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General Introduction

Printed Circuit Boards (PCBs) are fundamental components in electronic devices, serving
as the foundation for connecting various electronic parts to create functional circuits. They are
widely used across industries, from everyday gadgets to aerospace and automotive applications,
highlighting their crucial role in advancing technology.

In PCBmanufacturing, where tiny components are densely packed onto intricately designed
boards, thorough inspection is essential to detect any defects that could affect performance
or reliability. Visual Inspection Systems designed for PCB manufacturing utilize advanced
imaging technologies, including high-resolution cameras and sophisticated lighting setups, to
capture detailed images of PCBs with exceptional clarity and precision.

These systems employ advanced image processing techniques, such as pattern recognition,
edge detection, and machine learning algorithms, to analyze captured images and identify po-
tential defects. By automating the inspection process, Visual Inspection Systems significantly
reduce the time and effort required for quality control tasks while enhancing the accuracy and
consistency of defect detection.

This project focuses on designing and implementing a Visual Inspection System specifi-
cally tailored for PCB manufacturing. By leveraging image processing and machine learning
techniques, our goal is to develop a robust and efficient solution that seamlessly integrates into
existing manufacturing processes, ultimately improving the quality and reliability of electronic
devices based on PCB technology.

The objective of the work presented in this document is to develop a system capable of
automatically detecting defects and classifying each PCB as either clean or defective using
deep learning and image processing algorithms. Our approach mainly involves leveraging pre-
trained models known for their performance and applying to them transfer learning.

This document is structured as follows: It begins with a chapter that introduces to visual
inspection systems for product quality control, highlighting traditional techniques as well as
recent methods based on deep learning.

Subsequently, in Chapter 2, we address artificial intelligence theories. and image processing
algorithms . We focus on deep learning techniques used at each stage from data preparation to
model evaluation. We also describe the transfer learning approach, its relevance, with specific
projection on the pre-trained models used in our work.

The third chapter is devoted to the presentation of the solution we proposed for the automatic
and early defect detection in PCBs. It’s worthy to mention that the automatic detection means
that intervention of the human operator isn’t mendatory. Howerver, the early defects detection
refers to identifying anomalies at early stages in the production process with the aim of catching
issues before they propagate further, minimizing the impact and the cost.

1
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Chapter 1

Introduction to Visual Inspection Systems

1.1 Introduction

Defect detection is crucial across various industries, spanning from manufacturing to dis-
tribution and logistics. Defects can profoundly impact product quality, consumer safety, pro-
duction costs, and company reputation. Consequently,VISs are increasingly utilized to identify
anomalies at different production stages.

The design of a VIS is influenced by various application factors and user requirements. Typ-
ically, these systems leverage both hardware and software resources to capture product images,
process them, and pinpoint any anomalies present.

Conventional visual inspection solutions typically consist of a camera or sensors, appropri-
ate lighting, and image processing software. However, with the rapid advancements in artificial
intelligence, particularly deep learning, newer VISs offer superior performance and enhanced
accuracy in defect detection.

1.2 Image processing

Image processing is a method used to perform operations on an image to enhance the per-
ception of its content or extract useful information. It involves manipulating and analyzing
images to improve their quality, highlight important features, and derive meaningful insights.
Image processing techniques are used in various applications, including medical imaging, re-
mote sensing, industrial inspection, and computer vision.

In industry, image processing is used to enhance efficiency and accuracy. Here are some
notable uses of image processing in different applications :

• Medical imaging : used to enhance and analyze medical images acquired using X-rays,
MRIs, CT scans, and ultrasounds to help diagnose diseases and plan treatments. and
Real-time image processing aids in minimally invasive surgeries by providing clear and
enhanced images of the surgical site[1].



CHAPTER 1. INTRODUCTION TO VISUAL INSPECTION SYSTEMS 3

• Autonomous vehicle : Image processing algorithms are critical for object detection, lane
detection, and navigation in self-driving cars[2].

• Security systems : Image processing used in security systems to identify individuals based
on facial features,and Processing images from surveillance cameras allows to detect and
alert about unauthorized access or suspicious activities [3].

1.3 Visual inspection system (VIS)

VIS have transformed quality control across various industrial fields by automating the de-
tection and analysis of defects, thus enhancing product reliability and production efficiency.
These systems employ advanced imaging technologies and algorithms to inspect products for
surface defects, dimensional accuracy, and proper assembly, ensuring that only high-quality
items reach the market.

1.3.1 VIS component analysis

Visual inspection systems are composed of several key components, each playing a crucial
role in the inspection process:

• High-resolution cameras capture images of the product. The type of camera (e.g., CCD,
CMOS) depends on the specific application and required resolution,In addition to cam-
eras, various sensors (e.g., infrared, X-ray) can be used to capture different types of data,
such as thermal images or internal structures [4].

• Proper lighting is essential to ensure that images are clear and defects are visible. Types
of lighting include LED, fluorescent, and laser, with configurations such as backlighting,
ring lighting, and directional lighting.

• High-performance processors CPUs, GPUs, or FPGAs are required to handle the com-
plex computations involved in image processing and analysis.

• Controllers that manage the operation of cameras, lighting, and actuators, ensuring syn-
chronized and efficient inspection processes.

• User Interfaces which provide operators with real-time feedback, control options, and
visualization of inspection results.

1.3.2 VIS classification

Visual inspection could be classified based on the need of humain intervention into two main
categories :
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Human visual inspection

Historically, inspection relied heavily on human operators to visually inspect products for
defects. While effective, this method is subjective and can be prone to human error. However,
human inspectors bring expertise and judgment that can be valuable in certain contexts[5].

Figure 1.1: Human inspection

Machine visual inspection

Machine vision systems encompass a range of technologies that employ cameras, lighting,
and image processing algorithms to automate VI tasks. These systems can perform various
inspection tasks, including dimensional measurement, surface inspection, defect detection, and
barcode reading, across industries such as food and beverage, packaging, and textiles[6].

Figure 1.2: Machine vision systems

• Infrared thermography represents an example of a non-destructive inspection method that
uses thermal imaging cameras to detect variations in temperature. This method is com-
monly used in industries such as building inspection and predictive maintenance to iden-
tify defects like heat loss, electrical faults, and mechanical wear [7].
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Figure 1.3: Infrared thermography for condition monitoring[7]

• With advancements in artificial intelligence, particularly deep learning, VIS can now
leverage neural networks to learn and recognize patterns indicative of defects. Deep
learning-based inspection offers superior accuracy and adaptability, making it suitable
for complex inspection tasks in industries like aerospace, medical devices, and consumer
electronics [8] . the next images illustrates how an AI model detects wheel discs and
brake components on an automobile assembly line.

Figure 1.4: Deep learning models for visual inspection on automotive assembling line[8]

These VI methodes are just a few examples of the diverse techniques employed across in-
dustries to ensure product quality, safety, and compliance with regulations. Each method has
its advantages and applications, contributing to efficient manufacturing processes and customer
satisfaction.
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1.3.3 VIS operational modes

Another approach suggest broadly categorizing the VI systems into inline and end-of-line
visual inspection systems

Inline Visual Inspection Systems

Inline VIS are integrated directly into the production line. Their primary purpose is to per-
form real-time inspection of products as they are being manufactured. This allows for continu-
ous quality control and minimize the risk of defective products reaching the market.This kind
of systems offer a lot of advantages such as [9]:

• Immediate detection and correction of defects.

• Reduces downtime and increases overall production efficiency.

• Early detection of defects minimizes waste and rework costs

Figure 1.5: Inline visual inspection systems

End-of-Line Visual Inspection Systems

End-of-line VIS are deployed at the final stage of the production process. These systems
inspect finished products before they are packaged and shipped. The goal is to ensure that only
products meeting quality standards leave the factory. such systems offer interesting advantages
that include [10] :

• Ensuring packaging integrity and label accuracy.

• Checking for cosmetic defects in products

• Final inspection of assembled parts and systems .

Figure 1.6: End line visual inspection systems
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1.4 Printed Circuit Boards (PCBs)

A PCB is a flat board made from a non-conductive material, typically fiberglass, onto which
a conductive layer, usually copper, is etched to create pathways for electrical current to travel.
These pathways connect various electronic components, such as resistors, transistors, and inte-
grated circuits, allowing the components to communicate and function together as a system.

importance of PCBs can be shown through the characteristics described below :

• PCBs enable the development of compact and sophisticated electronic devices. This
miniaturization is critical for creating portable electronics like smartphones, tablets, and
wearables, which are integral to modern life.

• The standardized design andmanufacturing processes of PCBs allow for themass produc-
tion of electronic devices. This standardization reduces production costs and improves
the quality and consistency of products.

• Modern PCBs are designed to support advanced functionalities such as high-speed data
transfer, effective power management, and signal integrity. These capabilities are essen-
tial for the performance of high-frequency and high-power devices like servers, routers,
and power.

1.5 Automated VIS of PCBs

An automated VIS for PCBs integrates several components to ensure efficient and accurate
inspection. The main components of such a system include process control, data collection, re-
jection mechanisms, image acquisition, and illumination[5] .As it is illustrated in the following
figure.

Figure 1.7: Automated visual inspection system for PCBs[5]
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1.5.1 Process control

Process control is the central management system that oversees and coordinates all aspects
of the inspection process. It involves:

• Workflow Management: Scheduling and directing PCBs through various inspection
stages.

• Parameter Settings: Defining inspection parameters, such as resolution, thresholds for
defects, and acceptable tolerance levels.

• Real-Time Monitoring: Continuously tracking the system’s performance and making
adjustments as needed.

• Feedback Loop: Utilizing data from inspections to make immediate adjustments to the
production process, thereby enhancing overall quality control.

1.5.2 Image acquisition and illumination

Image acquisition is the process of capturing high-quality images of PCBs for analysis. This
involves:

• Cameras: High-resolution cameras positioned to capture detailed images of PCBs. These
may include multiple cameras for different angles and aspects of the PCB.

• Movement Mechanism: Conveyor belts or robotic arms to position PCBs accurately
under the cameras.

• Triggering System: Sensors or software triggers that ensure images are captured at the
precise moment for optimal clarity.

• Lighting Setup: LED or other appropriate lighting sources positioned to minimize shad-
ows and glare, ensuring consistent illumination across the PCB surface.

• Adjustable Intensity: The ability to adjust the intensity and angle of lighting to highlight
different features and potential defects.

1.5.3 Data collection

Data collection involves gathering and storing information throughout the inspection pro-
cess. This includes:

• Inspection Results: Logging details of each inspection, including pass/fail status and
types of defects detected.
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• Statistical Analysis: Aggregating data to identify trends, common defects, and areas
needing improvement.

• Traceability: Maintaining records of each PCB’s inspection history for quality assurance
and compliance purposes.

• Reporting: Generating reports for quality control teams, production managers, and reg-
ulatory bodies.

1.5.4 Rejection mechanism

The rejection mechanism is responsible for segregating defective PCBs from those that meet
quality standards. It includes:

• Defect Identification: Utilizing inspection data to determine if a PCB fails to meet spec-
ified criteria.

• Sorting System: Automated conveyors and sorting mechanisms that physically separate
defective PCBs from the production line.

• Alerts and Notifications: Notifying operators or maintenance personnel about repeated
defects or system issues requiring attention.

By integrating these components, an automated VIS for PCBs ensures high accuracy, con-
sistency, and efficiency in identifying and addressing defects, ultimately improving the quality
and reliability of electronic products [7].

1.6 Deep Learning for PCB inspection

The realm of PCB inspection has undergone a significant transformation with the advent
of deep learning (DL). Traditional methods often relied on manual inspection or basic image
processing algorithms, which could be time-consuming, prone to human error, and less efficient
in identifying subtle defects.

