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Abstract — The present work refers to the study of natural convection into a confined porous medium,
driven by cooperating thermal and solutal buoyancy forces. The side walls are maintained at a uniform
temperature and concentration, lower than that of a heat and solute source, which located at the center of
the bottom wall, the rest of the horizontal walls are kept insulated. The physical model for the momentum
conservation equation makes use of the Brinkman extension of the classical Darcy equation, the set of
coupled equations is solved using the finite volume method and the SIMPLER algorithm. To account
for the effects of the main parameters such the buoyancy ratio, the Lewis and porous thermal Rayleigh
numbers, as well as the source length, heat and mass transfer characteristics are widely inspected and then,
new powerful correlations are proposed, which predict within +1% the numerical results. Note that the
validity of the used code was ascertained by comparing our results with experimental data and numerical
ones already available in the literature.
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1 Introduction

Over the past four decades, double-diffusive natu-
ral convection analysis into a porous medium has been
the subject of a very intense research activity, due to
the importance of related industrial and contemporary
technological applications such grain storage installation;
geothermal energy resources; petroleum reservoirs; pollu-
tant dispersion in aquifers; fibrous insulating materials,
electrochemical processes, and some modes of assisted oil
recuperation [1].

With both temperature and concentration gradients
present to drive the fluid flow, an increased number of
transport configurations was possible, with parallel or
perpendicular gradients, and the body forces augmenting
or opposing [2].

Several experimental [3—6] and numerical investiga-
tions [7-10] caused by horizontal thermal and solutal
gradients have been done. For certain conditions, a multi-
cellular flow was observed experimentally or predicted nu-
merically. In contrast, a little attention was dedicated to
the case of vertical gradients [11-14].
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To predict the heat and mass rates into such configura-
tions, some powerful correlations were proposed: in 1987,
Trevisan and Bejan [15] projected the thermal and so-
lutal transfer characteristics into a porous square as a
function of pertinent parameters such: Lewis and porous
thermal Rayleigh numbers; the cavity aspect ratio and
the buoyancy ratio as well. In 1990, Lin et al. [16] pro-
posed new Nusselt and Sherwood correlations as a func-
tion of the thermal Grashof number, and that for small
values of the buoyancy ratio (|N| < 5). A few years later,
Bennacer [17] suggested a general correlation for the mass
transfer, which can be used in a wide range of porous ther-
mal Rayleigh number, buoyancy ratio, and Lewis number
as well.

In these works and many others, the problem of
double-diffusive convection was commonly inspected us-
ing the entire wall length of the enclosure as a heat (and
solute) source, what made these correlations only avail-
able using this condition. Thus, the main purpose of the
current work is to complete these cases by investigating
the double-diffusive natural convection within a cold (and
less concentric) sides porous square, which including a
heat and solute source located at the center of its bot-
tom wall. This especial geometry is an interesting work
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Nomenclature

C Dimensional solute concentration

D Mass diffusivity (m?.s™ )

Da  Darcy number, =K/H?

Grr Thermal Grashof number, =gf3r AT H? / v?
H Cavity height (m)

K Porous medium permeability (m?)

Le  Lewis number, =Sc/Pr

N Buoyancy ratio, =8¢ AC/Br AT

Nu  Mean Nusselt number

p* Pressure (Pa)

P Dimensionless pressure

Pr  Prandtl number, =v/a

Thermal Rayleigh number, =Grr Pr
Porous thermal Rayleigh number, =RarDa
Sc Schmidt number, =v/D

Sh ~ Mean Sherwood number

T Dimensional temperature (K)

u, v Velocity components (m.s™ ')

U, V' Dimensionless velocity components, =u (or v) H/v
w Source length (m)

w Dimensionless source length, w/H

xz,y Cartesian coordinates (m)

X, Y Dimensionless Cartesian coordinates, = (or y)/H

Greek symbols

« Thermal diffusivity (m?.s™")

Be Solutal expansion coefficient

Br  Thermal expansion coefficient (K1)

€ Medium porosity

0] Dimensionless concentration, =(C' — C~)/(CT —C™)
0 Dimensionless temperature, =(T" — T¢) /(1) — T¢)

v Kinematic viscosity (m?.s™')

v

Stream function

Subscripts
h Hot
¢ Cold

for many industrial applications, especially in predicting
pollutants spreading and fuel leaks in the Refining and
Petrochemical industry.

