
 

� ا���ا������ ا�����ر�� ا������اط
� ا�

 
République Algérienne Démocratique et Populaire 

 
 

   

 

 

Département du second cycle 
 

 
 

 
 

En vue de l’obtention du diplôme d’ingéniorat d’état  
 

Filière : Electrotechnique 
 

Spécialité : Traction électrique 

 
Thème : 

 
 

 
 

 
 
 
 
 
 

 

Soutenu le : 03/07/2022                               Devant le jury composé de :  

 

              M             ROUBACHE Lazhar                                                  Président 

   M             HAMACHE Amar                                                      Examinateur  

             M             BENACHOUR Ali                                                       Encadreur  

             M             DALI Ali                                                                      Co-Encadreur  

 

                                              
                                             Monôme N° : 15 /Ingéniorat /TR/ 2021-2022 

Simulation and implementation of Model Predictive Current 

Control and Artificial neural network based on MPCC of a 

Three-Phase, Two Level, Inverter-Fed RL-Load 

Mémoire de Fin d’Etudes  

Présenté par : BEY Anis Samy 

  
Encadré (e) par : Dr. BENACHOUR Ali 

Co-encadré(e) par : Dr. Dali Ali 


F ا��D�E وزارة اG�H�D�G�ا� IJ�وا�  


E ا���ر�K ا�G�DL ما�G�� Hا��N
�
� Oا�����E  

 

Ministère de l’Enseignement Supérieur                            

et de la Recherche Scientifique  

Ecole Supérieure des Sciences Appliquées 

d'Alger 



TUGم:   

+* ا)53R.ت ) MPC, 4Pإن ا)LMف ا)FG >H8IJ ھ7ا ا)&%D%ع A+/B@ ?< درا0> و:'789 ا)/456 ا)/'23ي ا0/'.دا ,+* ا)'&%ذج (

ا)8V%3ab> ا[`\'.,8> ا)&\3_> ,+* ا)&J6^.ت ا)8I.TJM5> و6G%[ت ا)\.]> ا)JZT <8I.TJM5ض :F8H6 أداء أL3V ..'/&WVأ دراT .'/0'73ة 

 FG 8.تc%(%T%\(ا dbT 4BL_: لfg FG 9%?3> وا)/456 ا)/'23يa&(ل ا)&6%[ت ا%h MC ، <`.gل ا)7^.ء ا[`\'.,< و%h ر%W'G

b(53.ت اR(83>اa , ا)/456 ا)/'23ي j83\: 4: .<8,.'\`]8> اV%3ab(53.ت اR(ا )&6> ,+* اJ8gوأ k:.'8H6:83_.ت ا)/456 ا)/'23ي و\: dbT

 .G&%ج ?< ا)L3ا2B <BذMB.ا)/<  4PRL ,+* ا)53R.ت ا)8V%3ab> ا[`\'.,MPCC <'6l *+, <8 ا)&L'/H ,+* ا)'&%ذج  

�
WEHXت مE�GZ: 

>?%9aG ج%&G(MC) ،  ] <(8>،آ'Gاn: ا)/456 ا)/'23ي(MPC) ، <9+5/(8> ا[`\'.,8> ،  دا)> اV%3ab(53.ت اR(ا 

Résumé : 

L’objectif principal de ce sujet est d’étudier et implémenter la commande prédictive 

à base du model (MPC) puis à base des réseaux de neurones appliqué aux convertisseurs de 

puissance pour améliorer les performances de nos systèmes. Nous commençons notre étude 

par un état de l’art sur les convertisseurs matriciels, l’intelligence artificielle et la commande 

prédictive. Ensuite, la commande prédictive du courant à base du modèle (MPCC) puis à base 

des réseaux de neurones artificiels a été appliquée à une charge RL alimentée par un onduleur 

Une comparaison entre les deux commandes proposées a été établie. 

Mots clés : 

Convertisseur Matriciel, la commande prédictive à base du modèle, fonction de coût. 

Abstract: 

      The main objective of this topic is to study and implement predictive control based 

(MPC) model, neural networks applied to electrical drive and power converters, in order to 

improve performances of our system. We begin our study with a state of the art on matrix 

converters and predictive control. Then, the model predictive current control (MPCC) and 

artificial neural networks based MPCC (ANN-MPCC) were applied to an RL charge fed by a 

two-level inverter. A comparison between the two proposed strategies was introduced for 

each test. 

Key words: 

Matrix Converter (MC), Model Predictive Control (MPC), cost function 
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 General introduction   

The use of power converters has become very popular in the recent decade with a wide 

range of applications, including drives, energy conversion, traction, and distributed 

generation. The control of power converters has been extensively studied, and new control 

schemes are presented every year, power electronics circuits have proved indispensable in 

many areas because they convert electrical power from one form to another, such as ac-dc, 

dc-dc, dc-ac, or even ac-ac with a variable output magnitude and frequency [1].  

       Many control strategies for power electronics have been proposed that have been shown 

to be reasonably effective. Mainly, these are strategies based on linear controllers combined 

with nonlinear techniques, such as pulse width modulation (PWM). However, controllers of 

this type are usually tuned to achieve optimal performance only over a narrow operating 

range; outside this range the performance is significantly deteriorated. Therefore, the 

problems associated with many applications and their closed-loop controlled performance 

still poses theoretical and practical challenges. Furthermore, the advent of new applications 

leads to the need for new control approaches that will meet the increasingly demanding 

performance requirements. 

         A control algorithm that has been recently gaining more popularity in the field of power 

electronics is model predictive control (MPC) [2, 3]. This control method, which has been 

successfully used in the process industry since the 1970s, has attracted the interest and 

attention of research and academic communities due to its numerous advantageous features, 

such as design simplicity, explicit inclusion of design criteria and restrictions, fast dynamics 

and inherent robustness. In addition, the emergence of fast microprocessors has increasingly 

enabled successful implementation [7, 6, 5, 4]. 

 

Recently, several studies have suggested the application of the technique of artificial 

intelligence like neural networks, fuzzy logic and genetic algorithms to replace hysteresis 

controller and switches statement of the inverter[12][6]. The artificial neural networks 

(ANNs) are capable of learning the desired mapping between the inputs and outputs signals 

of the system without knowing the exact mathematical model of the system. The ANNs are 

excellent estimators in nonlinear systems [11] 



 

2 
 

Artificial neural networks are introduced also to replace the model predictive control. 

The ANN are used for their properties of learning capability and generalization to improve 

the control performance of the system and to overcome the disadvantages of the MPC.  

 

This thesis is organized into four chapters; they are summarized as follows: 

 

The first chapter is dedicated to an overview of the matrix converters by citing the different 

topologies proposed in the literature then, the principal drawback of the model predictive 

torque control (MPTC) then a global perspective about artificial intelligence in power 

electronics. The chapter is concluded with an overview of artificial neural network. 

 

The second chapter is devoted to the analysis and the simulation of predictive current control 

applied to a two-level three-phase inverter feeding an RL-load with evaluation of 

performance’s purposed strategy.  

 

The Third chapter is devoted to the analysis and the simulation of neural network based 

predictive current control applied to a two-level three-phase inverter feeding an RL-load 

with evaluation of performance’s purposed strategy. A comparison between the two 

strategies is established.  

 

The last chapter of this thesis is dedicated to the real implementation of both MPCC and 

neural networks based predictive current control strategies in a CDER laboratory in order to 

verify the theorical and simulations results. This final chapter is also concluded with a 

comparison between the two strategies. 

 

   The general conclusion concerns a brief synthesis of the work carried out with the main 

obtained results and some perspectives. 
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CHAPITRE I:           CHAPTER ONE 

Introduction  

Model predictive control (MPC) has become one of the well-established modern control 

methods for converter topologies, where a high-quality voltage with low total harmonic 

distortion (THD) is needed. Although it is an intuitive controller, easy to understand and 

implement, it has the significant disadvantage of requiring a large number of online 

calculations for solving the optimization problem. On the other hand, the application of 

model-free approaches such as those based on artificial neural networks approaches is 

currently growing rapidly in the area of power electronics and drives. Broadly speaking, the 

use of neural networks for the control of dynamical systems was proposed in the early 

nineties[13]. 

This chapter is divided into two main parts, the first is devoted to the state of the art of 

the converter, and the second part is devoted to the state of the art of the Model Predictive 

Control (MPC) based on neural network. Where some converter topologies, some applications 

of the control strategy were presented, and an overview of the neural network as an 

enhancement of MPC. 

I.1 State of the art of the matrix converter 

I.1.1 Introduction 

In recent years, the application of variable speed drives in industrial and 

commercial facilities has been increased greatly. Hence, the need of AC-AC conversion 

that converts three-phase input to the three-phase load, becomes essential in order to get 

variable frequency amplitude and phase for several applications. The AC to AC 

converters receive power from the input source and distribute it to the three-phase 

output with desired voltage and frequency. To improve the characteristics efficiency and 

the consistency of the systems, various power converter circuits are presented 

nowadays.[1] 

Matrix converter (MC) is an all-switch power converter with interesting properties such 

as controllable input power factor, bidirectional power flow, and high-quality input 
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and output currents. Moreover, because of the absence of the bulky DC link energy 

storage components, it benefits from the possibility of a compact design. There are two 

main types of the MC, namely, direct matrix converter (DMC) and indirect converter 

(IMC). The appliance of those converters are extensive: motor drive, FACTS devices, 

distributed generations systems, and wind energy conversion systems.[2] 

 

I.1.2 Matrix Converter Topologies 

The matrix converter consists of 9 bi-directional switches that allow any output phase to be 

connected to any phase. The circuit scheme is shown in Figure I.1: 

 

Figure I- 1 : Circuit scheme of a three phase to three phase matrix converter. a,b,c are the 
input terminals. A,B,C are the output terminals. 

