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Abstract

This thesis presents the development of a smart glove system designed to translate

ASL gestures into text and speech. The system uses a combination of flex sensors

for finger movement detection, a module that combines accelerometer and a gyroscope

for hand gesture capture, and a microcontroller for data processing. Data from all

the sensors modules is acquired using an esp32, while the Raspberry Pi 4 is used for

executing a machine learning model based on Random Forest algorithms. This model

is trained with a dataset to recognize ASL gestures and convert them into text which

is then synthesized into speech using a TTS module. That glove aims to help the deaf

community to interact easily with the other categories of the society.Initial testings

showed successful results,future work will focus on improving the device’s capabilities

with other sign languages.

Keywords: machine learning ,microcontroller , Random forest , wireless commu-

nication , smart glove , sign language.

Résumé:

Cette thèse présente un gant intelligent traduisant les gestes ASL en texte et pa-

role. Il utilise des capteurs de fléxions , un accéléromètre, un gyroscope pour détecter

les mouvements, et un microcontrôleur pour le traitement des données. Un modèle

d’apprentissage automatique sur Raspberry Pi 4 reconnâıt et convertit les gestes en

texte, puis en parole avec un module TTS. Le gant aide la communauté sourde à

interagir plus facilement, avec des résultats positifs lors des premiers tests.

Mots-clés: apprentissage automatique, microcontrôleur, forêt aléatoire, commu-

nication sans fil, gant intelligent, langue des signes.
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General Introduction

The ability to communicate effectively is fundamental to human interaction. However,

for individuals who are deaf, spoken language and written text may not be accessi-

ble.ASL is a visual language used by many in the deaf community, but its understand-

ing and interpretation by those who are unfamiliar with it can be a challenge. This

issue shows the importance of finding new solutions.Motivated by this need, our project

consists of the development of a smart glove system designed to translate ASL gestures

into text and speech. The smart glove integrates a combination of flex sensors and

accelerometers to detect and interpret hand movements, along with a microcontroller

for data processing. A machine learning model based on Random Forest algorithms

is trained with a dataset to recognize ASL gestures and convert them into text. The

text is then synthesized into speech using a text-to-speech (TTS) module, providing a

comprehensive communication solution.

The smart glove is designed to improve communication between deaf and hearing

communities by providing a more accessible and inclusive way to communicate.

The thesis consists of three chapters. The first chapter covers the current state

of the art, smart gloves development, proposed approach, required material, machine

learning algorithms, and why random forest was chosen. It also mentions briefly the

internship journey. The second chapter explains how the glove was embedded, including

components wiring , machine learning algorithm details including its hyper-parameters,

and dataset pre-processing. The last chapter discusses the tests and results of the model

training.
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CHAPTER 1. STATE OF THE ART

1.1 Introduction

This chapter provides an overview of the current state-of-the-art in smart glove technol-

ogy for communication with deaf or hard-of-hearing individuals. The following sections

will explore the technical details of existing systems, including hardware and software

components

1.2 Literature Survey

.

The Table 1.1 below shows the existing literature on smart gloves and their appli-

cations in various fields.

Authors System Description Technology Accuracy Sign
Language

Jagannath
N.,

Manasa
V., T. V.
Prasad

Designed a smart glove using
IoT technology for capturing and
translating hand gestures [1] .

Flex sensors, accelerometer, gyroscope,
Wi-Fi or GSM for data transmission, hap-
tic feedback, speech output

85% Indian
Sign

Language

Muhammad
Rifki Kur-
niawan,
Ahmad
Hasibul
Hadi,
Siska

Novitasari

Developed a smart glove to trans-
late sign language into text or
speech, processed by an Arduino
board and transmitted via Blue-
tooth [2].

Flex sensors, accelerometer, gyro-
scope, Bluetooth

91.7% Indonesian
Sign

Language

S. Sruthi,
R.

Sivaran-
jani, S.
Sathya

Presented a smart glove using sen-
sor fusion techniques to improve
gesture recognition accuracy, in-
cluding a speech recognition mod-
ule [3].

Flex sensors, accelerometer, gy-
roscope, magnetometer, Arduino
board, fusion algorithm

97.5% Not
specified

Neven
Saleh,
Mostafa
Farghaly,
Eslam
Elshaaer

Developed a low-cost smart glove
system to recognize hand gestures
in Arabic sign language [4].

Flex sensors, triaxial MEMS mod-
ule (MPU-6050), Android applica-
tion

90% Arabic
Sign

Language

Sawant
Pramada,
Archana
Suhas
Vaidya

iscussed developing an algorithm
to accurately detect the number of
fingers opened in a gesture repre-
senting an alphabet in Binary Sign
Language [5].

Algorithm development for gesture
recognition

Not specified Binary
Sign

Language

Table 1.1: Literrature survey

One of The most advanced smart gloves in the world was created by Hadeel Ayoub,
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a 37-year-old Saudi Arabian woman. She is a London-based designer, programmer,

and researcher in human-computer interaction. This glove, the first of its kind, assists

deaf individuals without speech ability to communicate using any sign language they

prefer. It offers the flexibility to select from 40 different spoken languages.[6].

Figure 1.1: Hadeel Ayoub Figure 1.2: Brightsign smart glove

1.3 Machine learning

Our project is mainly based on machine learning with AI , hence let’s have a brief talk

about 3 algorithms : NN (Neural Network) , RF ( Random Forest ) and SVM (Support

Vector Machine) , the three of them are related to supervised learning which is a type

of machine learning where the model is trained on a labeled dataset[7]. In supervised

learning, each training example in the dataset consists of inputs and a corresponding

output. The goal of supervised learning is to learn a mapping from inputs to outputs,

so that the model can make predictions or decisions when given new, unseen data.

These details are illustrated in Figure 1.3

Figure 1.3: supervised learning Figure 1.4: unsupervised learning
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On the other side and as shown in Figure 1.4 , we have unsupervised learning,

which is also a type of machine learning that does not need any target labeled to be

specified, it just regroups patterns, and all similar dataset, it is really helpful when

dealing with quite large datasets.We can find many algorithms developed for this type

of learning like K-means , DBSCAN and Hierechial clustering.[8].

