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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

The present work refers to the investigation of natural convection within a partitioned porous enclosure, driven by cooperating 
thermal and solutal buoyancy forces. The side walls are maintained at a uniform temperature and concentration, lower than that 
of a circular heat and solute source, which located at the center of the porous square, the rest of the horizontal walls are kept 
insulated. The physical model for the momentum conservation equation makes use of the Brinkman extension of the classical 
Darcy equation, the set of coupled equations is solved using the finite volume approach and the SIMPLER algorithm. To account 
for the impact of the main parameters such the buoyancy ratio; Lewis and porous thermal Rayleigh numbers; as well as the 
source dimension, heat and mass transfer characteristics are widely inspected and then new powerful correlations are proposed, 
which predict within ±1% the numerical results. Noted that the validity of the used code was ascertained by comparing our 
results with experimental data and numerical ones; already available in the literature. 
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1. Introduction 

Double-diffusive natural convection analysis within a porous medium has been the subject of a very intense 
research activity over the past forty decades reason to the importance of related industrial and technological 
applications; such as fibrous insulating materials, heat exchangers, catalytic reactor and some modes of assisted oil 
recuperation [1], to name but a few.
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 With both temperature and concentration gradients present to drive the fluid flow, an increased number of 
transport configurations was possible; with parallel or perpendicular gradients; and the body forces augmenting or 
opposing [2-8]. 
 In the main idea to predict heat and mass transfer into such configurations, powerful correlations were proposed. 
Back to 1987, Trevisan and Bejan [9] projected the thermal and solutal transfer, quantified by Sherwood and Nusselt 
numbers, as function of the thermal Rayleigh and the Lewis numbers as well as the aspect and the buoyancy ratios. 
In 1990 Lin et al. [10] proposed Nusselt and Sherwood correlations as function of the thermal Grashof number and 
that, for small values of the buoyancy ratio (|N| < 5). In 1993, Bennacer [11] suggested a general correlation for 
mass transfer inside square enclosures, which may used in a wide range of the porous thermal Rayleigh number, the 
buoyancy ratio and the Lewis number as well. In 2016, Ragui et al. [12] proposed general correlations for 
thermosolutale convection into square enclosures; which including a central bottom source. 

Motivated by these works and the practical applications of the double-diffusive convection, this paper will discuss 
the results of this phenomenon within a porous square; included a heat and solute circular source, mounted at the 
center, to bring up at the end some powerful correlations that may use in many industrial applications, especially in 
cooling cylindrical fuel assemblies and predicting pollutants spreading into heat exchangers. 

Nomenclature 
C Dimensional mass fraction 
d Circular source’ diameter, [m] 
D Mass diffusivity, [m2 s-1] 
Da Darcy number, K/H2

H Cavity height, [m] 
K Porous medium permeability, [m2] 
Nu Mean Nusselt number 
p Pressure, [Pa] 
P Dimensionless pressure, (p/ρ β ∆T H) 
Sh Mean Sherwood number 
T Dimensional Temperature, [K] 
u, v Velocity components, [m s-1] 

U, V Dimensionless velocity components, u (or v)/(ρ β ∆T H)1/2

x, y Cartesian coordinates, [m] 
X, Y Dimensionless Cartesian coordinates, x (or y)/H. 
Greek letters 
α Thermal diffusivity, [m2 s-1] 
βT Thermal expansion coefficient, [K-1] 
βC Solutal expansion coefficient 
ϕ Dimensionless concentration 
θ Dimensionless temperature 
Subscripts 
h Hot 
c Cold

2. Problem statement & Mathematical formulation

The studied configuration, shown in Fig. 1, consists of a cold (less concentric) side-walls of a porous enclosure, 
which containing a heat and solute circular source, mounted in its center. The fluid filled the porous medium is 
assumed to be Newtonian. Its thermophysical properties are presumed to be constant except the density variation, in 
the buoyancy term, which depends linearly on both the local temperature and concentration. 

