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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

The present work deals with a Tri-dimensional natural convection into a cubical enclosure, completely filled with a yield fluid 
which obeying the Bingham rheological model. A thermal gradient is governed by a uniform temperature imposed on the right 
and the left walls, when the other surfaces are kept insulated. To solve the governing equations, a numerical code based on the 
Lattice Boltzmann method is used. The latter has been validated after comparison between the present results and those of the 
literature. Regarding the Bingham number effect on heat transfer rate inside the enclosure, the convection phenomenon is 
analyzed through the isotherm plots and its temperature profiles with special attention to the local Nusselt number of the active 
walls. 
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where  f(x,c,t)  is the distribution function which depends on the particle velocity  “c”  at a location  “x”  and a time  
“t”. The right hand side term of  Eq. (1)  displays the diffusion process; when the new equilibrium distribution is 
rebuilt after the collision. According to Guo et al. [20], this term is proved to be non-linear and there are different 
methods to treat it. 

Fig. 1. (a) Geometrical configuration, (b) Velocity model  D3Q19. 

For the D3Q19 model, the fluid state can be defined as particles populations vector  fi, (i = 0, 1, 2,…, 18), 
depending on the location  x  and the time  t.  Then, the discrete distribution equation may resume as: 

( )iiii f)t,x(f)tt,tcx(f Ω+=∆+∆+ (2) 

where  fi  is the space vector based on the discrete velocity set and  Ω  is the collision operator. Elementary discrete 
velocity sets will be created then from the set of  18  vectors pointing from the origin to the above neighbors and the 
zero vector (0,0,0). 

Noted that the space vector  fi  is constructed using the moment of the latter. The relationship between two spaces 
is defined by means of the below equation, when the coefficient  aij  is calculated using the particle velocity  ci  [21].  

∑=
i

iijj fam (3) 

About the energy equation, and because of the non-existence of non-linearity, the finite difference scheme is 
found more required than the LBE-scheme. The relation between the temperature and flow fields is found to be as 
far as the force is in y-direction, which arises with the temperature gradient, is introduced. The latter is thus, used in 
the y-velocity calculations, as shown in the advection term of the energy equation cited below: 

TkTV
t
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(4) 

At the end, it is worth to denote that the mean Nusselt number computed along the active walls is obtained 
through the following expressions: 
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3. Numerical validation

The performance of the using computer code via a 3D  natural convection problem is established by comparing 
our predictions with other numerical results, namely those of Fusegi et al. [22] and Frederick et al. [23]. By taking 
into account the same hypotheses, Table 2 demonstrates a comparison of the mean Nusselt number computed inside 
the Air cubical enclosure. As we can see, the present results and those of references [22, 23] are in excellent 
agreement, with a maximum discrepancy of about 2%. 

To validate the code via a Non-Newtonian fluid, the 2D predictions of Turan et al. [13] are taken into account as 
shown in Fig. 2. Once again, a great similarity between the two results is verified, with a maximum discrepancy of 
about 1.8%. In the light of the above validation tests, the present numerical scheme can be expected to yield very 
accurate velocity, temperature and Nusselt number predictions for the considered problem.  

2 A. Boutra et al. / Energy Procedia 00 (2017) 000–000

1. Introduction 

Over the last four decades, natural convection of Non Newtonian fluids has received a considerable attention by 
many researchers [1-5]. This interest stems from its importance and its wide range of applications; such in crude oil 
tanks, channel heat sinks and compact heat exchangers, to name but a few [6,7]. 

As shown the literature, the two dimensional natural convection of such complex fluids into many configurations 
becomes the classical research problem extensively investigated, cited then; Syrjälä [8], Chen et al.[9], Frey et 
al.[10], and Capobianchi et al.[11] as well, in the main idea to describe the flow and heat transfer characteristics of 
such fluids into these geometries. Mitsuoulis and Zisis [12] performed a numerical investigation of a yield fluid 
obeying the rheological model of Bingham into a square enclosure. A Few years later, Turan et al. [13, 14] proved 
that heat transfer of this Viscoplastic fluid can be numerically predicted. In their papers, the mean Nusselt Number 
of a square enclosure, completely filled with a Bingham fluid, is found as a function of the governing parameters 
such the Rayleigh, the Prandtl, and the Bingham numbers. 

Even though there have been these numerous investigations in 2D, under many configurations and boundary 
conditions, relatively few studies were documented by taking into account the third dimension. As such, this paper 
presents a comprehensive numerical investigation of a Bingham’ natural convection into a cubical enclosure with an 
horizontal temperature gradient; generated by its left and right walls. The numerical work is developed using the 
Lattice Boltzmann method side by side with the finite difference one [15, 16]. 

Nomenclature 

Bn Bingham number, = τ0H ⁄ µV0   U, V, W Dimensionless velocity components 
Cp Specific heat transfer, J kg-1K-1   Greek symbols
Iγ Second invariant of strain rate tensor  β Thermal expansion coefficient (K-1) 
k Thermal conductivity, W m-1 K-1   γ Strain rate, s-1

m Exponential growth parameter   θ Dimensionless temperature 
M Reduced exponential growth parameter  µ Dynamic viscosity kg m-1 s-1

Nu Wall Nusselt number    η Effective viscosity, kg m-1 s-1

p Pressure, Pa     ρ Fluid density, kg m-3

P Dimensionless Pressure    τ Shear stress, Pa 
Pr Prandtl number, = Cp µ/k    τ0 Yield stress, Pa
Ra Rayleigh number, = g β ρ2 ∆T H3 Cp/µ k  Subscripts
T Temperature, K     c Cold 
u, v, w Velocity components, m s-1   h Hot 

2. Problem statement and Mathematical formulation

The studied configuration, shown in Fig. 1, consists of a cubical enclosure completely filled with a Viscoplastic 
Bingham fluid. The left and the right vertical walls are maintained at constant, but different, temperatures when the 
other walls are assumed to be insulated. The thermo-physical properties of the investigated fluid are assumed to be 
constant, except for the viscosity which depends on shear rate [17], and the density variation, in the buoyancy term, 
which follows the Boussinesq approximation [18]. 