Deep learning has revolutionized PCB inspection by offering superior capabilities com-
pared to traditional methods. Unlike relying on pre-defined defect patterns, DL algorithms ex-
cel at automatically extracting intricate features from vast datasets of PCB images. This allows
them to identify even the subtlest defects like misaligned components, solder issues, and micro-
cracks. Additionally, deep learning automates the inspection process, significantly improving
efficiency. Faster inspection times, increased production throughput, and reduced labor costs
are all benefits of this automation. Furthermore, deep learning models are remarkably adaptable
and scalable. They can be trained on a wide range of PCB designs and defect types, making
them suitable for various scenarios. As production volumes increase, these models can seam-
lessly handle larger datasets, ensuring consistent performance. Finally, deep learning models
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continuously improve as new data is fed into the system. This allows them to become more
accurate and identify new types of defects, keeping the inspection process at the cutting edge
of technology.

1.7 Conclusion

This chapter has provided a comprehensive overview of VISs, particularly their applica-
tion in various industries for defect detection and quality assurance. By integrating advanced
imaging technologies and sophisticated algorithms, these systems have revolutionized quality
control processes, ensuring enhanced product reliability and efficiency. Key components of
VISs, such as high-resolution cameras, effective lighting setups, and powerful image process-
ing capabilities, play a crucial role in identifying and addressing defects.

The chapter specifically highlighted the importance of printed circuit boards (PCBs) inmod-
ern electronic devices and the critical role of automated VISs in maintaining their quality and
functionality.

This sets a solid foundation for the subsequent chapters, which will delve deeper into spe-
cific methodologies and applications of VISs .
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Chapter 2

Theoretical Framework / Image
Processing Techniques

2.1 Introduction

In industrial applications, image processing is essential for automating tasks like defect de-
tection, dimensional measurement, and anomaly identification. This technology enhances effi-
ciency and reduces human error in production lines.

Developing a visual inspection system for PCBs relies heavily on advanced image process-
ing techniques. This chapter covers key methodologies:

• Image Registration and Geometrical Transformations

• Feature extraction with Scale-Invariant Feature Transform (SIFT)

• Template Matching using ormalized Cross-Correlation (NCC)

• AI with You Only Look Once (YOLO) Algorithm

By integrating these techniques, our visual inspection system achieves precise and compre-
hensive analysis, combining traditional image processing with advanced AI models for robust
PCB inspection. This chapter provides an overview of these methods, illustrating their synergy
in enhancing manufacturing quality control.

2.2 Image registration

Image registration takes two images as input and aims to find a geometrical transformation.
Geometric or spatial transformations modify the spatial relationships between pixels in an im-
age. The image can be made larger or smaller, rotated, shifted, or otherwise stretched in a
variety of ways. This transformation acts like a mathematical bridge, mapping corresponding
points from one image to the other. A successful registration ensures these corresponding points
are accurately matched.
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2.2.1 Geometrical transformation

In the context of registration, each image is associated with a coordinate system, defining a
unique space for that view.

Geometric transformations are like rules that move points from one picture to another. Each
point is represented as a column of numbers called a column vector. When we apply a trans-
formation to a point, it changes its position, giving us a new point in the transformed image.

If a point in the first picture matches a point in the second picture, after the transformation,
these points should end up very close to each other. If they don’t, it means there’s a mistake in
the transformation, and the points are not aligned properly. This difference between where the
points should be and where they end up is what we call an error

in the scope of this application mappings points from the space X one image to the space
Y of a second image. The transformation γ applied to a point in X represented by the column
vector x produces a transformed point x′.

x′ = γ(x) (2.1)

Figure 2.1: Geometrical transformations [12]

Rigid and nonrigid transformation are fundamental concepts in image processing that de-
termine how images are spatially altered and aligned for accurate analysis.

1. Rigid Transformation
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Rigid transformations, or rigid mappings, are defined as geometrical transformations that
preserve all distances. These transformations also preserve the straightness of lines (and
the planarity of surfaces) and all nonzero angles between straight lines. Registration
problems that are limited to rigid transformations are called rigid registration problems.
Rigid transformations are simple to specify, and there are several methods of doing so. In
each method, there are two components to the specification, a translation and a rotation.
The translation is a three dimensional vector t that may be specified by giving its three
coordinates tx,ty,tz relative to a set of x,y,z . Rotations can be parameterized in terms of
three angles of rotation θx , θy , θz . If γ is rigid then.

x′ = Rx+ t (2.2)

where R is a 3x3 orthogonal matrix,this class of matrices includes both the proper
and improper rotations Proper rotations can be parameterized in terms of three angles of
rotation, about the respective Cartesian axes,θx,θy,θz the so-called “Euler angles”.[11]

R =

1 0 0
0 cos(θx) −sin(θx)

0 sin(θx) cos(θx)


 cos(θy) 0 sin(θy)

0 1 0
−sin(θy) 0 cos(θy)


cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0
0 0 1



R=

cos(θy)cos(θz) −sin(θz)cos(θx)+ sin(θx)cos(θz)sin(θy) sin(θx)sin(θy)+ cos(θx)cos(θz)sin(θy)

cos(θy)sin(θz) cos(θz)cos(θx)+ sin(θy)sin(θz)sin(θx) −sin(θx)cos(θz)+ sin(θy)sin(θz)cos(θx)

−sin(θy) sin(θx)cos(θy) cos(θy)cos(θx)


(2.3)

2. Nonrigid Transformation
Nonrigid transformation refers to a spatial transformation that allows for local deforma-
tions or distortions, enabling the alignment of images with varying shapes or structures.

There are multiple types of non-rigid transformations, including [12] :

Scaling transformations, affine transformations, projective transformations, and perspec-
tive transformations. However, in the scope of this research, we will be focusing on
scaling transformations

Scaling transformation is a type of non-rigid transformation that uniformly resizes the
spatial dimensions of an object or image. This transformation can enlarge or shrink the
object or image along each axis independently or uniformly.

scaling transformation can be represented by a diagonal scalingmatrix S=diag(sx,sy,sz)with
scaling factors Sx , Sy and Sz for the x-axis, y-axis and z-axis respectively.

x′ = RSx+ t (2.4)
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The two images in Figure 2.2 depicts rigid transformations, specifically translation and
rotation, which maintain the jet’s shape while altering its position and orientation. In
contrast, the second set in Figure 2.3 illustrates nonrigid transformations, focusing on
zooming, where the size of the fighter jet image changes while preserving its overall
shape

Figure 2.2: Rigid geometrical transformation

Figure 2.3: Non rigid geometrical transformation

2.3 Features extraction algorithmes

Feature extraction algorithms are used to identify and extract distinctive and infor-
mative characteristics from an image. These features represent the essential information
within the image that can be used for various tasks like object recognition , image retrieval
, image segmentation and image compression.

The principal role of a feature extraction algorithm is to transform raw data into a set of
informative features. These features capture the meaningful aspects of the data .

All the features extraction algorithm work with the same principal steps defined for the
scope of image registration :

• Feature detection:
The algorithm locates potential zones within the images that could contain informa-
tive features.

• Feature description:
Once potential features are detected, the algorithm extracts a descriptor for each
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feature. This descriptor is a mathematical representation that captures the charac-
teristics of the feature in a way that is robust to variations like illumination changes
or rotations.

• Feature matching:
After features are described in both images, the algorithm attempts to find corre-
sponding features between the images. This involves comparing feature descriptors
and identifying the best match (or closest match) in the other image.

2.4 Scale-Invariant Feature Transform (SIFT)

SIFT was developed by David Lowe in 1999 as a method to detect and describe dis-
tinctive local features in images. The purpose of SIFT is to identify keypoints in images
that are invariant to scale, rotation, and illumination changes. These keypoints serve as
robust landmarks, allowing for reliable matching between different instances of objects
or scenes in various applications such as image stitching, object recognition, and 3D re-
construction.

2.4.1 SIFT principle

SIFT detects a serie of keypoints from a multi-scale image representation. This multi-
scale representation consists of the Gaussian scale-space . Each keypoint is a blob-like
structure whose center position (x, y) and characteristic scaleσ are accurately located.
SIFT computes the dominant orientation θ over a region surrounding each one of these
keypoints. For each keypoint,

The quadruple (x,y,σ ,θ) defines the center, size and orientation of a normalized patch
where the SIFT descriptor is computed. As a result of this normalization, SIFT keypoint
descriptors are in theory invariant to any translation, rotation and scale change. The
descriptor encodes the spatial gradient distribution around a keypoint by a vector.

This feature vector is generally used to match keypoints extracted from different images.

2.4.2 Keypoints definition

A keypoint in SIFT refers to a distinctive and stable location within an image that can
be reliably detected and matched across different viewpoints and illumination conditions.
SIFT relies on a multi-stage process to identify keypoints[13] .

(a) Scale-Space Construction:
The Gaussian scale-space representation consists of a family of increasingly blurred
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images. This blurring process mimics the loss of detail that occurs when capturing
a scene from varying distances. Scale-space provides SIFT with scale invariance
by simulating snapshots of a scene at different scales [14]. The Gaussian function
used for blurring is defined as:

G(x,y;σ) =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
(2.5)

Properties of the Gaussian Kernel:

• Bell-shapedCurve: The function peaks at the center (x = 0, y = 0) and smoothly
decreases as we move away, controlled by the parameter σ .

• Symmetry: The Gaussian function is symmetric around its center (x = 0, y =
0).

• Zero-Mean: The integral over the entire plane is zero, indicating no bias to-
wards positive or negative values.

By convolving the original image with Gaussian kernels at different scales (different
σ values), we create a series of blurred images, each representing the original image
smoothed to a different degree. This collection of images forms the scale-space
representation.

Figure 2.4: Gaussian scale-space filtering: results with sigma values from 1 to 16

The process of constructing scale-space begins with convolving the original image
with Gaussian kernels at various scales (σ ). This results in multiple blurred ver-
sions of the original image, each capturing the image details at different levels of
smoothing.

(b) Difference-of-Gaussian (DoG) Function:
The next stage involves identifying potential keypoints within the scale-space. SIFT
achieves this by computing the DoG function across neighboring scales.

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ)) (2.6)

The DoG function emphasizes regions with significant intensity variations across
scales. Edges, corners, and other image features that are stable across scales tend
to have high values in the DoG function, making them potential candidates for key-
points.
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(c) Keypoint Localization:
SIFT analyzes the DoG function at multiple scales and across neighboring pixels.
A potential keypoint is identified if it’s a local maximum or minimum in both:
Scale: Compared to its neighbors in the same scale of the DoG image.
Space: Compared to its neighbors in adjacent scales (typically one scale above and
below) at the same location in the DoG image.

(d) Keypoint Refinement: Subpixel Localization:
While the DoG function identifies potential keypoint locations, they might not be
exact due to image interpolation. SIFT refines the location by fitting a quadratic
function around the DoG peak and finding the subpixel position with the maximum
value. Orientation Assignment:
To achieve rotation invariance, SIFT assigns a dominant orientation to each key-
point. This is done by analyzing a local image gradient histogram around the key-
point. The direction with the highest gradient magnitude is considered the key-
point’s orientation.

Figure 2.5: Keypoints extraction from the test and reference images

2.4.3 SIFT Keypoint Descriptors

Once SIFT identifies and refines keypoints, it proceeds to create a descriptor for each
keypoint. This descriptor is a vector that captures the local characteristics of the image
around the keypoint.

SIFT utilizes a technique called a histogram of oriented gradients (HOG) to construct
the keypoint descriptor. Gradient Calculation: For each pixel in a small neighborhood
around the keypoint, the image gradient magnitude (m) and orientation (θ) are computed.
The mathematical formulas for gradient calculation are the same as those mentioned in
keypoint refinement (see previous explanation) [14] .