ρ(T, C) = ρ0 [1 - βT (T - T0) – βC (C - C0)]      (1) 

where  βT  and  βC  are the thermal and solutal expansion coefficients: 
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 The solid matrix is supposed to be isotropic, homogeneous and in thermal equilibrium with the fluid. The 
permeability of the porous medium  K  is kept uniform, when the porosity  ε  is about  40%. 
 The dimensionless conservation equations describing the transport phenomenon inside the porous square can be 
written as: 
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Fig. 1. Simulation domain with its boundary conditions.

Table 1. Average Nusselt and Sherwood numbers obtained with our computer 
code and those of Hadidi et al. Ra = 106, Pr = 7, Da =10-4, Le = 10. 

 Hadidi et al. [13] Present Work 

N Nu Sh Nu Sh 
0 2.83 10.25 2.79 10.29 
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where  ε  is the porosity,  Da  is the Darcy number,  Le  is the Lewis number,  N  is the buoyancy ratio,  Pr  and  Ra  
are the Prandtl and the thermal Rayleigh numbers. 
 The average rate of heat and mass transfer across the side walls are expressed in dimensionless form by the 
Nusselt and Sherwood numbers such: 
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3. Numerical procedure and Validation

 The governing conservation equations are discretized in space using the finite volume approach, when the 
convection-diffusion terms were treated with a Power-Law scheme. The resulting algebraic equations, with the 
associated boundary conditions, are then solved using the line by line approach. As the momentum equation is 
formulated in terms of the primitive variables (U, V and P), the iterative procedure includes a pressure correction 
calculation method, namely SIMPLER [13], to solve the pressure-velocity coupling. Noted that the convergence 
criterion for temperature, concentration, pressure, and velocity is given as: 
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where  m  and  n  are the numbers of grid points in the  x- and  y-directions, respectively.  ξ  is any of the computed 
field variables, and  t  is the iteration number. 
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Fig. 1. Simulation domain with its boundary conditions.
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where  ε  is the porosity,  Da  is the Darcy number,  Le  is the Lewis number,  N  is the buoyancy ratio,  Pr  and  Ra  
are the Prandtl and the thermal Rayleigh numbers. 
 The average rate of heat and mass transfer across the side walls are expressed in dimensionless form by the 
Nusselt and Sherwood numbers such: 

dY
X
θuN

1

0 wall
 wallsVertical ∫ 








∂
∂=     ;    dY

X
Sh

1

0 wall
 wallsVertical ∫ 








∂
φ∂= (8) 

3. Numerical procedure and Validation

 The governing conservation equations are discretized in space using the finite volume approach, when the 
convection-diffusion terms were treated with a Power-Law scheme. The resulting algebraic equations, with the 
associated boundary conditions, are then solved using the line by line approach. As the momentum equation is 
formulated in terms of the primitive variables (U, V and P), the iterative procedure includes a pressure correction 
calculation method, namely SIMPLER [13], to solve the pressure-velocity coupling. Noted that the convergence 
criterion for temperature, concentration, pressure, and velocity is given as: 

5
m

1j

n

1i

1t
j,i

m

1j

n

1i

t
j,i

1t
j,i

10 −

= =

+

= =

+

≤

ξ

ξ−ξ

∑∑

∑∑         (9) 

where  m  and  n  are the numbers of grid points in the  x- and  y-directions, respectively.  ξ  is any of the computed 
field variables, and  t  is the iteration number. 
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 The performance of the using code via the double-diffusive natural convection problem in a confined porous 
medium is established by comparing predictions with other numerical results and experimental data, and by 
verifying the grid independence of the present results. First, the present results are consistent with previous 
computations, namely those of Hadidi et al. [14]. By taking into account the same hypotheses, Table 1 demonstrates 
a comparison of the mean Nusselt and Sherwood numbers computed with various values of the buoyancy ratio. As  

        
Kim et al. [15] 

        
Present prediction 

Fig. 2. Comparison between the present results and those reported by 
Kim et al. [15], Pr = 0.71. 