The input terminals of the converter are connected to a three-phase voltage-fed system, 

usually the grid, while the output terminal is connected to a three-phase current-fed system, 

like an induction motor might be. 

The capacitive filter on the voltage-fed side and the inductive filter on the current-fed side 

represented in the scheme of Figure I.1 are intrinsically necessary. Their size is inversely 

proportional to the matrix converter switching frequency.  

With nine bi-directional switches, the matrix converter can theoretically assume 512 (29) 

different switching states combinations. But not all of them can be usefully employed. 
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Regardless to the control method used, the choice of the matrix converter switching states 

combinations to be used must comply with two basic rules. Taking into account that the 

converter is supplied by a voltage source and usually feeds an inductive load, the input phase 

should never be short-circuited and the output currents should not be interrupted. From a 

practical point of view, these rules imply that one and only one bidirectional switch per 

output phase must be switched on at any instant. By this constraint, in a three phase to three 

phase matrix converter, there are 27 permitted switching combinations. 

 

I.1.3 Matrix Converter classification 

There are to main types for the MC, direct matrix converter (DMC) and indirect matrix 

converter (IMC). The appliance of those converters are extensive: motor drive, FACTS 

devices, distributed generation systems, and wind energy conversion systems.  

 

Figure I- 2: Classification of Power Converters 
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I.1.3.1 Direct Matrix converters 

The additional direct AC power converters are the matrix converter (MC). The conventional 

matrix converter is made up of nine switches that connect each input phase to each output 

phase. With proper switching pattern, the output voltage control, current phase angle and 

input power factor can be obtained, Figure I-3 shows the elementary circuit of direct matrix 

converter.[14] 

The most promising characteristics of MC are that : it does not have any limitations on the 

output frequencies, the input power from the input voltage source to the output three phase 

loads can be transferred directly, with the elimination of inductors and capacitors at the DC 

link as shown in Figure I-3: 

 
It affords three-phase AC to three phase AC single conversion. Furthermore, the size and 

volume of the converter can be mostly reducedby using direct matrix converter. 

 

 
Figure I- 3: Direct Matrix Converter (DMC) 

I.1.4 Indirect Matrix Converters  

The improved topology called indirect Matrix converter is established on the concept of 

virtual DC link which is used to control the Matrix Converter. Hence, there is no energy 

storage element between the input and output side. The advantages of Indirect Matrix 

Converter compared to direct Matrix Converter are that : the commutation problem of power 

switches is solved and all the switches are switched ON and OFF at zero current. 

Even though both matrix converters show dissimilarities in the circuit configuration, 

modulation techniques, efficiency and complexity, they also afford similar characteristics 
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such as sinusoidal input as well as output currents and power flow at both directions with 

similar number of power semiconductor switches.[1] 

 

Figure I- 4: Indirect Matrix Converter (IMC) 

I.1.5 Structures of Indirect Matrix Converters 

I.1.5.1 Conventional Indirect Matrix Converters  

The electrical grid supplies the rectifier with AC power that passes in the first place by 

the input filter to be dealt with as a clean power energy. Afterwards the rectifier modifies 

this energy to a DC form power energy. The DC bus, which in place is responsible to provide 

the DC energy to the inverter stage, is of virtual nature since it misses any type of bulky 

storage components [3]. The rectifier stage, which is formed of six bidirectional switches, 

provides a factious DC link voltage with a variable average. The other six unidirectional 

switches forming the inverter stage 

 

Figure I- 5: Structure of a conventional Indirect Matrix Converter 
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I.1.5.2 Sparses Indirect Matrix Converters 

     The main issue of the conventional IMC is the switching problem because of the 

difficulty of working with the 4-dials switches in their safety zones. As a solution, a zero DC-

link current switching is implemented or a protection circuit is added. These solutions were 

introduced in the indirect matrix converter topology that also uses 18 IGBT semiconductors 

and 18 diodes arranged in a way that the rectifier and inverter stages are distinct. Several 

topologies were derived from indirect converters: the Sparse topology (15 IG Y 

semiconductors), the Very-Sparse topology (12 IGBT semiconductors), and the 

unidirectional Ultra-Sparse topology (9 IGBT semiconductors). These converters present the 

possibility to access the DC link between the inverter and the rectifier stage, which makes 

their control more flexible. Furthermore, they involve a smaller number of switches and 

consequently they are more compact, less expensive, easier to control than the conventional 

topology and more efficient since the switching losses are also reduced.[4]  

 

    
 Figure I- 6: Sparse Matrix Converter (SMC)         Figure I- 7: Very sparse Matrix Converter                    

 

Figure I- 8: Ultra sparse Matrix Converter (USMC) 
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I.1.5.3 Multilevel Indirect Matrix converters 

The multilevel indirect matrix converter (IMC) is a merit of power converter for feeding a 

three-phase load from three-phase power supply because it has several attractive features 

such as: Sinusoidal input/output currents, bidirectional power flow, and long lifetime due to 

the absence of bulky electrolytic capacitors. As compared to the conventional IMC, the 

multilevel IMC provides high output performance by increasing the level of output voltage. 

 Over the past few years, there has been a significant effort towards addressing the 

technical challenges associated with the development of topology and control of the 

multilevel IMC. The conventional multilevel IMC topology was firstly introduced in, which 

is based on the traditional IMC, but with a rear-ends six-switch inverter replaced by a three-

level neutral-point-clamped (NPC) inverter as shown in Fig, Then, the new multilevel IMC 

based on the combination of conventional NPC and cascaded-rectifier is presented in in order 

to improve the voltage transfer ratio [5]. 

 

 

Figure I- 9: Multi level IMC 
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I.2 State of the art of Model Predictive Control  

I.2.1 Introduction 

Predictive control has been considered as a part of optimal control theory since 1960s [6]. 

The model predictive control (MPC), a branch of predictive control, has found growing 

applications in motor drives and power electronics MPC implies the idea of employing a 

model of a plant under control to predict the future behavior of the model control system’s 

output. The prediction provides the capability to solve optimal control problems for 

minimizing the tracking error of the predicted output with respect to a desired reference [7]. 

During the last two decades, several reviews have been conducted of the MPC literature from 

various points of view. One of the earliest survey studies reviewed MPC theory and design 

techniques[8]. A part of that review deals with the robustness issues, indicating that this has 

been an important topic since the very beginning. Robust MPC theory and implementation 

methods are presented and surveyed in[8], [9], The theory allows for the systematic handling 

of system uncertainties. The early approach of robust MPC is based on min-max optimal 

control problem formulations in which the controller acts according to the worst-case 

evaluations of the cost function. 

The application of MPC method in its different forms is also addressed in the field of drives 

and power electronics, including active filters, distributed generation, and renewable energy, 

…etc. 

 

I.2.2 Development of MPC (History) 

According to authors research, the MPC was the first used in industry such as oil and 

petrochemical industries, which dates back to the 1950s as a computer based supervisory 

control. At that time, MPC was a promising control strategy yet it wasn’t widely 

embraced by other process industries due to the computational power needed for the 

MPC until the mid-1970s, when several other techniques were introduced like: Model 

Heuristic Predictive Control (MHPC) and Dynamic Matrix Control (DMC). These two 

control algorithms were developed into Generalized Predictive Control (GPC) which is 

more robust compared to the MHPC and DMC [10].  
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In the second decade of the MPC development, during the late 1980s, researchers 

founded a theoretical approach for the MPC: the discrete-time state-space representation 

model: 

&'() + 1, = -'(), + ./(),0() + 1, = 1'(), + 2/(), 
During this decade, researchers showed interest in studying the stability of the MPC for 

the first time. Which can be proved by considering the cost function of the MPC as a 

Lyapunov function. The cost function is introduced in the next paragraph 

I.2.3 Working Principal of MPC 

  Predictive control covers a very wide class of controllers that have found rather recent 

application in power converters. A classification for different predictive control methods is 

shown in the following Figure: 

 

 

Figure I- 10: Classification of predictive control methods used in power electronic 

variables are forced to follow a predefined trajectory. In deadbeat control, the optimal 

actuation is the one that makes the error equal to zero in the next samplingtime. A more 

flexible criterion is used in model predictive control (MPC), expressed as a cost function to 

be minimized. 

The difference between these groups of controllers is that deadbeat control and MPC with 

continuous control set need a modulator in order to generate the required voltage. This will 

result in having a fixed switching frequency. The other controllers directly generate the 
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switching signals for the converter, do not need a modulator, and present a variable switching 

frequency. 

