiplication of its input signals by constant weights, sums up the results, and maps the 

sum to a nonlinear activation function: the result is then transferred to its output.  

NN have self- adapting compatibilities which makes them well suited to handle non-

linarites, uncertainness and parameter variations. A multilayered feed forward neural 

network constructs a global approximation to non-linear input-output mapping [15]. 

Neural networks are capable of generalization in regions of the input space, where little or 

no training data are available.  

    The ANN is trained by a learning algorithm which performs the adaptation of weights of 

the network iteratively until the error between target vectors and the output of the ANN is 

less than an error goal. 

    The most popular learning algorithm for nonlinear systems is the back propagation 

algorithm and its variants. The latter is implemented by many ANN software packages 

such as the neural network toolbox from MATLAB. In the case presented in this chapter, 

the MPTC control strategy has been implemented as a basic control to train our neural 

network 

 Neural network has been devised having as inputs the measured variables which are the 

speed motor ω, electromagnetic torque𝑇𝑒𝑚, the estimate variable which is stator flux 

represented in real and imaginary parts, and the references variables which are flux, speed 

and the torque reference that obtained from the proportional integral (PI) speed controller, 

bringing the total number of input features to seven i.e., inputs =7. The outputs of the 

ANN are the three control signals Sa, Sb, Sc. 

     The training data, which have been collected by MPTC, comprises a different 

experimental condition.  The sweeping range for the variables was selected as follows:  𝜓∗= 

[0. 62, 0.82], 𝑇𝑛𝑜𝑚= [7, 15] and different form signals of reference speed. For each 

experimental condition, the simulation is run using MPTC. Then, the input features of the 

neural network and their targets are stored for training. As a consequence, the total dataset 

consists of 1805043 instances. 

 

    The structure of the ANN proposed is as follows: 7 neurons in the first hidden layer, 9 

neurons in the second hidden layer, 10 neurons in the third hidden layer, 9 neurons in the 

fourth hidden layer and 3 neurons in the output layer.  
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Figure III- 7 : General topology of multilayer Feed Forward Back-propagation neural 

networkof MPC 

As mentioned above that torque reference obtained from the proportional integral (PI) 

speed controller, hence replacing it with a block of neural network, may further reduce 

computation burden. The ANN based PI block was implemented as follows: 

 

• The ANN takes as input the error between speed measured and its reference while 

the output of the ANN is the reference signal torque.  

 

• The training data, which have been collected by MPC, by varying the speed 

reference, the simulation is run using MPC. Then, the input features of the neural 

network and their targets are stored for training. The structure of the proposed 

ANN is as follows: one neuron in the first hidden layer, 2 neurons in the second 

hidden layer and one neuron in the output layer.  

 

 

Figure III- 8 : General topology of multilayer Feed Forward Back propagation neural 

network of PI 
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At the end of the training, we get the performance plot and regression plot of the two 

training ANN-PI, ANN-MPTC which are shown below  

 

Figure III- 9 : performance of Feed forward back-propagation neural network based 

  

(a) (b) 

 

Figure III- 10 : Regression training of: (a) MPC, (b) PI 

 

  
(a) (b) 
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 Figure III-8   shows the best validation performance for both controllers, for NN-MPTC 

best performance is saved on epoch 572 with the lowest validation error of 0.036175 while 

the lowest validation error of NN-PI was 0.080656 on the 55th epochs.The diversity of these 

results goes back to the nature of the two trained systems. The PI is a simple linear system 

that has been trained with few data while the MPTC is a non-linear system that needed 

huge data to achieve these results. 

 

   Figure III- 9 represents the final regression plot training which shows a very good 

accuracy for the two training; thus, regression plot will generally have four graphs, 

training, validation, test and combining all. We can observe in  Figure III- 9 (a) that all 

data sets are nearly fitted to the target. For a perfect fit, the data should fall along a 45-

degree line (dash line), where the network outputs are equal to the targets [4]. For this 

study, the fits are found to be very good for all data sets, with the R = 0.99 for ANN-PI 

and R= 0.89 in each of the outputs. 

Table III- 1: training parameters 

 MPTC PI 

Epochs  1000 1000 

iterations 572 61 

Training time  12H 52mn 04sec  18 sec 

MSE 0.036175 0.080656 

regression 0.89713 0.9982 

Hidden layers 4 hidden layers ( 7, 9 , 

10,9 nodes respectively ) 

One hidden layer (2 nodes) 

III.5 Simulation and results 

The ANN-MPTC and the MPTC techniques were simulated with an Induction Machine 

fed by a two-level inverter. The ANN-MPTC and MPTC had been simulated in the 

MATLAB/Simulink environment with different values of the speed reference and the load 

torque in order to justify the performance of this control scheme in both transient and 

steady states. The parameters used in the simulation are given in Table B.1 and Table B.2 

in Appendix B.  
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  As for the stator flux reference, it is taken around its nominal value (0.82 Wb). The 

reference torque is generated from an external PI regulator loop. 

(a) (b) 

Figure III- 11: Simulation results (rotor speed and its reference) of an inverter-fed induction 

machine with: (a) ANN-MPTC, (b) MPTC 

 
(a) (b) 

 
(c) (d) 

 

Figure III- 12: Simulation results (rotor speed and its reference) of an inverter-fed       

induction machine with: (a) ANN-MPTC, (b) MPTC and theirs zoom                                        

(c) ANN-MPTC, (d) MPTC 
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(a) 

 
(b) 

 

 
(c)  

 

 
(d) 

 

 

 
(e) 

 
(f) 

 

Figure III- 13: Simulation results of stator flux of an inverter-fed induction machine         

with (a) ANN-MPTC, (b) MPTC and theirs zoom (c) ANN-MPTC, (d) MPTC 
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(a) 

 
(b) 

 

 
(c)  

(d) 

 

Figure III- 14: Simulation results of output voltage of an inverter-fed induction machine         

with (a) ANN-MPTC, (b) MPTC and theirs zoom (c) ANN-MPTC, (d) MPTC 

(a) 
 

(b) 
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(c) (d) 

 

Figure III- 15 : Simulation results of stator current of an inverter-fed induction machine         

with (a) ANN-MPTC, (b) MPTC and theirs zoom (c) ANN-MPTC, (d) MPTC 

 
(a) 

 
(b) 

 

(c) 

 
(d) 

 

Figure III- 16: Simulation results of the THD of the stator current of an induction machine: 

(a) ANN-MPTC, (b) MPTC and theirs zoom (c) ANN-MPTC, (d) MPTC 
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Figure III- 17 : Comparison of the THD of the stator current obtained by the two proposed 

control strategies, for some cases given in Table below, under 

different operating conditions. 

Table III- 2 : Comparison of the THD of the stator current obtained by the two proposed 

control strategies, for some cases 

Samples 𝜔 (rad/s)  
THD 

MPC 

THD 

ANN-MPC 

S1 110 95.45% 63.52% 

S2 70 368.41% 160.78% 

S3 130 55.66% 54.23% 

S4 145 8.36% 9.24% 

S5 157 1.36% 2.032% 

 

Figure III- 11 shows simulation results of mechanical speed and its reference of (a) ANN-

MPTC and (b) MPTC of a 1.5 kW squirrel-cage induction machine fed by a two-level 

inverter, it’s observed that mechanical speed track their reference for both of the 

controllers. Similarly, they have the same response time in same conditions. In the first 

case, thespeed reference is set to 30 rad/s from 0 rad/s during 0.094 s. The variation of the 

response time depends on two factors, which are the reference speed and the load torque 

Figure III-12 shows simulation results of electromagnetic torque and its reference with (a) 

ANN-MPTC and (b) MPTC.The electromagnetic torque is controlled to track its reference. 