        

                         (a)       Weaver and Viskanta [17]    (b)

Present prediction 

Fig. 3. Ethanol/Nitrogen binary fluid in a square cavity, 
(a)- Gr = 1.157 106, N = -2.335, Pr = 0.802, Sc = 0.555. 
(b)- Gr = 1.121 106, N = -2.328, Pr = 0.802, Sc = 0.557. 

we can see, the present results and those of Hadidi et al. are in excellent agreement with a maximum discrepancy of 
about  2%. 
 To ascertain the numerical code validity with the inner circular results, those obtained by Kim et al. [15] for a 
cold enclosure containing a centered hot cylinder have been selected. Fig. 2 displays the comparison between the 
numerical Kim et al. predictions and the present ones in term of streamlines and Isotherm plots, Table 2 illustrates 
the obtained mean Nusselt number and both; Kim et al. and Sheikholeslami et al. [16], for various Rayleigh values. 
A great agreement between our results and both works is reported, what validates our code via the circular shape. 
 Then, to check the numerical code validity with experimental results, those obtained by Weaver and Viskanta 
[17] for an Ethanol/Nitrogen binary fluid have been selected. Fig. 3 displays the comparison between the 
experimental data and both, the numerical Weaver and Viskanta predictions and the present ones in term of velocity 
contours. Once again, the numerical results show a good qualitative concordance with the experimental data and a 
great agreement with the numerical Weaver and Viskanta predictions. 
 In order to determine a proper grid for the numerical simulations, a grid independence study is conducted for the 
convection phenomenon inside the porous squares previously shown in Fig. 1. Several mesh distributions ranging 
from  1612  to  4012  were tested and the mean Sherwood number of the squares, for the above uniform grids, is 
presented in Fig. 4. It is observed that a  2012  uniform grid is adequate for a grid independent solution. However, a 
fine structured mesh of  2412  is used to avoid round-off error for all other calculations in this investigation. 

4. Results & Discussion

 The range of parameters that has been examined in this study concerns the cooperating buoyancy forces domain. 
The value of the buoyancy ratio has been taken from  0  to  30  and that, for various values of the porous thermal 
Rayleigh number (RaT Da), which ranging from  100 to 2000.  The Lewis number has been taken between 10 and 
300. The source diameter has been taken between  10%  and  90%  the enclosure length, when both the Prandtl and 
the Darcy numbers are fixed at 10 and 10-3, respectively. 
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4.1. Impact of Lewis Number & buoyancy ratio 

 When the buoyancy ratio and the source diameter are fixed at 10 and 0.20, respectively, the results illustrated in 
Fig. 5 have been obtained for two different values of Lewis number such as 10 and 100, respectively. By presenting 
the profile of the vertical velocity ratio V/Vmax, in the mid-plane of the enclosure, side by side with the temperature   

Fig. 4. Mean Sherwood (a) and Nusselt numbers (b) of the porous 
enclosure for different uniform grids. Da = 10-3, Le = 10, N = 10, 
Ra* = 100, d = 0.40.

Table 2. Mean Nusselt number obtained by the present solution 
and previous works [15, 16], for various Rayleigh numbers,
Pr = 0.71. 

Ra Kim et 
al.[15] 

Sheikholeslami 
et al. [16] 

Present 
work ∆(%) 

