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Abstract. The main objective of our work is to light out the three-dimensional flow of an Ag-water 
nanofluid within a lid-driven cubical space which equipped with a spherical heater into its center. Due to its 
crucial role in the characterization of the main transfer within such configurations, impact of some 
parameters is widely inspected. It consists the Richardson value  (0,05 to 50), the solid volume fraction  
(0%  to  10%),  as  well  as   the  heater  geometry  (10%  ≤  d  ≤  25%). To do so, a numerical code based on the 
Lattice-Boltzmann method, coupled with a finite difference one, is used. The latter has been validated after 
comparison between the present results and those of the literature. It is to note that the three dimensions 
D3Q19 model is adopted based on a cubic Lattice, where each pattern of the latter is characterized by 
nineteen discrete speeds. 

NOMENCLATURE 

a Coefficient in external forces (= g ) 
aij Coefficients in Equation (12) 
c Cold 
cs Sound velocity in the Lattice ( 3/1cs  ) 
Cp Specific heat at constant pressure, (J kg-1 K-1) 
f fluid 
feq Equilibrium distribution Function 
Fext External Force 
fi Distribution Function 
h Hot 
k Thermal conductivity, (W m-1 K-1) 
Hx,y,z Enclosure dimensions, (m) 
mj Moments 
nf Nanofluid 
Nu Mean Nusselt number 
Pr Prandtl number (Pr = ) 
s Solid particles 
Sj Relaxation rate 
t Time, (s). 
T Temperature, (K) 
Ri Richardson number, 
u Horizontal velocity component, (m) 
v Vertical velocity component, (m) 
w Depth velocity component, (m) 
x, y, z Dimensional Cartesian coordinates, (m) 
X, Y,Z Dimensionless coordinates,  
 (X = x/H, Y = y/H, Z = z/H) 

Greek letters 
 Thermal diffusivity, (m2 s-1) 
β Thermal expansion coefficient, (K-1) 
 Dimensionless temperature 
i Coefficients of the equilibrium function 
 Density, (kg m-3) 
φ Nanoparticles volume fraction 
ε Energy square  
ν Kinematic viscosity, m2 s-1 
 Collision Operator 

INTRODUCTION 

 Through the last years, mixed convection within 
enclosures was mainly investigated by numerous 
researchers [1-3]. Such problem in a laminar regime has 
found its multiple applications in many fields of thermal 
engineering, such as in electronic device cooling, high 
performance building insulation, multi shield structures 
into nuclear reactors, food processing, glass production, 
solar power collector, to name but a few. 
 Numerous investigations on lid-driven enclosures, at 
various   basic   fluids’   flow   and   temperature   gradient’  
conditions; have been continually published through the 
literature [4-8]. Recently, the most innovative (and most 
promising) technique is the injection of nanoscale 
particles into the base fluid such as the  Ag,  Al2O3,  Cu,  
CuO  and TiO2, nanoparticles, to enhance the heat 
transfer rate in engineering systems. 
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 In fact, such new concept has been proposed as a 
smart technique to improve the performance of the 
thermal transmission of conventional fluids. Thus, the 
interest presented by the nanofluids has given rise to 
numerous studies [9-11], which have focused on the 
determination of their thermophysical properties such as 
the thermal conductivity, specific heat and the dynamic 
viscosity and their impact on the flow and heat transfer. 
 As such our main purpose is to clear up such present 
technique in 3D visualization, using a spherical heater as 
a heat source within a lid-driven cube. The numerical 
study will be developed using the coupling between 
Lattice Boltzmann method and finite difference method 
[12, 15]. 

 Noted that the Brownian motion is not taken into 
consideration in our study since the nanoparticles size is 
assumed to be greater than  40 nm. 

PROBLEM STATEMENT 

 The considered model in this paper is shown through 
Fig.1. Its consists a Tri-dimensional lid-driven cubical 
enclosure of a height (H) and cold-side walls. The latter; 
filled with Ag-water nanofluid; contains an isothermal 
spherical source of diameter (d) which mounted at the 
middle of the cube. The rest walls of the enclosure are 
assumed to be insulated. 
 The thermo-physical properties of the base fluid and 
the spherical  Ag  nanoparticles are summarized through 
Table 1. Constant thermo-physical properties are 
considered for the nanofluid whilst the density variation, 
in the buoyancy term, was determined using the 
Boussinesq approximation, [16]. 
 

 
Fig 1 Simulation domain with its boundary conditions 

 

Table 1: Thermophysical properties of the base fluid and 
the Ag nanoparticles, Pr = 6.2. 