2 Problem statement and mathematical
formulation

The studied configuration, shown in Figure 1, con-
sists of a square porous cavity (of impermeable bound-
aries) saturated by a binary fluid. The side walls are sub-
jected to uniform temperature and concentration lower
than that of a heat and solute source located at the cen-
ter of the bottom wall, when zero heat and mass fluxes
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Fig. 1. Simulation domain with its boundary conditions.

are imposed at the rest parts of the horizontal walls. The
binary fluid is assumed to be Newtonian and to satisfy
the Boussinesq approximation; the flow is incompress-
ible, laminar, bi-dimensional and in the steady state. On
the other hand, the porous medium is supposed to be
isotropic, homogeneous and in thermodynamic equilib-
rium with the fluid. The Soret and Dufour effects are
assumed to be negligible.

The density variations upon temperature and concen-
tration are described by the state equation:

p(T,C) = po[l = Br(T — Tp) — Bc(C = Co)] (1)

where O and (¢ are thermal and solutal expansion
coefficients.

_ 1] __1 %
e all] e 2

The dimensionless conservation equations, describing
transport phenomena in the square, can be written as:

oU oV

ax Tay 0 ®)
1 (. 0U  9U oP 1 oU?  oU>
?(Ua_X+V8_Y):_a_X_EU+<W+W)

(4)
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+ (8X2 +W> +Grr(6+ Ny)

2 2
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e dp _ 1 [Pp Py (7)
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where Da is the Darcy number, Grr (=Rar/Pr) is the
thermal Grashof number, N is the buoyancy ratio, Pr
and Sc are the Prandtl and Schmidt numbers.

The appropriate boundary conditions used to solve
the above system (3 to 7) can be resumed as follows:

X=0 0<Y<1 U=V=0 60=¢=0
(8)
X=1 0<Y <1 U=V=0 0=¢=0
9)
v=0 o0<z<"V p_y—o
M| _de|
oY Y:O_ oY Y:O_
1— 1
2W<x< +2W U=V=0 0=¢=1 (10)
LW 1 v=v=0 2| _2%| _,
I |y_y Y|y,
Y=1 0<z<l1l U=V=0
00 dp
v - 9» — 11
Y |y_, IV|y_, 0 (11)

Noted that average heat and mass fluxes across the cavity’
side walls, as well as the bottom source, can be expressed
in a dimensionless form by the Nusselt and Sherwood
numbers such as:

1
00
|Nuside wa11| = / (—) dYy;
0 0X wall
1+ W
2 00
|Nub0tt0m source| = ﬁ—w <8_Y) dX (12)
2 source
1
o
[Shside wall|] = / (—) dy;
o 0 0X wall
1+2W 9
|Shb0ttom source| = [_W <8_;i) dX (13)
2 source

3 Numerical procedure and code validation

The governing conservation equations are discretized
in space using the finite volume approach, when the
convection-diffusion terms are treated with a Power-Law
scheme. The resulting algebraic equations, with the as-
sociated boundary conditions, are then solved using the
line by line method. As the momentum equation is formu-
lated in terms of the primitive variables (U, V and P), the
iterative procedure includes a pressure correction calcula-
tion method, namely SIMPLER [18] to solve the pressure-
velocity coupling. Compared to other velocity-pressure
coupling approaches such SIMPLE and SIMPLEC, the

Present predictions

Fig. 2. Streamlines (a), isotherms (b) and iso-concentration
lines (c), Ra = 10°, Pr =7, Da = 10"*, Le = 10, N = 10.

Table 1. Average Nusselt and Sherwood numbers obtained
with our computer code and those of Hadidi et al. [19]. Da =
107*, Le = 10, Pr = 7, Ra = 10°.

Hadidi et al. [19] Present work

N

Nu Sh Nu Sh
0 2.83 10.25 2.79 10.29
10 3.95 26.30 391 26.33
15 4.57 29.75 4.56  29.81

adopted approach is proved to be faster (about 30 to 50%
fewer iterations).

The convergence criterion for the temperature, the
concentration, the pressure, and the velocity as well, is
given as:

where both m and n are the numbers of grid points in X-
and Y-directions, respectively; & is any of the computed
field variables and ¢ is the iteration number.