We noticed that the electromagnetic torque of the system at each variation, follows its 

9
5
,4
9

3
6
8
,4
1

5
5
,6
6

8
,3
6

2
,0
3
26
3
,5
2

1
6
0
,7
7

5
4
,2
3

9
,2
4

1
,3
6

1 2 3 4 5

THD OF THE STATOR CURRENT
MPC ANN



 

ANN based on MPTC Control a Three-Phase, Two Level, Inverter-Fed induction machine 

67 

 

reference andrapidly returns to its stability.When the IM reaches its steady state, the speed 

becomes constant whereas the electromagnetic torque settles at final value, which is the 

load torque. In figure III- 12 (c) and (d), and in the same operating conditions, the ripples 

in the conventional MPTC torque are about 0.4 N.m while they are around 0.2 N.m  in NN-

MPTC, this result proves the robustness of the ANN-MPTC. 

Figure III-13 illustrates the response of stator flux magnitude of both methods (a) NN-

MPTC, (b) conventional MPTC and theirs zoom (c) and (d) respectively. The results of NN-

MPTC show a reduction in ripples compared with MPTC where the stator flux presents 

high ripples around 0.010 Wb compared to ANN-MPTC where the stator flux is 

approximately 0.04 Wb as shown in Figure III-13 (b) and (c) respectively, however we 

observe overshoots in some on ANN-MPTC flux magnitude. The trajectory of the stator 

flux vector, which is almost circular, is described in figure III- 13 (e) for ANN-MPTC and 

figure III- 13 (f) for MPTC strategy. 

The steady-state current response of both strategies is presented in figure III-15. The 

quality of the waveform of the stator current is improved with a reduction in ripples. Thus 

the control proposed is efficient compared to the MPTC because it presents fewer ripples as 

indicated in the Figure III-15 (b) and (c). 

The THD is one of the ways to prove the effectiveness of a controller, Figure III- 16 and 

Figure III-17present the THD of the stator current obtained by the proposed control 

strategies. As expected, the results of ANN-MPTC are improved by a lowerTHD value. 
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III.6 Conclusion 

 

The study of this chapter have discussed the simultaneous control of the torque and stator 

flux of induction machine using neural network based MPTC method. The obtained results 

have shown that the ANN-MPTC was well trained according to the obtained results, 

furthermore, it gave better results than MPTC in most cases. 

 

The use of ANN-MPTC controller was proposed in this work to increase the accuracy of 

speed results in addition to the ability of ANN-MPTC controller to react against sudden 

changes and non-linearity of the system. It has proved its efficiency by given good results 

and its ability to keep trackingthe desired speed and torque values with minimum ripples. 

In addition, in terms of a lower THD of stator current,NN-MPTC shows a better control 

performance compared to the conventional strategy 

 

From the obtained results, we can conclude that NN-MPTC method is a very good choice 

for the control of induction machines in term of better performance, simplicity, and 

efficiency. The control has shown the ability of this method to track different speed values 

with good tracking performances.  
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CHAPITRE IV: CHAPTER FOUR 

Introduction 

As mentioned in Chapter I, Matrix converters (MCs) are one of the most attractive 

families of converters in the power electronics field. The matrix converter is a set of 

controlled bidirectional power switches that connects a voltage source directly to a load 

without using any DC-link or other energy storage element.[79] 

This chapter presents an ANN-MPCC scheme of an RL-load fed by a matrix converter 

with direct and indirect topologies. The modeling of both converters is presented alongside 

with the modeling of the input filter. The working principle of the MPCC and the load 

model are explained in detail in Chapter 2. 

The control scheme is simulated using the two topologies in MATLAB/Simulink for 

different references of the output current and reactive power. 

IV.1 Modeling of the input filter 

    In the design of matrix converters, the use of electronic power devices such as 

bidirectional switches requires input filters. This reduces the high harmonic content in the 

input current, increasing the system protection against transitory effects coming from the 

power supply. Furthermore, the ripple in the waveform and excessive currents or voltages 

in the converter will be reduced. A low-pass filter can be employed to avoid these unwanted 

harmonic signals in the input[80]. A second-order low-pass filter (Figure IV.1) at the input 

is considered to avoid over-voltages and harmonics distortions in the source current. 
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Figure IV- 1: Input filter 

   In order to obtain the dynamic model of the filter, Kirchhoff’s first and second law are 

applied to the power circuit in Figure IV-1 

 

We get : 𝑣𝑠 = 𝑅𝑓𝑖𝑠 + 𝐿𝑓
𝑑𝑖𝑠
𝑑𝑡
+ 𝑣𝑒  

(IV. 1) 

 𝑖𝑠 = 𝑖𝑒 + 𝐶𝑓
𝑑𝑣𝑒
𝑑𝑡

  (IV. 2) 

With: 

{
 
 
 

 
 
 𝑣𝑠 =

2

3
(𝑣𝑠𝐴 + 𝑎𝑣𝑠𝐵 + 𝑎

2𝑣𝑠𝐶)

𝑣𝑒 =
2

3
(𝑣𝑒𝐴 + 𝑎𝑣𝑒𝐵 + 𝑎

2𝑣𝑒𝐶)

𝑖𝑠 =
2

3
(𝑖𝑠𝐴 + 𝑎𝑖𝑠𝐵 + 𝑎

2𝑖𝑠𝐶)

𝑖𝑒 =
2

3
(𝑖𝑒𝐴 + 𝑎𝑖𝑒𝐵 + 𝑎

2𝑖𝑒𝐶)

  

 

  By considering the vector [𝑣𝑒𝑖𝑠]
𝑇 as a state variable and the vector [𝑣𝑠𝑖𝑒]

𝑇 as an input 

variable, we end up with a continuous-time state space representation of the filter. 

 

 
[
𝑣𝑒̇
𝑖𝑠̇
]

⏟
𝑋̇

= [
0

−1 𝐿𝑓⁄
1 𝐶𝑓⁄

−𝑅𝑓 𝐿𝑓⁄
]

⏟          
𝐴𝑓

[
𝑣𝑒
𝑖𝑠
]

⏟
𝑋

+ [
0

1 𝐿𝑓⁄
−1 𝐶𝑓⁄

0
]

⏟        
𝐵𝑓

[
𝑣𝑠
𝑖𝑒
]

⏟
𝑈

 
 

(IV. 3) 

 
 

 

 



ANN based MPCC of a Matrix Converter-fed RL-load 

71 

 

 

IV.2 Modeling of the Direct Matrix Converter (DMC) 

    The power circuit of the DMC is presented in Figure IV-2. It uses a set of bidirectional 

switches to directly connect the three-phase power supply to a three-phase load, or in this 

case, through an input filter. 

 

Figure IV- 2 : topology of (3×3) direct matrix converter 

The behavior of the modulation function for an output phase is defined by the activation 

and deactivation of the switches that are connected to each input phase, as indicated in 

Expression (IV.1):  

 𝑆𝑥𝑦 = {
0, if𝑆𝑥𝑦is open

1, if𝑆𝑥𝑦is close
 (IV. 4) 

 

Where: 

𝑦 ∈ {𝑎, 𝑏, 𝑐}: The output phases 

𝑥 ∈ {𝐴, 𝐵, 𝐶}: The input phases 

𝑆𝑥𝑦    : The connection function 
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   Two switches should not be activated at the same time to avoid short circuits in the input 

phases. In the same way, it should be avoided that at any moment of operation, all the 

switches are deactivated, since it would cause a high voltage differential at the output 

This operation constraint is expressed in (IV. 5) 

   The voltages and the input and output currents referred to the neutral line can be 

expressed with their vector representation, as developed in (IV. 6) and (IV. 7) respectively 

 [

𝑣𝑎
𝑣𝑏
𝑣𝑐
] = [

𝑆𝐴𝑎(𝑡)
𝑆𝐴𝑏(𝑡)
𝑆𝐴𝑐(𝑡)

𝑆𝐵𝑎(𝑡)
𝑆𝐵𝑏(𝑡)
𝑆𝐵𝑐(𝑡)

𝑆𝐶𝑎(𝑡)
𝑆𝐶𝑏(𝑡)
𝑆𝐶𝑐(𝑡)

]

⏟              
𝑆

× [

𝑣𝑒𝐴
𝑣𝑒𝐵
𝑣𝑒𝐶
] (IV.6) 

 

• 𝑣𝑎,𝑣𝑏and𝑣𝑐are the load voltages referenced to the load neutral point; 

• 𝑣𝑒𝐴,𝑣𝑒𝐵and𝑣𝑒𝐶are the filter capacitor voltages, also input voltages of the DMC; 

• 𝑖𝑎,𝑖𝑏and𝑖𝑐are the load currents; 

• 𝑖𝐴,𝑖𝐵and𝑖𝐶are the input currents of the DMC. 