1. ANN: A neural network is a type of machine learning model that emulates

the decision-making process of the human brain. This is achieved by simulating

the interconnected behavior of biological neurons, enabling them to recognize

patterns, evaluate choices, and make decisions. Each neural network comprises

layers of nodes, or artificial neurons, including an input layer, one or more hidden

layers,(See Figure 1.5) and an output layer. Nodes are interconnected, each with

its own weight and threshold. When the output of a node exceeds its threshold,

it activates and transmits data to the next layer. Otherwise, the data is not

forwarded to the subsequent layer.[9].

Figure 1.5: Neural Network

2. SVM (Support Vector Machine): The Support Vector Machine (SVM) is a

supervised machine learning algorithm used for both classification and regression

tasks, although it is particularly well-suited for classification. Its primary goal is

to identify the optimal hyperplane within an N-dimensional space that effectively

separates data points into different classes in the feature space[10]. The algorithm
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aims to maximize the margin between the closest points of different classes as see

in Figure 1.6, with the dimension of the hyperplane determined by the number

of features. For instance, in the case of two input features, the hyperplane is a

line, while with three input features, it becomes a 2-D plane. However, visualizing

the hyperplane becomes challenging as the number of features exceeds three.

Figure 1.6: Support Vector Machine

3. Random Forests classification: Random Forest is an ensemble of Decision

Trees whereby the final/leaf node will be either the majority class for classification

problems or the average for regression problems. A random forest will grow many

classification trees and for each output from that tree, we say the tree ‘votes’ for

that class as shown in Figure 1.7.[11].

Figure 1.7: Random Forest
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1.4 Embedded platforms

1.4.1 Propsed methodology

This study aims to develop a smart glove system that translates American Sign Lan-

guage (ASL) gestures into text and speech. The system will utilize five flex sensors

to detect finger movements and a module integrating an accelerometer and gyroscope

(MPU6050 module) to capture hand gestures, all integrated into the glove. An ESP32

will be used for data acquisition from the flex sensors and MPU6050, transmitting the

collected data to a Raspberry Pi 4 via Wi-Fi. The Raspberry Pi 4 will handle more

advanced data processing tasks. An AI model based on Random Forest algorithms

will be trained using the sensors data to recognize ASL gestures and convert them into

text, which will then be synthesized into speech. The Figure 1.8 and Figure 1.9

show different American sign language expressions and alphabet.

Figure 1.8: Sign language common words Figure 1.9: American sign language alpha-
bet

1.4.2 Raspberry pi 4 over Arduino

According to literature survey, smart gloves have been developed using Raspberry Pi

and Arduino. The focus of our approach is primarily on Raspberry Pi, specifically the

Raspberry Pi 4 Model B. We chose it because it is well-suited for training machine

learning models,Additionally, Raspberry Pi provides advantages in terms of processing

power and connectivity when compared to Arduino. The table 1.2 provided below

summarizes the key reasons for choosing Raspberry Pi over Arduino for our project.
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Figure 1.10: Raspberry Pi & Arduino Uno

Feature Raspberry Pi 4 Model B
(4GB RAM)

Arduino

Processor Quad-core Cortex-A72
(ARM v8) 64-bit SoC @

1.5GHz

Varies by model (e.g.,
ATmega328P on Uno)

RAM 4GB LPDDR4 None (memory is onboard
the microcontroller)

Storage MicroSD slot for loading
OS and data storage

No onboard storage, uses
external EEPROM

Operating System Runs full Linux
distributions (e.g.,

Raspbian)

No OS, runs simple
firmware

Connectivity Gigabit Ethernet, Wi-Fi
802.11ac, Bluetooth 5.0

Limited (usually requires
external modules)

USB Ports 2 x USB 3.0, 2 x USB 2.0 Typically none or limited
GPIO Pins 40-pin header Varies by model (e.g., 14

digital, 6 analog on Uno)
Video Output 2 x micro-HDMI ports,

supports dual 4K monitors
None

Power Supply 5V via USB-C or GPIO
header

Varies (e.g., USB or barrel
jack)

Development Environment Supports various IDEs,
programming languages

Arduino IDE, C/C++

Typical Use Cases Full-fledged computer,
media center, server, IoT

Embedded systems, simple
robotics, IoT

Cost Generally higher than
Arduino

Generally lower than
Raspberry Pi

Table 1.2: Raspberry pi Vs Arduino Uno
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Now, let us see the list of materials needed to realize the project:

Raspberry pi 4 model B : The Raspberry Pi 4 is a popular single-board com-

puter (SBC) developed by the Raspberry Pi Foundation as shown in Figure 1.11. It

is the fourth generation of the Raspberry Pi series and offers improved performance

and features compared to its predecessors[12]. The model B has:

Figure 1.11: Raspberry pi 4 model B

Figure 1.12: Raspberry pi 4 model B Pinout

1. Processor: Quad-core ARM Cortex-A72 (64-bit) processor running at 1.5GHz.

2. Memory: Options for 2GB, 4GB, or 8GB of LPDDR4 RAM.

9
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3. Connectivity: Dual-band 802.11ac wireless networking (Wi-Fi), Bluetooth 5.0,

Gigabit Ethernet, and USB 3.0 ports.

4. Video Output: Dual micro-HDMI ports supporting up to 4K resolution.

5. GPIO: 40-pin GPIO header for connecting external devices and components.

6. Storage: MicroSD card slot for operating system and data storage.

7. Power: USB-C power port for powering the device.

Esp32 Wroom S3 : The Figure 1.13 shows an ESP32 which is a microcontroller

manufactured by Espressif Systems, featuring the ESP32 chip with integrated WiFi

and Bluetooth. The microcontroller boasts a dual-core processor utilizing the Xtensa

LX7 architecture, operating at a clock speed of 240 MHz and equipped with 4Mb of

memory[13]. Its sixteen 12 bits adc channel and ability to communicate with other

boards wirelessly make it the better choice for our project as the board has:

1. Processor: Dual-core Xtensa® LX7 microcontroller, operating at up to 240 MHz.

2. RAM: 512 KB internal SRAM.

3. ROM: 384 KB of ROM for bootloader, security functions, and library functions.

4. Flash: Typically 4 MB (external), used for program storage.

5. Cache: 16 KB of instruction cache and 8 KB of data cache.

Figure 1.13: ESP32 Wroom S3
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Figure 1.14: Esp32 Wroom S3 pinout

flex sensor 2.2 sen-10264: Flex sensor 2.2” (SEN-10264) is a type of bend

sensor that changes its resistance (25K Ohms ±30%)based on the degree of bending.