103 4.95 4.97 4.97 0.42 
104 5.03 5.09 5.05 0.40 
105 7.71 7.67 7.72 0.13 

and the concentration profiles, it is found that the flow driven by buoyancy near the side-walls is due primarily to 
concentration gradient; as the temperature variation is insignificant, which is not the same near the circular source 
where; the buoyancy effect is caused by the combined effect of the temperature and the concentration variations. 
 The increase in Lewis number causes the diminution of the thickness of the mass boundary layer near the active 
walls unlike the temperature one, what enhances accordingly the computed local Sherwood value and decrease the 
Nusselt one. 
 When the Lewis number is fixed at 10, Fig.6 displays the impact of the buoyancy ratio on the flow field, side by 
side with the temperature and the concentration. As for the last one, (i.e. Fig.5), and near the side-walls, the flow 
driven by buoyancy is due primarily to concentration gradient; as the temperature variation still insignificant. Near 
the circular source, the buoyancy effect is caused by the combined effect of the temperature and the concentration 
variations. 
 The increase in the buoyancy ratio makes the thermal and the solutal boundary layers thinner near the active 
walls, what improves the local transfer characteristics (i.e. local Nu and Sh) into these regions and so the overall 
thermosolutal transfer within the porous enclosure.

4.2. Impact of the source’ diameter 

 As far as the source diameter effect is conducted, Fig.7 displays the thermal and solutal transfers as a function of 
the source geometry which reported by the aspect ratio (d/H) and that, for various values of the Lewis and buoyancy 
ratio, (Ra* = 100). 
 For a given value of  Le  (or  N  as well), a further increase in the aspect ratio to 0.80 causes a significant 
improvement in thermosolutal convection, as the latter controls this phenomenon within the porous square. Going 
far with its value, the use of an aspect ratio greater than  0.80  die out the impact of Lewis and buoyancy ratio on the 
mean heat transfer as the conductive regime will take control. 
 After this critical value, (i.e. d/H = 0.80), the Sherwood number decreases a little before starting another 
increase. This reduction may relate to the fluid mass which is very low and that, raison of the enhancement of the 
source diameter. The increase in the Sherwood number once again can be related to the pure diffusion regime, which 
can be reached by using an important aspect ratio such as  0.90.
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a comparison of the mean Nusselt and Sherwood numbers computed with various values of the buoyancy ratio. As  

        
Kim et al. [15] 

        
Present prediction 

Fig. 2. Comparison between the present results and those reported by 
Kim et al. [15], Pr = 0.71. 

        

                         (a)       Weaver and Viskanta [17]    (b)

Present prediction 

Fig. 3. Ethanol/Nitrogen binary fluid in a square cavity, 
(a)- Gr = 1.157 106, N = -2.335, Pr = 0.802, Sc = 0.555. 
(b)- Gr = 1.121 106, N = -2.328, Pr = 0.802, Sc = 0.557. 

we can see, the present results and those of Hadidi et al. are in excellent agreement with a maximum discrepancy of 
about  2%. 
 To ascertain the numerical code validity with the inner circular results, those obtained by Kim et al. [15] for a 
cold enclosure containing a centered hot cylinder have been selected. Fig. 2 displays the comparison between the 
numerical Kim et al. predictions and the present ones in term of streamlines and Isotherm plots, Table 2 illustrates 
the obtained mean Nusselt number and both; Kim et al. and Sheikholeslami et al. [16], for various Rayleigh values. 
A great agreement between our results and both works is reported, what validates our code via the circular shape. 
 Then, to check the numerical code validity with experimental results, those obtained by Weaver and Viskanta 
[17] for an Ethanol/Nitrogen binary fluid have been selected. Fig. 3 displays the comparison between the 
experimental data and both, the numerical Weaver and Viskanta predictions and the present ones in term of velocity 
contours. Once again, the numerical results show a good qualitative concordance with the experimental data and a 
great agreement with the numerical Weaver and Viskanta predictions. 
 In order to determine a proper grid for the numerical simulations, a grid independence study is conducted for the 
convection phenomenon inside the porous squares previously shown in Fig. 1. Several mesh distributions ranging 
from  1612  to  4012  were tested and the mean Sherwood number of the squares, for the above uniform grids, is 
presented in Fig. 4. It is observed that a  2012  uniform grid is adequate for a grid independent solution. However, a 
fine structured mesh of  2412  is used to avoid round-off error for all other calculations in this investigation. 