     The power filters located at the input of each of the lines of the converter mitigate the 

high-frequency components, generating current signals from input and sinusoidal output 

voltages, avoiding the generation of over-voltages. The over-voltage is caused by the fast 

switching in the input currents due to the presence of the short-circuit reactance of any real 

power supply. An adequate design of these filters is very important in the operation of 

matrix converters [80][81]. 

 𝑆𝐴𝑦 + 𝑆𝐵𝑦 + 𝑆𝐶𝑦 = 1, ∀𝑦 ∈ {𝑎, 𝑏, 𝑐} 

 

(IV. 5) 

 [
𝑖𝐴
𝑖𝐵
𝑖𝐶

] = [

𝑆𝐴𝑎(𝑡)

𝑆𝐴𝑏(𝑡)

𝑆𝐴𝑐(𝑡)

𝑆𝐵𝑎(𝑡)

𝑆𝐵𝑏(𝑡)

𝑆𝐵𝑐(𝑡)

𝑆𝐶𝑎(𝑡)

𝑆𝐶𝑏(𝑡)

𝑆𝐶𝑐(𝑡)
]

𝑇

× [

𝑖𝑎
𝑖𝑏
𝑖𝑐

] (IV.7) 
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IV.3 Modeling of the Indirect Matrix converter (IMC) 

The power circuit of the IMC is presented in Figure IV.3. The converter can be divided 

into two stages: the rectifier stage and the inverter stage. 

 

 

Figure IV- 3 : (3×3) Indirect Matrix Converter 

The rectifier stage is a current source rectifier that consists of six bidirectional switches, 

which makes it capable of operating in all four quadrants. The inverter stage is a 

conventional voltage source inverter. This topology helps extend the control technique of 

the inverter on the previous two chapters. 

   The model of the converter can be described as the product of two instantaneous transfer 

matrices of the rectifier and the inverter. 

 

 
[

𝑣𝑎
𝑣𝑏
𝑣𝑐
] = [

𝑆𝑖1(𝑡)

𝑆𝑖3(𝑡)

𝑆𝑖5(𝑡)

𝑆𝑖4(𝑡)

𝑆𝑖6(𝑡)

𝑆𝑖2(𝑡)
]

⏟        
𝑆𝑖𝑛𝑣

× [
𝑆𝑟1(𝑡)

𝑆𝑟4(𝑡)
𝑆𝑟3(𝑡)

𝑆𝑟6(𝑡)
𝑆𝑟5(𝑡)

𝑆𝑟2(𝑡)
]

⏟            
𝑆𝑟𝑒𝑐

× [

𝑣𝑒𝐴
𝑣𝑒𝐵
𝑣𝑒𝐶
] 

(IV.8) 

The input current of the IMC is given by: 

 [
𝑖𝐴
𝑖𝐵
𝑖𝐶

] = [
𝑆𝑟1(𝑡)

𝑆𝑟4(𝑡)
𝑆𝑟3(𝑡)

𝑆𝑟6(𝑡)
𝑆𝑟5(𝑡)

𝑆𝑟2(𝑡)
]
𝑇

× [

𝑆𝑖1(𝑡)

𝑆𝑖3(𝑡)

𝑆𝑖5(𝑡)

𝑆𝑖4(𝑡)

𝑆𝑖6(𝑡)

𝑆𝑖2(𝑡)
]

𝑇

× [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] (IV.9) 
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Where: 

• 𝑣𝑎,𝑣𝑏and𝑣𝑐are the load voltages referenced to the load neutral point. 

• 𝑣𝑒𝐴,𝑣𝑒𝐵and𝑣𝑒𝐶are the filter capacitor voltages, also input voltages of the IMC. 

• 𝑖𝑎,𝑖𝑏and𝑖𝑐are the load currents. 

• 𝑖𝐴,𝑖𝐵and𝑖𝐶are the input currents of the IMC. 

The two conditions of operation of the IMC are translated to the following equations: 

 

 {
𝑆𝑟1 + 𝑆𝑟3 + 𝑆𝑟5 = 1
𝑆𝑟2 + 𝑆𝑟4 + 𝑆𝑟6 = 1

 (IV.10) 

 𝑆𝑖𝑗 + 𝑆𝑖(𝑗+3) = 1,   𝑗 = {1,2,3} (IV.11) 

    According to (IV.10) and (IV.11), there are 72 possible switching states of the 3×3 IMC, 9 

for the rectifier and 8 for the inverter. 

Table IV- 1: Possible switching states for the rectifier stage 

Vectors 𝑆𝑟1 𝑆𝑟2 𝑆𝑟3 𝑆𝑟4 𝑆𝑟5 𝑆𝑟6 𝑖𝐴 𝑖𝐵 𝑖𝐶 𝑣𝑑𝑐 

A
ct

iv
e 

𝐼1 1 1 0 0 0 0 𝑖𝑑𝑐 0 −𝑖𝑑𝑐 𝑣𝐴𝐶  

𝐼2 0 1 1 0 0 0 0 𝑖𝑑𝑐 −𝑖𝑑𝑐 𝑣𝐵𝐶  

𝐼3 0 0 1 1 0 0 −𝑖𝑑𝑐 𝑖𝑑𝑐 0 −𝑣𝐴𝐵 

𝐼4 0 0 0 1 1 0 −𝑖𝑑𝑐 0 𝑖𝑑𝑐 −𝑣𝐴𝐶 

𝐼5 0 0 0 0 1 1 0 −𝑖𝑑𝑐 𝑖𝑑𝑐 −𝑣𝐵𝐶 

𝐼6 1 0 0 0 0 1 𝑖𝑑𝑐 −𝑖𝑑𝑐 0 𝑣𝐴𝐵 

N
il

 𝐼0 

1 0 0 1 0 0 0 0 0 0 

0 1 0 0 1 0 0 0 0 0 

0 0 1 0 0 1 0 0 0 0 
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Table IV- 2: Possible switching states for the inverter stage 

Vectors 𝑆𝑖1 𝑆𝑖2 𝑆𝑖3 𝑆𝑖4 𝑆𝑖5 𝑆𝑖6 𝑣𝑎𝑏 𝑣𝑏𝑐 𝑣𝑐𝑎 𝑖𝑑𝑐 
A

ct
iv

e 

𝑉1 1 1 0 0 0 1 𝑣𝑑𝑐 0 −𝑣𝑑𝑐 𝑖𝑎 

𝑉2 1 1 1 0 0 0 0 𝑣𝑑𝑐 −𝑣𝑑𝑐 𝑖𝑎 + 𝑖𝑏 

𝑉3 0 1 1 1 0 0 −𝑣𝑑𝑐 𝑣𝑑𝑐 0 𝑖𝑏 

𝑉4 0 0 1 1 1 0 −𝑣𝑑𝑐 0 𝑣𝑑𝑐 𝑖𝑏 + 𝑖𝑐 

𝑉5 0 0 0 1 1 1 0 −𝑣𝑑𝑐 𝑣𝑑𝑐 𝑖𝑐 

𝑉6 1 0 0 0 1 1 𝑣𝑑𝑐 −𝑣𝑑𝑐 0 𝑖𝑎 + 𝑖𝑐 

N
il

 𝑉0 

1 0 1 0 1 0 0 0 0 0 

0 1 0 1 0 1 0 0 0 0 

 

IV.4 Working principle of MPCC 

    The working principle of the MPCC is explained in detail in Chapter 2. As mentioned 

before, it is possible to operate in unity power factor, which means the minimization of the 

instantaneous input reactive power. The reactive power in the 𝛼𝛽reference frame is given 

by the following equation. 