It is 2.2 inches (56mm) in length and is typically used to detect the bending of fingers

or other objects.[14].

Figure 1.15: flex sensor 2.2 inch

MPU6050 Module: the MPU6050 sensor module is a complete 6-axis motion

tracking device. It combines 3-axis Gyroscope, 3-axis accelerometer and Digital Motion

Processor all in small package. Also, it has additional feature of an on-chip Temperature

sensor. It has I2C bus interface to communicate with the microcontrollers.[15]. This

module is used to detect hand gesture movement and orientation.
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Figure 1.16: MPU6050 (accelerometer & gyroscope)

As mentioned in section 1.4.1 that in our thesis , Random Forest algorithms were

chosen and that’s for the following reasons:

1. Over-fitting : comparing to NN and SVM , Random forests deals with the

problem of overfitting by creating multiple trees, with each tree trained slightly

differently so it overfits differently.This makes random forest very robust to over-

fitting and able to handle complex relationships between the features and the

target variable.[16].

2. High and stable accuracy: Random Forest’s high accuracy stems from its

ability to handle both classification and regression tasks effectively. It can handle

large datasets with high dimensionality and is less prone to overfitting compared

to individual decision trees.[17].

3. Less training time : Random Forests can be parallelized, allowing the indi-

vidual decision trees to be trained simultaneously on different subsets of the data.

This parallelization can significantly reduce the overall training time, especially

on multi-core or distributed computing systems.[18].

4. Ability to estimate missing data: Random Forests have the ability to esti-

mate missing data, making them a useful choice for datasets with incomplete in-

formation. When training a Random Forest model, missing values in the dataset

do not need to be imputed or filled in beforehand, as the algorithm can handle

missing data internally during the training process.[19].

Random Forest algorithms often provide excellent results when working with tab-

ular datasets. Tabular datasets are structured data organized into rows and columns,
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where each column represents a feature or attribute, and each row represents an indi-

vidual data point or observation[20].They are well-suited for tabular data because they

can handle a mix of categorical and numerical features which is the case of the used

dataset.

1.5 Internship experience at STREAM

In addition to the theoretical exploration , the internship has been for a month in

STREAM which is an algerian company that manufactures electronic devices such as

smart phones and televisions , it has the leadership in the country with exportation

to different european countries including Germany and France. I have been in Bomare

company which is a affiliate. There are three departments :

Figure 1.17: STREAM System Figure 1.18: Algeria-Korea partnership cer-
tificate

1.5.1 Assembling Unit

in this unit , the product is ready , it just needs to be covered up and sold to the

clients.

1.5.2 PCB Production unit

the PCBs are imported from China , all they do is soldering electronic components

into the board with specific machines and that includes soldering , and then physical

inspection of the produced boards.

1.5.3 Repairing Unit

they do repair all clients electronic devices , there is also another department that takes

in charge the industrial project development

13
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Figure 1.19: PCB Production uni Figure 1.20: PCB Production uni

Figure 1.21: PCB Production uni Figure 1.22: PCB Production uni
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1.6 Conclusion

In conclusion, the first chapter of our thesis has provided a comprehensive overview

of our research topic, focusing on the development of a smart glove for American

Sign Language (ASL) translation.Additionally, we talked briefly about the proposed

methodology, including the algorithms and components that will be used. The next

chapter would give bright details concerning the methodology and and sign language

to speech synthesizer design.
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CHAPTER 2. EMBEDDED SIGN LANGUAGE TO SPEECH SYNTHESIZER
DESIGN

2.1 Introduction

In this chapter, we will provide further details about the approach used in developing

this project, including specifics about the software and hardware used.

2.2 System block diagram and flowchart

The Figure 2.1 shows a ”Smart Glove System” created to convert sign language into

text and speech, improving communication for people with hearing impairments. The

glove has five flex sensors to detect finger movements, and an MPU6050 sensor records

the hand’s position and movements. These sensors transfer information to the ESP32

Wroom S3 microcontroller and then , the microcontroller processes the data and sends

it wirelessly to a Raspberry Pi 4 Model B that contains a machine learning model

which interprets the sign language gestures , the system changes the sign language into

text and then into speech, which are both displayed and heard audibly. The Figure

2.2 represents the functional flowchart of the system.

Figure 2.1: System block diagram
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Figure 2.2: Functional flowchart
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2.3 Hardware assembling

Our project is based on flex sensors and the MPU6050 module. The first ones are

connected to the esp32’s ADC channels since the board has 16 ADC channels. This

setup was opted for because the Raspberry Pi 4 lacks ADC channels, whereas the

MPU6050 is connected to the I2C pins of the microcontroller.

2.3.1 Flex sensors

we talked briefly about the flex sensors that they are variable resistors that change

when bending , the value of its resistance when it’s flat (0°) is approximately 25KΩ

and about 100kΩ when it’s 90°.[21].