Regarding the Lattice Boltzmann equation for the Bingham fluid, we considered a nineteen-velocity model of a 
three-dimensional lattice so-called  D3Q19  model [19] (see for instance Fig.1(b)).  

For the adopted dynamic model, two successive steps are taken into account, such the propagation of particles 
from nodes to their neighbors and the collision between the various velocities, noted as (ci), at each lattice node. The 
particles distribution equation is expressed as follows: 
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Fig. 4. Evolution of  V (0,y,1/2)  and  U (x,0,1/2) with Rayleigh number, Pr = 10. 
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Fig. 5. Evolution of  V (0,y,1/2)  and  U (x,0,1/2) with Bingham number, Pr = 10. 
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As the heat transfer is dominated by the conduction mode. The thickness of the thermal boundary layer is then, 
equal to the cavity length. With Bn < 10, a convective mode is dominated, the latter is very pronounced with  Bn = 0  
in particular, which corresponds to the Newtonian fluid case. As Bn = 5, Fig. 7 shows the evolution of temperature 
profiles measured in the mid-plane of the third direction (Z = 0.5), for different values of  Y.  For the horizontal 
planes corresponding to Y < 0.5, we denote that the lower half of the enclosure is mainly occupied by the cold fluid. 
Conversely, the hot fluid holds the majority of the upper part. 

4 A. Boutra et al. / Energy Procedia 00 (2017) 000–000

In order to determine a proper grid for the numerical simulations, a grid independence study is conducted for the 
natural convection into the cubical enclosure shown in Fig. 1. Several mesh distributions ranging from  413  to  1013

were tested. The mean Nusselt number of the cube for the above uniform grids is presented in Fig. 3. It is observed 
that a  713  uniform grid is adequate for a grid independent solution. However, a fine structured mesh of  813  was 
used to avoid round-off error for all other calculations in this investigation. 
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Table 1. Average Nusselt number obtained with the computer code and references [22-23], Pr = 0.71. 

Ra 
Mean Nusselt Number 

Fusegi et al. [22] Frederick et al. [23] Present Predictions 
103 1.085 1.071 1.071 
104 2.100 2.057 2.062 
105 4.361 4.353 4.367 
106 8.770 8.740 8.761 

4. Results and discussion 

The main parameter that may govern the convection phenomenon is the Rayleigh number, as its presents the ratio 
of buoyancy and viscous forces while maintaining proportionally to the applied temperature gradient. Thus, Fig. 4 
illustrates the evolution of both; the horizontal and vertical velocity’ components with Rayleigh number and that, for 
two different values of Bingham number such as 0 and 0.5, respectively. The Prandtl number is fixed at 10. 
According to this figure, the velocities’ amplitude near the vertical and horizontal walls is an increasing function of 
the increase Rayleigh. The existence of a stagnant fluid mass (predicted, but not presented) near the center of the 
enclosure may explain the velocity zero value. It should be noted that the velocity’ profiles in the Newtonian fluid 
case are more important than those of the Bingham one, which is due to the fact that Newtonian fluid is less viscous. 

According to Fig. 5, which displays the effect of the Bingham number on the velocity profiles (for two different 
values of Rayleigh number), the increase in the Bingham number increases the apparent viscosity of the fluid what 
affects the ability of the fluid to flow and then, decreases the velocities into the enclosure. 

As far as the thermal part is considered, Fig.6 illustrates the temperature profiles measured in the mid-plane  
(X, 0.5, 0.5) of the cube, for various values of the Bingham number. A thin boundary is observed nearer the active 
walls, which increases by increasing the Bingham number. For  Bn = 20, the temperature profile decreases linearly;  
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case are more important than those of the Bingham one, which is due to the fact that Newtonian fluid is less viscous. 
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affects the ability of the fluid to flow and then, decreases the velocities into the enclosure. 
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(X, 0.5, 0.5) of the cube, for various values of the Bingham number. A thin boundary is observed nearer the active 
walls, which increases by increasing the Bingham number. For  Bn = 20, the temperature profile decreases linearly;  
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 The evolution of the local Nusselt number along the left hot wall, for various values of the Bingham number, is 
presented in Fig. 8. The increase in Bingham number decreases the Nusselt values except for Bn = 10 and 20 for 
which, reversal phenomenon is observed when Y > 0.6.  In the case of Bn = 0  and  5,  the Nusselt value gets lower 
as a function of (Y) from a specific altitude (Y > 0.1 and Y > 0.15 respectively) until it reaches its minimum value in 
the upper portion the hot wall due to the low temperature gradients. This behavior is less pronounced for important 
values of Bingham number such Bn = 10  and  20. 

5. Conclusion 

Laminar natural convection of a Viscoplastic fluid was investigated through this paper. This flow was taking 
place inside a cubicle enclosure maintained at a horizontal temperature gradient. The results show that the third 
direction plays a crucial role on the heat transfer, besides the Bingham number which characterizing the fluid nature. 
As expected, the Nusselt number is found as a decreasing function of the Bingham number and that for all simulated 
cases, except for  Bn = 10  and  20  for which, a reversal phenomenon is observed with Y > 0.6. 
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