Thermophysical 
properties 

Base fluid  
(water) Ag 

Cp (J kg-1 K-1) 4179 230 

ρ  (kg  m-3) 997.1 10500 

k (W m-1 K-1) 0.613 418 

β (K) 105 21 1.65 

MATHEMATICAL FORMULATION 

 The nanofluid density, noted as  ρnf, heat capacity  (ρ  
Cp)nf, thermal expansion coefficient  (ρ  β)nf, and thermal 
diffusivity  αnf, may be defined respectively, as follows : 

ρnf = (1 - φ) ρf + φ ρs        (1) 

(ρCp)nf = (1 - φ) (ρ Cp)f + φ (ρ Cp)s    (2) 

(ρ β)nf = (1 - φ) (ρ β)f + φ (ρ β)s      (3) 

nfp
nf )C(

k
nf


         (4) 

 For the effective dynamic viscosity  μnf , and the 
effective thermal conductivity  knf , Brinkman [17] and 
Maxwell-Garnetts models [18] are employed, 
respectively, as: 
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 The dimensionless conservation equations, 
describing the transport phenomenon inside the cube, 
can be written as follows: 
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where  V'  is the velocity component  U  in  X  direction,  
V  in  Y  direction and  W  in the  Z  one.  Ri (= Gr/ Re2) 
is the Richardson number,   Pr   (=   νf/   αf)  is the Prandtl 
number.  

LATTICE BOLTZMANN APPROACH 

 Regarding the Lattice Boltzmann equation for 
nanofluids, a nineteen-velocity model on a three-
dimensional lattice, noted as  D3Q19, is utilized [19]. 
For the adopted dynamic model, two successive phases 
are taken into account; starting with the first one which 
expresses the propagation of particles from nodes to their 
neighbors, and continuous with the second one, so-called 
as the collision, where particles on the same lattice 
redistribute and relax into their quasi-equilibrium. The 
particles distribution equation can be expressed as 
follows: 
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where  f(x,c,t)  is the distribution function depending on 
the particle velocity  ( c ) at a location  (x)  and a time  
(t). According to Guo et al. [19], the right side term of 
particles distribution equation displays the diffusion 
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process when the new equilibrium distribution is rebuilt 
after the collision. 
 Function of the location  (x)  and the time  (t), the 
fluid shape can be defined as particles populations 
vector, noted as fi,   where   i   =   0,   1,   2,…,   18.   Thus,   the  
discrete distribution equation can be given as: 

 iiii f)t,x(f)tt,tcx(f     (11) 

where  (fi) is the space vector based on the discrete 
velocity set and    is the collision operator. Noted that a 
primary discrete velocity sets will be created then from 
the set of  18  vectors pointing from the origin to the 
above neighbors and the zero vector (0,0,0). 
 The space vector, fi, is constructed using the moment 
of the last. The relationship between two spaces is 
defined by means of the below equation, when the 
coefficient  aij  is calculated using the particle velocity  
ci. 


i

iijj fam        (12) 

where the corresponding  19  moments mj (0, 1, 2, ..,18) 
are: the mass density (m0 = ), the kinetic energy 
independent of the density (m1 = e), the kinetic energy 
square independent of the density and kinetic energy (m2 
=  = e2), the momentums (m3;5;7 = jx;y;z), the energy flux 
independent of the mass flux (m6;8;10 = qx;y;z), and the 
symmetric traceless viscous stress tensor     (m9= 3 pxx, 
m11 = pww = pyy - pzz, with pxx + pyy + pzz = 0, m13;4;15 = 
pxy;yz;zx). 
 The two vectors of quadratic order, m10 and m12, 
have the same symmetry as the diagonal part of the 
traceless tensor pij, while the other three vectors of cubic 
order are parts of a third rank m16;17;18 tensor, with the 
symmetry of jk pnm. The diagonal collision matrix Sij is 
given as: 











161616131313109

10944421
ij s,s,s,s,s,s,s,s

,s,s,s,0,s,0,s,0,s,s,0
S     (13) 

 Note that relaxations are related to the dynamic 
viscosity [20]. 
 About the energy equation, and because of the 
nonexistence of non-linearity,   the   finite-difference 
scheme is found more required than the LBE-scheme. 
The relation between the temperature and flow fields is 
found to be as far as the force in the   y-direction, which 
arises with the temperature gradient, is introduced. The 
later is thus, used in the y-velocity calculations, as 
shown in the advection term in the energy equation cited 
below: 
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 At the end, it is worth to denote that the mean 
Nusselt number computed along the side walls is 
obtained through the following expressions: 
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where   knf  and  kf   are the nanofluid and the base fluid 
thermal diffusivity, respectively. 