Figure 2.3: Flex sensor functionality Figure 2.4: Different bending angles of flex
sensor

Flex sensors Wiring to ESP32 : The flex sensor has two inputs named p1

and p2, where p2 is connected to 5v and p1 is connected to a resistor that is then

connected to ground (pull down resistor). The resistor is added to create a voltage

divider, allowing the voltage to change based on the flex bending. Another pin between

the resistor and p2 is connected to one of the Arduino’s ADC channels so it would be

possible to read the analog value. In our case , we use five flex sensors , and the value

of the resistors are all the same (10KΩ) Theoretically, the voltage on the resistor can

be calculated using the voltage divider theorem. Considering the added resistor as R2,

the flex sensor as R1, and the target voltage as V:

V =

(
R1

R2 +R1

)
× 5 (2.1)

when the sensor is flat : R1 = 10KΩ , R2 = 32,5KΩ

V =

(
R1

R2 +R1

)
× 5 = 1.17V (2.2)
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Figure 2.5: Flex sensor wiring system Figure 2.6: Flex sensor’s Polarities

Figure 2.7: Wiring Diagram of Flex Sensors
to ESP32

Figure 2.8: Flex sensors wiring schematic

2.3.2 MPU6050

The MPU6050 module simultaneously calculates acceleration and rota-

tion for all three axes (x, y, and z) with a three-axis accelerometer and a

three-axis gyroscope. Acceleration is determined by sensing the deflec-

tion of a small mass within the sensor when subjected to acceleration,

utilizing capacitance variation principles. Electrodes inside the sensor

measure capacitance changes due to mass deflection, enabling the sensor

to ascertain acceleration along each axis.[22].
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Regarding rotation, the gyroscope operates based on the Coriolis ef-

fect. A small vibrating element inside the gyroscope deflects perpendic-

ular to the rotation direction due to the Coriolis force when the sensor

rotates. This deflection is directly linked to the angular rate of rota-

tion. By measuring the vibrating element’s deflection, the sensor can

determine the rate of rotation around each axis.[22].

The reason for choosing MPU6050 is due to the sign language ex-

pressions and the two alphabet(J & Z) that require both movement and

rotation of the hand.

Figure 2.9: MPU6050 Axis

MPU6060 wiring to ESP32 : The module is connected directly

to the esp32 via I2C communication , the two pins SDA and SCL are

connected to the I2C pins ( GPIO21 for SDA and GPIO22 for SCL).

Figure 2.10: Wiring Diagram of MPU6050 to ESP32
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2.4 Esp32 wireless communication with raspberry

pi

The esp32 sends the sensors data to the raspberry pi 4 via Wi-Fi with

TCP/IP protocol.The Raspberry Pi 4 running a TCP/IP server listens

for incoming sensor data packets from the ESP32 over the Wi-Fi net-

work[23]. Once the data is received, the Raspberry Pi processes and

analyzes it.

Figure 2.11: Esp32-Raspberry pi 4 wireless communication diagram

2.5 Random forest classifier

As already mentioned that the data processing in the project is based

on random forest algorithms , there are two types : the classifier and the

regressor , in our case , we intend to work with the classifier since we

want to predict an alphabet on the output as each alphabet or expression

represents a class.
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2.5.1 Description of the classifier

Given a dataset with N samples , random forest creates many subsets

called bootstrap samples ,trains a decision tree on each bootstrap sample

, after growing trees and for classification, each tree ”votes” for a class,

and the class with the most votes is predicted by the random forest

algorithm. the final step is aggregation which is the process of combining

multiple individual predictions or results into a single, final prediction

or result.[18]. The description is more illustrated in the Figures 2.12 ,

2.13 , 2.14 , 2.15

This classifier has different parameters that have a crucial imapct on

the model’s performaces:

1. Number of estimators : the estimators are simply the trees , many

trees make a forest , the number of trees can play a huge impact ,

the more they are , the good the model is.[24].

2. max depth: this parameter represents the maximum height the trees

can reach within the forest,[24].

3. minimum samples split: it controls the number of samples needed

to split internal tree nodes by limiting its growth to avoid overfit-

ting.[24].

4. minimum samples leaf:this is the minimum number of samples that

a node must hold after getting split.[24].

5. maxleaf nodes: it sets the maximum number of leaf nodes in the

tree , this also can help preventing overfitting as the model will

stop growing nodes whenever it reaches the maximum number of

leaf nodes.[24].

6. Random state : The random state is used to shuffle the data before

splitting it into a training set.[24].
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Figure 2.12: Voting Mechanism in
Ensemble Learning for Prediction

Figure 2.13: Random Subset Se-
lection and Classification with De-
cision Trees

Figure 2.14: Bootstrapping and
Aggregation in Random Forests

Figure 2.15: Random forests data
bootstrapping

2.6 Validation and evaluation methods

2.6.1 OOB score

Out of bag is a method of validating a random forests model’s prediction

error as it consists of the dataset entries that were neglected and not
24
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trained by the machine learning algorithm. This method provides a

good idea about the model’s performances on unseen data.[25].

OOB Score =
1

n

n∑
i=1

I(yi = ŷOOB
i ) (2.3)

2.6.2 Accuracy

The accuracy of a machine learning model represents the number of

correct predictions among the total of them.[26].

Accuracy =
Number of correct predictions

Total number of predictions
(2.4)

2.6.3 Precision

Tt’s the number of true positive predictions among the the number of

correct ones , it becomes very crucial if the model is trained to predict

both negative and positive values.[27].

Precision =
True Positives

True Positives + False Positives
(2.5)

2.6.4 ROC-AUC

Tt gives information about how the model can distinguish between classes.The

ROC-AUC score ranges from 0 to 1.[28].

ROC-AUC =

∫ 1

0

TPR(FPR) d(FPR) (2.6)

2.6.5 Features importance

The importance of features gives us a better understanding of the most

influential features that were used during the training of the model.[11].

2.6.6 Confusion matrix

it’s a table that shows both true and predicted different classes, it can

help visualize the model performances and how each classes is getting

25



CHAPTER 2. EMBEDDED SIGN LANGUAGE TO SPEECH SYNTHESIZER
DESIGN

trained[29]. , here is an example :

Figure 2.16: Enter Caption

2.6.7 F1-score

The F1 score can be interpreted as a harmonic mean of the precision

and recall, where an F1 score reaches its best value at 1 and worst score

at 0. The relative contribution of precision and recall to the F1 score

are equal[30]. The formula for the F1 score is:

F1 = 2× Precision× Recall

Precision + Recall
(2.7)

2.6.8 Correlation matrix

The correlation matrix is a matrix that shows the correlation between

variables. It gives the correlation between all the possible pairs of values

in a matrix format.[31]. The correlation coefficient is denoted by “r”,

and it ranges from -1 to 1.