The performance of the using code via the double-
diffusive natural convection problem into a porous
medium is accomplished by comparing predictions with
other numerical results and experimental data, and by
verifying the grid independence of the present results.

First, the present results are consistent with previous
computations namely those of Hadidi et al. [19] which deal
with double-diffusive natural convection into a square en-
closure formed by two different porous media. By taking
into account the same hypotheses, Figure 2 shows the
developed streamlines, isotherms and iso-concentration
plots into the square. Tables 1 and 2 illustrate the com-
parison of mean Nusselt and Sherwood numbers com-
puted with various values of the buoyancy ratio N and
the porous thermal Rayleigh number Ra*, respectively.
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Table 2. Average Nusselt and Sherwood numbers obtained
with our computer code and those of Hadidi et al. [19]. Da =
107*, Le =10, N = 10, Pr = 7.

Hadidi et al. [19]  Present work

Ra*
Nu Sh Nu Sh
1 1.02 3.28 1.04 3.30
100  3.95 26.30 3.91  26.33

Weaver and Viskanta [20] Present prediction

Fig. 3. Ethanol/Nitrogen binary fluid in a square cavity,
(a) Gr = 1.15710°, N = —2.335, Pr = 0.802, Sc = 0.555.
(b) Gr = 1.12110°, N = —2.328, Pr = 0.802, Sc = 0.557.

(@) (b)
Weaver and Viskanta [20]

Present prediction

Fig. 4. Ethanol/Helium binary fluid in a square cavity,
(a) Gr = 2.71010*, N = —5.475, Pr = 0.531, Sc = 1.574.
(b) Gr = 2.68910%, N = —5.411, Pr = 0.533, Sc = 1.588.

As we can see, the present results and those of Hadidi
et al. [19] are in excellent agreement with a maximum
discrepancy of about 2%.

Then, to check the numerical code validity with
experimental results, those obtained by Weaver
and Viskanta [20] for an FEthanol/Nitrogen and
Ethanol/Helium binary fluids have been selected.
Figures 3 and 4 display the comparison between the
experimental data and both the numerical Weaver and
Viskanta predictions and the present ones in term of
velocity contours. Once again, the numerical results show
a good qualitative concordance with the experimental
data and a great agreement with the numerical Weaver
and Viskanta predictions.

In order to determine a proper grid for the numeri-
cal simulations, a grid independence study is conducted.
Several mesh distributions ranging from 912 to 1512 are
tested; the mean Nusselt and Sherwood numbers of the
porous square, previously shown in Figure 1, are pre-
sented in Figure 5 as a function of the above uniform
grids. Through the latter, a 1212 uniform grid is found to
be adequate for a grid independent solution. However, a
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Fig. 5. Sherwood and Nusselt numbers of the square porous
enclosure for different uniform grids, Da = 1073, Le = 30,
N =10, Pr =10, Ra* = 100, W = 0.60.

fine structured mesh of 1312 will be used to avoid round-
off error for all other calculations in our investigation.

4 Results and discussion

In this paper, the predictions are performed for var-
ious values of the Lewis number (10 < Le < 300), the
buoyancy ratio (0 < N < 50), and the source length
(0.20 < W < 0.80). Both; the Darcy and Prandtl numbers
are fixed at 1072 and 10, respectively. As the square cavity
is formed by a solid matrix, our results are presented using
a porous thermal Rayleigh number (100 < Ra* < 2000)
rather than the thermal one (Rar).

4.1 Impact of Lewis number and buoyancy ratio

Starting our investigation by a fixed source length
equal to 0.60, Figure 6 displays the streamlines, the
isotherms and the iso-concentration plots, according to
Lewis number and that, for a buoyancy ratio and a porous
thermal Rayleigh number equal 10 and 100, respectively.

For these patterns, two symmetrical counter-rotating
cells are formed into the porous square, the fluid flows up
in the centre on the enclosure and down all along the side
walls at a relatively high speed with a low Lewis number,
compared to the fluid speed with a high one.

The corresponding isotherms are found to be
nearly the same, and barely changed, demonstrating a
dominated-conduction heat transfer regime, unlike the
isoconcentration plots where the latter becomes more
distorted by increasing the Lewis number. Then, mass
boundary layers are created all along the active walls and
become thinner with increasing Lewis values. Also a solu-
tal plume appears in the center of the enclosure indicating
then, the domination of the diffusion mechanism.

