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Abstract. Through this paper, we investigate numerically a Three-dimensional laminar flow of an 
incompressible Newtonian fluid within a rectangular channel; including several adiabatic partitions of a 
cylindrical (and/or) elliptical shape. To do so, a numerical code based on the Lattice Boltzmann approach is 
used. In other words, three dimensions D3Q19 model is adopted all based on a cubic Lattice, where each 
pattern of the latter is characterized by nineteen discrete speeds. Our numerical code has been successfully 
validated after a wide comparison between the present results and those of the literature. By taking into 
account the Reynolds number, the partitions' shape impact on the flow fields within the channel is taking all 
attention and that throughout the time' Streamlines and the velocity profiles. The pressure drop within our 
channel is also investigated to come out with the best arrangement of these kinds of partitions within. 

NOMENCLATURE 

a Coefficient in external forces (= g ) 
aij Coefficients in Equation (3) 
cs Sound velocity in the Lattice ( 3/1cs  ) 
feq Equilibrium distribution Function 
Fext External Force 
fi Distribution Function 
Lx,y,z Enclosure dimensions, (m) 
mj Moments 
P Lattice Unit Pressure, lu 
ΔP Global drop pressure into the Channel 
Re Reynolds number 
Sj Relaxation rate 
t History time, (s). 
T Temperature, (K) 
u Horizontal velocity component, (m/s) 
v Vertical velocity component, (m/s) 
w Depth velocity component, (m/s) 
x, y, z Dimensional Cartesian coordinates, (m) 
X, Y,Z Dimensionless coordinates,  
 (X = x/H, Y = y/H, Z = z/H) 
Greek letters 
i Coefficients of the equilibrium function 
 Density, (kg m-3) 
ε Energy square  
ν Kinematic viscosity, m2 s-1 
 Collision Operator 
Subscripts 
f Fluid 
in Entry 

INTRODUCTION 

 Incompressible Newtonian flow around a 
cylindrical/elliptical confined in a channel is one of 
complex problems in computational fluid dynamics 
(CFD) [1-4]. The fluid motion within such 
configurations is an important phenomenon regarding 
the engineering systems. The grasp of such phenomenon 
in these systems still a critical topic, since the pressure 
drop remains one of the most technical challenges. 
 Into an infinite horizontal channel, the fluid flow has 
received a great attention in recent years [5-8]. To create 
a secondary movement, and an important mixing of the 
fluid medium, this configuration has been developed by 
using baffles and adiabatic partitions sticks to the 
horizontal walls [9-12]. 
 Even though there have been these numerous 
investigations, under many boundary conditions, 
relatively few studies were documented by taking into 
account the extension of a cylindrical blocks to an 
elliptic one. As such, this paper presents a 
comprehensive numerical study of a three-dimensional 
fluid flow within a rectangular channel containing 
cylindrical (and/or) elliptical blocks, up in series, to 
come out at the end with a perfect blocks' arrangement 
with less global drop pressure for the convenience of 
practical applications. Note that our numerical 
investigation is developed using the Lattice Boltzmann 
approach [13]. 
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PROBLEM STATEMENT 

 The investigated configuration, shown through Fig. 
1, consists of a three dimensional channel with several 
adiabatic cylinders (and/or elliptic). The working fluid 
(which is water), is assumed to be Newtonian, its 
thermophysical properties are presumed to be constant 
except the density variation, in the buoyancy term, which 
follows the Boussinesq approximation [14]. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig 1 Simulation domain in 3D (a) and 2D dimension (b). 