(a) Orientation Binning: The neighborhood is divided into subregions (typically 4x4
grid), and the gradient information (magnitude and orientation) is accumulated into
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a histogram for each subregion. These histograms capture the distribution of local
gradients within each subregion relative to the keypoint’s dominant orientation.

(b) Normalization: To achieve some degree of illumination invariance, the histograms
are normalized to a unit length.Descriptor Vector: The individual histograms from
each subregion are concatenated to form a single high-dimensional descriptor vec-
tor for the keypoint. This vector encodes the local gradient information around
the keypoint in a way that is partially invariant to illumination changes.Benefits of
HOG-based Descriptors.

(c) Informative Representation: The HOG descriptor captures the local spatial distribu-
tion of gradients with respect to the keypoint’s orientation. This allows for encoding
both edge and corner information, making it suitable for describing various image
features.Partial Illumination Invariance: By normalizing the histograms, SIFT re-
duces the effect of varying illumination on the descriptor values, improving match-
ing performance across different lighting conditions.

Figure 2.6: Keypoints description in the test and reference images

2.4.4 SIFT Keypoint Matching Process

Once SIFT extracts and describes keypoints in two images (image A and image B), the
matching stage attempts to find keypoints in image B that correspond to each keypoint in
image A [14].

(a) Descriptor distance calculation: To compare keypoint descriptors, SIFT employs
a distance metric. A common choice is the Euclidean distance, which measures
the difference in intensity values between corresponding elements of the descriptor
vectors.

(b) Nearest Neighbor Search: For each keypoint in image A, SIFT searches for its clos-
est match in image B based on the chosen distance metric. This is typically done
using efficient nearest neighbor search algorithms like k-nearest neighbors (k-NN).
Ratio Test: To improve matching accuracy and reduce the number of false matches,
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SIFT employs a ratio test. This test involves finding the second-closest match for
the keypoint in image B.

(c) Thresholding: If the distance between the first (closest) and second-closest matches
is less than a predefined threshold (typically between 0.6 and 0.8), the first match is
considered a good candidate. This thresholding helps eliminate ambiguous matches
where a keypoint in image A might have similar descriptors to multiple keypoints
in image B.

Figure 2.7: Matching the reference and test im-
ages

Figure 2.8: The registred test image

2.5 Image comparison using feature extraction algorithms

Once two images are processed using the SIFT algorithm and the good key point matches
are obtained, the results can be interpreted in various ways. Generally, a higher number of
good matches suggests that the images are more similar. This means that more key points from
one image have corresponding key points in the other image, indicating a stronger resemblance
between the two [15].

Figure 2.9: SIFT Matching reference Image and test Image (same image)
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Figure 2.10: SIFT matching reference image and test Image (different images)

2.6 Template Matching

TM is a technique used in image processing to locate specific objects within an image. It
works by comparing a smaller image, called a template, to a larger image (search image) to find
regions that closely resemble the template.

There are two main applications of TM :

1. Search: This involves finding occurrences of a single template within the search image.
Here, the template remains fixed, and the algorithm scans the search image to locate areas
with the best match.

2. Classification: This involves classifying a pre-extracted image region (sample) against a
set of template prototypes. In this case, the sample is fixed, and the algorithm compares
it to each template to determine the most likely match.

The term TMwill refer to the detection of the nxn subimage g within NxN search area s that
best matches nxn template f

2.6.1 Matching filters

Exhaustive search TM algorithms can be conceptualized as applying a matching filter to a
search area. This filter, denoted by h(x, y), aims to identify instances of a template f(x, y) within
the search area s(x, y). The filter is designed to produce a maximum response at locations
where a region of the search area closely resembles the template. The filter response, denoted
by z(x, y), is calculated by convolving the search area with the matching filter, represented
mathematically as:

z(x,y) = s(x,y)∗h(x,y). (2.7)

2.6.2 Correlation Measures

TM encompasses various methods to assess the similarity between a template image and
regions within a search image. While techniques like Sum of Squared Differences (SSD) and
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template matching with transformations exist, this research focuses on the Normalized Cross-
Correlation (NCC) method and a specific feature-based matching approach [16].

2.6.3 Normalized cross-correlation for template matching

NCC is a popular technique in template matching used to assess the similarity between a
template (fixed image) and a region within a larger search image

f(x, y) represent the template image with pixel intensity values at coordinates (x, y).
s(x, y) represent the search image with pixel intensity values at coordinates (x, y). The

template size is denoted by m x n (m rows and n columns).
The window size in the search image where we compare with the template is also m x n

(same size as the template).
The Cross-Correlation Function (CC) between the template (f) and a window in the search

image (s) centered at position (x, y) is calculated as:

CC(x,y) =
m−1

∑
i=0

n−1

∑
j=0

f (i, j) · s(i+ x, j+ y) (2.8)

Raw CC values are sensitive to overall image intensity variations. NCC addresses this by
normalizing the CC values to a range of -1 to 1.

NCC(x,y) =
CC(x,y)√

∑m−1
i=0 ∑n−1

j=0 f (i, j)2 ·∑m−1
i=0 ∑n−1

j=0 s(i+ x, j+ y)2
(2.9)

In template matching, we calculate the NCC for the template at different positions (x, y)
within the search image. The location with the highest NCC value is considered the most likely
match for the template in the search image. This indicates the window in the search image that
exhibits the strongest similarity to the template based on their intensity patterns [16] .

Limitations of NCC:
Can be sensitive to noise and illumination changes in the image. May struggle with occlu-

sions (part of the template is hidden) or complex backgrounds.

Figure 2.11: NCC result map

brighter regions indicate higher similarity between the template and the corresponding re-
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gion of the main image. Darker regions represent lower similarity. This visualization helps in
identifying the location(s) where the template best matches the main image.

2.6.4 SIFT template matching

SIFT offers robustness to geometric transformations like scaling, rotation, and illumination
changes, making it a valuable tool for tasks where the template’s appearance might vary in the
search image.

1. Feature Extraction in the Template:

SIFT identifies keypoints within the image that represent distinctive features like corners,
edges, and blobs. For each keypoint, SIFT calculates a descriptor..

2. Feature Detection in the Search Image:

SIFT is then applied to the search image. Similar to the template, SIFT identifies key-
points and calculates descriptors for each keypoint in the search image.

3. Feature Matching:

Once features are extracted from both the template and the search image, the algorithm
performs matching between them.

4. Template Localization and Verification:

After identifying potential feature matches, the algorithm performs geometric verifica-
tion to determine the template’s location within the search image. This is often achieved
by techniques like RANSAC (Random Sample Consensus). RANSAC helps eliminate
false matches by ensuring a sufficient number of matching features are clustered within
a spatially coherent region.

Figure 2.12: SIFT matching results with high match score
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2.7 Deep learning models for visual inspection

Deep learning (DL) is a revolutionary subfield of artificial intelligence (AI) that has trans-
formed various domains, including image processing. Inspired by the intricate structure of the
human brain, DL employs artificial neural networks (ANNs) to learn from vast amounts of data
and perform complex tasks with remarkable accuracy. This chapter delves into the fascinating
realm of DL and its applications in image processing.

Artificial Neural Networks Principles and Fundamental Concepts

An artificial neural network (ANN) is a computational model that mimics the brain’s infor-
mation processing. It consists of numerous units (neurons) connected by weights and biases
(Figure 1.7). Depending on the activation function, the model can be used for classification
tasks, regression tasks, or other functions. In classification, the multilayer Perceptron network
represents the basic model (Figure 1.8). It is composed of:

• Input Layer: An input layer has one unit for each input feature. These units transmit
their values to the next layer without performing any calculations.

• Hidden Layers: One or more hidden layers. Each layer contains one or more units
(neurons) that perform a calculation. The calculation involves summing the weighted
inputs from the previous layer and the bias term, then applying an activation function.
The activation function ( f ) can be linear, sigmoid, hyperbolic tangent (tanh), ReLU, etc.

• Neuron Output Calculation: The output of a neuron is calculated according to the fol-
lowing equation:

y = f

(
∑

i
(wi × inputs)+bi

)
(2.10)

• Output Layer: The output layer has one neuron for each class. These neurons produce
the final output of the network by performing the same calculation as the hidden units.

• Learning Weights and Biases: The weights and biases of the network are learned by
minimizing a loss function that measures the difference between the network’s output
and the desired output. The loss function can be mean squared error, cross-entropy, hinge
loss, etc. The process of training involves adjusting these weights and biases to reduce
the loss.
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Figure 2.13: Computational Mechanism of an Artificial Neuron

Figure 2.14: Example of a multilayer perceptron with 5 layers

2.8 Training fundamentals

Neural network training fundamentals involve optimizing model parameters through backprop-
agation and gradient descent to minimize the error between predicted and actual outcomes.
This process requires careful tuning of hyperparameters, such as learning rate and batch size,
to achieve optimal performance.
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Loss function

The loss function in a neural network quantifies the difference between predicted and
actual outputs. It guides training by minimizing this difference. Cross-entropy loss is popular
for classification tasks, penalizing high-confidence incorrect predictions. Mean squared error
(MSE) is common for regression tasks. Other loss functions like mean absolute error (MAE)
can also be used. The choice depends on the problem [17].

Back propagation The aim of the backpropagation algorithm is to determine the effect
of each weight and bias in the network on the loss function. By doing so, it becomes possible
to adjust the weights and biases using an appropriate learning algorithm, such as stochastic
gradient descent. The objective of backpropagation is to compute ∂L

∂W (l)
jk

where W (l)
jk represents

the weight associated with the connection between the k-th neuron in the (l − 1)-th layer and
the j-th neuron in the l-th layer of a neural network. These values are obtained by recursively
applying the chain rule from the network’s output to its input.

Optimization

Optimization is the process of finding the optimal parameters W that minimize the loss
function J(W ), which measures the error of the network’s predictions on the data. Optimization
in neural networks is challenging because the loss function is often non-convex, meaning it
has many local minima. To find the global minimum, various optimization methods update
the parameters based on the gradient of the loss function, which indicates the direction of the
steepest descent. Some of these methods include gradient descent, stochastic gradient descent,
momentum, and adaptive learning rates (ADAM). These methods aim to improve the speed and
accuracy of optimization in neural networks [18].

StochasticGradient Descent (SGD) is an optimization algorithm used inmachine learn-
ing to train models by updating their parameters based on gradients calculated from randomly
selected mini-batches of training data. It strikes a balance between computational efficiency
and convergence speed, making it suitable for training large-scale and deep learning models.
SGD minimizes the loss function by adjusting parameters in the direction opposite to the gra-
dients, allowing it to escape local minima and explore the parameter space effectively. How-
ever, it may result in slower convergence and fluctuations. Variants like mini-batch SGD and
momentum-based methods have been developed to enhance performance and stability.

Adam is a powerful optimization algorithm designed for deep learning, combining the
concepts of Momentum and RMSprop. It dynamically adjusts learning rates based on past
gradients and second moments to optimize parameter updates. By integrating momentum and
adaptive learning rates, Adam enhances training by ensuring the correct direction and speed of
parameter updates. This algorithm is known for its fast convergence and consistently produces
excellent results, often outperforming traditional stochastic gradient descent (SGD). Due to its
effectiveness, Adam is widely utilized in various deep learning tasks.
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2.9 Learning Quality and Regularization methods

Regularization methods are techniques used to prevent overfitting in machine learning models.
Overfitting occurs when a model or neural network performs exceptionally well on the training
data but struggles to generalize to new, unseen data. This phenomenon arises when the model
begins to memorize specific details and noise in the training set rather than learning the under-
lying patterns that would apply more broadly. Conversely, underfitting occurs when the model
fails to capture the complexities of the data, resulting in poor performance on both the training
and test sets. To combat overfitting, several regularizationmethods have been developed. These
include weight decay techniques such as L1 and L2 regularization, which penalize large weights
to encourage simpler models. Additionally, techniques like batch normalization, dropout, and
early stopping are employed to enhance model generalization by improving learning stability
and reducing reliance on specific features or patterns in the data

Regularization Methods

• Weight Decay: Weight decay is a regularization technique used to prevent overfitting by
adding a penalty term to the loss function that depends on the size of the weights. The
larger the weights assigned to each input or connection, the more complex and strong the
connections become. Therefore, to address this issue, weight decay increases the penalty
term to reduce the size of the weights. Two commonly used weight decay regularization
techniques are L1 and L2 regularization [19].