RESULTS & DISCUSSION 

 The presented results are generated for various 
dimensionless   groups;;   such  Richardson  number   (0.05  ≤  
Ri   ≤   50),   solid   volume   fraction   (0%   to   10%)   and   the 
middle-source diameter (0.10H   ≤   d   ≤   0.25H).   Though  
our investigation, the Prandtl number is fixed at 6.2. 
 The   predicted   hydrodynamic   and   thermal   fields’  
variables will be presented, next, using the Streamlines 
and temperature Iso-surfaces. The mean transfer rate will 
also represented in order to supply useful information 
about the influence of each parameter, quoted above, on 
heat transfer enhancement. 
 The performance of the using code via the 3D mixed 
convection problem is established by comparing 
predictions with other numerical results, namely those of 
Iwatsu and J.M. Hyun [21] and Ouertatani et al. [22]. By 
taking into account the same hypotheses, Table. 2 
demonstrate a comparison of the mean Nusselt number 
computed inside the Air cube. As we can see, the present 
results and those of Iwatsu and J.M. Hyun and 
Ouertatani et al. are found to be in excellent agreement 
with a maximum discrepancy of about  2%. 
 

Table 2: Average Nusselt number obtained with our computer 
code and those of references [21, 22], Pr = 0.71. 

Re Ri Iwatsu & 
Hyun [21] 

Ouertatani 
et al. [22] 

Present  
Work 

100 
10-3 1.820 1.836 1.838 

1 1.330 1.348 1.347 
10 1.080 1.092 1.094 

400 
10-3 3.990 3.964 3.966 

1 1.500 1.528 1.537 
10 1.170 1.130 1.162 

1000 
10-3 7.030 7.284 7.289 

1 1.800 1.856 1.858 
10 1.370 1.143 1.140 

 Convection-mode’  impact 

 As far as the Richardson number is concerned,  Fig. 2 
displays the temperature Iso-surfaces (a) side by side 
with the Streamlines and the Isotherm plots (b) for 
various flow regimes. Regarding the basic fluid case, 
(i.e.  = 0), the fluid flow is generated by the 
translational movement of the horizontal wall as long as 
the forced mode primes (as for Ri = 0.01). A cell rotating 
clockwise occupies the entire space; which come around 
the obstacle. Near the lower corners of the enclosure, 
two secondary cells raises reason to the stagnant flow 
into such spaces. 
 Besides, and for low values of Richardson, the 
convection mechanism light out within the cubical space. 
Such behavior tends to be pure-conduction as long as the 
Richardson value increases (see for instance Ri = 10). 
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 Going far with its impact; the increasing source 
diameter on the temperature distribution is plotted 
through the Iso-surfaces as displayed in Fig. 3. At this 
part, only the forced convection mode will be treated (Ri 
= 0.01). 
 

            
     (Ri = 0.05)     (Ri = 0.01) 

           
   (Ri = 1)         (Ri = 50) 

(a) 
 

            
     (Ri = 0.05)       (Ri = 0.01) 

  

             
   (Ri = 1)            (Ri = 50) 
      (b) 

Fig. 2  Temperature Iso-surfaces (a), Streamlines and Isotherm 
plots (b) of nanofluid for various values of the Richardson 

number,  d = 0.10 H and   = 0. 

           
    (d = 10%)    (d = 15%) 

           
   (d = 20%)   (d = 25%) 

(a) 

              
    (d = 10%)    (d = 15%) 

        
   (d = 20%)   (d = 25%) 

      (b) 

Fig. 3  Temperature Iso-surfaces (a), streamlines and Isotherm 
plots (b) of the nanofluid for various values of the diametr d, 

(Ri = 0.01). 

 Gradually, as the width of the heat source increases; 
the convective fluid flow becomes strong. Consequently, 
the thermal boundary layer near the active walls of the 
enclosure gets thin; making the transfer rate very 
significant. 
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 Nanoparticles’  impact 

 The variations of the average Nusselt number with 
nanoparticles volume fraction for different Richardson 
number are depicted in Fig. 4. The figure shows that the 
average Nusselt number increases with the solid volume 
fraction and decrease with Richardson number (which 
plotted using the mean Nusselt number). Yes of course, 
the increase in the source diameter, (i.e. the dimension of 
the middle sphere) amplifies such developed transfer 
within the cubical space (see for instance Fig .5). 
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Fig. 4  Mean transfer rate evolution with respect values of 
Richardson  and  Ag  nanoparticles’  volume  fractions. 
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Fig. 5  Mean transfer rate evolution with respect values of the 
source  dimension  and  the  Ag  nanoparticles’  volume  fractions. 

CONCLUSION 
 Mixed convection phenomenon within a cubical 
enclosure; including a heated spherical source which 
located at the center of the space; was investigated 
through our paper. Taking into account the impact of 
various pertinent parameters; such as Richardson; the 
nanoparticles volume fractions; side by side with source 
dimension; heat transfer is found very significant 
consequences to the dispersion of solid nanoparticles 
into the base fluid and increases by increasing the 

nanoparticles volume fraction. The latter is a decreasing 
function of the crease Richardson number as the 
conduction mode primes. Yes of course, the increase in 
the source dimension amplifies the transfer within such 
geometry as the surface exchange gets important. 
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