For more clarification, the hydrodynamic, thermal and
solutal behaviors are summarized in Figure 7 where the
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(Le = 50, Wh! =3.79)

Streamlines Isotherms Iso-concentrations

Fig. 6. Impact of Lewis number, N = 10, Ra* = 100,
W = 0.60.

vertical velocity component, the temperature and the con-
centration profiles, along the horizontal mid-plane of the
porous enclosure, are presented. In fact, the examination
of the magnitude of V-velocity at various Lewis numbers
confirms the results previously obtained from analysing
the streamlines. The vertical velocity profiles verify the
existence of clockwise and anti-clockwise circulating cells
inside the porous square. Besides, the decrease in the ve-
locity magnitude with increasing Lewis number is a clear
indication of a weak buoyant flow at high values of the
latter. In the same way, the mass transfer mechanism
is expected to be more pronounced by increasing Lewis
number, as illustrated via the ¢ profiles, whilst the con-
duction is responsible for the heat transfer as shown by
the 6 profiles.

Regarding the buoyancy ratio effect, Figure 8 shows
the fluid dynamic, thermal and solutal behaviors, in
terms of streamlines isotherms and iso-concentrations,
for various values of N (the Lewis number is fixed now
at 10). Once again two symmetrical counter-rotating cells
are formed into the porous square. Its absolute stream-
function value is an increasing function of the buoyancy
ratio as the fluid motion becomes stronger. The corre-
sponding isotherms are more pronounced by increasing
values of IV, indicating the transition from a pseudo-
conductive regime (at N = 1) to a primary-convective
one (see for instance N = 30). As to the concentration
field which is very affected by increasing buoyancy ratio,
thin mass boundary layers are created all around the ac-
tive walls, denoting large concentration gradients along
these surfaces. The thickness of the latter (mass bound-

0.3 -
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0.0 . . . . . . . .

05 1 1 1 1

0.1 -

0.0 . T . T : T : T :
0.0 0.2 04 06 08 1.0
X

Fig. 7. V-Velocity, 6 and ¢ profiles along the horizontal mid-
plane of the porous square for various values of Lewis number.
N =10, Ra™ = 100, W = 0.60.

ary layer), is a decreasing function of enhanced values
of N which may explain the domination of the diffusion
mechanism compared to the convection one.

Referred to Figure 9, the velocity magnitude and
¢ profiles depend not only to the Lewis values but to
the buoyancy ratio ones as well. As we can see, an im-
portant buoyant flow and mass transfer is also produced
using a high value of buoyancy ratio compared to a lower
one. Note, at the end, that the effect of the buoyancy
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(N =30, Whal = 6.41)

Isotherms

Iso-concentrations

Streamlines

Fig. 8. Impact of the buoyancy ratio, Le = 10, Ra™ = 100,
W = 0.60.

ratio is still barely observed through the 6 profiles, as the
convection mechanism still less pronounced.

Figure 10 summarizes a series of predictions designed
to document the impact of Lewis number and buoyancy
ratio on the mass transfer rate. Through the latter, and
for each value of Lewis number, the mean Sherwood num-
ber is found as an increasing function of the increase
buoyancy ratio which can be linked to the flow inten-
sity as reported previously (see Fig. 9). For a given N,
the mass transfer still increases with Lewis number. In-
deed, the Lewis number increases through the Schmidt
number, since the Prandtl number is already fixed at 10,
what reduces the thickness of the solutal boundary layer
and leads to important mass transfer.

About the heat transfer, Figure 10b, the previous de-
scription is shown to hold only for the buoyancy ratio.
In other terms, the mean Nusselt number is also an in-
creasing function of the latter (V) as the V-velocity op-
timum continuously increases; what decreases the thick-
ness of the corresponding boundary layer and leads to the
primary-convective regime (see Fig. 9). With Lewis num-
ber all the opposite is observed, the heat transfer rate
decreases as the thermal boundary layer thickness is a
function of Lel/2 [21].
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Fig. 9. V-Velocity, 6 and ¢ profiles along the horizontal mid-
plane of the porous square for various values of the buoyancy
ratio. Le = 10, Ra™ = 100, W = 0.60.