LATTICE BOLTZMANN APPROACH 

 Different from previous numerical investigations; 
which adopt the finite volume, finite difference or finite 
element method, the present study uses the Lattice 
Boltzmann method (LBM) as a solver. The latter has 
drawn considerable attention in all scientific domains 
and has matured as an efficient alternative for simulating 
and modeling complex physical systems[15-16], such as 
the work of Yang et al. [17] who used a large-eddy-
based lattice Boltzmann model to look for the cooling 
efficiency on the surface under constant-temperature or 
constant-heat-flux condition, and Yu et al. [18] who 
discussed the D3Q19 MRT-LBE model in conjunction 
with the Smagorinsky subgrid closure model tested in 
the turbulent square jet flow case, to name but a few. 
 Regarding the Lattice Boltzmann equation for the 
Newtonian fluid, we considered a nineteen-velocity 
model of a three-dimensional lattice so-called  D3Q19  
model [15] (see Appendix A). 
 For the adopted dynamic model, two successive 
phases are taken into account; starting with the first one 
which expresses the propagation of particles from nodes 
to their neighbors, and continuous with the second one, 
so-called as the collision, where particles on the same 
lattice redistribute and relax into their quasi-equilibrium. 
The particles distribution equation can be expressed as 
follows: 
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where  f(x,c,t)  is the distribution function depending on 
the particle velocity  (c)  at a location  (x)  and a  
time  (t). The right side term of particles distribution 
equation displays the diffusion process when the new 
equilibrium distribution is rebuilt after the  
collision [19-23]. 
 Function of the location  (x)  and the time  (t), the 
fluid shape can be defined as particles populations 
vector, noted as fi,   where   i   =   0,   1,   2,…,   18.   Thus,   the  
discrete distribution equation can be given as: 

 iiii f)t,x(f)tt,tcx(f    (2) 

 where  (fi) is the space vector based on the discrete 
velocity set and    is the collision operator. Noted that a 
primary discrete velocity sets will be created then from 
the set of  18  vectors pointing from the origin to the 
above neighbors and the zero vector (0,0,0). 
 The space vector, fi, is constructed using the moment 
of the last. The relationship between two spaces is 
defined by means of the below equation, when the 
coefficient  aij  is calculated using the particle  
velocity  ci. 
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where the corresponding  19  moments mj (0, 1, 2, ..,18) 
are: the mass density (m0 = ), the kinetic energy 
independent of the density (m1 = e), the kinetic energy 
square independent of the density and kinetic energy (m2 
=  = e2), the momentums (m3;5;7 = jx;y;z), the energy flux 
independent of the mass flux (m6;8;10 = qx;y;z), and the 
symmetric traceless viscous stress tensor     (m9= 3 pxx, 
m11 = pww = pyy - pzz, with pxx + pyy + pzz = 0, m13;4;15 = 
pxy;yz;zx). 

 The two vectors of quadratic order, m10 and m12, 
have the same symmetry as the diagonal part of the 
traceless tensor pij, while the other three vectors of cubic 
order are parts of a third rank m16;17;18 tensor, with the 
symmetry of jk pnm. The diagonal collision matrix Sij is 
given as: 
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Note that relaxations are related to the dynamic viscosity 
[19-22]. 

CODE VALIDATION 

 The performance of the using code via channel 
problem is established by comparing our predictions 
with the analytical solution [24] and other numerical 
results, namely those of Habchi and Acharya [5]. By 
taking into account the same hypotheses, the present 
results, displayed in Fig. 2, shows an excellent 
agreement with analytical solution and those of Habchi 
and Acharya as the maximum discrepancy is about  1%. 
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Fig. 2 Velocity profile, a comparison with analytic solution (a) 

and Habchi and Acharya [5] predictions (b). 

RESULTS & DISCUSSION 

 The presented results are generated for various 
dimensionless groups, such as the Reynolds number (10 
≤  Re  ≤  200)  and  the  blocks’  shape  (Cylindrical/  Elliptic).  
The Prandtl number is fixed at 7.The predicted 
hydrodynamic  fields’  variables  are  presented  through  the  
Streamlines and the velocity profiles. The drop pressure 
profile of the studied cases is also represented in order to 
supply useful information about the influence of each 
parameter, quoted above, on the stability system. 
 Start our investigation by putting two cylindrical 
partitions within the channel the one next to the other 
(case 01). The Streamlines illustrated in Fig. 3 are 
obtained for various values of Reynolds number (Re) 
such as  10,  50,  100  and 150. 
 As we can see, the fluid motion within the channel is 
developed horizontally and parallel to the longitudinal 
direction. The increase in the Reynolds number, for a 

fixed distance between the cylinders raises a secondary 
eddies; which become stronger as long as Reynolds 
number increases. This phenomenon can be related to the 
longitudinal velocity in between the blocks, as shown 
Fig. 4, which is an increasing function of the Reynolds 
number. The critical value of Rayleigh number for the 
appearance of these mixed zones (i.e. the secondary 
eddies) is found equals to  100. 
 