 𝑄 = 𝑣𝑠𝛼𝑖𝑠𝛽 − 𝑣𝑠𝛽𝑖𝑠𝛼 (IV.12) 

At each sampling period, the control scheme calculates predictions of the reactive power 

and selects the actuation that minimizes it. Hence the need of prediction values of supply 

current. The supply current is predicted using the filter model 

For minimizing the reactive power, a term must be added to the cost function in (II.1) to 

penalize the switching states that produce higher values of reactive power predictions. 

Since the goal is to control the output current and operate in the input unity factor mode, 

the cost function then becomes: 
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 𝐽 = |𝑖𝑎
∗ − 𝑖𝑎

𝑝
| + |𝑖𝑏

∗ − 𝑖𝑏
𝑝
| + |𝑖𝑐

∗ − 𝑖𝑐
𝑝
| + 𝜆|𝑄𝑝| (IV.13) 

Where: 

• 𝑖∗  : The reference value of the current; 

• 𝑖𝑝   : The predicted value of the current; 

• 𝑄𝑝 : The predicted value of the input reactive power; 

• 𝜆    : The weighting factor. 

IV.5 Implementation of the MPC 

  The control scheme has been implemented in MATLAB/Simulink using the models (II.6), 

(IV.3), (IV.6),(IV.7),(IV.8) and (IV.9)The filter, load and simulation parameters are given 

in Table C.2, Table A.1 and Table C.1 respectively. 

   The discrete-time model of the load is given in equation (II.1) and the discrete-time model 

of the filter is given as follows[82]: 

 [
𝑣𝑒[𝑘 + 1]

𝑖𝑠[𝑘 + 1]
] = 𝐴𝑓𝑑 [

𝑣𝑒[𝑘]

𝑖𝑠[𝑘]
] + 𝐵𝑓𝑑 [

𝑣𝑠[𝑘]

𝑖𝑒[𝑘]
] (IV.14) 

Where: 

𝐴𝑓𝑑 = 𝑒
𝐴𝑓𝑇𝑠 

  𝐵𝑓𝑑 = ∫ 𝑒𝐴𝑓(𝑇𝑠−𝜏)
𝑇𝑠

0

𝐵𝑓𝑑𝜏 

 

In order to minimize computation time, only active vectors of the rectifier are used and 

only one nil vector of the inverter is used, totalling in 42 possible of the IMC instead of 72. 
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IV.6 Training procedure 

   The training principle of the neural is explained in detail in precedent Chapters, each 

topology of matrix converter direct and indirect trained with its own Data and each neural 

has its own architecture. 

   In the following paragraph, the training procedure of neural network based MPCC fed 

direct and indirect matrix converter will be explained: 

   For the neural network based MPCC fed direct matrix converter , the ANN takes as 

inputs the measured variable of the three phases currentand it’s the references that fixe the 

total number of input features to six  i.e., inputs = 6. The outputs of the ANN are the nine 

control signals𝑆𝐴𝑎, 𝑆𝐵𝑎,𝑆𝐶𝑎, 𝑆𝐴𝑏 , 𝑆𝐵𝑏 , 𝑆𝐶𝑏,𝑆𝐴𝑐,𝑆𝐵𝑐 , 𝑆𝐶𝑐. 

  We entered the reactive power output and reference reactive power as inputs as well, then 

we trained an ANN with rich data, but the results of training and simulation were not good 

at all, due to the complexity of the system, thus in this chapter, we controlled only the 

current without reactive power 

   The training data, which have been collected by MPCC, derived in different experimental 

conditions , in each experience we choose a specific conditions, at the first one, we choosed 

different values of  ( 𝑄∗= 0, 50,100 , 200 ,300,350) with different values of reference 

current𝑖∗, by keeping a constant value of R=50 for each experimental condition, then we 

kept the same variation of current but we considered more variation of 𝑄∗which takes its 

values from 0 to 400 VAR with different values of the resistor (R= 25,30,35,40,45) , the 

simulation is run using MPCC , then the input features of the neural network and their 

targets are stored for training. 

  As a consequence, the total dataset consists of 400006 for IMC training and 1000010 for 

DMC training instances. The neural is implemented by nntool toolbox from MATLABusing 

back propagation feed forward as type of network and trainlm as training algorithm for 

both topologies. The structure and training parameters are mentioned in table bellow 
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Table IV- 3 : Training parameters of DMC and IMC 

 MPCC (DMC) MPCC (IMC) 

Epochs 1000 1000 

iterations 263 231 

Training time 6H 10mn 09sec 5H 32mn 36sec 

MSE 0.11253 0.10474 

regression 0.70211 0.76278 

Hidden layers 
2 hidden layers 8 ,12 

nodes respectively ) 

3 hidden layers ( 10,13,8 nodes 

respectively ) 

 

   At the end of the training, the performance plot, regression plot, testing plot and 

validation plot are shown below for the two training of the two topologies   

 

 

(a)  

 
(b) 

 

Figure IV- 4 : General topology of multilayer Feed Forward Back-propagation neural 

network of MPCC of : (a) DMC , (b) IMC 
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 (a) 

(b) 

 

Figure IV- 5: Performance of Feed forward back-propagation neural network based MPCC 

of: (a) DMC, (b) IMC 

 
(a) 

 
(b) 

 

Figure IV- 6: Regression of Feed forward back-propagation neural network based MPCC of: 

(a) DMC, (b) IMC 

IV.7 Simulation and results 

This section provides a comprehensive study and evaluation of the proposed control 

strategies fed to the two topologies direct and indirect Matrix converter with load RL. 

As it is mentioned above, the inputs of neural network are references currents and their 

outputs of the three phases, it means that the reactive power is not controllable compared 

to the MPC strategy.  
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   To verify the proposed ANN-based control strategy (model predictive current control) fed 

DMC-fed RL-load, IMC-fed RL-load and compare their performance with the conventional 

MPC, we used MATLAB (R2020a)/SIMULINK software components to implement the 

SIMULINK model and the simulations of the system shown in figures bellow 

 
 

(a) 

(b) 

Figure IV- 7 : Simulation results of a DMC-fed RL-load: Reference and output current of 

phase A and their zoom with: (a) ANN-MPCC, (b) MPC 
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(a) 

 
 

(b) 

 

Figure IV- 8 : Simulation results of a DMC-fed RL-load of load currents with:  

(a) ANN-MPCC, (b) MPC 

 
                (a) 

 
(b) 

 

Figure IV- 9 : Simulation results of a DMC-fed RL-load of load voltage and currents of   

phase A with:  (a) ANN-MPCC, (b) MPC 

 
(a) 

 
(b) 

 

Figure IV- 10 : Simulation results of a DMC-fed RL-load of supply current and of               

phase A with:  (a) ANN-MPCC, (b) MPC 
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(a) 

 
(b) 

 

Figure IV- 11 : Simulation results of a DMC-fed RL-load of input current and voltage of 

DMC of phase A with:  (a) ANN-MPCC, (b) MPC 

 
(a) 

 
(b) 

 

Figure IV- 12: Simulation results of a DMC-fed RL-load of the input reactive power and its 

moving average value with:  (a) ANN-MPCC, (b) MPC 

 
(a) 

 
(a) 

 

Figure IV- 13 : Simulation results of a DMC-fed RL-load of Output current spectra 

expressed as percentages of fundamental magnitude with: (a) ANN-MPCC, (b) MPCC 
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(a) 

 
(b) 

Figure IV- 14: Simulation results of a DMC-fed RL-load of Output voltage spectra 

expressed as percentages of fundamental magnitude with: (a) ANN-MPCC, (b) MPCC 

 

  
 

(a) 

 

  
  (b) 

 

Figure IV- 15 : Simulation results of an IMC-fed RL-load: Reference and output current of 

phase A and their zoom with: (a) ANN-MPCC, (b) MPC 
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(a)  

(b) 

 

Figure IV- 16: Simulation results of an IMC-fed RL-load of load currents with:  

(a) ANN-MPCC, (b) MPC 

(a) 
 

(b) 

 

Figure IV- 17: Simulation results of an IMC-fed RL-load of load voltage and currents of  

phase A phase A with:  (a) ANN-MPCC, (b) MPC 
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Figure IV- 18 : Simulation results of an IMC-fed RL-load of supply current and of               

phase A with:  (a) ANN-MPCC, (b) MPC 

 