Nonlinearities in the system can be included in the model, avoiding the need to linearize the 

model for a given operating point, and improving the operation of the system for all 

conditions. It is also possible to include restrictions on some variables when designing the 

controller. These advantages can be very easily implemented in some control schemes, such 

as MPC, but are very difficult to obtain in schemes like deadbeat control. [6] 

 

I.2.4 Principle of Model-Based Predictive control 

  The methodology of all the controllers belonging to the MPC family is characterized by the 

following strategy, represented in figure 

'345 + 16 = -'3456 + ./456 03456 = 1'3456 + 2/456 
Where	'456 and '345 + 16 are the system state vectors at the current and next instants, 

respectively. Also /456	and 0456 are input and output vectors, respectively, at the current 

instant. A, B, C, and D are the states matrix, control matrix, the output matrix and 

disturbance matrix, respectively. An objective function 7 which is a function of system states 

and inputs, is defined to formulate the system’s desired performance as: 

7 = 89'456, /456, ……… . . , /45 + =6> 
Where = is a postitive number known as the prediction horizon and is the number of future 

instances over which the control can predict the system’s performance. The vector /45 + =6 
is the system input at the instance 5 + = .The sequence of the inputs prior to /45 + =6 is 

also included in 7, as shown in figure below: 

 

 

Figure I- 11: Working principle of MPC 
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    MPC defines the control action by minimizing a cost function that describes the desired 

system behavior. This cost function compares the predicted system output with a reference. 

The predicted outputs are computed from the system model. In general, for each sampling 

time, the MPC controller calculates a control action sequence that minimizes the cost 

function, but only the first element of this sequence is applied to the system. Although MPC 

controllers solve an open-loop optimal control problem, the MPC algorithm is repeated in a 

forward horizon fashion at every sampling time, thus, providing a feedback loop and 

potential robustness with respect to system uncertainties [36].   

I.2.5 MPC’s Elements 

 

Figure I- 12: Basic structure of MPC 

All the MPC algorithms possess common elements and different options can be chosen for 

each one of these elements giving rise to different algorithms. These elements are: 

-  Prediction Model  

-  Objective Function  

- Obtaining the control law 
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I.2.6 Prediction Model  

   The model is the corner-stone of MPC [33]; a complete design should include the necessary 

mechanisms for obtaining the best possible model, which should be complete enough to fully 

capture the process dynamics and should also be capable of allowing the predictions to be 

calculated and at the same time, to be intuitive and to permit theoretic analysis. 

Practically every possible form of modeling a process appears in a given MPC formulation, 

the following being the most commonly used: 

• Transfer function.  

• State space.  

    Non-linear models can also be used to represent the process but the problem of their use 

springs from the fact that they cause the optimization problem to be more complicated. 

Neural nets [40]as well as fuzzy logic [41] are other forms of representation used in some 

applications. 

I.2.7 Objective Function  

The various MPC algorithms propose different cost functions for obtaining the control law. 

The cost function definition is one of the most important stages in the design of an MPC, 

since it allows not only to select the control objectives of the application, but also to include 

any required constraints that  represents the desired behavior of the system [42]. This 

function considers the references, future states (or predicted states), and future actuations. 

In case of a multivariable system, the cost function may be written as 

 

7 = ∑ (@45 + A6 − 03CDEFCG 45 + A6,² + I∑ (Δ/45 + A − 16,²CKEFG + 

With Δ/45 + A6=0 for j = Nu 

While: 

03:	is the predicted output. Δ/: Control increment, w: The order, =G, =D: Prediction horizons 

to the output, NP:Prediction horizon to the control, I: weighting factor 

 

      

   The weighting factor allows for adjusting the importance of each controlled variable 

according to its priority in the scope statement 
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   The selected actuation is the one that minimizes the cost function, it is stored so that it can 

be applied to the converter in the upcoming sampling period [43] 

 

I.2.8  Obtaining the control law 

    In order to obtain values u (t + k | t) it is necessary to minimize functional J. To do this 

the values of the predicted outputs y(t + k | t) are calculated in function of past values of 

inputs and outputs and of future control signals, making use of the model chosen and 

substituted in the cost function, obtaining an expression whose minimization leads. An 

analytical solution can be obtained for the quadratic criterion if the model is linear and there 

are not constraints, otherwise an iterative method of optimization should be used [44]. 

    If the system is not linear but nonlinear ,we can use linear MPC and still benefit from the 

proprieties of the convex optimization problem , the available method to use this case are 

the adaptive and gain scheduled MPC , the way these controllers deal with a nonlinear system 

is based on linearization. If the system is nonlinear and that cannot be approximated well 

then we have to use nonlinear MPC, this method is the most powerful on as, it uses the most 

powerful on as, it uses the most accurate representation of plant.   

I.2.9 The major problem of the MPC  

     The Model Predictive Control (MPC) is a well-established technique for process control 

that has been applied to electrical systems, so after the three decades of the gradual 

development, so what remains now?  [45] 

   At present, the MPC suffer from many problems, such as the lack of systematic handling 

of uncertainty. Therefore, it is necessary to improve the prediction accuracy for mismatched 

prediction models. The other problem is how to design the cost functions and the weight 

coefficients [46] [47] .One of the other drawback of MPC is that it requires the optimization 

problem to be solved online 

   All this makes the existing MPC algorithms suffer from a major challenge: relatively low 

computation efficiency [48] and huge amount of real-time calculations [13]. 
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I.2.10 MPC in power electronics 

Variants of MPC have thenceforth been developed and implemented in power converters 

and used in applications such as electrical drives, static synchronous compensators 

(STAT-COMs), high voltage dc (HVDC) systems, flexible ac transmission systems 

(FACTS), and uninterruptible power supplies (UPS), to name a few [10],[11] 

 

Figure I- 13: MPC of Power Electronic Systems. 

MPC schemes for power electronics can be classified into two main categories depending on 

whether they employ a separate modulator or not. In the former case, MPC is implemented 

as an indirect controller, i.e., the controller computes the modulating signal/duty ratio which 

is fed into a modulator for generation of the switching commands, see Figure-14 (a). Hence, 

the control action is a real-valued vector. On the other hand, when MPC is designed as a 

direct controller, the control and modulation problems are formulated and solved in one 

computational stage, thus, not requiring a dedicated modulator, See Figure I-14 (b). 

Consequently, the elements of the control input vector are the switching signals, implying 

that it is an integer vector 

 

(a) Indirect control scheme 

 



 
Chapter one: State of art 

 

17 

 

(a) Direct control scheme 
 

Figure I- 14: Main controller structures of MPC 

 

The aforementioned MPC algorithms can be further divided into smaller groups as shown in 

Figure I-13 Direct MPC-based schemes include controllers with reference tracking, hysteresis 

bounds and implicit modulator. Direct MPC with reference tracking, also known as finite 

control set MPC (FCS-MPC),is the most favored method in academia due to its well-reported 

advantages such as its intuitive design procedure and straightforward implementation [12], 

[13]-[14]. The aim is to achieve regulation of the output variables along their reference 

trajectories by manipulating the converter switches, and thus directly affecting their 

evolution. This variant of direct MPC, however, comes with pronounced computational 

complexity which can potentially lead to computationally intractable optimization 

problems. Moreover, researchers often-knowingly or not—resort to design simplifications 

that detract from its effectiveness and result in inferior performance compared with 

conventional control techniques, see the paper [15]. 

 
Direct MPC with hysteresis bounds was the first rudimentary version of this type of 

controllers developed for power electronic converters [16],[17]-[18]. This algorithm employs 

hysteresis bounds within the variables of interest, such as the stator currents, or the 

electromagnetic torque and stator flux magnitude of a machine, need to be constrained. 

Later, more sophisticated derivatives were devised which adopt a variety optimization 

criteria and/or nontrivial prediction horizons [19]-[20]. Moreover, the versatility of the 

method in discussion allowed for different types of hysteresis bounds that affect the system 

performance in terms of, e.g. harmonic distortions or switching losses [17],[21],[22]. 
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Finally, the third group of direct MPC strategies can be further divided into two subgroups. 

The first one includes methods that manipulate not only the switching signals, but also their 

application time in an attempt to emulate the behavior of pulse width modulation (PWM) 

techniques. More specifically, these methods—and in contrast to the aforementioned direct 

MPC strategies—introduce the concept of variable switching time instants by changing the 

state of the switches at any time instant within the sampling interval. This is done by 

computing both the optimal switch positions and the associated duty cycles [23]-[24]. In 

doing so, higher granularity of switching is introduced enabling the reduction of the 

harmonic distortion in the variables of concert. Moreover, some of these methods achieve 

operation of the power converter at a fixed switching frequency, thus resulting in 

deterministic switching losses.[25],[24],[26],[27]-[28]. 