4.2 Impact of porous thermal Rayleigh number

To complete the previous results, the evolution of heat
and mass transfers with porous thermal Rayleigh number
(Ra*) is also discussed (Fig. 11). The Lewis number is
taken as 10, which represents the case of hydrocarbon
fuel [22], when the buoyancy ratio value is ranged be-
tween 0 and 30. As for the latter, the increase in the
porous thermal Rayleigh number (through Grashof num-
ber) improves significantly the transfer rates, especially
with high values of the buoyancy ratio. This behavior
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Fig. 10. Sherwood and Nusselt numbers as a function of the
buoyancy ratio, for various values of Lewis number. Ra™ =
100, W = 0.60.
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Fig. 11. Sherwood and Nusselt numbers as a function of
the buoyancy ratio, for various values of the porous thermal
Rayleigh number. Le = 10, W = 0.60.

confirms the fact that the global buoyancy term in the
momentum equation, Gry (0 + N¢), increases with both;
the porous thermal Rayleigh number (Da Grr Pr) and
the buoyancy ratio (N), promotes consequently the flow
intensity and so the overall transfer.

These primary observations allow us to conclude the
proportional relation between the thermosolutal transfer,
and the governing parameters such Le, N and Ra*.

4.3 Source length effect and proposed models

For fixed values of Lewis number and buoyancy ra-
tio, (Le = N = 10), the impact of the source length on
the fluid dynamic, thermal and solutal behaviors into the
porous square is displayed in Figure 12. As before, the
two counter-rotating cells created by the fluid motion are
formed inside the square. By increasing the source length
the counter-rotating cells get stronger as the fluid motion
is more pronounced. On the other hand, the development
of thin thermal and solutal boundary layers over the ac-
tive walls, as shown in Figures 12b and 12c, is a clear
indication of important gradients near these surfaces, es-
pecially when the source length is about 0.80.

For the entire range of governing parameters, and by
taking into account the expression of the global buoyancy
term in the momentum equation Gry (6 + N¢) our Nus-
selt and Sherwood predictions obtained for various values
of the source length can be represented as a function of
dimensionless groups such Ra*N/Le and Ra*Le(N + 1)
as shown in Figure 13. Through the latter, the propor-
tional relation between the heat and mass transfers and
the source length is well approved, what leads us eventu-

(W = 0.40, IW,,| = 4.42)

(W =0.80, [l = 5.56)

Isotherms

Streamlines Iso-concentrations

Fig. 12. Impact of the source length. Le = 10, N = 10,
Ra* = 100.

ally to the following global correlations (Fig. 14):

0.32
Le (N +1
Sh—o.7ss |Rax Le W i1 (R2 = 0.9940)
(1=w)"~
(15)
« 0.48
Nu= A+ B Log (M(1—W)3)
Le
Ra* || 0.487) 2
+ C{Log (T (1—W)3> (R*=0.9970)

(16)

where the coefficients A, B and C' of the Nusselt equation
can be found based on the source length as follows:

A =3.28—0.83W + 3.19W?
B =0.22 — 0.38W + 1.84W? (17)
C =0.03—0.17TW + 0.24W?

These powerful correlations, found to predict the numer-
ical results within +1%, may count as a complement to
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Fig. 13. Transfer rates as a function of dimensionless groups
for various source length values.

previous researches done in the case of square porous en-
closures saturated by a Newtonian fluid, and still available
for a Lewis number ranging from 10 to 300, a buoyancy
ratio taking between 0 and 50, a porous thermal Rayleigh
number between 100 and 2000, and a source length be-
tween 0.10 and 0.90.

5 Conclusion

The analysis of double-diffusive natural convection
phenomenon inside a square Darcy-Brinkman porous en-
closure having a bottom heat and solute source was
realized numerically through this paper. By taking into
account the effects of pertinent parameters such the buoy-
ancy ratio, the source length, the Lewis and the porous
thermal Rayleigh numbers, new powerful Sherwood and
Nusselt correlations which display the heat and mass
transfer rates in such geometry were proposed with an ac-
curacy of about 1%. These unique correlations may count
as a complement to previous researches done into square
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Fig. 14. Proposed numerical models for heat and mass trans-
fer rates.

porous enclosures and might prove particularly useful in
verifying any instability analysis which might be put forth
in the future.