1. L1: Also known as Lasso regression, the penalty term in L1 regularization is the
sum of the absolute values of the weights. This leads to a sparser solution, meaning
that some of theweights become zero, helping themodel focus only on the important
weights or features.

The L1 regularization term is defined as:

L1 regularization term= λ
m

∑
i=1

|wi| (2.11)

where λ is the L1 regularization parameter.

The objective function with L1 regularization becomes:

min
W

J(W ) =
1
m

n

∑
i=1

L(yi, f (xi;W ))+λ
m

∑
i=1

|wi| (2.12)

This formulation encourages sparsity in the weights, leading to a simpler and more
interpretable model.

2. L2 Regularization This method is also known as Ridge regression and is one of the
most common and widely used weight decay methods. Similar to L1 regularization,
it adds a penalty term to the objective function, but in this case, the penalty is the
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square root of the sum of squares of each weight. This penalty discourages large or
extreme values for individual parameters, but unlike L1 regularization, it does not
force any weights to zero. Therefore, L2 regularization promotes a more balanced
distribution of weight values, reducing the magnitude of parameters and the risk of
overfitting.
The L2 regularization term is defined as:

L2 regularization term= λ2

m

∑
i=1

|wi|2 (2.13)

where λ2 represents the L2 regularization parameter.
The objective function with L2 regularization becomes:

min
W

J(W ) =
1
m

n

∑
i=1

L(yi, f (xi;W ))+λ2

m

∑
i=1

|wi|2 (2.14)

• batch normalization :

Batch normalization can be considered as a form of regularization that helps the network
learn more effectively and reduces the risk of overfitting. In particular, it addresses the
issue of internal covariate shift, which alters the distribution of inputs for each layer and
affects the network’s learning rate. This is achieved by ensuring that each layer has the
same scale and distribution by linearly transforming the inputs to have zero mean and unit
variance. This technique is particularly important for deep recurrent neural networks[19].

• drop out : Dropout is one of the most effective methods for addressing the issue of over-
fitting. It involves randomly setting a fraction p p of weights to zero during the training
process. This reduces the complexity of themodel and prevents it from relying too heavily
on specific features or patterns in the data, forcing it to be more robust and generalizable.
During inference, all weights are used, but they are multiplied by the dropout percentage
p [19]

Figure 2.15: Dropout principle in neural networks[19]
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• early stopping: Early stopping is a regularization technique commonly used to prevent
overfitting in models trained iteratively, such as those using gradient descent and its vari-
ants. It involves selecting a model corresponding to an earlier time point than the final
epoch based on the reported training and validation errors. Early stopping can be imple-
mented with various criteria, but typically involves monitoring the model’s performance
on a validation set. The selected model is the one where its performance starts to degrade
or its loss increases. Overall, early stopping is widely recommended for training neural
networks [20] .

Figure 2.16: Early stopping principle in neural networks[20]

2.10 Learning paradigms in Deep Learning

Deep Learning Approaches There are several methods used in training models in deep learning,
including supervised learning, unsupervised learning, semi-supervised learning, reinforcement
learning, and transfer learning [21].

• Supervised Learning: Supervised learning involves training a network to learn a spe-
cific task or function by using both input data and their corresponding outputs. Common
problems addressed by supervised learning are regression and classification tasks. Re-
gression tasks predict continuous values, such as size, while classification tasks categorize
data into discrete classes, such as classifying products as good or defective. The challenge
of supervised learning lies in obtaining labeled data, which can be time-consuming and
costly.

• Unsupervised Learning: In contrast to supervised learning, unsupervised learning does
not use labeled data. Here, the model tries to discover patterns and structures in the input
data. Therefore, unsupervised learning can be used for clustering tasks such as the K-
means algorithm, anomaly detection like anomaly detection with Generative Adversarial
Networks (AnoGAN), and autoencoder algorithms, as well as dimensionality reduction
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techniques such as Principal Component Analysis (PCA). This approach can be useful
when labeled data is unavailable or for exploratory data analysis.

• Semi-Supervised Learning: This approach is a mix of supervised and unsupervised
learning, where some data have their corresponding labels, but not all. Sometimes, la-
beling data samples can be time-consuming, so it might be more practical to label only
some data and then use a semi-supervised learning algorithm such as self-training.

• Reinforcement Learning: Reinforcement learning, or Deep Reinforcement Learning
(DRL), involves a dynamic interaction between an agent and its environment. The agent
performs actions and receives rewards or penalties from the environment. The data are
sequential, so the learning process repeats until the agent finds the optimal policy that
maximizes the cumulative reward. This approach is generally useful for problems in-
volving sequential decision-making and interaction with the environment. An example
of a DRL algorithm is imitation learning, which was used to build the AlphaGo Zero
model by David Silver and colleagues at Google DeepMind in 2016. AlphaGo Zero is a
computer program that defeated the world champion in the complex board game Go.

• Transfer learning

Transfer learning is a machine learning technique where a model trained for one task is
reused for a related task . For example, a model capable of recognizing cats can be utilized
to speed up the learning process for recognizing dogs. Transfer learning is particularly
valuable in deep learning, where training models often requires extensive data and com-
putational resources. By leveraging pre-trained models, one can apply the knowledge
gained from solving a complex and large-scale problem to a new problem with less data.

Transfer learning is most effective when the tasks are similar and the features are general
enough to be relevant to both tasks. There are different approaches to transfer learning,
including:

Fine-tuning:
The pre-trained model is used with its weights as initial weights for the new model, and
training continues on the new data
Domain adaptation:
The model is adjusted to a new dataset of related examples, such as images of pedestrians
under different lighting conditions. This is necessary when dealing with a domain shift
problem, where the data distribution changes between the training and test sets
Feature extraction:
A pre-trained model can be used as a feature extractor. In this case, only new classifica-
tion layers are retrained. This approach can speed up training when the tasks are different
or when limited data is available to avoid overfitting Transfer learning can be applied to
both supervised and unsupervised learning models . In recognition tasks like visual in-
spection of products, it is common to utilize a pre-trained model for classification on large
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datasets . Some of the leading models include the VGG model from Oxford, Google’s
Inception model, and Microsoft’s ResNet model. Another popular approach is to use
models that have excelled in various detection tasks, such as those in the COCO dataset.
Examples of such pre-trained models include Faster R-CNN developed by Microsoft Re-
search, RetinaNet, and YOLO (You Only Look Once) [22].

2.11 Object detection : Algorithms and classification

Object detection algorithms are tools used in computer vision to identify and locate objects
within images or videos. They enable machines to recognize multiple objects simultaneously,
which is essential for tasks like autonomous driving, surveillance, and image analysis. These
algorithms have evolved from methods like R-CNN, which processes regions of interest se-
quentially, to newer approaches such as YOLO and SSD, which optimize speed and accuracy
by processing the entire image in a single pass through a neural network. Each algorithm offers
unique advantages suited to different applications, driving advancements in object recognition
technology.

Algorithms for object detection can be categorized into twomain types: classification-based
algorithms and regression-based algorithms.

• Classification-based algorithms: These algorithms operate in two stages. Firstly, re-
gions of interest (RoI) are identified within the image. Then, these regions undergo classi-
fication using a convolutional neural network (CNN). However, this sequential approach
can be slow because it requires running prediction algorithms on each selected region
individually. Examples of classification-based algorithms include RetinaNet, Region-
based CNN (RCNN), Fast-RCNN, Faster R-CNN, andMask-RCNN, which is considered
state-of-the-art among regional-based CNN algorithms.

• Regression-based algorithms: In contrast, regression-based algorithms predict classes
and bounding boxes for the entire image in a single pass through the model, eliminating
the need for region selection. Since object detection is treated as a regression problem,
these algorithms do not require complex pipelines. Notable examples of regression-based
algorithms include the Single Shot Multibox Detector (SSD) and YOLO algorithms. Due
to their ability to simultaneously detect objects and their high-speed nature (although with
a tradeoff in accuracy), they are commonly used for real-time object detection. Under-
standing YOLO algorithms requires defining the objects to be predicted beforehand, with
predictions resulting in bounding boxes specifying object locations and the most probable
class.

• YOU ONLY LOOK ONCE (YOLO) ALGORITHM

YOLO represents a novel approach to real-time object detection, capable of identifying



CHAPTER 2. THEORETICAL FRAMEWORK / IMAGE PROCESSING
TECHNIQUES 31

multiple objects in an image while delineating bounding boxes around them. In the fol-
lowing sections, we will delve deeper into the workings and applications of YOLO.

Table 2.1: Comparison between R-CNN and YOLO

2.12 You Only Look Once (YOLO)

The YOLO algorithm is a pioneering object detection method that has significantly advanced
the field of computer vision. Unlike traditional object detection systems that involve multiple
stages of processing, YOLO simplifies the task by predicting bounding boxes and class proba-
bilities for objects within an image in a single pass. This innovative approach allows YOLO to
achieve real-time performance with high accuracy, making it an essential tool for various appli-
cations, from autonomous driving and surveillance systems to industrial inspection and medical
imaging. YOLO’s efficiency and versatility have set a new standard in object detection tech-
nology, enabling rapid and precise identification of multiple objects in complex scenes.

2.12.1 YOLO Architecture

YOLO is built entirely on convolutional layers, distinguishing it as a fully convolutional net-
work (FCN). In YOLO v3, a significant advancement was introduced with Darknet-53, a deep
feature extractor consisting of 53 convolutional layers. Each layer is followed by batch normal-
ization and leaky ReLU activation. Unlike traditional networks, YOLO avoids pooling layers to
preserve low-level features and utilizes convolutional layers with a stride of 2 for downsampling
feature maps.

YOLO maintains scale invariance with respect to input image size, although in practical
applications, consistent input sizes are typically preferred due to implementation considerations.
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Batch processing poses a challenge in ensuring all images within a batch have identical
dimensions (height and width). This uniformity is crucial for leveraging GPU parallelism and
optimizing processing speed.

The network achieves downsampling using a stride parameter, where the stride value deter-
mines how much the input image size is reduced at each layer. For example, a network with a
stride of 32 would reduce an input image of size 416 x 416 to an output size of 13 x 13, where
each value indicates the network’s stride length relative to the input image size.

Table 2.2: Darknet-53 Model

YOLO is scale-invariant regarding input image size. However, in practical applications,
maintaining a consistent input size is often preferable due to implementation challenges.

One such challenge arises when processing images in batches, where all images within
a batch must have fixed height and width dimensions. This standardization allows parallel
processing by GPUs, significantly enhancing processing speed.

The network downsamples images using a parameter known as the network’s stride. For
instance, if the network’s stride is 32, an input image of size 416 x 416 will produce an output
size of 13 x 13. Typically, the stride length of a network layer equals the factor by which the
layer’s output dimensions are reduced compared to the input image size.