The second group consists of direct MPC methods that are combined with programmed PWM 

[29], i.e., modulation methods that forgo a fixed modulation interval. The switching pattern 

and the switching instants are computed offline based on some optimization criteria, such as 

minimization of the current total harmonic distortion (THD) and/or the elimination of 

specific harmonic. Programmed PWM is implemented in the form of selective harmonic 

elimination (SHE) [30],[31] , or optimized pulse patterns (OPPs) [32],[33]. The idea of 

manipulation of the switching instants of OPPs in a predictive fashion was introduced in 

[34],[35] and [36],[36] for stator current and stator flux reference trajectory tracking, 

respectively. These methods, however, lack the recording horizon policy and do not 

distinguish between the fundamental and the ripple components thus complicating the 

observer design [37]. To address these issues, more sophisticated MPC algorithms for the 

control of OPPs deemed necessary, leading to the methods presented. Moreover, SHE with 

MPC is presented, e.g., in [38],[39]. Owing to the nature of the programmed modulation 

methods these MPC-based strategies achieve very low harmonic distortions, but they are 

fairly elaborate since fast closed-loop control is challenging. 

 
 

 

. 
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I.3 Artificial Intelligence in power electronics 

I.3.1 Introdution 

Today, artificial intelligence (AI) is spreading rapidly and is one of the most important 

areas of research in the past few decades[40], [41]. The goal of AI is to support 

intelligent systems with human-like learning and thinking abilities. It has enormous 

advantages and has been successfully used in numerous industrial fields, including 

image classification, speech recognition, autonomous vehicles, computer vision, and 

more. Power electronics benefit from the huge development potential of artificial 

intelligence. Wide range of applications, including power module heatsink[42] design 

optimization, multi-color light-emitting diode (LED) [43], maximum power point 

tracking (MPPT) control for wind energy conversion systems[44], [45], inverter 

anomaly detection[46], remaining useful life (RUL) prediction for supercapacitors[47], 

etc. . Through the implementation of artificial intelligence, the power electronic system 

has become self-aware and self-adaptive, and therefore, the system autonomy can be 

improved[48]. 

 
Meanwhile, the rapid development of data science, including sensor technology, 

Internet of Things (IoT), edge computing, digital twin[49] , and big data analytics[50] 

, [51], provides various data for power electronic systems. Different stages of their life 

cycle. The ever-increasing amount of data opens up enormous possibilities and lays a 

solid foundation for artificial intelligence in power electronics. AI can use data to 

improve product competitiveness through global design optimization, intelligent 

control, system state estimation, etc. As a result, power electronics research can be 

conducted from a data-driven perspective, which is especially beneficial for companies 

dealing with complex and challenging cases. 

The realization of artificial intelligence in the field of power electronics has its 

characteristics different from other technical field, such as image classification. 

Therefore, an overview of AI in power electronics is needed to advance collaborative 

research and interdisciplinary applications. 
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I.3.2 Application of AI for power electronic systems 

Figure bellow gives a summary of the methods, the functions, and the application of AI for 

power electronics. It can be seen that AI has been extensively applied to the three distinctive 

life-cycle phases of power electronic systems, including design, control, and maintenance. 

 

Figure I- 15: AI for Power Electronic Systems 

 

As a functional layer between AI and power electronic applications, the essential functions 

of AI are categorized as optimization, classification, regression, and data structure 

exploration[48]. 

• Optimization: It refers to find an optimal solution maximizing or minimizing 

objective functions from a set of available alternatives given constraints, equalities, 

or inequalities that the solutions have to satisfy. 

• Classification: It deals with assigning input information or data with a label 

indicating one of the k discrete classes. Specifically, anomaly detection and fault 

diagnosis in maintenance is a typical classification task to determine fault label with 

condition monitoring information. 

• Regression: By identifying the relationship between input variables and target 

variables, the goal of regression is to predict the value of one or more continuous 

target variables given input variables. 

• Data Structure Exploration: It consists of data clustering that discovers groups of 

similar data within a dataset, density estimation determines the distribution of data  
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I.3.3 AI Clasification 

The AI methods in power electronics can be generally categorized as expert system, fuzzy 

logic, metaheuristic methods and machine learning. 

• Expert System 

Expert system is the earliest method in AI that is effectively implemented in industrial 

applications[52]. The expert system [53]-[54] is essentially a database that integrates the 

expert knowledge in a Boolean logic catalog, based on which the IF-THEN rules in human 

brain reasoning are simulated. It is an intelligent system simulating the inference process 

that answers the why-and-how inquires based on the database. The database is from either 

field expert experience or simulation data, facts, and statements.. The technical details of 

expert system are given in, and several exemplary applications can be found in. 

 
• Fuzzy Logic 

Similar to expert system, fuzzy logic is also a rule-based method while it extends the 

Boolean logic into a multivalued case. Fuzzy logic is an ideal tool to tackle system 

uncertainties and noisy measurements [55],[56]. Instead of using the precise input crisp value 

directly, fuzzification is first performed with the fuzzy sets consisting of several membership 

functions to a range of 0-1. The fuzzy input signals are then aggregated with fuzzy rules in 

the inference step. subsequently performed on the inference step. Defuzzification is 

subsequently performed on the inference result by considering the degree of fulfillment and 

output a crisp value. As a result, the crisp value is manipulated in a fuzzy space that 

completes nonlinear mapping between the input and output with elaborately designed. 

In most applications, a fuzzy logic method mainly consists of four parts : fuzzification, rule 

inference, knowledge base and defuzzification [57]. 
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• Metaheuristic Methods 

The term metaheuristic was coined by Glover (1986) and combines the prefix meta- 

(meaning “after” or “beyond”, in an upper level) with heuristic (“to find” or “to discover”). 

In classical optimization methods, the exact optimal solution is found in a finite (although 

often prohibitively large) amount of time. In contrast, metaheuristic methods are aimed at 

finding a solution that is “good enough” in a computing time that is, “small enough”; 

therefore providing a better tradeoff between solution quality (i.e., accuracy) and computing 

time [58]. 

Many metaheuristic algorithms have been developed in the last decades. Genetic algorithms 

(GA) and particle swarm optimization (PSO) have been widely applied because they have 

demonstrated main advantages[59]. 

 

 

• Machine Learning 

Machine learning is designed to automatically discover principles and regularities with 

experience from either collected data or interactions by trial-and-error. For applications, in 

power electronics, it is categorized and supervised learning, unsupervised learning, and 

reinforcement learning (RL). 

1) Supervised Learning: 

With the trainig dataset consisting of input-and-output pairs, the supervised learning aims 

to establish the mapping and functional relationships between the inputs and outputs 

implicitly. This feature is especially useful for cases in power electronics where system models 

are challenging to formulate  

Generally, supervised learning methods can be categorized into connectionism-based 

methods (i.e., NN method), probabilistic graphical methods, and memory-based methods 

(i.e., kerlen method). 

2) Unsupervised Learning: 

Compared to the supervised learning where the dataset is input-and-output pairs, 

unsupervised learning has no output data for the learning target during the learning process. 

Generally, the tasks of unsupervised learning in applications of power electronics can be 

categorized as data clustering and data compression.[72] 
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I.4 Recurrent neural network (RNN) 

I.4.1 Introduction 

In recent years, the neural-network-based control technique has represented an 

alternative method to solve the problems in control engineering. The most useful 

property of neural networks in control is their ability to approximate arbitrary linear or 

nonlinear mapping through learning. It is because of the above property that many 

neural-network-based controllers have been developed for the compensation for the 

effects of nonlinearities and system uncertainties in control systems so that the system 

performance such as the stability, convergence, and robustness can be improved [60]. 

It can be seen from the recent development of the neural-network-based control systems 

that, by suitably choosing neural-network structures, training methods, and sufficient 

past input and output data, the neural networks can be well trained to learn the system 

forward dynamics to predict the future behavior of the system for the predictive control 

and model following control, or to learn the inverse dynamics for inverse control. 

However, the stability, error convergence, and robustness have not been fully proved for 

these off-line trained neural-network-based control systems because of the high 

nonlinearity of the neural networks and the lack of feedback[60]. 

I.4.2 Structure of a neuron 

I.4.2.1 Biological and Artificial Neurons 

ANN consists of a number of artificial neurons that are interconnected together. The 

structure or artificial neuron is inspired by the concept of biological neuron shown in Fig. 

8(a). Basically, it is the processing element in the nervous system of the brain that receives 

and combines signals from other similar neurons through thousands of input path called 

dendrites. Each input signal (electrical in nature), flowing through dendrite, passes through 

a synapse or synaptic junction as shown. 
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(a) 

 

(b) 

Figure I- 16: (a) Biological neuron, (b) Artificial neuron model. 

 
 The junction is an infinitesimal gap in the dendrite which is filled with neurotransmitter 

fluid that either accelerates or retards the flow of the signal. These signals are accumulated 

in the nucleus (or soma), nonlinearly modified at the output before flowing to other neurons 

through the branches of axon as shown. The adjustment of the impedance or conductance of 

the synaptic gap by the neurotransmitter fluid contributes to the “memory” or “intelligence” 

of the brain. According to the theory of the neuron, we are led to believe that our brain has 

distributed associative memory or intelligence characteristics which are contributed by the 

synaptic junctions of the cells. It may be interesting to note here that when a human baby 

is born, it has around 100 billion neurons in the brain. Typically, from the age 40, around one 

million neurons die every day. 
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The model of an artificial neuron that closely matches the biological neuron is shown in 

Figure-16(b). Basically, it has op-amp summer-like structure. The artificial neuron (or simply 

neuron) is also called processing element (PE), neurode, node, or cell. Each input signal 

(continuous variable or discrete pulses) flows through a gain or weight (called synaptic 

weight or connection strength) which can be positive (excitory) or negative (inhibitory), 

integer or noninteger. The summing node accumulates all the input-weighted signals, adds 

to the weighted bias signal b, and then passes to the output through the nonlinear (or linear) 

activation or transfer function (TF) as shown. 