1. If r = -1, it means that there is a perfect negative correlation.

2. If r = 0, it means that there is no correlation between the two

variables.
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3. If r = 1, it means that there is a perfect positive correlation.[32].

2.7 Training dataset

2.7.1 Description

The dataset used in this project isn’t ours, but we could find one that

contains 40 ASL including 26 alphabet and 14 expressions collected from

24 volunteers as each one of them trained the 40 ASL[33] , 1500 entries

for each sign language. Here’s an sample from the dataset of the letter

A as seen on the Table 2.1

timestamp user id flex 1 flex 2 flex 3 flex 4 flex 5 Qw Qx Qy Qz GY Rx GY Ry GY Rz ACCx ACCy ACCz ACCx body ACCy body ACCz body

1616133208.5124247 001 20.0 58.0 72.0 77.0 58.0 0.773499 0.087097 -0.627747 0.002014 -0.068702 -0.015267 0.015267 9.314306 1.379321 1.770508 -0.205762 0.082544 -0.155518

1616133208.5224576 001 20.0 58.0 70.0 76.0 58.0 0.773438 0.08606 -0.627991 0.001587 -0.076336 -0.015267 0.022901 9.29038 1.372144 1.762134 -0.23208 0.086133 -0.162695

1616133208.5324895 001 20.0 58.0 73.0 75.0 60.0 0.773376 0.0849 -0.628235 0.001099 -0.076336 -0.022901 0.022901 9.301147 1.34104 1.754956 -0.22251 0.066992 -0.16748

1616133208.5422645 001 19.0 58.0 73.0 79.0 58.0 0.773254 0.083679 -0.62854 0.000732 -0.076336 -0.022901 0.022901 9.331055 1.271655 1.739404 -0.194995 0.011963 -0.179443

Table 2.1: Dataset sample

2.7.2 Dataset pre-processing

This dataset sample has different ”features”. In terms of important ones

, there are a total of 11: five from the flex sensors data and six derived

from the MPU6050 (3-axis accelerometer, 3-axis gyroscope). for the flex

sensors , the data are the angles of bending not the analog values as a

consequence , these analog values need to be converted to angles. Our

aim is to train the model to predict all 26 alphabets and 14 expressions:

you, good, no, yes, hungry, deaf, please, sorry, thank you, hello, me,

bad, fine, goodbye , but before adding a step to the training process

,The dataset should be cleaned as it may contain noise or missing data,

which includes:

1. Deleting duplicates.
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2. Filling the missing values.

3. Eliminating the unnecessary features.

2.8 Conclusion

In this chapter, we outlined the methodology used for creating the smart

glove for sign language recognition, covering both software and hardware.

The following chapter will delve into the tests and results.
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smart glove
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CHAPTER 3. RESULTS AND IMPLEMENTATION OF THE SMART GLOVE

3.1 Introduction

In this last chapter, we highlight the final steps that led us to implment

the smart glove design in reality and elaborate the crucuial resutls we

reached.

3.2 Working environment

Some software were used to assist in completing the project. The soft-

ware used include:

1. Google Colab : it’s a hosted notebook that gives the access to

computing ressources[34] , it’s used for training machine and deep

learning models.

Figure 3.1: Google Colab

2. EasyEda: it’s a software for designing and simulating pcb circuits ,

it has some interesting features including downloading components

libraries easily by signing up , and there are a lot of contributors to

this platform. We used it to design the PCB.
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Figure 3.2: EasyEda

3. Raspian OS : the Raspian os is debian-based linux distribution that

runs on raspberry pi 4 , it’s crucial as it will run the machine model

with all installed libraries in.

Setting up the raspberry pi 4: An 8GB or larger SD card and

a software tool called Raspberry Imager are required.[35].

(a) Download raspbian OS iso file and raspberry pi imager from

the official website.

(b) Insert the sd card into the computer.

(c) Run raspberry pi imager and select the board model and the

iso file , modify wifi’s setings , login’s information ( username

and password ) and click run.

(d) Once the process’s finished , insert the sd card into the rasp-

berry pi board and plug it into the power supply. If you have a

screen with an HDMI input, you can connect your Raspberry

Pi to it using an HDMI cable. This will allow you to interact

with your Raspberry Pi directly if not , connect it to a network

, install a vnc viewer software on the computer , (both devices

should be connected to the same network ).

(e) To connect the raspberry pi to the vncviewer , another program

called Putty is used to establish a ssh connection between the
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board and the laptop, once it’s done , type the command $sudo
raspi-config , enable the vnc feature , and reboot the board.

(f) Everything is ready , open the vncviewer and type the ip ad-

dress of the raspberry pi followed by :1

Figure 3.3: Raspberry pi 4 Linux Desktop

4. Real vnc viewer : VNC Viewer is used for local computers and

mobile devices you want to control from[36]. it’s used to control

remotely the raspberry board.

Figure 3.4: RealVnc Viewer
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3.3 PCB circuit design

1. The first thing to do is to design the circuit of the smart glove which

is displayed in the Figure 3.5.

Figure 3.5: Smart glove’s Schematic

2. After designing the circuit , The schematic was converted to a PCB,

as shown in the Figures 3.6,3.7. The PCB consists of two layers:

a copper layer and a components layer as seen in Figures 3.8 and

3.9.
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Figure 3.6: EasyEda PCB Design

Figure 3.7: PCB Design result
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Figure 3.8: 3D Top view of
Double-Sided PCB Prototype

Figure 3.9: 3D bottom View of Double-
Sided PCB Prototype
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3. The circuit design is finished , now , it’s time for soldering compo-

nents , we couldn’t print a pcb thus , we used a double-sided pcb

prototype which are shown the Figures 3.11 , 3.12 , 3.10. The

solder mask is used as an insulator for additional protection and to

prevent oxidation [37]. The mask is treated with UV light.