2.12.2 Interpretation of the prediction

The input is a batch of images in the shape (m, 416, 416, 3).
The output is a list of bounding boxes with recognized classes. Each bounding box is rep-

resented by 6 numbers (pc, bx, by, bh, bw, c). If we expand c into an 80-dimensional vector,
each bounding box is then represented by 85 numbers.
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As with all object detectors, features learned by convolutional layers are passed to a classi-
fier/regressor that performs detection prediction (bounding box coordinates, class label, etc.).

In YOLO, prediction is made using a convolutional layer that employs 1x1 convolutions.
Thus, the first thing to note is that our output is a feature map. Since we used 1x1 convolutions,
the size of the predictionmap is exactly the size of the feature map that precedes it. In YOLO v3,
the way to interpret this prediction map is that each cell can predict a fixed number of bounding
boxes.

For instance, if we have inputs (B x (5 + C)) in the feature map. B represents the number
of bounding boxes each cell can predict. According to the paper, each of these bounding boxes
B can specialize in detecting a certain type of object. Each bounding box has attributes 5 +
C, describing center coordinates, dimensions, objectiveness score, and C class confidences for
each bounding box. YOLO v3 predicts 3 bounding boxes for each cell.

We expect each cell in the feature map to predict an object through one of its bounding
boxes if the object’s center falls within the cell’s receptive field.

This relates to how YOLO is trained, where a single bounding box is responsible for detect-
ing a given object. Initially, we determine which cell this bounding box belongs to.

To do this, we divide the input image into a grid of dimensions equal to those of the final
featuremap. Consider the example below, where the input image is 416 x 416, and the network’s
stride length is 32. As mentioned earlier, the dimensions of the feature map will be 13 x 13. We
then divide the input image into cells of 13 x 13.

Next, the cell (on the input image) containing the center of the ground truth bounding box
of an object is chosen to be responsible for predicting the object. In the image, this is the cell
marked in red, which contains the center of the ground truth bounding box (marked in yellow).

The red cell is the 7th cell in the 7th row of the grid. after that we assign the 7th cell of the
7th row of the feature map (corresponding cell in the feature map) as the one responsible for
detecting the object.

This cell can predict three bounding boxes. One of these will be assigned the object label.
To understand this, we need to delve into the concept of anchors. (Note that the cell we are
discussing here is a cell in the prediction feature map. We divide the input image into a grid to
determine which cell in the prediction feature map is responsible for the prediction).

Figure 2.17: The attributes of bounding boxes
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2.12.3 Anchor Boxes and Prediction

Predicting the width and height of bounding boxes directly can lead to unstable gradients during
training. Instead, modern object detectors often predict log-space transformations or offsets to
default predefined bounding boxes called anchors.

These transformations are then applied to the anchor boxes to make predictions. YOLO v3
utilizes three anchors, allowing it to predict three bounding boxes per grid cell.

Anchors are predefined bounding boxes calculated on datasets like COCO. The width and
height of the box are predicted as offsets from the centroid of the cluster. The center coordinates
of the box relative to the grid cell location are predicted using a sigmoid function.

The following formula describes how the network output is transformed to obtain bounding
box predictions:

Image for post:
Here bx,by,bw,bh are the center coordinates (x, y), width, and height of our prediction.

tx, ty, tw, th is what the network produces. cx and cy are the coordinates of the top-left corner of
the grid. pw and ph are the anchor box dimensions.

Center Coordinates:
We use a sigmoid function to predict the center coordinates. Normally, YOLO doesn’t

predict the absolute coordinates of the bounding box center. Instead, it predicts offsets that are:
Relative to the top-left corner of the grid cell predicting the object. Normalized by the

dimensions of the feature map cell, i.e., 1.
Take, for example, our rose image case above. If the predicted center coordinates are (0.4,

0.7), this means the center is at (6.4, 6.7) on the 13 x 13 feature map. (Since the top-left coor-
dinates of the red square are (6, 6)).

But wait, what happens if the predicted x and y coordinates are greater than one, for example,
(1.2, 0.7)? This means the center is at (7.2, 6.7). The center is in the cell just to the right of our
red cell, or in the 8th cell of the 7th row. This breaks YOLO’s theory because if we assume the
red cell is responsible for predicting the rose, the rose’s center must lie within the red cell, not
the adjacent one. To address this issue, the output is passed through a sigmoid function, which
squashes the output into a range of 0 to 1, effectively keeping the center within the predicted
grid cell.

2.12.4 Processing Outputs (Filtering with Class Score Threshold)

For an image of size 416 x 416, YOLO predicts ((52 x 52) + (26 x 26) + 13 x 13)) x 3 = 10647
bounding boxes. However, in the case of our image, there is only one object, a rose. So, you
might wonder how to reduce detections from 10647 to 1?

Firstly, we filter the boxes based on their confidence score. Generally, boxes with a score
below a threshold (e.g., less than 0.5) are ignored. Next, Non-Maximum Suppression (NMS)
addresses the issue of multiple detections of the same object in an image. For instance, the 3
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neighboring boxes of the red grid might detect one box or adjacent boxes might detect the same
object after eliminating multiple detections.

More precisely, we will perform these steps:

• Remove boxes with low scores (i.e., the box is not very confident about detecting a class).

• Select only one boxwhenmultiple boxes overlap and detect the same object (Non-Maximum
Suppression).

Initially, we apply a thresholding filter. We want to eliminate any box for which the class
”score” is lower than a chosen threshold.

Themodel gives us a total of 19x19x5x85 numbers, with each box described by 85 numbers.
It will be convenient to rearrange the tensor dimensional (19,19,5,85) (or (19,19,425)) in the
following variables:

• box_confidence: tensor of shape (19×19,5,1) containing pc (probability confidence that
there is an object) for each of the 5 predicted boxes in each of the 19x19 cells.

• boxes: tensor of shape (19×19,5,4) containing (bx,by,bh,bw) for each of the 5 boxes per
cell.

• box_class_probs: tensor of shape (19×19,5,80) containing detection probabilities (c1,c2, ...,c80)
for each of the 80 classes for each of the 5 boxes per cell.

Even after filtering by class score threshold, we end up with many overlapping boxes. A
second filter to select the correct boxes is called NMS. NMS uses the very important function
called ”Intersection over Union (IoU)”,

2.12.5 Implementation of the agreement protocol

To define a box, we use its two corners (top-left and bottom-right) coordinates: (x1,y1,x2,y2)
instead of the midpoint with height/width.

To calculate the area of a rectangle, multiply its height (y2− y1) by its width (x2− x1).
We also need to find the coordinates (xi1,yi1,xi2,yi2) of the intersection of two boxes:

1. xi1 = max(x1 coordinates of the two boxes)

2. yi1 = max(y1 coordinates of the two boxes)

3. xi2 = min(x2 coordinates of the two boxes)

4. yi2 = min(y2 coordinates of the two boxes)

Arguments:

• case1: first box, defined by coordinates (x1,y1,x2,y2)
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• case2: second box, defined by coordinates (x1,y1,x2,y2)

xi1 = max(case1[0],case2[0])

yi1 = max(case1[1],case2[1])

xi2 = min(case1[2],case2[2])

yi2 = min(case1[3],case2[3])

inter_area= (xi2− xi1)× (yi2− yi1)

To calculate the Union(A, B):

box1_area= (box1[2]−box1[0])× (box1[3]−box1[1])

box2_area= (box2[2]−box2[0])× (box2[3]−box2[1])

union_area= box1_area+box2_area− inter_area

IoU is calculated as:
IoU =

inter_area
union_area

To implement non-maximum suppression, follow these key steps:

• Select the box with the highest score.

• Calculate its overlap with all other boxes, and remove boxes that overlap more than the
iou_threshold.

• Return to step 1 and repeat until no boxes with a score lower than the currently selected
box remain.

These steps ensure removing boxes that significantly overlap with selected boxes, retaining
only the ”best” boxes.

2.13 Comparison between versions of YOLO

The latest iteration of YOLO is its third version, developed to enhance object detection accuracy
compared to previous versions.

• YOLO V1:

The first version, introduced in 2015, trained on the ImageNet-1000 dataset. YOLO
V1 struggled with identifying small grouped objects and was ineffective at generalizing
objects of varying sizes within images, resulting in inaccurate object localization.
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Figure 2.18: Non-maximum suppression filter

• YOLO V2:

Released in 2016 as YOLO9000, YOLO V2 featured a 19-layer network with an addi-
tional 11 layers dedicated to object detection. It aimed to support Faster R-CNN and
Single Shot MultiBox Detector (SSD), which achieved better object detection scores.

• YOLO V3:

YOLOV3 represents a progressive upgrade over YOLOV2. This architecture consists of
53 layers trained on ImageNet and another 53 layers dedicated to object detection, totaling
106 layers. While significantly improving network accuracy, it reduced processing speed
from 45 to 30 frames per second.

• YOLO v4 :
YOLO v4, the latest version released in 2020, incorporates advancements to further en-
hance object detection performance. It introduces a redesigned backbone network, en-
hanced feature pyramid, and improved training techniques such as mosaic data augmen-
tation and multi-scale training. YOLOv4 aims to achieve state-of-the-art results in terms
of both accuracy and speed in object detection tasks.

YOLOv5 vs YOLOv4:

There is no research paper published for YOLOv5 from which we can drive the advantages
and disadvantages of the model. However,some AI practitioners have tested the performance of
YOLOv5 on many benchmarks, bellow is the summary of the benchmarks made by roboflow
after a discussion with the author of the model.

YOLOv5 Architecture

YOLOv5 was released with five different sizes:

• n for extra small (nano) size model.
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• s for small size model.

• m for medium size model.

• l for large size model

• x for extra large size model

Figure 2.19: Performance of YOLOv5 different sizes models

Figure 2.20: YOLOv5 is faster to train than YOLOv4
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2.14 Conclusion

In this chapter, we explored the development and application of visual inspection systems
for PCBs. These systems are integral to maintaining the quality and functionality of PCBs in
modern electronics. We outlined the three main stages of a typical VIS: detecting defects at
the track level, verifying the presence and proper placement of components, and assessing the
quality of solder joints.

Each stage of the inspection process involves sophisticated modules that work in tandem
to capture, preprocess, analyze, and evaluate PCB images. The integration of advanced tech-
niques such as deep learning and neural networks has significantly enhanced the accuracy and
efficiency of these inspections. Deep learning, in particular, offers the capability to automati-
cally extract intricate features from large datasets of PCB images, identify subtle defects, and
adapt to various scenarios and defect types.

The transition from traditionalmanual inspectionmethods to automated deep learning-based
systems has brought about numerous benefits, including faster inspection times, increased pro-
duction throughput, reduced labor costs, and continuous improvement in defect detection ac-
curacy. As we continue to advance in this field, the potential for further enhancements in PCB
inspection technology remains substantial, promising even greater precision and reliability in
the quality control of electronic components.
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Chapter 3

PCBs VI based on advanced image
processing and YOLO training

3.1 Introduction

In this chapter, we explore the application of advanced image processing and AI tech-
niques for the automated visual inspection of PCBs, aiming to create a robust system for detect-
ing defects at the track level , verifying component placement, and assessing solder joint quality.
The chapter begins with an overview of the system architecture, outlining the interconnections
between various components and modules.

It then describes the image acquisition setup, crucial for capturing high-quality images suit-
able for inspection, followed by the image preprocessing techniques used to enhance these im-
ages for further analysis. The core of the chapter focuses on implementing the YOLO algo-
rithm for defect detection at the track level, detailing the training process, dataset preparation,
and model performance. Additionally, it covers methods for component localization to ensure
correct placement according to design specifications.

The YOLOv5 algorithm’s application for solder quality inspection is also discussed, ex-
plaining how it identifies and classifies solder joints as acceptable or defective. The integration
of these modules into a cohesive system is then examined, emphasizing seamless data flow and
interaction between different inspection stages.