I.4.3 The construction of ANN systems  

  In general, ANN systems are capable of “learning” trends in a given data set and 

establishing input–output relationships based strictly on a “test” set of data. 

 

   The basic element in neural network systems is called a neuron. The neuron accepts one 

input ' , and produces an output value 0, based on the (generally) nonlinear function. 

However, there is no way to determine beforehand which choice of this function will produce 

the best results for a particular problem. A complete multilayer neural network system is 

constructed by combining neurons in series (from left to right) and parallel (from top to 

bottom). [59] 

 

 

Figure I- 17: A three-layer neural network system 
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A layer is defined to be a set of parallel-connected neurons, or “nodes.” The hidden and 

output layers are identical in both form and functionality; they give the network its ability 

to “learn” complex nonlinear relationships between inputs and outputs. [59] 

I.4.3.1 The ANN’s working principle  

ANN’s perform their calculations using the nonlinear functions and simple multiplying 

factors, called weights that are associated with a pathway between any two neurons. In its 

basic form, this model can be expressed as an iterative composition of input-output functions 

of the form [60]         

84'U6 = ℎ W@X +Y@Z'Z[
ZFG

\ 

 

Where ℎ4'6 is an activation function ,  'U= {'G, 'D, · · · , '[ } is the input vector of the ANN 

with M elements, @Z are the weights for each input xi , and @X is a bias or correction factor. 

The objective of the ANN training phase is to optimize some cost function by finding optimal 

values for the @Z and  @X	(60,.  The weights are updated in a manner such that the complete 

network “learns” to produce a specific output for a specific input. The process of adjusting 

the weights to achieve a specified accuracy level is referred to as “training.” [61] 

I.4.3.2 Activation functions 

Several common type activation functions used in artificial neuron are shown in Fig 9. These 

are defined respectively, as linear (bipolar), threshold, signum, sigmoidal (or log-sigmoid), 

and hyperbolic tan (or tan-sigmoid). 

 

Figure I- 18: Several actiation functions of artificial neurons. 
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I.4.3.3 The training of ANN  

The major justification for the use of ANN’s is their ability to “see” and “learn” 

relationships in complex data sets that may not be easily perceived by human engineers. An 

ANN system performs this function as a result of “training” which, in words, is a process of 

repetitively presenting a set of training data (typically a representative subset of the 

complete set of data available) to the network and adjusting the weights so that each input 

data set produces the desired output [61]. 

I.4.3.4 Learning Algorithm Categorization 

Neural networks are trained by two main types of learning algorithms: supervised and 

unsupervised learning algorithms. 

Supervised Learning: a supervised learning algorithm adjusts the strengths or weights of 

the inter-neuron connections according to the difference between the desired and actual 

network outputs corresponding to a given input. Thus, supervised learning requires a 

"teacher" or "supervisor" to provide desired or target output signals. The network employs a 

special one-step procedure during "learning" and an iterative procedure during recall.[62] 

Unsupervised Learning: unsupervised learning algorithms do not require the desired 

outputs to be known. During training, only input patterns are presented to the neural 

network which automatically adapts the weights of its connections to cluster the input 

patterns into groups with similar features. [62] 

I.4.3.5 Classes of neural network   

a- The feed-forward neural net  

FNN tend to be straightforward networks that allow signals to travel one way only, from 

input to output. There are no feedback (loops); i.e. the output of any layer does not affect 

that same layer. Most of the works on nonlinear MPC (NMPC) use FNN, for example  In [63] 

, S.Tiwari, R. Naresh, and R. Jha  realize a neural network model predictive controller, by 

using the FNN, for predictive control of the power system to improve its transient stability. 

Yan and Wang in [64] introduce a robust MPC based on a FNN  The results show that this 
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robust MPC could improve computational efficiency and shed a light for real-time 

implementation. However, the main drawback of FNN that their capability for representing 

nonlinear systems is limited [58] 

 

 

Figure I- 19: The feed-forward neural network 

b- The recurrent neural net  

RNN can have signals traveling in both directions by introducing loops in the network. They 

are capable of providing long-range predictions even in the presence of measurements noise 

due to their structures. Therefore, RNN are better suited to model nonlinear systems for 

MPC. Pan and Wang in  [65]  use an echo state network to identify unknown nonlinear 

dynamical systems for NMPC. The results show that the echo state network-based NMPC 

can reach the global convergence. RNN improved performance in terms of global 

convergence and reduced model complexity [66]. Examples of recurrent networks 

include the Hopfield network [Hopfield, 1982], the Elman network [Elman, 1990] 

and the Jordan network [Jordan, 1986]. [62] 

 

Figure I- 20: Simple recurrent neural network 
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c- Self-organizing neural network  
 
The class of methods that have been often termed "self-organizing maps" (SOM) involve 

iterative procedures for associating a finite number of object vectors (inputs) with a finite 

number of representational points [67].  A self-organizing neural network consists of two 

parts: main part and control part. The main part, structurally, is the same as an ordinary 3-

layered feed-forward neural network, but each neuron in its hidden layer contains a signal 

from the control part, the main part is trained by a supervised learning and learns input-

output mapping. The control part consists of a self-organizing map (SOM) network  [68] 

whose outputs associate with the hidden neurons in the main part one by one and control the 

firing strength; the control part is trained by an unsupervised learning [69].  

 
 

 
 

Figure I- 21: Diagram of a Self-Organizing Map 

I.4.4 How ANN Systems are applied 

  ANN systems must be applied to problems for which a suitable amount of training data 

exists; it may come from historical records from measured data. The system will only perform 

as well as it has been trained [61].  In our case, the objective is to drive a three- phase’s 

inverter. Therefore, we use MPC as an expert or a teacher for generating the data required 

for training off-line the proposed neural network using standard supervised learning, under 

full state observation of the system, once the off-line training is performed, the trained ANN 
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can successfully control the output voltage of the inverter, without the need of using MPC 

at test time. 

 

 
 

Figure I- 22: An overview of the proposed control strategy 

I.5 Conclusion 

       In this chapter, we presented an overview of the state of the art of the major elements 

our work. 

      At the beginning, we talked about the AC-AC converters which are divided into direct 

and indirect converters, which have different structures where each one has its special 

requirements and issues. 

     Secondly, a section briefly describes the model predictive control, including a historical 

development, its working principle with some examples of its applications. Then we gave a 

global perspective about the use of artificial intelligence in power electronic field.  

The MPC suffers from the concern of the relatively low computation efficiency. Therefore, 

we highlight the methods of performance’s improvement of the MPC, the neural network is 

one of the most promoted solution. The last section was dedicate to present an overview of 

ANN and how it could improve the model predictive control. 
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CHAPITRE II:                CHAPTER TWO 

Introduction  

Current control of a three-phase inverter is one of the most important and classical subjects 

in power electronics. And with the technological advancement in microprocessors, interest 

has been shown to Model Predictive Current Control (MPCC). 

This chapter presents an MPC scheme for a three-phase, two (level, inverter-fed RL-load. 

The modeling of the two-level voltage source (2LVSI) and of the load will be presented, the 

working principle will be explained and both simulation and experimental results will be 

shown. 

II.1  Model Predictive Current Control 

In model Predictive Current Control (MPCC), the current is the variable that should be 

controlled. In order to control it, we use the model of the system (inverter+load) to predict 

at each sampling period all the possible output current values according to each possible 

switching state of the inverter and compare them to a reference. The predicted value that 

optimizes a predefined optimization criterion (the cost function) will be selected, and the 

corresponding switching states will be applied 

II.2  System modeling  

II.2.1 Inverter model  

The power circuit of the three-phase inverter converts electrical power from DC to AC from 

using the electrical scheme shown in Figure II.1. Considering that the two switches in each 

inverter phase operate in a complementary mode in order to avoid short-circuiting the DC 

source, the possible switching states are reduced to 8, they are shown in Table II.1. 
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Figure II- 1 : Voltage source inverter power circuit 

Where  

• V_`is the DC source voltage.  

