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Abstract. In this work, we study numerically a problem of mixed convection in lid driven square cavity, 
filled with air (Pr = 0.71), whose upper wall is movable and kept at constant cold temperature  TC.  The 
cavity contains a porous obstacle of height h and width b, placed on the bottom wall maintained at a 
constant hot temperature  TH.  The side walls are adiabatic. Darcy-Brinkmann-forchheimer model is used 
for modelling the momentum equations in porous medium. This numerical study is based on the multiple 
relaxation time lattice Boltzmann method (MRT -LBM). The  D2Q9  two-dimensional model is adopted to 
the dynamic part, while the  D2Q5  model is applied for the thermal part. The objective of the study is to 
analyze the effect of Darcy number (101 ≼ Da ≼ 105), Richardson number (0.01 ≼ Ri ≼ 100) and the 
aspect ratio  w = b/H  (0.2 ≼ w ≼ 1) on the hydrodynamic and thermal characteristics in the cavity through 
the velocity and temperature as well as the average Nusselt number. The results obtained show a 
considerable effect of these parameters on the structure of the flow and on the heat exchange in the cavity. 

1 Introduction  
Mixed convection involving porous media is a 
phenomenon of considerable importance encountered in 
several natural and industrial processes. These 
applications include the extraction of geothermal energy, 
convection inside the Earth's mantle, electronic chip 
cooling, storage of spent fuel from nuclear power plants, 
drying... Etc. Given the complexity of these 
configurations, the numerical approach is very often 
used to solve the general equations governing the 
transfer of flux and heat. 

In-depth studies have been carried out over the years, 
which characterize mixed convection involving porous 
media for different geometries. Chakravarty et al. [1] 
numerically studied mixed convection in an enclosure 
containing a heat-generating porous bed under the 
influence of background injection. Gibanov et al. [2] 
analyzed the effect of the inclined uniform magnetic 
field on mixed convection in a lid driven cavity having a 
saturated horizontal porous layer of a ferrofluid. 
Chattopadhyay et al. [3] studied mixed convection in a 
porous, double-walled movable cavity driven by 
sinusoidal heat. Astannina et al. [4] used a nanofluide to 
improve heat transfer in a movable-wall cavity with two 
porous layers in mixed convection. Liu and He [5] 
simulated double diffusion mixed convection in a fluid 
saturated porous medium by the multiple relaxation time 
lattice Boltzmann method. Taghizadeh and Asaditaheri 
[6] studied heat transfer and entropy generation on 
laminar mixed convection in a lid driven inclined cavity 
with a circular porous cylinder. 

This paper deals with the numerical simulation of a 
mixed convection in a lid driven cavity, with porous 
obstruction and filled by a Newtonian fluid using the 
multiple relaxation time lattice Boltzmann method 

(MRT-LBM). The D2Q9 two-dimensional discrete 9-
speed model was adopted to simulate the dynamic aspect 
of the problem, while the D2Q5 model is developed for 
the thermal field. 
 

2 Physical Problem 
 
Figure 1 provides a schematic overview of the two-
dimensional problem discussed in this study. A square 
cavity, containing air (Pr = 0.71), which the upper wall is 
movable and maintained at a constant cold temperature 
Tc. This cavity contains a porous obstacle of height h = 
0.5H, width b and porosity equal to  = 0.8, mounted on 
the lower wall maintained at a constant hot temperature 
Th. The side walls are adiabatic. The thermo-physical 
properties of the investigated fluid are assumed to be 
constant, except the density variation, in the buoyancy 
term, which follows the Boussinesq approximation [7]. 
We introduce the following dimensionless variables 
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Fig. 1. Physical problem and boundary conditions. 
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3 Lattice Boltzmann method (LBM-MRT) 
 
Lattice Boltzmann approach uses the particle distribution 
functions f(x, t), which signifies the probability of the 
presence of a large number of particles at site x and time 
t in the mesoscopic system. Consequently, the geometry 
is covered by lattices which include a system of particles 
with symmetrical properties to satisfy the macroscopic 
domain with the rotation invariance. Generally, LBM 
includes two phases; the first phase is streaming in that a 
group of particles transfer on the lattice link according to 
the directional velocities by which the velocity space is 
described. The other step is collision where particles on 
the same lattice redistribute and relax into their quasi-
equilibrium. The overall lattice Boltzmann equation is 
defined as follows. These two steps are described by the 
following equation: 

810 ,...,, i(x+ t),    fΩ(x+ t) fΔt, t+Δt) (x+vf jjjjj    (1) 

Where Ω j is the collision operator, representing the 
variation of the distribution function due to particle 
collisions. 