 
(a)  

(b) 

 

Figure IV- 19 : Simulation results of an IMC-fed RL-load of input current and voltage of 

DMC of phase A with:  (a) ANN-MPCC, (b) MPC 

 
(a) 

 
(b) 

 

Figure IV- 20: Simulation results of an IMC-fed RL-load of the input reactive power and its 

moving average value with:  (a) ANN-MPCC, (b) MPC 

 
(a) (b) 
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(a) 

 
(b) 

 

Figure IV- 21 : Simulation results of an IMC-fed RL-load of Output current spectra 

expressed as percentages of fundamental magnitude with: (a) ANN-MPCC, (b) MPCC 

 

 
(a) 

 

 
(b) 

 

Figure IV- 22: Simulation results of an IMC-fed RL-load of Output voltage spectra 

expressed as percentages of fundamental magnitude with: (a) ANN-MPCC, (b) MPCC 

Figures from Figure IV-7 to Figure IV-14 present the simulation results of ANN-MPCC of 

DMC fed RL load and from Figure IV-15 to Figure IV-22 present the simulation results of 

ANN-MPCC of IMC-fed RL-load 

 

Figure IV-7 and Figure IV-15show the simulation steady performance of ANN-MPC 

controller of DMC-fed RL-load, IMC-fed RL-load respectively.From Figure IV-7 (a) and 

Figure IV-15 (a), the outputs currents of the two topologies are controlled to track their 

references (different magnitudes). From their zoom, it observed that the output current 

properly fitted on its reference with a smooth wave form, minimum ripples with ANN-MPC 
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while in theFigure IV-7 (b) and Figure IV-15 (b), the output current of MPC oscillates 

around its reference forming a ripple, or a band, around the reference 

   In term of comparison between the two topologies controlled by ANN-MPC,it can be 

observed that the oscillations of the output current are more important with the indirect 

topology compared to direct one. 

 

Figure IV-8 to Figure IV-11 and from Figure IV-16 to Figure IV-19 present the behaviour 

of the system of both converters, with the control of the input reactive power on MPCC, 

compare to AN-MPCC where the input reactive power is incontrollable.  

 A phase shift between the supply voltage and current plus an almost chaotic behaviour of 

the supply current and the input reactive power. 

   The noticeable difference in the supply current and in the input reactive power at 

transient state is due the different simulation components. In the DMC topology, the 

models   (II.1), (IV.5) and (IV.6) have been used. Whereas in the IMC topology, 

components from the SimPowerSystems library in Simulink, which are more reliable 

because they take into account phenomena that have been neglected in this thesis such as 

the magnetic saturation of the power switches and diode forward voltage drop, which gives 

more reliable results. 

 

In term quality of wave-form and for voltage and current output, the proposed strategy for 

the two topologies gives better results than conventional MPCC, particularly results given 

byANN-MPC of DMC-fed RL-load. 

 

Figure IV.12 and Figure IV.20, show the reactive power and its average value of the ANN-

MPCC and MPCC fed DMC-fed RL-load, IMC-fed RL-load respectively, as mentioned 

above, reactive power is not controllable by the proposed strategy, as expected the 

conventional strategy have better average value and better shape with minimum ripples. 

 

Figure IV-13, Figure IV-14, Figure IV-21 and Figure IV-22 present the output current 

and voltage spectra expressed as percentages of the fundamental magnitude of both 

topologies with the two controllers. The THD of the output current of the proposed 

strategy of DMC-fed RL-load decreased to 1.03 compared to MPCC while in ANN-MPCCof 
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IMC-fed RL-load, THD increase compared to MPCC. Same thing for the THD of output 

voltage of DMC and IMPC the results of PMCC is better than the ANN-MPCC 

IV.8 Conclusion 

 

The work and study done in this chapter have discussed the control of matrix converter 

of two topologies direct and indirect fed RL load, using neural network based MPCC 

method. The obtained results have shown that the use of ANN-MPCC control method is 

improved ,in term lower THD of output current and voltage in ANN-MPCC of direct 

matrix converter compared to MPCC .While in ANN-MPCC of indirect matrix converter, 

results appeared the non-efficiently of proposed strategy compared to conventional 

strategy . From the obtained results we can conclude that ANN-MPCC of matrix converter 

particularly ANN-MPCC of DMC is improved. The use of ANN-MPCC could be improved 

by ranging maximum samples of data with different conditions or adding another features 

as inputs to train neural network. 
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GENERAL CONCLUSION 

In power electronics, the control system has always been a key issue since they influence 

drastically the overall system performances. In order to achieve the necessary regulation, a 

controller in a feedback loop is needed.The main drawback of MPC is that the 

computational time necessary to calculate a control signal at each sampling time can be 

much greater than the amount of time that is available in a real time setting, the major 

drawback is the low computation efficiency [48] and the huge amount of real-time 

calculations [13]. For this reason, most of the methods used to overcome these 

disadvantages are accomplished by replacing another strategy more efficient. 

 

In this work, and in order to solve the problem discussed in chapter I, a neural network 

based Model Predictive Control schemes have been applied to power converters associated 

with a RL-load and with an induction machine, namely the 2LVSI, the DMC and the IMC. 

The study was done by simulation in the MATLAB/Simulink environment. 

Our work is summarized in four chapter, it began with a state of art which introduced a 

general description of power converters, a description of the most famous topologies of 

matrix converters. Then followed by brief description of the MPC, working principle, its 

applications and its major drawback. The first chapter ended with an overview of a novel 

proposed strategy of control such as artificial neural network. This bibliographic study has 

shown that this topic is contemporary and promising, attracting the attention of 

researchers around the world. 

In the second chapter, the proposed strategy “neural network based on predictive current 

control” was introduced. Both the converter and the load have been modeled and a training 

procedure was explained with two different algorithms. The ANN-MPCC proved its 

performance in term of quality and lower THD compared to the conventional strategy 

control in many experience conditions. The inverter allows, thanks to the NN-MPCC, to 

control the output current in magnitude and frequency. In order to improve the efficient of 

the control proposed in term of burden time reduction.The chapter was concluded by a real 

time implementation of the ANN-MPC . 
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The non-linearity of 2LVSI make the ANN-MPCC of a 2LVSI-fed RL-load one of the 

simplest control schemes, in terms of training, complexity of neural architecture and of 

calculation power. 

In the third chapter, the neural network based on MPTC control applied to an induction 

motor that is fed by a 2LVSI has been introduced, the induction machine has been modeled 

in a way that suits the control scheme and a cost function has been expressed in order to 

satisfy the objective of the MPTC control. MPTC was used, as an expert, in the training 

phase to generate data required for training the proposed neural network. Then, once the 

neural network is fine-tuned, it can be successfully used online for controlling, without the 

need of using MPTC.  

Simulation results demonstrate the excellent performance of the proposed ANN-MPTC for 

induction machine fed 2LVSI, while the good responses of the flux, torque, and speed also 

has the good robustness when the load torque TL is changed. Moreover, that under 

identical conditions the results obtained by the use of proposed method, are improved 

compared to classical MPTC, which is especially true for the torque, flux and stator current 

ripple. Torque ripple is reduced by a considerable ratio due to soft interpolation property of 

ANN. Furthermore,the proposed ANN-based controller performs better than MPTC, in 

terms of a lower THD of stator current. 

The last chapter presents an ANN-MPCC scheme of an RL-load fed by a matrix converter 

with both topologies direct and indirect. The modeling of both converters was presented 

alongside with the modeling of the input filter. The phase shift at the input of the converter 

between the current and the voltage is also controllable for the both topologies.  

Furthermore, both topologies did not allow the control of the input reactive power, 

although the use of reference and output reactive power as inputs, hence just the current 

output of three phases was controlled. 

In addition, in terms of a lower THD of output voltage, ANN- MPCC shows a better 

control performance in term of lower voltage output THD compared to conventional 

strategy for the two topologies while current output THD is improved only in ANN- MPC 

of DMC fed RL load. 