• vb, vc and vd are the phase-to-neutral (M) voltages of the inverter 

• uG, uD and ue are the phase-to-neutral (N) voltages of the load 

• SG, …, Sg are the gate signals 

The power switches operate in a complementary mode; thus, the connection function can be 

expressed as follows:  

 

 hi = &1	if	hGon	and	hmoff0	if	hGoff	and	hmon  

   

 hn = &1	ifhDon	andhooff0	ifhDoff	andhoon (II.1) 

   

 hp = &1	ifheon	andhgoff0	ifheoff	andhgon  
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By applying Kirchhoff’s first law we get:  

 q/G = r[C + ri/D = r[C + rn/e = r[C + rp  (II.2) 

Adding the three equations we get: 

 r[C = − Ge 4ri + rn + rp6                            (II.3) 

 

Replacing r[C in (II.2) and considering that the load is balanced, we result in the following 

system that will be implemented in MATLAB: 

 W/G/D/e\ =
13tuv W

2−1−1
−12−1

−1−12 \W
hihnhp\ (II.4) 

 

Table II- 1: Feasible switching states of the two-level four-leg inverter 

hi hn hp /G /D /e 
0 0 0 0 0 0 

1 0 0 
23tuv 

−13 tuv 
−13 tuv 

1 1 0 
13tuv 

13tuv 
−23 tuv 

0 1 0 
−13 tuv 

23tuv 
−13 tuv 

0 1 1 
−23 tuv 

13tuv 
13tuv 

0 0 1 
−13 tuv 

−13 tuv 
23tuv 

1 0 1 
13tuv 

−23 tuv 
13tuv 

1 1 1 0 0 0 
 

 

 

 



 
A Model Predictive Current Control of a Three-Phase, Two Level, Inverter-Fed RL-Load  

34 
 

II.2.2 Load model  

The application of Kirchhoff’s first law to the RL-load in Figure II.1 gives: 

 

wx
y
xz/G = { |)i|} + ~)i
/D = { |)n|} + ~)n
/e = {|)p|} + ~)p

 (II.5) 

 

In order to obtain a model for this RL load for simulation in MATLAB/Simulink 

environment we need to transform (II.5) into Laplace domain as transfer functions: 

 

 

wxx
y
xxz
)i/G = 1�{ + ~)n/D = 1�{ + ~)p/e = 1�{ + ~

   (II.6) 

 

 For discretizing the system (II.5) the forward Euler method is used. Which is easy to 

implement and is accurate when sampling period Ts is small enough So 
�Z�� is replaced by 

Z4��G6�Z4�6��  and after some arrangements, (II.5) becomes: 

 

 

wx
y
xz)i(5 + 1, = �1 − ~��{ � )i(5, + /G��{
)n(5 + 1, = �1 − ~��{ � )n(5, + /D��{
)p(5 + 1, = �1 − ~��{ � )p(5, + /e��{

 (II.7) 

 

Where, in the control algorithm, ib(k, is evaluated as the measured current of phase a at the 

sample k and ib(k + 1, is evaluated as the predicted value of the current of phase a at the 

samplek + 1. 
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II.2.3 Model predictive control  

In this section the goal is to control the load current. MPC exploits the discrete-time model 

of the inverter to predict the future behavior of the current, for each switching state. 

Thereafter, the optimum switching state'��� is selected, based on the minimization of the 

cost function, and directly fed to the power switches of the converter in each sampling 

interval Ts. [71] 

We choose the cost function to be minimize so as to achieve the lowest error between the 

predicted current and the reference values; which is expressed as: 

7 = |)i(5 + 1, − )i∗ (5 + 1,| + |)n(5 + 1, − )n∗(5 + 1,| + |)p(5 + 1, − )p∗(5 + 1,| (II.8) 

 

Where )i∗ (5 + 1,, )n∗(5 + 1, and )p∗(5 + 1, are the reference values of the phase currents at the 

sample	5 + 1. 

The MPC steps can be described in the algorithm shown in Figure II.2. The algorithm starts 

with the measurement current at the beginning of the sampling time.  Once the variables are 

available, the model is evaluated for the first switching state obtaining the predicted 

variables, which are used in the cost function. Depending on the result, the switching state 

is selected or discarded and the loop is repeated. Once the switching states were evaluated, 

the selected   switching   state   is   applied   to the converter.   

 

  The MPCC scheme uses finite number of valid switching states of the inverter in order to 

find the '_��} by using the following steps: 

 

• Step 1: Measure load current )(5,and read input reference )∗(5 + 1, 
• Step 2: For each switching state, calculate the output voltage of the inverter r(5, 

using the inverter model 

• Step 3 : Predict the current of the next sampling period )(5 + 1, using the load model. 

• Step 4: Evaluate the cost function, or error, for each prediction as, for instance:  

7 = |)(5 + 1, − )∗(5 + 1,| 
• Step 5: Select the switching state that minimizes the cost function, h���, and store it 

so that it can be applied to the converter in the next sampling period. 
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Figure II- 2 : Flow diagram of MPCC 

Then in implementation, we should express, the currents and the output voltage of the 

inverter in �� coordinate system, to simplify and minimize the computation time as follow  

r = 23 4ri + �rn + �Drp6 (II.9) 

Startup 

Measure )(5, 
A = 1= 0 

A = A + 1 

)(5 + 1, = �1 − ~��{ � )(5, + r(5,��{  

7 = |)(5 + 1, − )∗(5+ 1,| 
Store optimal value 

A = 8?	 no 

yes 

Apply optimal 
vector r(5, 
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) = 23 4)i + �)n + �D)p6 (II.10) 

 

Where: 

� = ����� = −12 + A √32  

)� = ~�4)6 
)� = ��4)6 
 

Instead of calculating the output voltage of the inverter for each possible switching state at 

every iteration, we can calculate them in advance and apply them to the load model. 

 

 

Table II- 2: Possible switching states and output vector voltage 

hi hn hp r 
0 0 0 rX = 0 

1 0 0 rG = 23tuv 

1 1 0 rD = 13tuv + A √32 tuv 

0 1 0 re = −13 tuv + A√32 tuv 

0 1 1 rm = −23 tuv 

0 0 1 ro = −13 tuv − A√32 tuv 

1 0 1 rg = 13tuv − A √32 tuv 

1 1 1 r  = 0 
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Figure II- 3 : Voltage vectors in the complex plane 

In order to reduce the number of calculations for the output current, we can transform the 

three equations in (II.7) into one equation using (II.10). We obtain: 

 )(5 + 1, = �1 − ~��{ � )(5, + r��{  (II.11) 

 Thus, the cost function (II.8) becomes: 

 

 7 = |)(5 + 1, − )∗(5 + 1,| (II.12) 

 

The output voltage vectors of the inverter are stored and selected rather than calculated each 

sampling period of the algorithm. The calculation of the cost function is a subtraction of two 

one-dimensional complex variables rather than three-dimensional variables. So, the number 

of calculations is considerably reduced. 

 

II.3  Simulation Results analysis 

In this section we will provide a comprehensive study and evaluation of the proposed control 

strategy, taking into account different loads under various operating conditions. 

To verify the proposed MPCC (Model predictive current control), we used MATLAB 

(2019b)/SIMULINK software components to implement the SIMULINK model and the 

simulations results of the system are shown in the figures bellow 
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(a) 

 

(b) 

Figure II- 4 : Simulation results of current control of a two-level inverter-fed RL load: 

Reference and output current of phase A and their zoom with MPCC strategy. 
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Figure II- 5 : Simulation results of current control of a two-level inverter-fed RL load: 

Output voltage of the inverter and 10 x the load current of phase A and their zoom with 

MPCC strategy. 
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Figure II- 6 : Simulation results of current control of a two-level inverter-fed RL load: 

Output current and output voltage spectra expressed as percentages of fundamental 

|I*|=2A and f*=50 Hz with MPCC strategy. 
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Figure II-4, Figure II-5 and Figure II-6 preent the simulation results of the MPCC of a 

two-level inverter-fed RL-load 

 

Figure II-4 represents the reference current and the output current with MPCC strategy 

with zoom, and it shows that for the choisen current reference (magnitude and frequencie), 

the output current track the reference (magnitude, frequency and phase) in a short response 

time. The output current oscillate around its reference forming a ripple, or a band, around 

the reference. The magnitude of these oscillations can be reduced by increasing the sampling 

frequency, which is not ideal for the power switches and the controller circuit. 

 

Figure II-5 represents the output voltage of the inverter and 10 x the load current of 

phase A with MPCC strategy. This figure clearly shows that the form of output voltage 

obtained with MPCC follows the output current form at all the instances. 

 

Figure II-6 represents the output current and output voltage harmonic spectrum of the 

MPCC expressed as percentages of fundamental magnitude with a fixed reference frequency. 

This figure shows that the strategy can achieve good THD results.  

II.4  Conclusion  

In this  chapter, the predictive current control strategy was introduced, both the 

converter and the load have been  modelled and a  cost function has been expressed. The 

MPCC working principle was explained in detail. 

The control scheme was simulated in MATLAB/Simulink environment for different sampling 

frequencies and different references but we decided to keep the most relevant result. The load 

current manages to track its reference and its quality gets better with high sampling 

frequencies. 

The higher sampling frequencies help reduce the ripple of the output current, the error 

between the reference value and the output value of the load current. 

Even though the MPC can work with non-linear loads, it requires at least one derivative or 

integral in the load model in order to predict the value of the controlled variable. 

MPCC of an RL-Load is one of the simplest predictive control schemes, it allows researchers 

to apply this control to other loads like an induction machine for example.
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CHAPITRE III: CHAPTER THREE 

 

Introduction 

     In recent years, model predictive current control (MPC) has been proposed as an 

interesting alternative for the control of power converters and drives. This control technique 

uses a model of the system to calculate predictions of the future behavior of the system for a 

given set of possible actuations for a predefined time horizon[70]. On the other hand, a major 

drawback of MPC is that it requires the optimization problem to be solved online, which 

involves a huge amount of real-time calculations. However, different solutions have been 

introduced in order to address this problem [13].In particular, ANN-based controllers and 

estimators which have been widely used in identification and control of power converters and 

motor drives.  