References

[1] D.A. Nield, A. Bejan, Convection in porous media,
Springer, Berlin, 1992

[2] S. Ostrach, Natural convection with combined driving
forces, Phys. Chem. Hydrodyn. 1 (1980) 233-247

[3] Y. Kamotani, L.W. Wang, S. Ostrach, H.D. Jiang,
Experimental study of natural convection in shallow en-
closures with horizontal temperature and concentration
gradients, Int. J. Heat Mass Transfer 28 (1985) 165-173

[4] J.Lee, M.T. Hyun, K.W. Kim, Natural convection in con-
fined fluids with combined horizontal temperature and
concentration gradients, Int. J. Heat Mass Transfer 31
(1988) 1969-1977

[5] L.W. Wang, J.J. Chert, Flow patterns of thermosolutale
convection in low aspect ratio enclosures, Experimental
Heat Transfer 1 (1987) 197-204



[6]

[7]

8]

[9]

K. Ragui et al.: Mechanics & Industry 17, 311 (2016)

M. Mamou, P. Vasseur, E. Belgen, Multiple solutions for
double-diffusive convection in a vertical porous enclosure,
Int. J. Heat Mass Transfer 38 (1995) 1787-1798

C. Benard, D. Gobin, J. Thevenin, Thermosolutale nat-
ural convection in a rectangular enclosure: Numerical
Results, in Heat Transfer in Convective Flows, edited by
R.K. Shah, ASME, New York, 1989, pp. 249-254

H. Han, T.H. Kuehn, A numerical simulation of double
diffusive natural convection in a vertical rectangular en-
closure, in Heat Transfer in Convective Flows, edited by
R.K. Shah, ASME, New York, 1989, pp. 149-154

J. Chang, T.F. Lin, C.H. Chien, Unsteady thermosolu-
tal opposing convection of a liquid-water mixture in a
square cavity — I: Flow formation and heat and mass
transfer characteristics, Int. J. Heat Mass Transfer 36
(1993) 1315-1331

J. Chang, T.F. Lin, Unsteady thermosolutal opposing
convection of liquid-water mixture in a square cavity —
II: Flow structure and fluctuation analysis, Int. J. Heat
Mass Transfer 36 (1993) 1333-1345

D.A. Nield, Onset of thermohaline convection in a porous
medium, Water Res. 4 (1968) 553-560

J.W. Taunton, E.N. Lightfoot, T. Green, Thermohaline
instability and salt fingers in porous medium, Phys.
Fluids 15 (1972) 748-753

D. Poulikakos, Double-diffusive convection in a horizontal
sparsely packed porous layer, Int. Commun. Heat Mass
Transfer 13 (1986) 587-598

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

F. Chen, Double-diffusive fingering convection in a porous
medium, Int. J. Heat Mass Transfer 36 (1993) 793-807
O. Trevisan, A. Bejan, Heat and mass transfer by high
Rayleigh number convection in a porous medium heated
from below, Int. J. Heat Mass Transfer 30 (1987) 2341—
2356

T.F. Lin, C.C. Huang, T.S. Chang, Transient binary mix-
ture natural convection in a square enclosure, Int. J. Heat
Mass Transfer 33 (1990) 287-299

R. Bennacer, Thermosolutal convection: fluid flow and
heat transfer numerical simulations, Ph.D. thesis, Pierre
and Marie Curie, Paris, 1993

S.V. Patankar, Numerical heat transfer and fluid flow,
Mc Grow, New York, 1980

N. Hadidi, Y. Ould Amer, R. Bennacer, Bi-layered and
inclined porous collector: Optimum heat and mass trans-
fer, Energy 51 (2013) 422-430

J.A. Weaver, R. Viskanta, Natural convection in binary
gases driven by combined horizontal thermal and vertical
solutal gradients, Exp. Thermal Fluid Sci. 5 (1992) 57-68
O. Trevisan, A. Bejan, Natural convection with com-
bined heat and mass transfer buoyancy effects in a porous
medium, Int. J. Heat Mass Transfer 28 (1985) 1597-1611
A.M. Abdulmajeed, R. Bennacer, Natural convection in a
confined saturated porous medium with horizontal tem-
perature and vertical solutal gradients, Int. J. Thermal
Sci. 40 (2001) 82-93

311-page 9



	Introduction
	Nomenclature
	Problem statement and mathematical formulation
	Numerical procedure and code validation
	Results and discussion
	Impact of Lewis number and buoyancy ratio
	Impact of porous thermal Rayleigh number
	Source length effect and proposed models

	Conclusion
	References