In order to model the two-dimensional velocity field 
in the considered domain, the D2Q9 model on a square 
grid, of step Δx = Δy = 1, was applied. The fluid 
particles move from one node of the gate to the 
neighboring node with discrete velocities, data ej, Peng 
[8]: 
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The thermal field, meanwhile, has been described 
according to the model D2Q5 (network of five discrete 
temperatures). 
 

 
Fig. 2. D2Q9 Model. 

 
Fig. 3. D2Q5 Model. 

The linearization of this operator around the local 
equilibrium distribution function brings a significant 
simplification of the LBM method. 

On each domain node, the nine moments associated 
with the nine distribution functions are linked by the 
following linear transformation Mezrhab [9]: 

                                   f.m=M   (3) 

Where the matrix M  is of order 9. 
During the colliding step which is local in space, 

three moments are preserved (the density and the 
momentum, in the longitudinal direction and the 
transversal direction), the six remaining moments, not 
conserved, are calculated from a simple equation of 
linear relaxation towards the equilibrium values which 
depend on the conserved quantities, Tekitek [10] : 
 

                     eq
k kkk

*
k m stx,ms-1=tx,m    (4) 

Where;  
sk is the relaxation rate,  sk = Δt/τ 
τk is the relaxation time,   

*
km is the moment after collision and eq

km  is the 

equilibrium moment value. 
For a reason of stability, relaxation rates verify 

double inequality 0 ≤ sk ≤ 2. 
The kinematic viscosity of the fluid can be defined 

later as: 
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The new distribution functions f* are calculated 
from the new moment’s m*: 

                               *1* mMf    (6) 

On the Macroscopic scale, the mass density and the 
speed vector are given as follows: 
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The thermal transfer between the hot wall of the 
cavity and the cold fluid is characterized by the local 
(Nu) and mean (Nuavg) Nusselt numbers: 
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3.1. Boundary Conditions  
For the model D2Q9 (velocity field), The 

condition « bounce back » is used to specify 
boundary conditions on solid walls: 

upper wall: f4 = f2, f7 = f5, f8 = f6 
lower wall: f2 = f4, f5 = f7, f6 = f8 
left wall: f1 = f3, f5 = f7, f8 = f6 
right wall: f3 = f1, f7 = f5, f6 = f8 

For model D2Q5 (thermal field): 
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The condition of “Bounce Back” is imposed on the 
isolated walls: 

left wall: g1 = g3 
right wall: g3 = g1 

and in the isothermal walls, we applied: 

upper wall: g4 = 2.delta.tc – g2 
lower wall: g2 = 2.delta.tc – g4 

where; delta = /[2(s1-0.5)] 
 

4 Code validation and grid 
independence 
The calculation code has been successfully validated 
with the numerical work of Liu et al. [11], for the case of 
a porous square cavity, differentially heated (cold right 
wall and hot left wall) with adiabatic vertical walls. This 
cavity of porosity equal to 0.4 is filled with a Newtonian 
fluid (Pr = 1). 

Table 1 show a good agreement between average 
Nusselt numbers obtained from this work and those of 
Liu et al. [11], for different numbers of Darcy and 
Rayleigh. 

Table 1. Comparison of Average Nusselt number for various 
Da and Ra with  = 0.4 and Pr = 1. 