This chapter presents a neural network based on MPC scheme for a three-phase, two-level, 

inverter-fed RL-load. The modeling of the two-level voltage source inverter (2LVSI) and of 

the load will be presented, the working principle, procedure training will be explained and 

simulation results will be shown. 

 

In this chapter we present a new control scheme for a two-level converter based on 

combining MPC and feed-forward ANN, with the aim of getting lower THD and improving 

the steady and dynamic performance of the system. First, MPCC is used, as an expert in the 

training phase to generate data required to train the proposed neural network.  

Then, once the neural network is fine-tuned, it can be successfully used online for 

controlling, without the need of using MPCC. The proposed ANN-based control strategy is 

validated through simulation, using MATLAB/Simulink tools, taking into account different 

conditions. 
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III.1 The artificial Neural Networks architectures  

   The ANN based on MPCC is absorbed in advantages both neural network and model 

predictive control, for current control and it undergoes two main steps: (i) we use MPC as an 

expert or a teacher for generating the data required for training off-line the proposed neural 

network using standard supervised learning, under full-state observation of the system; (ii) 

once the off-line training is performed, the trained ANN can successfully control the 

switching, without the need of using MPC at test time 

In this chapter, we focus on two different types, perceptron neural network using the hard-

limit as active function and feed forward back-propagation which use as activation function 

Levenberg-Marquardt (trainLm). Though the training data collected from MPC algorithm 

are the same for both networks, their data processing varies due to the different requires of 

NN outputs. [13] 

III.1.1 Perceptron neural network 

The perceptron is a linear combiner that quantizes its output to one of two discrete values. 

In single-layer perceptron, the input signals �� are scaled by a set of adjustable 

weights@�to generate an intermediate output signal0	, which is then processed by a hard 

limiter, resulting in the quantized binary output	�. This binary output is then compared to 

the desired response (target), which is also a binary signal, generating an error that is used 

in a feedback strategy to adapt the weights. The input signals can be binary-valued or they 

can be drawn according to a continuous distribution. [72] 

 

(a) 

 

(b) 

 

Figure III- 1 : (a) perceptron neural network scheme, (b) the activation function hard-lim 
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The output unit uses the Hard-limit (threshold) function as an activation function, thus 

implementing a two-class classification task onto the space {0, 1} 

� = ℎ�¡|¢)�4£6	&1								)8	0 > 00								)8	0 < 0 

Where: 	0 is the output of the trained ANN.  

III.1.2 Artificial Neural Network Fitting (fitnet)  

MATLAB R2015a [nnstart] wizard has been used to create and train a network and 

afterward test the network. Neural network is trained by using Levenberg-Marquardt 

(trainlm), unless there is not enough memory, in which case scaled conjugate gradient back-

propagation (trainscg) will be used. These algorithms display competitive advantages over 

one another. 

    Artificial Neural Network Fitting (fitnet) is used for static fitting problems with standard 

two layer feed forward neural network trained with Levenberg- Marquardt (LM) algorithm, 

denoted by ‘trainlm’, works faster when it trains a moderate-sized feed forward neural 

network that can hold up to several hundred weights [23] and supports the training with 

validation and test vectors, The data are randomly divided into 70% training, 15%   testing 

and 15 % validation. The training data are used to adjust network weight as per error. The 

validation data are used for network generalization and to halt training when generalization 

stops improving. The testing data have no effect on training and it provides an independent 

measure   of network performance during and after training. The hidden layer neurons are 

increased when network is not performing well after training. The training stops 

automatically when generalization stops improving as indicated by an increase in the mean 

square error (MSE) of the validation data samples. [72] 

III.2 ANN training procedure  

    The ANN takes as inputs the measured current)	, the reference current )∗ , all expressed in 

��	coordinates. The real and imaginary parts of these variables are separately fed to the 

neural network, bringing the total number of input features to four i.e., inputs =4. The 

outputs of the ANN are the three control signals Sa, Sb, Sc. 
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The training data, which have been collected by MPC, comprises10 experimental conditions; 

in each experience we choose a specific value of resistance (R= 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50 Ω) with different values of current of reference )∗,  
 

 

Figure III- 2 : General topology of the 15-neuron hidden layer feed-forward ANN 

 

 

Figure III- 3 : General topology of single layer perceptron neural network 

 

The following table presents the NN training parameters 

Table II- 3 : the training parameters 

 Perceptron Feed forward back-propagation 

Epochs  1 1000 

iterations 1 278 

Training time  48 mn 27mn 

MSE 0.78262 0.058118 

regression - 0.81175 

Hidden layers Single layer One hidden layer (15 nodes) 
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III.3 Simulation Results and analysis 

  This section provides a comprehensive study and evaluation of the two proposed control 

strategies, taking into account different loads under various operating conditions. 

    To verify the proposed ANN-based control strategy (model predictive current control) and 

compare its performance with the conventional MPC, we used MATLAB 

(R2019b)/SIMULINK software components to implement the SIMULINK model and the 

simulations results of the system are shown in the figures bellow 

   (a) 

     

                (b) 

         

                (c) 

Figure III- 4 : Simulation results of current control of a two-level inverter-fed RL-load: 

Reference and output current of phase A and their zoom. (a):MPCC, (b):PNN, (c):fitnet 
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(a) 

  

(b) 

  

(c) 

Figure III- 5 : Simulation results of current control of a two level inverter-fed RL-Load: Output 

current and output voltage spectra expressed as percentages of fundamental           

magnitude,|¦∗| = §	¨ and ©∗ = ª«	¬ with (a) MPC, (b) fitnet, (c) PNN 
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Figure III-4 shows the simulation steady performance of the MPC controller, PNN, and 

fitnet controller. For Fig III-4((a), (b), (c)), the outputs currents are controlled to track their 

references (different magnitudes and frequencies), the output current of MPC oscillates 

around its reference forming a ripple, or a band, around the reference while in the ANN-

controllers almost are superimposed. The output current (2A, 50Hz) The ANN-controllers 

can track theirs references with fast dynamic response. In addition, both of the ANN-

controllers have good wave form current effect compared to the MPC. Also, it can be noticed 

that current of fitnet is smoother than PNN. 

 

Figure III-5 represents the output current and output voltage harmonic spectrum of the 

MPC, PNN, and fitnet controllers expressed as percentages of fundamental magnitude with 

a fixed reference frequency and magnitude. This figure clearly shows that ANN-controllers 

can achieve good THD results compared to MPC, it can be seen that the output current 

quality of ANN-based approach is improved significantly, with a current THD of 2.45% for 

PNN, 2.24% for fitnet compared to 2.34% for MPC. 

 

III.4 Comparison of the three methods   

  The advantages and disadvantages of the proposed methods are summarized as follow:  

regarding the computation burden, the ANN-controllers method have the lowest 

computation, this is the key advantage of the ANN compared to the MPC method. For the 

control performance, the THD of output current of the fitnet is the best. However, ANN-

controllers has a better ability to handle the input variables, which beyond the training data 

range. The THD of output voltages obtained using MPC are better than that obtained using 

the ANN-controller. 

 

 

 



Artificial neural network based on Model Predictive Current Control of a Three-Phase, Two 
Level, Inverter-Fed RL-Load 

50 
 

III.5 Conclusion  

In this chapter, a novel control strategy using an artificial neural network control using two 

methods, to generate a high-quality sinusoidal output current of a three-phase inverter with 

an RL load has been successfully developed and simulated, under various operating 

conditions and we tried to keep the most relevant result. 

 

The output current of the inverter is directly controlled, without the need for the 

mathematical model of the inverter, considering the whole system as a black box. In this 

work, MPC has been used for two main purposes: (i) generating the data required for the off-

line training of the proposed ANN, and (ii) comparing its performance with the proposed 

ANN-based controller for various conditions. Simulation results, based on a test with 

different references beyond the training data range, it shows that the proposed ANN-based 

controllers give better performances than MPC in terms of a lower THD. Fitnet provides a 

better control performance compared to PNN. 
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CHAPITRE IV:        CHAPTER FOUR 

Introduction  

In order to verify the theoretical developments, emphasize the appeal of the MPCC 

strategy and the ANN control based on MPC. An implementation test has been done in a 

CDER laboratory. 

In this chapter, we will describe our testbench for the implementation of the MPCC and 

the RNN controllers, and going to present the experimental results at the end.  

IV.1 Testbench Description 

The test bench is composed of a DC source that can be adjusted by an autotransformer 

that generates variables AC voltage, this later is then transformed to a DC current be means 

of diodes and capacitors, the three phases inverter are controlled by a STM32 NUCLEO-

F446RE electronic card, the generated PWM signals are amplified using a driver card, the 

used load is an association in series of a variable resistors and an inductance load, the output 

current and voltage are then measured using special sensor electronic cards. 

Figure IV.1 shows the entire testbench 

 

Figure IV- 1: MPC-RNN testbench 
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IV.2 Materials and Methods 

IV.2.1  Sensors cards  

The electrical signal provided from the current sensor is an alternative AC voltage which the 

peak can reach 15 volts, whereas inputs of the development board STM42F446RE are limited 

to a positive voltage with only 3.3 volts as a peak. In order to solve this problem, a signal 

adaption stage is involved, it contains the following elements: 

• Reducing the amplitude of measured signals. 