Finally, the chapter presents the inspection system’s results, including performance metrics
such as accuracy, precision, recall, and F1-score, and provides examples of detected defects to
illustrate the system’s effectiveness.

3.2 System Overview

Our VIS consists of three stages, the first stage detects defects on the track level, the
second stage detects the presence and proper placement of components and the last stage checks
the solder quality. Each stage is composed of different modules that work together to capture,
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preprocess, analyze, and assess images of the PCBs.
at the end of the chapter we present the GUI of the three stages.

Figure 3.1: High-Level system architecture

3.3 The common component across the three stages

The proposed VIS employs the same initial two components across both the first and second
stages:

• Image Acquisition and Preprocessing: This component involves capturing and preparing
images for further analysis.

• Mode Selection and Test Image Registration: Here, the system selects operational modes
and aligns the test image for registration.

Both of these components heavily depend on the SIFT algorithm for tasks such as image
registration, template matching, and image comparison.

In this section, we will delve into these concepts. Following that, we will explain the first
two components of both stages:

The system utilizes the SIFT algorithm to achieve three primary objectives:

• Image Registration: Aligning two images for precise comparison.

• Template Matching: Identifying specific patterns or templates within images.

• Image comparison : Comparing and identifying matches within a set of images.

3.3.1 Image registration

Image registration is crucial for aligning the test image with the reference image, enabling
accurate comparison and defect detection. This process corrects any misalignment caused by
positioning differences during image capture, ensuring precise overlay of the test and the refer-
ence image.
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Implementation :

For our PCB inspection system, we utilized feature-based and transform-based registration
methods to achieve high precision and robustness. The steps involved are:

1. Keypoint Detection: Detect key points in both the test and reference images using the
SIFT algorithm.

2. Feature Matching : Match the detected key points using a descriptor matcher .

3. Transformation Estimation: Estimate the transformation matrix using the matched key
points.

Figure 3.2: Keypoints extraction from the Test and the reference images

Figure 3.3: keypoints matching and test images registeration
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3.3.2 Template Matching

After calculating the transformation matrix H using matched keypoints between the tem-
plate and reference images, the next step involves applying this matrix to align the images
accurately.To find the template in the reference image, we use the transformation matrix H to
calculate the transformed coordinates of the four corners of the template . By doing so, we can
accurately locate the template within the reference image.

Figure 3.4: SIFT template matching

3.3.3 Image comparison

Finding a lot of good keypoint between two images using the SIFT algorithm indicates that
the images share significant visual similarities.In the context of image comparison it means that
they represent the same image.

Figure 3.5: Comparing two different im-
ages - almost no BKPN -

Figure 3.6: Comparing the same image - a
lot of BKPN -

In the previous examples, we demonstrated how SIFT can be used for aligning two pictures,
performing template matching, and identifying the match of an image within a group of images.
To accomplish this task, we need to calculate the transformation matrix H and the number of
good points. The Figure 3.7 diagram explains the whole process.
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Figure 3.7: SIFT workflow

The process begins with the selection of a Test image File and a Reference Image File.

First, SIFT is applied to both the test image and the reference image to extract features, re-
sulting in two tables: the Test Image Attributes Table and the Reference Image Attributes Table.
These tables contain the detected keypoints and their corresponding descriptors for each image.
Next, a similarity estimation is performed by comparing the descriptors from the test image
with those from the reference image, creating a Distances Table that quantifies the similarity
between each pair of keypoints.

To refine these comparisons, the K-Nearest Neighbors (KNN) algorithm is used to find the
closest keypoints for each point in the test image. Following this, a ratio test is applied to se-
lect the best matches. The ratio test involves comparing the distance of the closest match to
the distance of the second closest match and retaining matches that meet a predefined thresh-
old, usually 0.75. This process yields a set of Best keypoint Numver Pairsb(BKPN) that are
considered reliable matches which we going to use in the image matching .

These BKPN are then used for image matching, which involves determining the degree
of similarity and alignment between the test image and the reference image. Subsequently,
a transformation matrix H is calculated. This matrix captures the geometric transformation
needed to align the test image with the reference image based on the matched keypoints.

After explaining the SIFT workflow and its applications, we will now delve into the initial
two components of the first and second stages: image acquisition and preprocessing, and model
selection and test image registration.
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3.4 Image Acquisition and preprocessing

The image acquisition setup consists of high-resolution CMOS cameras and LED lighting
configured to capture detailed images of PCBs. The cameras are positioned to provide a com-
prehensive view of the PCB surface, ensuring that even the smallest defects are visible. Pre-
processing techniques such as Gaussian filtering for noise reduction, histogram equalization for
contrast enhancement, and normalization are applied to the raw images. These steps enhance
important features and reduce noise, preparing the images for further analysis.

3.5 Mode selection and Test image registration

Our system operates in two modes, The first mode allows a worker to manually set a ref-
erence template, which is then used to compare all subsequent PCBs to identify defects. In
the second, automatic mode, the system autonomously sets the reference image by comparing
the test image against a dataset of images. This comparison helps in determining the reference
image. The autonomous reference image selection is based on the SIFT algorithm introduced
in the previous section. The following three diagrams explain the entire process of setting the
reference images for defect detection. This concept is used in both the first and second stages.

Figure 3.8: Mode selection

Figure 3.8 shows the mode selection diagram, which takes the mode as an input and then
chooses between an automatic mode or a manual mode, both of which are explained in the next
two sections.
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Figure 3.9: Automatic reference image selection

3.5.1 Automatic mode

The process begins with a Test Image File representing the potentially defective PCB and
a folder of reference images of known good PCBs. To automatically select the most suitable
reference image for the test image, the system iterates through each Reference Image in the
folder. For each reference image, features and keypoints are extracted from both the test image
and the current reference image. The number of best keypoints pairs (BKPN) between them is
calculated.

The system initializes variables for storing the maximum number of BKPN found, referred
to as KPN_max , and the Registered Test Image. As the loop progresses, if the number of
BKPN between the Test Image and the current Reference Image exceeds the current maximum
KPN_max, the system updates KPN_maxto the new maximum value. It also updates the reg-
istered Test Image to correspond to this reference image, and the variable k takes the value of
i.

After looping through all reference images, the system returns K and Reference image (k),
representing the most suitable reference image for the test image based on the highest number
of keypoints found. This process enables efficient selection of reference images for accurate
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defect detection and quality control in PCB manufacturing processes.

3.5.2 Manual mode

In manual mode, the process begins with a worker selecting a reference image from a folder
containing multiple reference images along with a test image file representing the potentially
defective PCB. The chosen reference image is then subjected to feature extraction using the
SIFT algorithm, which is also applied to the test image. Subsequently, the number of keypoints
extracted from both images is calculated. This count is compared against a predefined minimal
valueKPN_min set as a threshold.

If the number of keypoints in the test image exceeds KPN_min, indicating a sufficient level
of detail for comparison, the selected reference image is accepted. However, if the number of
keypoints falls belowKPN_min, implying insufficient visual information for accurate compar-
ison, an error message is displayed, indicating that the selected reference image is not suitable.
The worker receives feedback regarding the acceptance or rejection of the reference image and
can choose another reference image from the folder for comparison if necessary.

This iterative process continues until a suitable reference image is accepted, ensuring that
only reference images with a satisfactory level of detail are considered for further analysis.

Figure 3.10: Manual reference image selection
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3.6 The First Stage: Track defects

The first stage of our VIS focuses on detecting common PCB tracks defects such as shorts,
opens, mouse-bites, pinholes, and spurs. This stage combines advanced image processing tech-
niques and deep learning algorithms to ensure high accuracy and reliability in defect detection.
The primary methods employed include the YOLOv5 algorithm for real-time object detection
and various image processing algorithms, such as absolute difference, to validate and enhance
defect identification.

The following diagram shows the working mechanism of the first stage, where image acqui-
sition, mode selection, and test image registration are already mentioned in the section above.
In this section, we will discuss defect detection using YOLOv5 and how to enhance accuracy
using image processing algorithms such as absolute difference.

Figure 3.11: First stage global diagram

Defect detection at Track level

The process begins with a reference image and a registered test image , which is an image
of a potentially defective PCB that has been aligned with a reference image. Using the YOLO
algorithm, the system estimates probable defects and it information .

For each defect, the system defines a Region of Interest (ROI) in the test image. The ROI
focuses on the area around the detected defect. The system calculates the absolute difference
between the registred test image and the corresponding reference image.

Using the absolute difference calculation results, the system validates each defect. It de-
termines whether the detected defect is real by checking the difference against a threshold.
Validation metrics are calculated to assess whether a defect is significant. The validation metric
( VM ) is compared against a threshold value (S). If the metric exceeds the threshold, the defect
is considered validated.
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Figure 3.12: Defect detection

(a) Test PCB Image
(b) Absolute difference and
probable defect (c) Validated defects

Figure 3.13: Comparison of test PCB image, absolute difference, and validated defects

3.6.1 YOLO V5 model Training and Dataset preparation

Model training

The Deep PCB dataset comprises 1,500 pairs of images, each pair including a defect-free
template image and a corresponding annotated test image. These annotations mark the locations
of the six most common types of PCB defects: mouse bite, open, short, pinhole, spur, and
spurious copper.

For the annotated test images, each defect is represented with a bounding box aligned along
the axis, and each class of defect is assigned a unique ID . The images in the dataset are captured
using a CCD linear scan, achieving a resolution of approximately 48 pixels per millimeter. The
defect-free template images are manually checked and cleaned to ensure accuracy.

The original dimensions of the template and test images are approximately 16,000 x 16,000
pixels. To facilitate processing, these large images are divided into sub-images of 640 x 640
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pixels. These sub-images are then aligned with the template using image matching methods.
Illumination disturbances are mitigated through binarization, with carefully selected thresholds
to enhance consistency.

Dataset Transformation for YOLOv5 Training

To train the YOLOv5 model for defect detection in PCBs, we transformed a COCO (Com-
mon Objects in Context) dataset to be compatible with YOLOv5 requirements. The COCO
dataset format, widely used for object detection tasks, requires conversion to YOLO format to
ensure the model can effectively learn and detect the specific defects in PCBs.

COCO Dataset Format

The COCO dataset format is a standard in the computer vision community, featuring im-
ages annotated with object instances, including bounding boxes, segmentation masks, and class
labels. The annotations are stored in JSON files, detailing each object’s position and category.

• Images: The COCO dataset contains images of various sizes, each assigned a unique ID.

• Annotations: Each image is annotated with objects, represented by bounding boxes and
associated class labels.

• Categories: A list of object categories, each with a unique ID and name.

Conversion to YOLOv5 Format

The transformation process involves converting the COCO annotations to YOLOv5’s re-
quired format. YOLOv5 expects annotations in a text file where each line represents an object
in the image using the following format: class_id center_x center_y width height.

• Class ID: The ID of the object class (defect type).

• Center_x, Center_y: The normalized coordinates of the bounding box center (values
between 0 and 1).

• Width, Height: The normalized width and height of the bounding box (values between
0 and 1).

Steps for Conversion:

1. Parse COCO JSON Annotations:

• Extract image IDs, file names, and annotations (bounding boxes and class labels)
from the COCO JSON files.

2. Normalize Bounding Boxes:
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• Convert COCObounding box format (x_min, y_min, width, height) toYOLO
format (center_x, center_y, width, height).

• Normalize the coordinates by dividing by the image dimensions.

3. Create YOLO Annotation Files:

• For each image, create a corresponding text file with normalized bounding box co-
ordinates and class IDs.