Human comportment and thinking form the basis of intelligent control techniques. By 

adopting techniques based on artificial intelligence, the performance of linear and nonlinear 

control systems can be further improved. Neural network controllers are proposed for MPC 
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for linear and non-linear loads under different operating conditions fed different topologies 

of power converter. The simulations results discussed in precedent thesisprove the efficient 

robustness of proposed strategy. 

According to the studies conducted in this thesis, the neural network based on predictive 

control has the following advantages: 

• A great capacity in predicting model (even with different situations of those 

used for training phase). 

• Appealing attributes of nonlinear identification and control. 

• Suitable for non-mathematical models.  

• Able to manage abundant number of data and input variables. 

• Trustworthy predictions. 

Although this advantages a neural network has the following disadvantages 

• Operating a neural network needs to be trained and need a good database. 

• Takes long time to process of a large neural network  

• Expending a lot of time for off-line training. 

• Quality of the predictions need a large amount of data.  

As a perspective to this work, we plan to: 

• Improving the results of ANN-MPCC fed matrix converter in order to control the 

reactive power also. 

• Study NN-MPTC for induction machine fed a matrix converter, direct and indirect 

topologies. 

• Study other MC topologies; multilevel IMC, sparse IMC and five phases MC in 

particular. 

• Implement the control strategy on a Field-Programmable Gate Array (FPGA) card 

to control an induction machine for the experimental validation. 

 



 

 

 

 

 

 

References 

 



 

References  

92 

 

References  

[1] B. K. Bose, « Energy, environment, and advances in power electronics », 2000, vol. 1, 

p. TU1-T14. 

[2] S. Kouro, M. A. Perez, J. Rodriguez, A. M. Llor, et H. A. Young, « Model predictive 

control: MPC’s role in the evolution of power electronics », IEEE Ind. Electron. Mag., 

vol. 9, no 4, p. 8‑21, 2015. 

[3] J. Petrovcic et S. Strmcnik, « A microcomputer-based speed controller for lift drives », 

IEEE Trans. Ind. Appl., vol. 24, no 3, p. 487‑498, 1988. 

[4] C. Buccella, C. Cecati, et H. Latafat, « Digital control of power converters—A 

survey », IEEE Trans. Ind. Inform., vol. 8, no 3, p. 437‑447, 2012. 

[5] J. J. Rodríguez-Andina, M. D. Valdes-Pena, et M. J. Moure, « Advanced features and 

industrial applications of FPGAs—A review », IEEE Trans. Ind. Inform., vol. 11, no 

4, p. 853‑864, 2015. 

[6] A. Fathy Abouzeid et al., « Control strategies for induction motors in railway traction 

applications », Energies, vol. 13, no 3, p. 700, 2020. 

[7] A. M. El-Refaie, « Motors/generators for traction/propulsion applications: A review », 

IEEE Veh. Technol. Mag., vol. 8, no 1, p. 90‑99, 2013. 

[8] S. J. Qin et T. A. Badgwell, « A survey of industrial model predictive control 

technology », Control Eng. Pract., vol. 11, no 7, p. 733‑764, 2003. 

[9] B. Schenker et M. Agarwal, « Predictive control of a bench-scale chemical reactor 

based on neural-network models », IEEE Trans. Control Syst. Technol., vol. 6, no 3, p. 

388‑400, 1998. 

[10] S.-F. Mo et J. Billingsley, « Fast-model predictive control of multivariable systems », 

1990, vol. 137, no 6, p. 364‑366. 

[11] S. Gdaim, N. Slama, A. Mtibaa, et M. F. Mimouni, « Direct Torque Control based on 

Artificial Neural Networks of Induction Machine ». 

[12] L. Romeral, A. Arias, E. Aldabas, et M. G. Jayne, « Novel direct torque control (DTC) 

scheme with fuzzy adaptive torque-ripple reduction », IEEE Trans. Ind. Electron., 

vol. 50, no 3, p. 487‑492, 2003. 

[13] I. S. Mohamed, S. Rovetta, T. D. Do, T. Dragicević, et A. A. Z. Diab, « A Neural-

Network-Based Model Predictive Control of Three-Phase Inverter With an Output  

$LC$  Filter », IEEE Access, vol. 7, p. 124737‑124749, 2019, doi: 

10.1109/ACCESS.2019.2938220. 

[14] M.-K. Nguyen, « Power Converters in Power Electronics: Current Research Trends », 

2020. 

[15] J. W. Kolar, T. Friedli, F. Krismer, et S. Round, « The essence of three-phase AC/AC 

converter systems », 2008, p. 27‑42. 

[16] A. Tsoupos et V. Khadkikar, « A novel SVM technique with enhanced output voltage 

quality for indirect matrix converters », IEEE Trans. Ind. Electron., vol. 66, no 2, p. 

832‑841, 2018. 

[17] E. Ibarra et al., « New fault tolerant matrix converter », Electr. Power Syst. Res., vol. 

81, no 2, p. 538‑552, 2011. 

[18] M. Hosseini Abardeh et R. Ghazi, « A Dynamic Model for Direct and Indirect Matrix 

Converters », Adv. Power Electron., vol. 2014, p. 864203, avr. 2014, doi: 

10.1155/2014/864203. 

[19] S. Ansari et A. Chandel, « Simulation based comprehensive analysis of direct and 

indirect matrix converter fed asynchronous motor drive », in 2017 4th IEEE Uttar 



 

References  

93 

 

Pradesh Section International Conference on Electrical, Computer and Electronics 

(UPCON), oct. 2017, p. 9‑15. doi: 10.1109/UPCON.2017.8251014. 

[20] O. Abdel-Rahim, H. Abu-Rub, A. Iqbal, et A. Kouzou, « Five-to-three phase direct 

matrix converter with model predictive control », in 4th International Conference on 

Power Engineering, Energy and Electrical Drives, mai 2013, p. 204‑208. doi: 

10.1109/PowerEng.2013.6635607. 

[21] M. Y. Lee, « Three-level neutral-point-clamped matrix converter topology », 2009. 

[22] J. Zhang, L. Li, et D. G. Dorrell, « Control and applications of direct matrix 

converters: A review », Chin. J. Electr. Eng., vol. 4, no 2, p. 18‑27, 2018. 

[23] L. Huber et D. Borojevic, « Space vector modulated three-phase to three-phase 

matrix converter with input power factor correction », IEEE Trans. Ind. Appl., vol. 

31, no 6, p. 1234‑1246, 1995. 

[24] M. Hamouda, H. F. Blanchette, et K. Al-Haddad, « Indirect Matrix Converters’ 

Enhanced Commutation Method », IEEE Trans. Ind. Electron., vol. 62, no 2, p. 

671‑679, févr. 2015, doi: 10.1109/TIE.2014.2341583. 

[25] C. Klumpner, « An indirect matrix converter with a cost effective protection and 

control », in 2005 European Conference on Power Electronics and Applications, sept. 

2005, p. 11 pp.-P.11. doi: 10.1109/EPE.2005.219558. 

[26] H. J. Cha, « Analysis and design of matrix converters for adjustable speed drives and 

distributed power sources », 2004. 

[27] L. Rmili, S. Rahmani, H. Vahedi, et K. Al-Haddad, « Comprehensive analysis of 

Matrix Converters: Indirect topology », in 2014 15th International Conference on 

Sciences and Techniques of Automatic Control and Computer Engineering (STA), déc. 

2014, p. 679‑684. doi: 10.1109/STA.2014.7086728. 

[28] L. Rmili, S. Rahmani, et K. Al-Haddad, « Sparse matrix converter: Modeling and 

PWM control », in 2015 IEEE 24th International Symposium on Industrial Electronics 

(ISIE), juin 2015, p. 411‑416. doi: 10.1109/ISIE.2015.7281503. 

[29] Yong Shi, Xu Yang, Qun He, et Zhaoan Wang, « Research on a novel capacitor 

clamped multilevel matrix converter », IEEE Trans. Power Electron., vol. 20, no 5, p. 

1055‑1065, sept. 2005, doi: 10.1109/TPEL.2005.854027. 