• Shifting the measured signals. 

• Filtering the measured signals. 

IV.2.1.1 Current cards 

current cards description is shown in the figure below: 

 

Figure IV- 2 : Current sensor card circuit. 
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Figure IV- 3 : Current sensor card. 

IV.2.1.2 Voltage cards 

voltage cards description is shown in the figures below: 

 

Figure IV- 4 : Voltage sensor card circuit. 
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         Figure IV- 5 : Voltage sensor card. 

IV.2.2 Driver card 

Galvanic isolation between the power circuit and the control circuit is ensured by the 

optocoupler TLP250 (Figure IV-6). An optocoupler is an electronic component used to 

transmit an electrical signal between circuits without any galvanic contact between them 

(Figure IV-7). 

 

         Figure IV- 6 : Circuit scheme of the optocoupler. 
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The operating principle of TLP 250 is summarized in the following truth table: 

 

Table II- 4: Optocoupler TLP250.6 truth table. 

 Tr1 Tr2 

LED input 
On On Off 

Off Off On 

 

 

Figure IV- 7 : Optocoupler TLP250. 

 

 

Figure IV- 8 : Symbol scheme of optocoupler TLP250. 
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Figure IV- 9 : Driver card. 

IV.2.3 Power circuit 

IV.2.3.1 The inverter 

The inverter used for the test bench is based on the MOSFET IRFP 460 which is capable of 

supporting a maximum voltage of 500V and a maximum current of 20A, its maximum 

switching frequency is 1MHz, a protection circuit is added to protect the switches from 

overheating. 

 

Figure IV- 10 : Inverter circuit. 

 

 

. 
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IV.2.4 The RL-load 

The load is an association in series of a variable resistors and a 3mH inductance load. 

 

Figure IV- 11 : The RL-load. 

IV.2.5 Power supply 

In order to supply all the circuits and cards used in our testbench we will use two main 

power supplies. For the sensors cards, we will use 15V DC 2A power supply, and for the driver 

card, we will use a 15V DC and for the TLP250 optocouplers and a 5V DC supply for the 

STM32F4 Card. 

 

Figure IV- 12 : 15V LF1502D supply. 
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 For the inverter, we generate a DC voltage source by means of an autotransformer 

that generates variable AC voltage (from 220V) with a range of 0 to 200%, the generated 

voltage is transformed to a DC current be means of diodes and capacitors. 

 

Figure IV- 13 : DC source. 

IV.2.6 Development card 

The development card used for the implementation is the Nucleo STM32F446RE. The 

STM32 Nucleo-64 board provides an affordable and flexible way for users to try out new 

concepts and build prototypes by choosing from the various combinations of performance 

and power consumption features. The STM32 Nucleo-64 board does not require any separate 

probe as it integrates the ST-LINK debugger/programmer. The STM32 Nucleo-64 board 

comes with the STM32 comprehensive free software libraries and examples available with 

the STM32Cube MCU Package. 

• Common features: 

– STM32 microcontroller in LQFP64 or LQFP48 package 

 – 1 user LED shared with ARDUINO® 

 – 1 user and 1 reset push-buttons 

 – Board connectors:  

◦ ARDUINO® Uno V3 expansion connector 

 ◦ ST morpho extension pin headers for full access to all STM32 I/Os 

 – Flexible power-supply options: ST-LINK USB VBUS or external sources. 
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Figure IV- 14 : Development card STM32F446RE 

IV.3 Implementation of the program 

Implementation test: 

 In order to test the card and the signals amplitude and frequency we will implement a 

simple program and observe the results: 

 

Figure IV- 15 : The model used for test implementation. 

 

Figure IV- 16 : Signals (sine wave, and sequence generator) test results. 
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For the implementation, we used Waijung associated with Simulink/Matlab, it is  a 

Simulink Blockset that can be used to easily and  automatically generate C code from 

Matlab/Simulink simulation models for many kinds of microcontrollers (Targets), Waijung 

has been designed specifically to support STM32F4 family of microcontrollers (STM32F4 

Target). 

For our application, low frequency was used 40 KHz. The gains in the implementation 

model are used to adapt the signals returning to the STM32 card. 

 

Figure IV- 17 : The model used for real implementation. 

  Implementation and results  

This section provides the obtained implementation results for the proposed control 

strategies : MPCC and ANN based MPCC. 

 

Figure IV- 18 : The cost function signal for MPC controller. 
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Figure IV- 19 : The output current of phase A and B signals  for MPCC strategy. 

 

 

Figure IV- 20 : The output current signals of phase A and B for ANN based MPCC 

strategy. 
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 Figures from Figure IV-12 to Figure IV-18 present the simulation results MPCC of inverter 

fed RL load. 

 

Figure IV-18 shows the signal of the cost function for the MPCC strategy on the oscilloscope. 

As we can see, the cost function is variable which means that the output states of the MPC 

controller varies too, this shows that the real implementation of MPCC has succeeded and 

the algorithm works perfectly in the closed loop. The result also shows that the feedback 

current has been well transmitted to the controller card (STM32). 

 

Figure IV-19 shows the output current signal with the MPCC control on the oscilloscope. We 

can see that the signal form approximates a sinusoid with measurement noise, it’s because of 

the card capacity in terms of switching frequencies. Also, it is due to the lack of signals 

filtering of the feedback current. 

 

Figure IV-19 shows the output current signal with the ANN-MPCC (Perceptron NN) control 

on the oscilloscope. compared to the previous signal, we can see that there is a measurement 

noise, but the results are better than the MPCC strategy, there are fewer computation, as a 

result, the card can support the feedback frequencies, and the form of output current signal 

with this strategy is even closer to a sine wave. 

IV.4 Conclusion  

The work and the study presented in this chapter have discussed the real implementation 

of two current control strategies: MPCC and RNN. A test bench was used to test practically 

the two controller performances. The obtained results show us that the MPCC performances 

are lower than those of RNN, this is due to the calculation needed for the MPCC, and 

however, the use of more sophisticated card or the association of the STM32 Nucleo with an 

FPGA can easily improve the results. 

 

  



  

 

 
 
 
 
General conclusion 
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GENERAL CONCLUSION 

The MPC suffers from the concern of the relatively low computation efficiency. Therefore, 

we highlight the methods of performance’s improvement of the MPC, the neural network is 

one of the most promoted solution. 

 

The higher sampling frequencies help reduce the ripple of the output current, the error 

between the reference value and the output value of the load current. 

Even though the MPC can work with non-linear loads, it requires at least one derivative or 

integral in the load model in order to predict the value of the controlled variable. 

MPCC of an RL-Load is one of the simplest predictive control schemes, it allows researchers 

to apply this control to other loads like an induction machine for example. 

 

When we used the ANN-Based MPCC strategy; the output current of the inverter is directly 

controlled, without the need for the mathematical model of the inverter, considering the 

whole system as a black box. In this work, MPC has been used for two main purposes: (i) 

generating the data required for the off-line training of the proposed ANN, and (ii) comparing 

its performance with the proposed ANN-based controller for various conditions. Simulation 

results, based on a test with different references beyond the training data range, it shows that 

the proposed ANN-based controllers give better performances than MPC in terms of a lower 

THD. Fitnet provides a better control performance compared to PNN. 

 

The last chapter presents the real implementation of the MPCC and RNN based MPCC 

strategies and all the different components used in a CDER laboratory for a RL-load fed by 

an inverter, this implementation took a lot of time and many tests in order to adapt the 

different cards with the program we want to reach.  Fortunately we got very good results 

despite the difficulty of the experience. 
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According to the studies conducted in this thesis, the neural network based on predictive 

control has a great capacity in predicting model, and can appeal attributes of nonlinear 

identification and control. Also this strategy is able to manage abundant number of data and 

input variables and get trustworthy predictions. 

 

Neural networks has also disadvantages like the need to be trained and this takes a lot of 

time mostly in power electronics control strategies because of the very high frequency of the 

variations. Also, the neural networks quality depends on the amount and the variations of 

the data with those it is trained. 

As a perspective to this work, we plan to: 

• Implement the control strategy on a more sophisticated card or the association of 

the STM32 Nucleo with an FPGA to improve the results. 

• Implement the control strategy to control an induction machine.
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APPENDIX A 

 
(a) 

 
(b) 

 
(c) 

 
Figure A- 1 : Simulink model of a 2 level inverter fed RL load of: (a) MPC, (b) PNN,                  

(c) Fitnet 

Parameter Value 

Fixed-step size 5 ®s 
Solver ode3 

Tasking mode SingleTasking 

Resistance 50	Ω 
Inductance 20 mH 
DC voltage 300 V 

 
Table A- 1 : Simulation parameters for the MPCC / PNN / Fitnet of an inverter fed RL load  
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APPENDIX B 

 

Parameter Value 

Resistance 15	Ω 
Inductance 3 mH 
DC voltage 70 V 

 
Table A- 2 : Real implementation parameters for the MPCC / PNN / Fitnet of an inverter 

fed RL load  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