Example of COCO to YOLOv5 Format Transformation

An annotation in the COCO format typically includes bounding box coordinates and a class
ID. For example:

{
"image_id": 1,
"category_id": 3,
"bbox": [100, 200, 50, 100]

}

In the YOLOv5 format, the bounding box is represented with the class ID and normalized
coordinates. Given an image of dimensions 1024x1024, the COCO annotation is transformed
as follows:

• Class ID: 3

• Center_x:

center_x=
x_min+ width

2
width_image

=
100+ 50

2
1024

=
100+25

1024
=

125
1024

≈ 0.1221

• Center_y:

center_y=
y_min+ height

2
height_image

=
200+ 100

2
1024

=
200+50

1024
=

250
1024

≈ 0.2441

• Width:
width=

width
width_image

=
50

1024
≈ 0.0488

• Height:
height=

height
height_image

=
100

1024
≈ 0.0977

Thus, the corresponding YOLOv5 annotation line is:

3 0.1221 0.2441 0.0488 0.0977
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3.6.2 Training

Example of Python Code for SIFT Feature Detection

1 RES_DIR = set_res_dir()
2 if TRAIN:
3 python train.py --data ../data.yaml --weights yolov5s.pt \
4 --img 640 --epochs {EPOCHS} --batch-size 16 --name {RES_DIR}

• ’–img’ 640 sets the input image size for training. The input images will be resized to a
square shape with a width and height of 640 pixels before being fed into the model for
training.

• ’–epochs’ specifies the number of training epochs, which in this code is equal to 25.

• ’–batch-size 16’ This argument sets the batch size for training to 16. The batch size
determines the number of samples processed simultaneously by the model during each
iteration of training

• ’–name {RES_DIR}’ This argument specifies a name for the training run, where {RES_DIR}
is a placeholder for a variable representing the name of the directory where the training
results will be saved.

Figure 3.14: Precision-recall and precision curve

The precision-recall curve illustrates the trade-off between precision and recall at various
classification thresholds. Precision measures the proportion of true positive detections among
all positive predictions, while recall measures the proportion of true positive detections among
all actual positive instances in the dataset. A higher precision indicates fewer false positives,
while a higher recall indicates fewer false negatives. The precision-recall curve provides insight
into howwell the model performs across different thresholds and can help determine the optimal
threshold for a specific task.



CHAPTER 3. PCBS VI BASED ON ADVANCED IMAGE PROCESSING AND YOLO
TRAINING 53

The F1 confidence curve combines precision and recall into a single metric, known as the
F1 score, which is the harmonic mean of precision and recall. The F1 score provides a balanced
measure of the model’s performance, considering both precision and recall. In our case, it’s
noteworthy that in the confidence curve, it displays for all classes a confidence level of 0.94 at
a threshold of 0.658. The F1 confidence curve plots the F1 score against different confidence
thresholds, showing how the model’s performance changes as the threshold for classifying de-
tections varies. A higher F1 score indicates better overall performance of the model.

3.6.3 First stage overall performance

In testingmyVIS, I selected 20 images to serve as test cases andmanually introduced defects
into each one. This process aimed to simulate real-world scenarios . After introducing defects,
I conducted a visual inspection of each image to assess how well the system identified these
defects.

I documented my findings in an Excel file, recording details such as image identifiers, de-
scriptions of defects, and the system’s performance in detecting them.

This structured approach not only evaluated the system’s accuracy in detecting visually
perceptible defects but also served as a benchmark for future improvements. By systematically
documenting and analyzing the results, I gained insights into the system’s strengths and areas
for enhancement, ensuring its reliability and effectiveness in practical applications of visual
inspection.

the results are calculated using the data table in Table 3.1 and the equations 3.1, 3.2, 3.3, 3.4,
and 3.5. The individual sample results are shown in the graph of Figure 3.16, and the overall
performance is illustrated in the radar chart in Figure 3.15.

Confusion Matrix Components

These metrics are derived from the confusion matrix, which consists of:

• TP (True Positives): Instances correctly predicted as positive.

• TN (True Negatives): Instances correctly predicted as negative.

• FP (False Positives): Instances incorrectly predicted as positive (actually negative).

• FN (False Negatives): Instances incorrectly predicted as negative (actually positive).
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Performance Metrics for AI Models

1. Accuracy

Accuracy=
Number of correct predictions
Total number of predictions

=
T P+T N

T P+T N +FP+FN
(3.1)

Description: Measures the proportion of correct predictions out of the total predictions made.

2. Precision

Precision=
T P

T P+FP
(3.2)

Description: Indicates how many of the positively predicted cases (TP + FP) are actually true
positives (TP).

3. Recall (Sensitivity or True Positive Rate)

Recall=
T P

T P+FN
(3.3)

Description: Measures the proportion of actual positives (TP + FN) that are correctly identified
as such (TP).

4. Specificity (True Negative Rate)

Specificity=
T N

T N +FP
(3.4)

Description: Measures the proportion of actual negatives (TN + FP) that are correctly identified
as such (TN).

5. F1 Score

F1 Score= 2× Precision×Recall
Precision+Recall

=
2×T P

2×T P+FP+FN
(3.5)

Description: The harmonicmean of precision and recall, providing a singlemetric that balances
between the two.

These metrics provide insights into different aspects of model performance: accuracy gives
an overall view, precision and recall focus on the positive class, specificity on the negative class,
and F1 score balances precision and recall.
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The Table 3.1 show the TP , TN , FP , FN values of the twenty images we tested.

Table 3.1: Performance summary across twenty images

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TP 5 6 4 7 8 7 6 9 9 10 12 11 13 6 10 3 3 5 6 6
TN 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
FP 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 2 0 0
FN 2 0 0 0 0 0 4 1 0 3 2 1 1 0 0 1 1 0 0 1

After performing the calculations using the equations and the data from Table 3.1, we ob-
tained the results for each sample, which are displayed in Graph 3.15

Figure 3.15: Individual performance evaluation

Using the performance metrics of each sample, we concluded the overall performance of
the first stage shown in the radar chart Figure 3.16 .
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Figure 3.16: First stage overall performance

The model demonstrates a high level of performance in PCB defect detection, with an accu-
racy of 91.27%, a precision of 95.42%, and a recall of 89.57%. The F1 score, which balances
precision and recall, is also high at 92.21%. These metrics indicate that the model is effective
in correctly identifying defective PCBs while maintaining a low rate of false positives and false
negatives. However, the model’s performance might vary depending on the specific application
and the relative importance of precision versus recall in that context.

3.7 Second Stage : Individual performance evaluation

In the second stage of the visual inspection process, the focus shifts to verifying the pres-
ence and proper placement of components on the PCBs. This stage plays a critical role in en-
suring the integrity and functionality of the PCB assembly, as any deviations from the specified
component positions can lead to operational failures or performance issues in the final product.

The following diagram illustrates the operational process of the second stage, building upon
the previously mentioned steps of image acquisition and preprocessing, mode selection and test
image registration, as outlined in the preceding section. Within this stage, we delve into the
verification of component presence and correct placement employing template matching tech-
niques. Specifically, we focus on utilizing SIFT for template matching, as well as employing
NCC (Normalized Cross-Correlation) for template matching.
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Figure 3.17: Second stage diagram

3.7.1 SIFT template matching

As shown in Figure 3.16, the template matching process begins with a reference template
image and a corresponding test image. These images undergo SIFT analysis to compute the
number of keypoints (BKPN) and the transformation matrix (H) required for alignment.

Once we have the transformation matrix from SIFT, we need to find out where exactly the
template ends up in the test image. To do this, we take the corners of the template in the template
reference image and use the transformation matrix to see where they move to in the test image.
This transformation considers movements, rotations, and resizes the template to match it up
with the test image.

After the transformation, we get the new positions of these corners, which tell us where
the template is located within the test image. This helps us compare the template with the test
image accurately to check if all components are in place.

Figure 3.18: SIFT template matching doagram
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3.7.2 NCC template matching

Figure 3.19: NCC template matching diagram

In this step, we begin with a test image and a reference template image, aiming to perform
template matching using the NCC technique. The process involves an exhaustive search with
NCC across the test image to find the best match for the reference template. The result of this
search is represented by a Distances Table, which contains correlation values for each location
in the test image.

From this table, we extract the maximum correlation value along with its corresponding
coordinates, indicating the location of the template within the test image. Additionally, the
maximum correlation value serves as a measure of confidence in the accuracy of the template
matching process.

3.7.3 Component existence verification

Figure 3.20: Component existence verification
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The process begins with a test image file and a folder containing reference template images,
along with a table detailing each component’s template path and its corresponding coordinates
within the test image. Iterating through the table, each line is assigned a variable ’i’, prompting
the selection of the region of interest (ROI) from the test image based on the specified coordi-
nates.

Using the SIFT algorithm, features and keypoints are extracted from both the reference
template image and the ROI. The number of keypoints (BKPN) is compared against a predefined
minimum value KPN_min. Valid components, with BKPN surpassing KPN_min, are logged in
a valid component table using an incrementing variable ’k’.

For components with BKPN below KPN_min, further validation is performed using the
NCC technique. If the NCC value exceeds a predefined threshold (VM), the component is
deemed valid and added to the valid component table. Otherwise, it is marked as non-valid and
appended to the non-valid component table using an incrementing variable ’j’.

Once all components are processed, the valid and non-valid component tables are returned,
providing a comprehensive assessment of component existence within the PCB image.

3.7.4 Minimum number of features for valid registration KPN_min

In our VIS utilizing the SIFT method, we have set the minimum number of good key points
required for a registration to be valid to 30. This threshold is supported by extensive empirical
testing and relevant literature.

Although the study does not specify an exact threshold, the analysis suggests that using a
sufficient number of key points (typically within the range of 20-50) is crucial for achieving
reliable matches under various transformations and noise conditions. Therefore, setting the
minimum number of good key points(KPN_min)to 30 ensures that our system achieves robust
and accurate matching, while remaining computationally efficient.

Descriptor Performance: evaluated the performance of different descriptors under image
transformations such as scale changes, rotation, and noise. They found that descriptors like
SIFT perform well in maintaining robust matching performance across these variations.

Number of Key Points: While the paper does not specify an exact number of key points
required, their experiments typically involve matching hundreds of key points to evaluate per-
formance metrics. This implies the necessity of a reasonably high number of key points to
ensure reliable object recognition and matching [23].

3.7.5 Optimal NCC Threshold VM

In our Visual Inspection System , we have set the threshold for NCC to 0.7. This threshold
was chosen based on empirical testing and relevant literature, which suggests that a threshold
in the range of 0.7 to 0.9 provides a good balance between accuracy and robustness. Empirical
studies in image matching and pattern recognition typically use thresholds within this range to
ensure reliable matches while avoiding false positives. Therefore, by setting the NCC threshold
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to 0.7, we ensure that our system achieves a high degree of matching reliability, maintaining
both computational efficiency and accuracy.

Research papers and textbooks on image processing and computer vision often recommend
NCC thresholds in the range of 0.7 to 0.9. For example, in the book ”Digital Image Processing”
[24], NCC is discussed as a similarity measure, and typical threshold values around 0.7 to 0.8
are used in practice for template matching tasks. This range is considered optimal for balanc-
ing sensitivity and specificity, ensuring that the system reliably identifies true matches while
minimizing the risk of false positives. [25]

3.7.6 The Case for Using IROs in template matching

During the implementation of the SIFT and NCC methods, significant delays were observed
when comparing the template against the entire image. Both methods require substantial com-
putational resources, leading to slow performance, which is impractical for real-time applica-
tions.

The primary reason for the slow performance is the computational complexity of both SIFT
and NCC. SIFT involves detecting keypoints and computing descriptors, which is computa-
tionally intensive. NCC requires comparing pixel values over the entire image, which further
adds to the processing time. When applied to the whole image, the time complexity increases,
leading to inefficient processing times.