Figure 3.10: UV Expo-
sure After Applying Sol-
der Mask

Figure 3.11: Top View of
Double-Sided PCB Proto-
type

Figure 3.12: Bottom View of Double-Sided PCB Prototype
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4. The flex sensors are attached directly onto the glove using silicone

including the board too , as a consequence we get a fully smart glove

with all its necessary components as illustrated in Figure 3.13

Figure 3.13: Smart Glove
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3.4 Sensors Calibration

Calibrating the sensors is an essential step before using them as it ensures

intact measurements and high precision.

3.4.1 Flex sensors calibration

To calibrate the flex sensors ,The specific library available on the Arduino

IDE is installed, and here is the complete code for the calibration, shown

in Figure 3.14:

Figure 3.14: Flex sensors Calibration code

The analog values of the five flex sensors range between 1073 and

1125 (See Figure 3.15) . Since the ESP32’s ADC channels are 12 bits,

the voltage between the flex sensors can be calculated as follows:

V =
1073× 5

212 − 1
= 1.31V (3.1)

Theoretically , the result was 1.17V.
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Figure 3.15: Flex sensors calibration results

3.4.2 MPU6050 Calibration

In the case of mpu6050 ,Its accelerometer and gyroscope should be cal-

ibrated. , but before that , we make sure that the module is working

and to know that ,The specific library that provides the privilege to read

both accelerometer and gyroscope data is installed. the code for that is

shown in Figure 3.16

Figure 3.16: MPU6050 Calibration process
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3.5 Establishing wireless communication

As mentioned before , the communication between esp32 and the rasp-

berry pi 4 is via TCP/IP protocol , there are the following steps to follow

to achieve it :

1. Both devices should be connected to a WI-FI network , to connect

the esp32 to a WI-FI network , The code shown in Figure 3.17 is

used:

Figure 3.17: ESP32 WI-Fi connection code

2. The sensors data are sent in a binary format , and to do that ,A

buffer is created and filled with the data, as shown in Figure 3.18:

Figure 3.18: Sensors data processing code
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3. Since the raspberry pi 4 is already connected to WI-FI ,a Python

script is created to set up the TCP/IP connection and receive the

sensor data. The code is shown below in Figure 3.19:

Figure 3.19: Python Code for data reception

4. Everything is set up , now , we run both codes , the response is

represented as seen in Figure 3.20

Figure 3.20: Sensors data reception results
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3.6 Random forests Model training

3.6.1 Training steps

Our machine learning has been trained for different cases :

1. Training the model for only alphabet.

2. Training the model for only expressions.

Figure 3.21: Machine learning Training Process

3.6.2 Dataset cleaning process

As mentioned before , before using the dataset , Data cleaning is neces-

sary. , in our case ,Negative values were eliminated from the flex sensor

data. The number of important features is 11. The cleaning is done in

three steps:

1. Merging the csv files : All the datasets should be gathered in one

file before the training process, as explained in the next code shown

in Figure 3.22:
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Figure 3.22: Python code for merging dataset

2. Cleaning the the used dataset: and that includes filling the missing

values and removing the negative angle values , the process is shown

in the code above illustrated in Figure 3.23

Figure 3.23: Python code for cleaning dataset

3. After that , The unnecessary features are eliminated, leaving 11

important ones: , and to do that , The Figure 3.23 shows the

code for that.

Figure 3.24: Python code for eliminating unnecessary dataset

The cleaning process is finished , the results are shown in the table

3.1 :
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flex 1 flex 2 flex 3 flex 4 flex 5 GYRx GYRy GYRz ACCx ACCy ACCz

0 46 47 40 37 -0.022901 -0.015267 -0.015267 9.380102 2.204761 -0.616089

0 47 44 38 35 -0.022901 -0.015267 -0.015267 9.347803 2.209546 -0.618481

0 47 48 46 33 -0.015267 -0.015267 -0.007634 9.317896 2.183228 -0.634033

0 48 50 40 33 -0.015267 -0.007634 -0.007634 9.326269 2.154517 -0.662744

0 47 47 41 36 -0.007634 -0.007634 -0.007634 9.34541 2.18562 -0.679492

0 45 50 44 36 -0.007634 -0.007634 0.0 9.348999 2.228687 -0.697437

0 49 46 43 37 0.0 -0.007634 0.0 9.353785 2.263379 -0.709399

0 51 48 42 38 -0.007634 -0.007634 0.007634 9.363355 2.321997 -0.704614

0 48 48 38 35 -0.015267 -0.015267 0.015267 9.369336 2.42727 -0.680689

0 52 44 40 37 -0.022901 -0.015267 0.022901 9.374121 2.534936 -0.655566

0 49 48 42 37 -0.022901 -0.022901 0.022901 9.386084 2.612695 -0.620874

0 49 48 40 35 -0.022901 -0.022901 0.015267 9.392065 2.647388 -0.588574

0 48 46 38 33 -0.015267 -0.022901 0.007634 9.414795 2.639014 -0.551489

0 49 47 41 35 -0.015267 -0.015267 0.0 9.473413 2.604321 -0.508423

0 47 47 40 35 -0.007634 -0.015267 -0.007634 9.527246 2.558862 -0.446216

0 48 47 40 35 -0.015267 -0.022901 -0.015267 9.563135 2.511011 -0.385205

Table 3.1: Dataset pre-processing results
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4. Scaling the data : and that means fitting the data into a specific

scale , it’s shown in the Figure 3.25:

Figure 3.25: Python code for data normalisation

3.7 Tests and results

After preparing and normalising the dataset , the next step is training

the model thus splitting the data into training and testing sets (30% for

testing , 70% for training) , it’s explained on the Figure 3.26 :

Figure 3.26: Python Code for Splitting Dataset into Training and Testing Sets

Next, the random forest function is declared without changing its

default parameters: , The number of trees was randomly set to 600 as

shown in Figure 3.27

Figure 3.27: Random forests classifier python code

The last step is to to train the model on the unseen which is the

testing set as shown in Figure 3.28
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Figure 3.28: Python code for generating predictions on Test data

3.7.1 Training the model for predicting alphabet

First, the model is trained without modifying the classifier’s parameters:

1. max depth=None

2. min samples split=2

3. min samples leaf=1

4. max samples=None

5. max leaf nodes=None

As results , an accuracy of 99.7% the figure below shows the confusion

matrix of the trained machine learning model:
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Figure 3.29: Alphabet Sign language Confusion Matrix (99% model accuracy)
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3.7.2 Training the model for predicting expressions

With the same parameters , The accuracy this time was 98% as it’s

shown in the figure below :

Figure 3.30: Sign language expressions Confusion Matrix(98% model accuracy)
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Also, the oob score, ROC curve, and accuracy for different numbers

of trees were calculated, as shown in Figure 3.31 and Figure 3.32:

Figure 3.31: Testing and training accuracy for different number of trees (99% model
accuracy)

Figure 3.32: OOB Score for different number of trees(99% model accuracy)
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Figure 3.33: Alphabet sign language ROC curve(99% model accuracy)

Interpretation: both confusion matrix show a perfect classifica-

tion for mostly all classes , as the majority of the values lie on the diag-

onal, indicating that the models predictions match perfectly the actual

labels. Since there are no misclassifications , it’s considered that both

models overfit as they memorised prefectly the data and are unable to

generalize well on unseen data.

The Figure 3.31 shows both training and testing accuracy for dif-

ferent number of trees. As seen , the model has perfectly learned the

training dataset as the accuracy becomes 100% changing of oob values

for different number of trees. The max value is 0.025 and then it de-

creased to 0.004 while the number of trees becomes 600. That value is

very small. A value of 0.004 means the model misclassified 0.4% of the

training data which can explain the perfect results got. In addition to

that , the changing of number of trees didn’t have an impact on model’s

accuracy.

50



CHAPTER 3. RESULTS AND IMPLEMENTATION OF THE SMART GLOVE

In conclusion , it’s clear this model is overfitting thus hypertuning of

the classifier’s parameters needs to be looked forward to.

3.7.3 Fine-tuning classifier’s hyperparameters

the model is trained again with different parameters but with the same

number of trees.

1. min samples leaf=5

2. max samples = 50

3. max depth = 5

4. min samples split=4

5. max leaf nodes = 150

The model is trained again for predicting alphabet , and we got an

accuracy of 82% and an oob score of 0.18 , the Figure 3.35 and Figure

3.36 give more details :

51



CHAPTER 3. RESULTS AND IMPLEMENTATION OF THE SMART GLOVE

Figure 3.34: Alphabet Sign language Confusion Matrix (82% accuracy)
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Figure 3.35: Alphabet sign language ROC curve(82% accuracy)

The out-of-bag (OOB) score and accuracy for different numbers of

trees were also recalculated, as shown in Figure 3.36 and Figure 3.37.
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Figure 3.36: Testing and training accuracy for different number of trees(82% accuracy)

Figure 3.37: OOB Score for different number of trees(82% model accuracy)
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On the other side, only 71% accuracy was achieved when the model

was trained to predict sign language expressions. Figure 3.38 below

elaborates on the model’s performance.

Figure 3.38: Enter Caption
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Interpretation : This time , both confusion matrix shown in

Figure 3.34 and Figure 3.38 were affected by the hyperparameters

changing , as seen, some misclassifications occurred, such as the class

”a” being sometimes misclassified. predicted as ”d” (0.15), and ”b” is

sometimes predicted as ”m” (0.09) , also classes such as g (0.75), ”q”

(0.72), ”w” (0.76), ”s” (0.49) and ”z” (0.45) show lower diagonal values,

indicating poorer model performance for them. The same case for the

expressions like the class ”me” was predicted sometimes like ”hello”.

Some changes in the training and testing accuracy can also be spotted,

as it’s shown in Figure 3.36 , there’s a slight difference between both

accuracies but when the number of trees reaches 250, the testing accuracy

becomes a bit greater than the training accuracy and that means the

model has well generalized predictions on unseen data.

Interpreting the Figure 3.37 , The oob score was 0.50 and it de-

creased to 0.15 when the number of trees became 2000 which means the

model misclassified 15% of the training data , there were an increasing

this time comparing to the first try as it was only 0.4%.

it can observed that this time , the increasing of number of trees had

a big influence on model’s accuracy , The Figure 3.39 and Figure

3.40 both show how the impact of these estimators when we maintained

the classifier’s parameters and when they are changed afterwards , The

more trees there are, the greater the accuracy.
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Figure 3.39: Testing and training accuracy with classifier’s changed parameters

Figure 3.40: Testing and training accuracy with classifier’s default parameters

To identify why some classes are misclassified, the similarity of their

sign language gestures was examined. Specifically, the correlation matrix

for classes ’A’ and ’S’ was plotted, as shown in Figure 3.42 and Figure

3.44, since these letters have gestures that are somewhat similar in sign

language.
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Figure 3.41: letter A in sign lan-
guage

Figure 3.42: correlation plot of the letter A

Figure 3.43: letter S in sign lan-
guage

Figure 3.44: correlation plot of the letter S
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Interpretation:

The correlation coefficient in class ’A’ between ’flex 1’ and ’flex 3’ is

0.62, suggesting a moderately positive linear association. This indicates

that ’flex 3’ tends to increase in value in tandem with ’flex 1”s increasing

value. The correlation coefficient in class ’S’ between ’flex 1’ and ’flex 3’

is 0.72, suggesting a more robust positive linear link in contrast to class

’A’. This indicates that in the sign language gesture for the letter ’S’ as

opposed to the letter ’A,’ the values of ’flex 1’ and ’flex 3’ are either more

closely related to each other or have a bigger influence on each other.

In conclusion , it can be concluded that the changing of the classifier’s

hyperparameters had a positive influence on the model’s performances

whereas the model struggles to differentiate between the classes that has

somewhat the same gestures.

To get deeper into the details of how the algorithm work , we intended

to plot The decisions trees for each model, we choose to plot one tree

from the first model with 99% accuracy and the second model with 82%

accuracy as shown in The Figure 3.45 and Figure 3.46

Figure 3.45: Decision Tree plot (82% accuracy)
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Figure 3.46: Decision Tree plot (99% accuracy
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For the Figure 3.45 , it represents a decision tree from the the second

model , As seen , the algorithm starts growing the tree with its nodes

and leaves depending on the parameter ”max depth” which we set it as

5 and that means the tree splits 5 times from the root node to the leaf

node.