[30] P. C. Loh, F. Blaabjerg, F. Gao, A. Baby, et D. A. C. Tan, « Pulsewidth Modulation of 

Neutral-Point-Clamped Indirect Matrix Converter », IEEE Trans. Ind. Appl., vol. 

44, no 6, p. 1805‑1814, déc. 2008, doi: 10.1109/TIA.2008.2006321. 

[31] Y. Sun, W. Xiong, M. Su, X. Li, H. Dan, et J. Yang, « Topology and Modulation for a 

New Multilevel Diode-Clamped Matrix Converter », IEEE Trans. Power Electron., 

vol. 29, no 12, p. 6352‑6360, déc. 2014, doi: 10.1109/TPEL.2014.2305711. 

[32] Model Predictive Control System Design and Implementation Using MATLAB®. 

London: Springer London, 2009. doi: 10.1007/978-1-84882-331-0. 

[33] « Model Predictive Control by E. F. Camacho, C. Bordons (z-lib.org).pdf ».  

[34] M. Grimble, « LQG predictive optimal control for adaptive applications », Automatica, 

vol. 26, no 6, p. 949‑961, 1990. 

[35] D. Linkers et M. Mahfonf, « Advances in Model-based predictive control, chapter 

Generalised predictive control in clinical anaesthesia », 1994. 

[36] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, et M. Norambuena, « Model 

Predictive Control for Power Converters and Drives: Advances and Trends », IEEE 

Trans. Ind. Electron., vol. 64, no 2, p. 935‑947, févr. 2017, doi: 

10.1109/TIE.2016.2625238. 



 

References  

94 

 

[37] A. M. Dadu, S. Mekhilef, et T. K. Soon, « Lyapunov model predictive control to 

optimise computational burden, reference tracking and THD of three-phase four-leg 

inverter », IET Power Electron., vol. 12, no 5, p. 1061‑1070, 2019. 

[38] J. H. Lee, « Model predictive control: Review of the three decades of development », 

Int. J. Control Autom. Syst., vol. 9, no 3, p. 415‑424, 2011. 

[39] J. Rodriguez et P. Cortes, Predictive control of power converters and electrical drives, vol. 

40. John Wiley & Sons, 2012. 

[40] Y. Tan et R. De Keyser, « Neural network based adaptive control », in Advances in 

model based predictive control, Oxford University Press, 1994, p. 358‑369. 

[41] I. Škrjanc et D. Matko, Fuzzy predictive controller with adaptive gain. 1994. 

[42] J. Rodriguez et al., « State of the art of finite control set model predictive control in 

power electronics », IEEE Trans. Ind. Inform., vol. 9, no 2, p. 1003‑1016, 2012. 

[43] S. Vazquez et al., « Model predictive control: A review of its applications in power 

electronics », IEEE Ind. Electron. Mag., vol. 8, no 1, p. 16‑31, 2014. 

[44] E. Fernandez-Camacho et C. Bordons-Alba, Model Predictive Control in the Process 

Industry. London: Springer London, 1995. doi: 10.1007/978-1-4471-3008-6. 

[45] J. H. Lee, « Model predictive control: Review of the three decades of development », 

Int. J. Control Autom. Syst., vol. 9, no 3, p. 415‑424, 2011. 

[46] L. Yan et X. Song, « Design and Implementation of Luenberger Model-Based 

Predictive Torque Control of Induction Machine for Robustness Improvement », 

IEEE Trans. Power Electron., vol. 35, no 3, p. 2257‑2262, mars 2020, doi: 

10.1109/TPEL.2019.2939283. 

[47] W. C. Wong et J. H. Lee, « Postdecision-state-based approximate dynamic 

programming for robust predictive control of constrained stochastic processes », Ind. 

Eng. Chem. Res., vol. 50, no 3, p. 1389‑1399, 2011. 

[48] Z. Liu et al., « Recurrent Model Predictive Control », ArXiv Prepr. ArXiv210210289, 

2021. 

[49] S. Kwak, U. Moon, et J. Park, « Predictive-Control-Based Direct Power Control With 

an Adaptive Parameter Identification Technique for Improved AFE Performance », 

IEEE Trans. Power Electron., vol. 29, no 11, p. 6178‑6187, nov. 2014, doi: 

10.1109/TPEL.2014.2298041. 

[50] H. Miranda, P. Cortes, J. I. Yuz, et J. Rodriguez, « Predictive Torque Control of 

Induction Machines Based on State-Space Models », IEEE Trans. Ind. Electron., vol. 

56, no 6, p. 1916‑1924, juin 2009, doi: 10.1109/TIE.2009.2014904. 

[51] R. Vargas, P. Cortes, U. Ammann, J. Rodriguez, et J. Pontt, « Predictive Control of a 

Three-Phase Neutral-Point-Clamped Inverter », IEEE Trans. Ind. Electron., vol. 54, 

no 5, p. 2697‑2705, oct. 2007, doi: 10.1109/TIE.2007.899854. 

[52] P. Cortes, J. Rodriguez, D. E. Quevedo, et C. Silva, « Predictive Current Control 

Strategy With Imposed Load Current Spectrum », IEEE Trans. Power Electron., vol. 

23, no 2, p. 612‑618, mars 2008, doi: 10.1109/TPEL.2007.915605. 

[53] X. Zhang, L. Zhang, et Y. Zhang, « Model Predictive Current Control for PMSM 

Drives With Parameter Robustness Improvement », IEEE Trans. Power Electron., 

vol. 34, no 2, p. 1645‑1657, févr. 2019, doi: 10.1109/TPEL.2018.2835835. 

[54] S. Hanke, S. Peitz, O. Wallscheid, J. Böcker, et M. Dellnitz, « Finite-Control-Set 

Model Predictive Control for a Permanent Magnet Synchronous Motor Application 

with Online Least Squares System Identification », in 2019 IEEE International 

Symposium on Predictive Control of Electrical Drives and Power Electronics 

(PRECEDE), juin 2019, p. 1‑6. doi: 10.1109/PRECEDE.2019.8753313. 



 

References  

95 

 

[55] T. Orłowska-Kowalska, F. Blaabjerg, et J. Rodríguez, Éd., Advanced and Intelligent 

Control in Power Electronics and Drives, vol. 531. Cham: Springer International 

Publishing, 2014. doi: 10.1007/978-3-319-03401-0. 

[56] J.-F. Qiao et H.-G. Han, « Identification and modeling of nonlinear dynamical 

systems using a novel self-organizing RBF-based approach », Automatica, vol. 48, no 

8, p. 1729‑1734, 2012. 

[57] H. Han et J. Qiao, « Hierarchical neural network modeling approach to predict sludge 

volume index of wastewater treatment process », IEEE Trans. Control Syst. Technol., 

vol. 21, no 6, p. 2423‑2431, 2013. 

[58] H. Han, L. Zhang, Y. Hou, et J. Qiao, « Nonlinear Model Predictive Control Based on 

a Self-Organizing Recurrent Neural Network », IEEE Trans. Neural Netw. Learn. 

Syst., vol. 27, no 2, p. 402‑415, févr. 2016, doi: 10.1109/TNNLS.2015.2465174. 

[59] D. Sobajic et Y. Pao, « Associative computing with artificial neural networks in 

electric power systems engineering », présenté à First Workshop on Neural Networks, 

1990. 

[60] I. S. Mohamed, S. Rovetta, T. D. Do, T. Dragicević, et A. A. Z. Diab, « A Neural-

Network-Based Model Predictive Control of Three-Phase Inverter With an Output  

$LC$  Filter », IEEE Access, vol. 7, p. 124737‑124749, 2019, doi: 

10.1109/ACCESS.2019.2938220. 

[61] S. M. Halpin et R. F. Burch, « Applicability of neural networks to industrial and 

commercial power systems: a tutorial overview », in Proceedings of 1996 IAS 

Industrial and Commercial Power Systems Technical Conference, mai 1996, p. 75‑81. doi: 

10.1109/ICPS.1996.533939. 

[62] D. Pham et D. Karaboga, Intelligent optimisation techniques: genetic algorithms, tabu 

search, simulated annealing and neural networks. Springer Science & Business Media, 

2012. 