To address this issue, the comparison was limited to a specific Region of Interest (ROI)
where the template is likely to be located. This approach significantly reduces the number of
computations required, thereby speeding up the process.

The ROI was determined based on prior knowledge of the PCB layout, which allowed the
narrowing down of the area where the component (template) would be located. By extracting
this ROI, the SIFT and NCCmethods were applied only within this smaller area. This reduction
in the area of interest led to a decrease in the number of keypoints and descriptors in SIFT, as
well as the number of pixel comparisons in NCC, resulting in faster processing times.

For instance, if a specific component is known to be located in the upper-left quadrant of the
PCB, this quadrant is defined as the ROI, and computational processes are restricted to this area.
This targeted approach effectively decreases the computational load, enhancing the efficiency
of the VIS.
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Table 3.2: Template matching statistics

Method Full Image ROI
SIFT

Processing Time (ms) 140.55 93.73
Accuracy 469 390

NCC
Processing Time (ms) 15.62 0.0
Accuracy 0.9993 0.8440

Using an ROI significantly reduces the processing time for SIFT, highlighting the benefits
of focusing computational resources on smaller, relevant areas of the image. For NCC, the
accuracy within the ROI drops, indicating that careful selection and definition of the ROI are
crucial for maintaining high accuracy.

3.8 Third stage : Solder joint defects

The dataset used in the third stage of the model consists of 10,668 images of bare PCBs, each
depicting one of six common defects: missing holes, mouse bites, open circuits, short circuits,
spurs, and spurious copper. All images are resized from 600x600 to 608x608 for both training
and testing.

We utilize the trained YOLOv5model to detect open holes in the soldering process. The test
images are processed by the YOLOv5 model, which predicts bounding boxes and confidence
scores to identify and locate open holes. Detected open holes with confidence scores above a
predefined threshold are marked, facilitating efficient and accurate identification of soldering
defects. This stage ensures high-quality soldering by highlighting potential defects for further
inspection [26].

3.9 Visual Inspection SystemUserGraphical Interface (GUI)

Developing a Graphical User Interface (GUI) for a visual inspection system for PCBs is cru-
cial for enhancing usability, real-time monitoring, data management, and overall efficiency. A
well-designed GUI makes the system accessible to users with varying levels of technical ex-
pertise, reducing the need for extensive training and minimizing errors. It enables real-time
monitoring, allowing users to view the status of inspections, detect defects, and receive imme-
diate feedback. This feature is vital for quickly addressing issues in the manufacturing process.
Moreover, a GUI simplifies data management by providing easy access to historical inspection
data, facilitating trend analysis and informed decision-making. In this chapter, we will discuss
the GUI of our visual inspection system for the three stages.
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3.9.1 The main GUI Window

The main GUI (Figure 4.1) for our VIS is designed to make navigating through our PCB
inspection stages straightforward. It includes three clear buttons, each for a specific inspec-
tion step: detecting defects using YOLOv5 and image processing, verifying component pres-
ence and placement with SIFT and NCC template matching, and checking solder quality using
YOLOv5. Operators can easily start and monitor inspections with these buttons, which pro-
vide immediate visual feedback. This basic but friendly design simplifies operations, improves
efficiency, and ensures thorough quality control in PCB manufacturing. Having everything
in one place helps streamline workflow and makes it easier for operators to perform accurate
inspections.

Figure 3.21: Main GUI

First Stage GUI

The GUI for the first stage of our inspection system is designed to detect defects on PCBs.
It includes four main image panels: one for the original PCB image, one highlighting detected
defects, one showing potential defect locations with color differences, and one displaying con-
firmed issues. There is also a panel that shows each defect with a colored bounding box for
easy identification and classification.

Two checkboxes add more functions: one shows a table with defect coordinates and classi-
fications, and the other provides a step-by-step view of the inspection process. Users can load
test and reference images using dedicated buttons, choose between manual and automatic oper-
ation modes, and start the inspection with a start button. This setup helps operators efficiently
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find and confirm PCB defects, ensuring high-quality manufacturing.

Figure 3.22: First stage GUI

3.9.2 Second stage GUI

Our GUI for the second stage of the VIS features fouOur GUI for the second stage of the
VIS features four image labels: one for the reference image, one for the test image under anal-
ysis, one showing the mapped test image with green rectangles for found components and red
rectangles for missing or misplaced components, and one for the mapped reference image for
comparison. The interface includes four buttons: one to load the test image, one to load the
reference image, one to load a CSV file for data input, and a run button to start the inspection
process.

Users can select between different algorithms (NCC, SIFT, or both) for component detec-
tion using radio buttons. A text area is available to display detailed inspection reports, provid-
ing comprehensive feedback on component presence, placement accuracy, and any identified
issues. This setup allows for intuitive image comparison, automated detection using selected
algorithms, and detailed reporting, facilitating thorough visual inspections and analysis within
a single user-friendly interface.

3.9.3 Third Stage GUI

The GUI for the third stage of our inspection system focuses on assessing solder quality for
PCBs, providing a straightforward interface for operators. It features two primary elements: a
test image label that displays the original PCB image with an emphasis on solder joints, and a
test image with labeled defects that highlights areas of concern related to solder quality. Addi-
tionally, there is a text box that dynamically updates to list and count detected defects during
the inspection process, offering a clear summary of identified issues for efficient review and
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Figure 3.23: Second stage GUI

documentation. This setup allows operators to quickly assess soldering quality, make timely
adjustments, and ensure high standards in PCB manufacturing.

Figure 3.24: Third stage GUI

3.9.4 Conclusion

In this chapter, we explored the practical application of advanced image processing tech-
niques and YOLO algorithms for the automated visual inspection of PCBs. The primary ob-
jective was to develop a robust system capable of accurately detecting defects, verifying com-
ponent placement, and assessing solder joint quality. The system’s architecture was detailed,
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emphasizing the interconnection of various components and modules. Image acquisition and
preprocessing were crucial for capturing high-quality images suitable for analysis. The YOLO
algorithm was implemented for defect detection at the track level, and methods for component
localization were discussed to ensure correct component placement. Additionally, the appli-
cation of the YOLOv5 algorithm for solder quality inspection was elaborated, highlighting its
effectiveness in identifying and classifying solder joints. Performance metrics such as accu-
racy, precision, recall, and F1-score were provided to demonstrate the system’s effectiveness.
Examples of detected defects and inspected solder joints illustrated the practical applications
and benefits of the system.

Furthermore, the chapter detailed the GUIs developed for the VIS used in PCB manufactur-
ing. The system comprises three main stages, each with its own specific interface to streamline
operations and ensure high-quality inspections. The main GUI simplifies navigation through
inspection stages, allowing operators to initiate and monitor inspections easily. The first stage
GUI focuses on detecting defects on PCBs tracks, providing multiple image views and tools
for detailed defect analysis. The second stage GUI assists in verifying component presence and
placement , The third stage GUI evaluates solder quality, highlighting defects and providing
real-time updates for efficient review. Overall, the GUIs are designed to enhance operator ef-
ficiency, improve inspection accuracy, and maintain rigorous quality control standards in PCB
manufacturing.
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General Conclusion

The development of an advanced visual inspection system for printed circuit boards is cru-
cial for ensuring the quality and reliability of electronic devices. This system leverages high-
resolution cameras and sophisticated lighting setups to capture detailed images of PCBs, which
are then analyzed using advanced image processing techniques and deep learning algorithms.
The primary aim is to automate the defect detection process, enhancing the efficiency and ac-
curacy of quality control in PCB manufacturing.

The first stage of the system addresses defects at the track level, utilizing artificial intelli-
gence (AI) and image processing techniques to accurately locate and classify various types of
defects. This includes identifying issues such as missing holes, mouse bites, open circuits, short
circuits , spurs, and spurious copper. Advanced algorithms analyze high-resolution images of
the PCB tracks to detect these defects with precision.

The second stage focuses on verifying the presence and proper placement of components.
This involves checking that all specified components are present on the PCB and correctly
positioned according to the design specifications. This stage ensures that no components are
missing or misaligned, which is crucial for the proper functioning of the PCB.

The third stage evaluates the quality of the solder joints.
Together, these three stages form a comprehensive visual inspection system that signifi-

cantly enhances the quality control process for PCBs. By accurately detecting and classifying
defects, verifying component presence, and assessing solder quality, the system ensures that
only high-quality PCBs are used in electronic devices, improving their reliability and perfor-
mance across various applications.

Using pre-trained models, particularly the YOLO algorithm, the system can quickly and
accurately detect and classify defects. This approach significantly reduces the time and effort
required for manual inspections, allowing for real-time monitoring and quality assurance.

Overall, the implementation of this advanced VIS enhances the manufacturing process by
ensuring that only defect-free PCBs are used in electronic devices, thus improving the overall
quality and reliability of the products. This system not only boosts production efficiency but
also helps in maintaining high standards in the electronics industry .
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Abstract

Printed Circuit Boards (PCBs) are fundamental in electronic devices, connecting various
parts to form functional circuits. Inspecting these boards for defects is crucial for ensuring their
performance and reliability. This thesis concerned with the development of a Visual Inspection
System for PCBs using advanced image processing and deep learning(DL) techniques.

The system explores high-resolution images of PCBs. These images are then analyzed using
pattern recognition, edge detection, andmachine learning algorithms to detect defects. Themain
focus is on leveraging pre-trained deep learning models, particularly YOLO (You Only Look
Once), for automatic and early defect detection.
Key words:Printed circuit boards (PCBs), visual inspection, image processing, deep learning,
YOLO, defect detection.

ملخص

لتكوين مختلفة أجزاء تربط حيث الإلكترونية، الأجهزة في أساسية (PCBs) المطبوعة الدوائر لوحات تُعد
تتعلق وموثوقيتها. أدائها لضمان الأهمية بالغ أمرًا العيوب عن بحثًا اللوحات هذه فحص يُعد وظيفية. دوائر
الصور لمعالجة متقدمة تقنيات باستخدام المطبوعة الدارات للوحات بصري فحص نظام بتطوير الأطروحة هذه
تحليل ذلك بعد يتم الكلور. متعدد الفينيل ثنائي لمركبات الدقة عالية صور بمسح النظام يقوم العميق. والتعلم
لاكتشاف الآلي التعلم وخوارزميات الحواف واكتشاف الأنماط على التعرف خوارزميات باستخدام الصور هذه
YOLO نموذج سيما ولا مسبقاً، المدربة العميق التعلم نماذج استخدام على الرئيسي التركيز ينصب العيوب.

العيوب. عن والمبكر التلقائي للكشف فقط)، واحدة مرة انظر (أنت
العميق، والتعلم الصور، ومعالجة البصري، والفحص (PCBs)، المطبوعة الدوائر لوحات المفتاحية: الكلمات

الأعطال. واكتشاف YOLO، و

Résumé

Les cartes de circuits imprimés (PCBs) sont fondamentales dans les dispositifs électroniques,
connectant diverses parties pour former des circuits fonctionnels. L’inspection de ces cartes
pour détecter les défauts est cruciale pour garantir leur performance et leur fiabilité. Cette
thèse concerne le développement d’un système d’inspection visuelle pour les PCBs utilisant
des techniques avancées de traitement d’image et d’apprentissage profond.

Le système explore des images de haute résolution des PCBs. Ces images sont ensuite
analysées à l’aide de la reconnaissance de formes, de la détection des contours et d’algorithmes
d’apprentissage automatique pour détecter les défauts. L’accent principal estmis sur l’utilisation
demodèles d’apprentissage profond pré-entraînés, en particulier YOLO (YouOnly LookOnce),
pour la détection automatique et précoce des défauts.
Mots-clés: Cartes de circuits imprimés (PCBs), inspection visuelle, traitement d’image, ap-
prentissage profond, YOLO, détection de défauts.
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