The root node starts with a decision based on the feature flex 2 , the

value 1.314 is the sensor’s threshold. Each node contains:

1. The feature and threshold for the split.

2. The Gini impurity of the node.

3. The number of samples at the node.

4. The distribution of classes at the node (value).

5. The predicted class (class).

After splitting , the algorithm calculates the number of classes samples

in each leaf and make preidictions based on the class that has the maxiu-

mum number of samples. It everytime tries the to decrease the impurity

until the leaf becomes pure , in our case , it stops when it reaches the

number of trees depth set before.

For the Figure 3.46 , it’s the same thing but this time , it’s re-

markable that the tree has many leaves and that’s because the value of

”max depth” was set to ”None” which means the tree will keep growing

leaves until they contain a minimum number of samples which lead most

of the time to overfitting[24] and that explains the high accuracy of the

model (99%).
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3.7.4 Classification report

precision recall f1-score support
you 0.56 0.29 0.39 3189.00

hungry 0.78 0.91 0.84 3190.00
hello 0.49 0.89 0.63 3112.00
me 0.73 0.47 0.57 3207.00

please 0.76 0.73 0.75 3179.00
fine 0.80 0.90 0.85 3144.00

thankyou 0.75 0.57 0.65 3178.00
goodbye 0.98 0.98 0.98 3102.00
sorry 0.60 0.92 0.73 3152.00
yes 0.92 0.88 0.90 3067.00
good 0.57 0.57 0.57 3205.00
no 0.95 0.91 0.93 3207.00
deaf 0.82 0.48 0.60 3018.00

accuracy 0.73 0.73 0.73 0.73
macro avg 0.75 0.73 0.72 40950.00

weighted avg 0.75 0.73 0.72 40950.00

Table 3.2: sign language expressions Classification report
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precision recall f1-score support
A 0.74 0.89 0.81 3204.0
B 0.99 0.98 0.99 3155.0
C 0.82 0.70 0.75 3227.0
D 0.66 0.97 0.78 3170.0
E 0.63 0.83 0.71 3166.0
F 0.99 1.00 0.99 3122.0
G 0.86 1.00 0.93 3102.0
H 1.00 1.00 1.00 3163.0
I 0.76 0.99 0.86 3068.0
J 1.00 0.67 0.80 3183.0
K 0.73 0.79 0.76 3174.0
L 0.83 0.98 0.90 3072.0
M 0.87 0.93 0.90 3141.0
N 0.86 0.82 0.84 3013.0
O 0.79 0.74 0.76 3182.0
P 0.99 1.00 0.99 3172.0
Q 0.85 1.00 0.92 3176.0
R 0.86 0.72 0.78 3164.0
S 0.84 0.56 0.67 3198.0
T 0.96 0.57 0.71 3140.0
U 0.75 0.86 0.80 3161.0
V 0.81 0.79 0.80 3234.0
W 0.98 1.00 0.99 3157.0
X 0.87 0.76 0.81 3070.0
Y 0.92 1.00 0.96 3142.0
Z 0.99 0.43 0.60 3144.0
accuracy 0.84 0.84 0.84 0.84
macro avg 0.86 0.84 0.83 81900.0
weighted avg 0.86 0.84 0.84 81900.0

Table 3.3: sign language alphabet Classification report
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Interpretation : The support values in the tables 3.2 and 3.3

represent the number of samples for each class, and the slight equality

among all classes can be determined due to the same number of entries

trained for each class ([38]).

3.8 Model Deployment

The step that comes after the model’s training is deployment which is

the process of integrating the model into a production environment and

that’s done in two steps :

1. Dumping the model which is saving it in a specific extension , in our

case , the files are saved as .pkl files that are shown in the Figure

3.47 below :

Figure 3.47: Python Code for Dumping machine learning model

2. Loading the model which consists of installing all the necessary

libraries in the working environment to predict all the classes and

to load the model , all the files dumped previously need to be loaded

as shown in Figure 3.48

Figure 3.48: Python Code for loading machine learning model
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3.9 Conclusion

In that chapter, we gave details about the results of training the machine

learning model and calibrating the sensors. We also talked about the

software used for that as it is crucial to adjusting them to accurately

record hand movements and gestures. This precision was important too

for the machine learning model to interpret the data correctly and give

immediate feedback to the user.
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General Conclusion

This report has elaborated a project that consists of making a smart

glove that translates ASL to text and speech , that device is a bridge that

connects the deaf community with the whole society , as it makes it easier

for them to communicate freely and easier too for the other categories to

communicate without the need of learning the sign language.Despite this

, certain limitations exist, one of them is the difficulty to differentiate

between alphabet or expressions that have somewhat the same gesture.

The first attempt to realise the project was trying I2C communica-

tion between the smart glove and the raspberry pi 4 as the first one

is equipped with arduino nano , breadboard and five flex sensors , and

the mpu6050 is connected directly to the raspberry pi 4. As a part of

improvements , we attempted to optimise it and making the connection

wiressly using esp32 instead of arduino nano.

In addition, we faced some challenges when choosing the electronic

components , as some of the parts weren’t available hence , it was difficult

to get them. Future improvements The smart glove development

won’t end up here, as we are dedicated to look up further improvements

such as :

1. Implementing another machine or deep learning models for algerian

sign language classification trained with a dataset that should be

collected by us.

2. Improving the real time accuracy.

3. Developing a mobile application to make it easier for the deaf com-

munity to interact within the society.

The dataset used for training and testing the model can be accessed at

https://figshare.com/articles/dataset/ASL-Sensor-Dataglove-Dataset_

zip/20031017.

https://figshare.com/articles/dataset/ASL-Sensor-Dataglove-Dataset_zip/20031017
https://figshare.com/articles/dataset/ASL-Sensor-Dataglove-Dataset_zip/20031017
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