 
(Re = 10) 

 
(Re = 50) 

 
(Re = 100) 

 
(Re = 150) 

Fig. 3 Velocity contours of the Newtonian fluid for various 
values of Reynolds number (Case 01). 
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Fig. 4  Vint  profiles in the mid-section plan of the channel (y = 
0.5) for various values of Reynolds number (Case 1). 

 

 As long as the second case is concerned, Figs.4 and 5 
displays the Streamlines and the Vint  of the Newtonian 
fluid and that, using   an   elliptic   block’s   shape   which  
mounted horizontally. As before, the impact of Reynolds 
number still observed. In other words, the fluid velocity 
is an increasing function of the latter as the fluid motion 
becomes stronger. Unlike the case before (i.e. Case 01), 

(a) 

(b
) 
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the horizontal arrangement of the elliptical blocks die out 
the secondary eddies within the channel. As this 
arrangement   is   suitable   for   a   stable   fluid’   motion   next  
each partition. 

 
(Re = 10) 

 
(Re = 50) 

 
(Re = 100) 

 
(Re = 150) 

Fig. 5 Velocity contours of the Newtonian fluid for various 
values of Reynolds number (Case 02). 
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Fig. 6  Vint  profiles in the mid-section plan of the channel  
(y = 0.5) for various values of Reynolds number (Case 2). 

 Regarding the vertical emplacement of the elliptic 
blocks, (which presented as our 3rd case), Figs. 7 and 8 
summarized the impact of Reynolds number on the fluid 
motion and its velocity, respectively. Unlike the previous 
cases, the presence of a vertical elliptic blocks light out 
the secondary eddies at a low Reynolds value, as  Re = 
50.  These eddies becomes stronger as long as the 
Reynolds number increases. With  Re = 150,  the 
secondary eddies raised next the first blocks are found 
developed all along the distance in between the blocks. 

The fluid motion within the horizontal channel is then so 
important. 
 Referred to Fig. 9, which displays the global pressure 
drop evolution of the investigated cases with respect 
Reynolds   number   and   partitions’   shape,   respectively,  
using a cylindrical shape (case 01) promotes the global 
pressure drop into the rectangular channel, especially 
with a significant Reynolds value compared to the 
horizontal elliptic one; what makes the latter undesired 
for the convenience of practical applications. 
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(Re = 50) 

 
(Re = 100) 

 
(Re = 150) 

Fig. 7 Velocity contours of the Newtonian fluid for various 
values of Reynolds number (Case 3). 
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Fig. 8  Vint  profiles in the mid-section plan of the channel 
 (y = 0.5) for various values of Reynolds number (Case 3). 

 
 Yes of course, the vertical arrangement of the 
elliptic blocks makes the fluid mixture more 
important but unfortunately, the latter amplify the 
drop pressure to a dangerous level. 
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Fig. 9 Global pressure drop evolution with Reynolds numbers 

for  the  studied  partitions’  shapes.  Pr  =  7. 

CONCLUSION 

 A numerical investigation of a Newtonian fluid 
flow within a partitioned rectangular channel was 
realized in this paper using the lattice-Boltzmann 
approach. Three cases are widely inspected: in the 
first one, two cylindrical blocks are mounted in the 
rectangular channel, the one next to the other. In the 
second case, horizontal elliptical blocks are used, 
when in the third, vertical elliptical blocks are 
taking place within the channel. 
 Regarding these cases, the fluid velocity is 
found to be an increasing function of the Reynolds 
number and seems to be severely affected by the 
blocks’  shape. 
 Using a horizontal elliptic arrangement seems to 
be suitable for the global pressure drop diminution, 
when the vertical arrangement is desired to improve 
the mixing of the fluid medium, but still in 
dangerous manner. 
 Note   that   the   present   investigation   doesn’t  
present the mean heat and mass transfer, what 
provide guidance for future work. 
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