Da Ra [12] [13] 
Liu et 
al [11] 

Present 
code 

Ecart 
% 

10-2 

103 1.010 1.008 1.007 1.008 0.20 

104 1.408 1.367 1.362 1.357 0.37 

105 2.983 2.998 3.009 3.057 2.42 

10-4 

105 1.067 1.066 1.067 1.066 0.10 

106 2.550 2.603 2.630 2.597 0.23 

107 7.810 7.788 7.808 7.792 0.57 

10-6 

 

107 1.079 1.077 1.085 1.077 0.74 

108 2.970 2.955 2.949 2.935 0.71 

109 11.46 11.395 11.610 12.15 4.44 

Prior to the simulations, the mesh sensitivity analysis 
was performed to ensure a grid-independent solution. 
Table 2 shows the effect of the mesh on the average 
Nusselt number of the hot horizontal wall, at Ri = 1 
(with Gr = 104), Da = 10-1, and w = 0.6. Based on the 
checks performed, the uniform mesh size of 121x121 
nodes was selected for the rest of the simulations. 

Table 2. Grid independence study at Ri = 1, Da = 10-1, w = 0.6. 

Grid 81 101 121 141 181 

Nuavg 5.7007 5.7047 5.7066 5.7067 7.7067 

(%) - 0.701 0.033 0.001 0 

 
 
 

5 Results and discussion 
5.1. Influence of Richardson number on 
streamlines and isotherms 
 
Figure 4 shows the streamlines and isotherms at Da = 10-

2 and W = 0.6, for different values of the Richardson 
number. 

The streamlines indicate the presence of a main cell 
occupying the center of the cavity. The circulation inside 
this cell is governed by the direction of the translational 
movement of the upper wall. In this case, we have a 
clockwise circulation with a nucleus on the porous 
obstacle. The circulation inside the porous obstacle is 
low due to additional resistance of the porous matrix. 

In the case of the dominant forced convection (Fig. 4 
(a) and fig. 4 (b)); Two small cells appear at the lower 
corners of the cavity. The streamlines are tightened near 
the mobile wall (the upper wall), denoting the thinness of 
the thickness of the hydrodynamic boundary layer and 
the great parietal gradients of velocity. 

In the mixed and dominant natural convection modes 
(Fig. 4 (c) and fig. 4 (d) respectively), the visualization 
of the streamlines reveals the dominance of natural 
convection effects and buoyancy forces within the 
enclosure. 

In addition, the nucleus of the convective cell is 
shifted to the right part of the cavity, in the case of the 
mixed and forced convection dominant due to the 
movement of the upper wall. 

In the case of a dominant forced convection (Fig. 4 
(e) and fig. 4 (f)), the isotherms illustrate the formation 
of a hot thermal plume near the left vertical wall due to 
the clockwise circulation inside the cavity. The central 
part of the cavity is at an almost uniform cold 
temperature, this is caused by the high velocity of the 
cold horizontal wall in the low Richardson numbers. 

For mixed convection (Fig. 4 (g)), isotherms begin to 
deform in the upper part of the cavity. Near the hot wall, 
the isothermal lines remain parallel to this wall and are 
confined in the form of a thin boundary layer, while in 
the upper left and central part of the cavity they are 
extended. This indicates the birth of convection near the 
isothermal walls and in the upper left and central part the 
conduction is dominant. 

However, the isotherms of the natural convection 
(Fig. 4 (h)) show a slight deformation with a tightening 
of the isotherms in the immediate vicinity of the 
horizontal walls, indicating the beginning of the pairing 
of a temperature gradient in these regions. 

It should be mentioned that the movement of the 
upper wall induces a shear flow of the adjacent fluid, 
while natural convection evolves from the thermal 
gradient. Therefore, it is possible to conclude that the 
shear stress and the vertical temperature gradient 
increase the flow of fluid and the heat transfer inside the 
cavity. 
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Ri = 0.01 Ri = 0.1 Ri = 1 Ri = 100 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 4. Streamlines; (a), (b), (c) and (d), Isotherms;(e)-(f)-(g)-
(h); for different Richardson numbers.  Da = 0.01 and w = 0.6. 

 

5.2. Influence of Darcy number on streamlines 
and isotherms 
 
The effect of Darcy number on the streamlines and 
isotherms is illustrated in Figure 5. This figure shows 
that Darcy has a significant effect on the flow and 
temperature characteristics in the cavity. For a high 
number of Darcy (Da = 10-1), where the porous medium 
is very permeable, the stream lines are characterized by a 
large central cell without disruption or significant 
braking. However, for lower Darcy numbers (Da = 10-3 
et Da = 10-4), the streamlines are distorted by passing 
through the porous obstacle which becomes less 
permeable. In a very low Darcy number (Da = 10-5), the 
porous obstacle acts as a solid and the main cell rotates 
over this obstacle causing the formation of two small 
cells adjacent to the lateral walls. A slight circulation of 
the fluid inside the porous medium is also remarkable at 
Da = 10-5 with more observable disturbances. 