4. Results & Discussion

 The range of parameters that has been examined in this study concerns the cooperating buoyancy forces domain. 
The value of the buoyancy ratio has been taken from  0  to  30  and that, for various values of the porous thermal 
Rayleigh number (RaT Da), which ranging from  100 to 2000.  The Lewis number has been taken between 10 and 
300. The source diameter has been taken between  10%  and  90%  the enclosure length, when both the Prandtl and 
the Darcy numbers are fixed at 10 and 10-3, respectively. 
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4.1. Impact of Lewis Number & buoyancy ratio 

 When the buoyancy ratio and the source diameter are fixed at 10 and 0.20, respectively, the results illustrated in 
Fig. 5 have been obtained for two different values of Lewis number such as 10 and 100, respectively. By presenting 
the profile of the vertical velocity ratio V/Vmax, in the mid-plane of the enclosure, side by side with the temperature   

Fig. 4. Mean Sherwood (a) and Nusselt numbers (b) of the porous 
enclosure for different uniform grids. Da = 10-3, Le = 10, N = 10, 
Ra* = 100, d = 0.40.

Table 2. Mean Nusselt number obtained by the present solution 
and previous works [15, 16], for various Rayleigh numbers,
Pr = 0.71. 

Ra Kim et 
al.[15] 

Sheikholeslami 
et al. [16] 

Present 
work ∆(%) 

103 4.95 4.97 4.97 0.42 
104 5.03 5.09 5.05 0.40 
105 7.71 7.67 7.72 0.13 

and the concentration profiles, it is found that the flow driven by buoyancy near the side-walls is due primarily to 
concentration gradient; as the temperature variation is insignificant, which is not the same near the circular source 
where; the buoyancy effect is caused by the combined effect of the temperature and the concentration variations. 
 The increase in Lewis number causes the diminution of the thickness of the mass boundary layer near the active 
walls unlike the temperature one, what enhances accordingly the computed local Sherwood value and decrease the 
Nusselt one. 
 When the Lewis number is fixed at 10, Fig.6 displays the impact of the buoyancy ratio on the flow field, side by 
side with the temperature and the concentration. As for the last one, (i.e. Fig.5), and near the side-walls, the flow 
driven by buoyancy is due primarily to concentration gradient; as the temperature variation still insignificant. Near 
the circular source, the buoyancy effect is caused by the combined effect of the temperature and the concentration 
variations. 
 The increase in the buoyancy ratio makes the thermal and the solutal boundary layers thinner near the active 
walls, what improves the local transfer characteristics (i.e. local Nu and Sh) into these regions and so the overall 
thermosolutal transfer within the porous enclosure.

4.2. Impact of the source’ diameter 

 As far as the source diameter effect is conducted, Fig.7 displays the thermal and solutal transfers as a function of 
the source geometry which reported by the aspect ratio (d/H) and that, for various values of the Lewis and buoyancy 
ratio, (Ra* = 100). 
 For a given value of  Le  (or  N  as well), a further increase in the aspect ratio to 0.80 causes a significant 
improvement in thermosolutal convection, as the latter controls this phenomenon within the porous square. Going 
far with its value, the use of an aspect ratio greater than  0.80  die out the impact of Lewis and buoyancy ratio on the 
mean heat transfer as the conductive regime will take control. 
 After this critical value, (i.e. d/H = 0.80), the Sherwood number decreases a little before starting another 
increase. This reduction may relate to the fluid mass which is very low and that, raison of the enhancement of the 
source diameter. The increase in the Sherwood number once again can be related to the pure diffusion regime, which 
can be reached by using an important aspect ratio such as  0.90.
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Fig. 5. V/Vmax, θ  and  ϕ  profiles at the mid-section of the enclosure 
for various values of Lewis number. Da = 10-3, N = 10, Ra* = 100,      
d = 0.20. 

Fig.6. V/Vmax, θ  and  ϕ  profiles at the mid-section of the enclosure for 
various values of buoyancy ratio. Da = 10-3, Le = 10, Ra* = 100,        d 
= 0.20. 