[63] S. Tiwari, R. Naresh, et R. Jha, « Neural network predictive control of UPFC for 

improving transient stability performance of power system », Appl. Soft Comput., vol. 

11, no 8, p. 4581‑4590, 2011. 

[64] Z. Yan et J. Wang, « Robust Model Predictive Control of Nonlinear Systems With 

Unmodeled Dynamics and Bounded Uncertainties Based on Neural Networks », 

IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no 3, p. 457‑469, mars 2014, doi: 

10.1109/TNNLS.2013.2275948. 

[65] Y. Pan et J. Wang, « Model Predictive Control of Unknown Nonlinear Dynamical 

Systems Based on Recurrent Neural Networks », IEEE Trans. Ind. Electron., vol. 59, 

no 8, p. 3089‑3101, août 2012, doi: 10.1109/TIE.2011.2169636. 

[66] Z. Yan et J. Wang, « Model Predictive Control of Nonlinear Systems With Unmodeled 

Dynamics Based on Feedforward and Recurrent Neural Networks », IEEE Trans. 

Ind. Inform., vol. 8, no 4, p. 746‑756, nov. 2012, doi: 10.1109/TII.2012.2205582. 

[67] F. Murtagh et M. Hernández-Pajares, « The Kohonen self-organizing map method: an 

assessment », J. Classif., vol. 12, no 2, p. 165‑190, 1995. 

[68] S. Solla, « Generalization in feedforwad neural networks », présenté à Proc. the IEEE 

International Joint Conference on Neural Networks (Seattle), 1991, 1991. 

[69] T. Sasakawa, J. Hu, et K. Hirasawa, « Self-organized function localization neural 

network », in 2004 IEEE International Joint Conference on Neural Networks (IEEE 

Cat. No.04CH37541), juill. 2004, vol. 2, p. 1463‑1468 vol.2. doi: 

10.1109/IJCNN.2004.1380168. 



 

References  

96 

 

[70] P. Cortes, J. Rodriguez, C. Silva, et A. Flores, « Delay Compensation in Model 

Predictive Current Control of a Three-Phase Inverter », IEEE Trans. Ind. Electron., 

vol. 59, no 2, p. 1323‑1325, févr. 2012, doi: 10.1109/TIE.2011.2157284. 

[71] S. Sabzevari, R. Heydari, M. Mohiti, M. Savaghebi, et J. Rodriguez, « Model-free 

neural network-based predictive control for robust operation of power converters », 

Energies, vol. 14, no 8, p. 2325, 2021. 

[72] M. H. Beale, M. T. Hagan, et H. B. Demuth, « Neural network toolbox user’s guide », 

MathWorks Inc, vol. 103, 1992. 

[73] C. A. ROJAS MONRROY, « MULTIOBJETIVE FINITE CONTROL SET MODEL 

PREDICTIVE TORQUE AND STATOR FLUX CONTROL OF AN INDUCTION 

MACHINE », 2013. 

[74] N. Vahdatifar, S. Mortazavi, et R. Kianinezhad, « Neural Network Based Predictive 

DTC Algorithm for Induction Motors », Int. J. Electr. Comput. Eng., vol. 4, no 11, p. 

5, 2010. 

[75] J. Holtz, « The representation of AC machine dynamics by complex signal flow 

graphs », IEEE Trans. Ind. Electron., vol. 42, no 3, p. 263‑271, 1995. 

[76] J. Holtz, « The representation of AC machine dynamics by complex signal flow 

graphs », IEEE Trans. Ind. Electron., vol. 42, no 3, p. 263‑271, juin 1995, doi: 

10.1109/41.382137. 

[77] A. Benachour, « Commande sans capteur basée sur DTC d’une machine asynchrone 

alimentée par Convertisseur Matriciel », PhD, ENP, Algiers, 2017. 

[78] M. Ndaliman, M. Hazza, A. Khan, et M. Ali, « Development of a new model for 

predicting EDM properties of Cu-TaC compact electrodes based on artificial neural 

network method », Aust. J. Basic Appl. Sci., vol. 6, no 13, p. 192‑199, 2012. 

[79] J. Andreu, I. M. de Alegria, I. Kortabarria, J. L. Martin, et S. Ceballos, 

« Improvement of the Matrix Converter Start-up Process », 2007, p. 1811‑1816. 

[80] S. F. Pinto et J. F. Silva, « Input filter design for sliding mode controlled matrix 

converters », 2001, vol. 2, p. 648‑653. 

[81] F. Fnaiech et K. Al-Haddad, « Input filter design for SVM dual-bridge matrix 

converters », 2006, vol. 2, p. 797‑802. 

[82] J. Rodriguez et P. Cortes, Predictive control of power converters and electrical drives, vol. 

40. John Wiley & Sons, 2012. 



 

 

 

 

 

 

 

Appendices 

 
 

 

 



 

Appendices 

 

 

96 

 

APPENDIX A 

 
(a) 

 
(b) 

 
(c) 

 

Figure A- 1 : Simulink model of a 2 level inverter fed RL load of: (a) MPC, (b) PNN,                  

(c) Fitnet 

Table A- 1 : Simulation parameters for the MPCC / PNN / Fitnet of an inverter fed RL load 

Parameter Value 

Fixed-step size 5 𝜇s 

Solver ode3 

Tasking mode SingleTasking 

Resistance 50Ω 

Inductance 20 mH 

DC voltage 300 V 
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APPENDIX B 

 

(a) 

 

(b) 

Figure B- 1 : Simulink model of a 2LVSI fed induction machine with: (a) ANN-MPTC  

(b) MPTC 

 

 

 

 

 

 



 

Appendices 

 

 

98 

 

Table B- 1:Machine parameters 

 

Description Variables Values 

Rated power 𝑃𝑛𝑜𝑚  1.5 kW 

Rated torque 𝑇𝑛𝑜𝑚 15 N.m 

Rated speed Ω𝑛𝑜𝑚 157 rad/s 

Rated stator current (RMS) 𝐼𝑛𝑜𝑚 6.7 A 

Stator resistance 𝑅𝑠 4.85Ω 

Stator inductance 𝐿𝑠 0.274 H 

Rotor resistance 𝑅𝑟 6.3Ω 

Rotor inductance 𝐿𝑟 0.274 H 

Magnetizing inductance 𝐿𝑚 0.258 H 

Pole pairs 𝑝 2 

Dry friction coefficient 𝑘𝑓 N.m.s.rad-1 

Moment of inertia 𝐽 0.031 kg.m2 

 

 

Table B- 2 : Simulation parameters for the MPTC of an inverter fed IM 

Description Variables Values 

Fixed-step size - 5 𝜇s 

Solver - ode3 

Tasking mode  -  SingleTasking 

Supply voltage 𝑉𝐷𝐶  500 V 

Damping coefficient 𝜉 0.7 

Natural circular pulse 𝜔𝑛 100𝜋 rad/s 

Weighting factors 

𝜆𝑇 0.0667 N-1m-1 

𝜆𝜑 (case 1) 1.2195 Wb-1 

𝜆𝜑 (case 2) 3.6585 Wb-1 
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APPENDIX C 

 

 
(a) 

 

 
(b) 

 

Figure C- 1 : Simulink model of a DMC-fed RL-load with: (a) ANN-MPCC, (b) MTCC 
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(c) 

 

 
(d) 

 

Figure C- 2 : Simulink model of IMC fed RL Load with (a): ANN-MPCC (b) MPCC 
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Table C- 1: Simulation parameters for the MPCC of a MC-fed RL-load 

 

Description Variables Values 

Fixed-step size - 5 𝜇s 

Tasking mode - SingleTasking 

Solver - ode3 

Supply voltage (RMS) 𝑣𝑠 220 V 

Weighting factor 𝜆𝑄 0.035 

 

 

 

 

Table C- 2 : Filter parameters 

 

Description Variables Values 

Filter resistor 𝑅𝑓 0.5 Ω 

Filter inductor 𝐿𝑓 400 μH 

Filter capacitor 𝐶𝑓 21 μF 

 

 

 