Isotherms reflect the impact of Darcy's number on 
flux movement and show a lower heat transfer 
contribution by convention for lower Darcy values. We 
clearly note that for Da = 10-1, Convection is more 
intense and the flow rates are greater. By reducing Darcy 
number, the convection heat transfer becomes lower. 
 

Da = 10-1 Da = 10-3 Da = 10-4 Da = 10-6 

    
(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig. 5. Streamlines; (a), (b), (c) and (d) and Isotherms; (e)-(f)-
(g)-(h); for different values of Darcy number. Ri = 1, w = 0.6. 

5.3. Influence of the aspect ratio W, Darcy 
number and Richardson number on the heat 
transfer 
 
Figure 6 shows the evolution of heat transfer rate, 
calculated within the cavity at the hot horizontal wall, for 
different width of the porous obstacle, at different values 
of Darcy number, in mixed convection mode (Ri = 1). 
For the highest Darcy numbers (Da = 10-1 and Da = 10-

2), this rate, represented by the average Nusselt number, 
is optimal for a critical value of w = 0.4. For higher 
values of the (reduced) width of the porous obstacle, the 
transfer rate decreases as the hot wall is in contact with 
less fluid. For the lowest Darcy numbers, the transfer 
rate increases with the decrease in the width of the 
obstacle, since the hot wall is in contact with fluid 
advantage. 

Indeed, the best transfer is obtained with a number of 
Darcy equal to 10-1, since at this value the porous 
medium could be considered almost a fluid, thus 
promoting the thermal transfer between the cold fluid 
and the hot wall. This is not the case when Da = 10-4 and 
Da = 10-5, since in this case the obstacle behaves 
substantially as a non-permeable solid, inducing very 
low rates of heat transfer. 
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Fig. 6. Profiles of the mean Nusselt number at the heated wall 
for different values of W and Darcy number. Ri = 1. 

The effect of Darcy number, for different Richardson 
numbers, on the evolution heat transfer to the hot wall is 
shown in Figure 7. It is noted that for a given Darcy 
number, the average Nusselt number decreases with the 
increase in Richardson number. 

Indeed, simulations having been conducted for a 
fixed Grashof number (Gr = 104), the increase in the 
Richardson number implies the reduction of the intensity 
of inertial forces responsible for the parietal shear and 
consequently to the increase in the rate of heat transfer. 

The decrease in Darcy number and the increase in 
Richardson number lead to an increase in the thickness 
of the thermal boundary layer to the horizontal walls, 
resulting in the reduction of the average number of 
Nusselt. 

In addition, the increase in Darcy's number improves 
transfer rates, especially in forced convection, where the 
greatest changes in the average Nusselt number are 
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noted, compared with mixed and natural convection 
modes. 

In conclusion, it can be said that the parietal shear, 
appearing in forced convection mode, promotes heat 
exchange. 

1E-5 1E-4 1E-3 0.01 0.1

4

5

6

7

8

9

N
u  

av
g

Da

 Ri = 100
 Ri = 10
 Ri = 1
 Ri = 0.1
Ri = 0.01

 

 Fig. 7. Profiles of average Nusselt number at the heated wall 
for different Darcy and Richardson numbers. w = 0.6. 

 

6 Conclusions 
 
The study of mixed convection in a square, lid driven 
cavity with porous obstruction was performed by 
numerical simulation using a computational code based 
on the MRT-LBM. The effect of Darcy number, 
Richardson number, and the width of the porous obstacle 
on the flow of the fluid and the heat transfer was 
examined. 

This study shows that the cooling of the hot wall 
surmounted by a porous obstacle is better when Darcy 
number is important. 

Heat transfer is more important for the low 
Richardson numbers (in dominant forced convection 
mode). 

For the important Darcy numbers the transfer rate is 
more important for the critical value of w = 0.4. While 
for the lower Darcy numbers, the transfer rate decreases 
with the increase of w. 
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