       (a)    (b) 
Fig. 7. Mean Nusselt (a) and Sherwood numbers (b) as a function of the source diameter. Da = 10-3, Ra* = 100.

4.3. Proposed models 

Summarizing our numerical predictions, (see Fig. 8(a,b)) and by taking into account the previous observations, 
new powerful correlations that give the heat and mass transfers into the porous square can be proposed as: 

( )
( )

3258.0

3

*

0N (d/H)-1 
 1N Le Ra7524.0Sh










 +=
≥

                           (R2 = 0.998) (10) 

( ) ( )
248.0

2.2
48.0

2.2
*

0N H/d
Le

N*Ra
Log034.0H/d

Le
NRa

Log7144.1338.3Nu




































−

























+=

>
 (R2 = 0.991)       (11) 

 The last ones, made using the solutal Rayleigh number  Ra* Le (N+1)  and the aspect ratio  d/H,  are available 
for a Lewis number ranging from 10  to  300, a buoyancy ratio taking between  0  and 50, a porous thermal Rayleigh 
number in between  100 and 2000, and an aspect ratio in between  0.20  and  0.80. 
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5. Conclusion 

 A numerical investigation of double-diffusive natural convection phenomenon inside a square Darcy-Brinkman 
porous enclosure, having a centered circular source was realized in this paper. In general; heat and mass transfers  

(a) (b) 
Fig.8. Proposed model for the mean Nusselt (a) and Sherwood numbers (b).

seems to be severely affected by the source diameter as well as the governing parameters such the buoyancy ratio, 
the Lewis and the porous thermal Rayleigh numbers. Then, new powerful Sherwood and Nusselt correlations, which 
display the heat and mass transfer inside the square, are expected with a precision of  about  2%. Note that the 
present investigation doesn't take into account effects of other parameters such as the porosity and the Darcy 
number, what provide guidance for future work. 
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Fig. 5. V/Vmax, θ  and  ϕ  profiles at the mid-section of the enclosure 
for various values of Lewis number. Da = 10-3, N = 10, Ra* = 100,      
d = 0.20. 

Fig.6. V/Vmax, θ  and  ϕ  profiles at the mid-section of the enclosure for 
various values of buoyancy ratio. Da = 10-3, Le = 10, Ra* = 100,        d 
= 0.20. 
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Fig. 7. Mean Nusselt (a) and Sherwood numbers (b) as a function of the source diameter. Da = 10-3, Ra* = 100.

4.3. Proposed models 

Summarizing our numerical predictions, (see Fig. 8(a,b)) and by taking into account the previous observations, 
new powerful correlations that give the heat and mass transfers into the porous square can be proposed as: 
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 The last ones, made using the solutal Rayleigh number  Ra* Le (N+1)  and the aspect ratio  d/H,  are available 
for a Lewis number ranging from 10  to  300, a buoyancy ratio taking between  0  and 50, a porous thermal Rayleigh 
number in between  100 and 2000, and an aspect ratio in between  0.20  and  0.80. 
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5. Conclusion 

 A numerical investigation of double-diffusive natural convection phenomenon inside a square Darcy-Brinkman 
porous enclosure, having a centered circular source was realized in this paper. In general; heat and mass transfers  

(a) (b) 
Fig.8. Proposed model for the mean Nusselt (a) and Sherwood numbers (b).

seems to be severely affected by the source diameter as well as the governing parameters such the buoyancy ratio, 
the Lewis and the porous thermal Rayleigh numbers. Then, new powerful Sherwood and Nusselt correlations, which 
display the heat and mass transfer inside the square, are expected with a precision of  about  2%. Note that the 
present investigation doesn't take into account effects of other parameters such as the porosity and the Darcy 
number, what provide guidance for future work. 

References 
[1] Nield DA, Bejan A, Convection in porous media, Springer, Berlin, 1994. 
[2] Ostrach S, Natural convection with combined driving forces, Phys-Chem. Hydrodynamic, 1980; 01: 233-247. 
[3] Kamotani Y, Wang LW, Ostrach, S, Jiang, H D, Experimental study of natural convection in shallow enclosures with horizontal 

temperature and concentration gradients, Int. J. Heat Mass Transfer, 1985; 28: 165-173. 
[4] Lee J, Hyun MT, Kim KW, Natural convection in confined fluids with combined horizontal temperature and concentration gradients, Int. 

J. Heat Mass Transfer, 1988; 31: 1969-1977. 
[5] Benard C, Gobin D, Thevenin J, Thermosolutale natural convection in a rectangular enclosure: Numerical Results, in Heat Transfer in 

Convective Flows, ASME, R. K. Shah, Ed., 1989: 249-254, New York. 
[6] Han H, Kuehn TH, A numerical simulation of double diffusive natural convection in a vertical rectangular enclosure, in Heat Transfer in 

Convective Flows, ASME, R.K. Shah, Ed., 1989: 149-154, New York. 
[7] Chang J, Lin TF, Unsteady thermosolutal opposing convection of liquid-water mixture in a square cavity- II: Flow structure and 

fluctuation analysis, Int. J. Heat Mass Transfer, 1993; 36: 1333-1345. 
[8] Chen F, Double-diffusive fingering convection in a porous medium, Int. J. Heat Mass Transfer, 1993; 36: 793-807. 
[9] Trevisan O, Bejan A, Heat and mass transfer by high Rayleigh number convection in a porous medium heated from below, Int. J. Heat 

Mass Transfer, 1987; 30: 2341-2356. 
[10] Lin TF, Huang CC, Chang TS, Transient binary mixture natural convection in a square enclosure, Int. J. Heat Mass Transfer, 1990; 33: 

287-299. 
[11] Rachid B, Thermosolutal convection: fluid flow and heat transfer numerical simulations, Ph.D. Thesis, Pierre & Marie Curie, Paris, 1993. 
[12] Ragui K., Boutra A., Benkahla YK., On the Validity of a Numerical Model Predicting Heat and Mass Transfer in Porous Squares with a 

Bottom Thermal and Solute Source: Case of Pollutants Spreading and Fuel Leaks, Mechanics & Ind. 2016, 17: 311. 
[13] Patankar SV, Numerical heat transfer and fluid flow, Mc Grow, New York, 1980. 
[14] Hadidi N, Ould AY, Bennacer R, Bi-layered and inclined porous collector: Optimum heat and mass transfer, Energy, 2013; 51: 422-430. 
[15] Kim BS., Lee DS., Ha MY., Yoon HS., A numerical study of natural convection in a square enclosure with a circular cylinder at different 

vertical locations, Int. J. Heat Mass Transf. 2008; 51: 1888-1906. 
[16] Sheikholeslami M, Gorji-Bandpy M, Pop I, Soheil S, Numerical study of natural convection between a circular enclosure and a sinusoidal 

cylinder using control volume based finite element method, Int. J. Thermal Sci. 2013; 72: 147-158. 
[17] Weaver JA, Viskanta R, Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients, Exp. 

Thermal Fluid Sci., 1992; 5: 57-68. 

 

0.1 1 10
0

5

10

15

20

25

30

N
u

[(Ra* N (d/H)2.2 ) / Le]0.48

d/H :    0.20    0.40    0.60
                   Ra* = 100,   Le = 10
                   Ra* = 100,   Le = 30
                   Ra* = 100,   Le = 300

                   Ra* = 1000, Le = 10
                   Ra* = 1000, Le = 30

104 105 106 107 108

101

102

Sh
Ra* Le (N+1) [1- (d/H)]3

 Ra = 200,   N = 0
 Ra = 500,   N = 0
 Ra = 1000, N = 0
 Ra = 2000, N = 0
 Ra = 100,   Le = 10
 Ra = 100,   Le = 30
 Ra = 100,   Le = 100
 Ra = 100,   Le = 300
 Ra = 1000, Le = 10


