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General Introduction

Recognizing familial relationships from facial images is a growing field of computer vision with
immense potential. Kinship verification technology analyzes facial features to determine if two
individuals are related. This technology holds promise for various applications, such as reunit-
ing missing children with their families, enhancing security measures, and aiding genealogical
research.

This work explores an interesting approach to kinship verification using a feature extraction
technique called Histogram of Local Binary Patterns (Hist LBP), which is initially applied
in the field of person re-identification. Traditional methods often rely on extracting specific
features like shapes, colors, or textures individually. The Hist LBP extractor goes beyond
this limitation by capturing more nuanced and informative characteristics from facial images.
The key advantages of Hist LBP are its effectiveness in merging texture and color information
into a single descriptor, potentially leading to a richer feature representation. Furthermore, by
incorporating the Hist LBP descriptor, we believe the Hist descriptor approach can improve the
accuracy and robustness of kinship verification systems compared to traditional methods. In
addition, we explore the impact of different normalization techniques applied to the Hist LBP
descriptor. By investigating the effectiveness of these techniques, we aim to further enhance
the performance of the kinship verification system.

This thesis explores the details of the Hist LBP technique, including its implementation and
theoretical underpinnings. We evaluate its performance on the KinFaceW-II kinship verification
benchmark and discuss its potential impact on the field. Additionally, for comparison purposes,
we evaluate the performance of the Local Phase Quantization (LPQ) and traditional Local
Binary Patterns (LBP) descriptor in different color spaces (Grayscale , RGB and HSV).

The present document is organized into three main chapters to provide a comprehensive un-
derstanding of our approach:

Chapter 1: This chapter lays the groundwork by introducing the concepts of biometrics,
facial recognition, and facial kinship verification. We then proceed to examine the challenges
associated with this task and explore potential applications in various domains. In addition,
we summarize existing kinship verification datasets.

Chapter 2: This chapter focuses on feature extraction techniques, a crucial step in kinship ver-
ification. We explore various techniques employed in the field, including color space conversion,
normalization methods, and classification approaches like support vector machines.

Chapter 3: The final chapter focuses on the practical implementation of our kinship verifi-
cation system. It details the system architecture, highlighting the key components and their
functionalities. In particular, we examine the utilization of Histogram of Local Binary Patterns
(Hist LBP) and other techniques for feature extraction and present our evaluation using the
KinFaceW-II kinship database. Furthermore, it discusses the evaluation metrics used to assess

1



General Introduction

the performance of kinship verification systems. This chapter is concluded with a presentation
of comprehensive analysis of our system’s performance. This analysis includes comparisons with
existing state-of-the-art approaches to highlight the effectiveness of he method studied. Addi-
tionally, the chapter showcases the graphical user interface (GUI) developed for this system,
enhancing user interaction and accessibility.

Page 2



Chapter 1

Generality about Kinship Verification

1.1 Introduction

In this chapter, we provide a general overview of kinship verification, a process that determines
whether two individuals are related to each other or not. Kinship verification is a crucial
application in various domains, including biometrics, computer vision, and artificial intelligence.
The chapter begins by discussing the concept of biometrics, which is a method of identifying
individuals based on their unique physical or behavioral traits. It highlights the advantages of
biometrics over traditional identification methods, such as passwords or ID cards, due to their
unique nature and difficulty in imitation.

We then delve into facial recognition, which is a significant aspect of kinship verification. Facial
recognition has numerous benefits over other biometric modalities, including its ability to be
discreetly and remotely recorded, and its natural and unobtrusive nature. We also discussed
the applications of kinship verification, including its potential use in finding kin relationships
from big data resources and in authenticating guardians with children for security purposes.

1.2 Biometrics

A biometric is a method of identifying individuals based on their unique physical or behavioral
traits. These traits include fingerprints, facial features, iris, retina, voice, gait, and even the way
we type! (Figure 1.1 illustrates this concept) [13]. It is deemed more reliable and secure due to
the unique nature of physiological or behavioral traits, making it difficult for someone to fake
or steal these characteristics compared to passwords or ID cards. Consequently, biometrics is
a more effective method for distinguishing between authorized users and fraudulent impostors.

3



Generalities about Kinship Verification

Figure 1.1: Biometrics traits [39]

• Biometric System

Biometric system is a pattern recognition tool, identifying by verifying our physiological or
behavioral traits. Figure 1.2 presents a block diagram of a generic biometric system. The
enrollment module registers individuals into the system, scanning their biometric traits with a
reader to create a raw digital representation. This representation is then processed by a feature
extractor (which will be discussed in detail in chapter 2) to produce a concise yet informative
representation for matching purposes.

Page 4
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Figure 1.2: A generic biometric system [13]

1.3 Facial Recognition

People perform face recognition every day with ease. Since the widespread availability of pow-
erful, low-cost computing systems, there has been a great deal of interest in the automatic pro-
cessing of digital photographs. This interest drives research and development in automatic face
recognition, spanning a variety of applications such as biometric authentication, surveillance,
human-computer interaction, and multimedia management, driving research and development
in automatic face recognition [40].

Face recognition has a number of benefits over other biometric modalities like fingerprint and
iris recognition. It can be discreetly and remotely recorded, and it is natural and unobtru-
sive. As shown in figure 1.3, face recognition, has gained increasing importance due to rapid
advancements in image capture devices (such as surveillance cameras and cameras in mobile
phones).Automatic kinship verification is a typical pattern recognition task that relies on facial
recognition technology.

Page 5
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Figure 1.3: Comparaison of various biometric traits [40]

1.4 Kinship Verification

Kinship verification (or family verification) is the process of determining whether two individ-
uals are related or not. Automatic kinship verification systems typically take two faces (Face
A and Face B) as input and aim to predict whether Person A is related to Person B as a
family member (father, mother, brother, sister, etc.) [18, 2]. This technology has applications
in various areas, which we will discuss in the next section.

Facial analysis is one of the most promising approaches for automatic kinship verification.
This is due to the fact that human faces offer several advantages: a distinct and hierarchical
component structure, easy distinction from the background, and the ability to convey a wealth
of information about individuals, such as gender, age, and emotional state. As a result, facial
image analysis has received significant attention in computer vision research over the past fifteen
years.

1.4.1 Applications of Kinship Verification

Kinship verification methods hold vast potential across various domains. While the technology
is still under development, advancements are paving the way for exciting new applications.

One promising area lies in leveraging kinship verification for large-scale data analysis. For
example, utilizing these methods to identify familial connections within massive genealogy
databases, potentially aiding humanitarian organizations in reuniting missing persons with
their families.

Page 6
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Furthermore, kinship verification could play a crucial role in enhancing security measures. In
public spaces like schools or hospitals, it could be employed to verify the identity of guardians
accompanying children, adding an extra layer of safety [45].

Kinship verification can also be used in online user identification to combat impersonation and
fraud. Also, it has the potential to help identify victims of human trafficking by verifying or
disproving claimed relationships between individuals.

In addition, kinship verification offers a faster and more cost-effective way to support DNA
verification in establishing familial relationships [6].

1.4.2 Automatic Kinship Verification Challenges

The problem of kinship verification arises from the small size of existing datasets [2]. In
this case, traditional hand-crafted features such as Local Binary patterns(LBP), Histogram of
oriented Gradient (HOG), and Scale-invariant feature transform (SIFT) are not sufficient to ad-
equately represent facial images. On the other hand, deep convolutional neural networks(CNN)
provide an answer by enabling us to customize the feature extraction procedure to the specific
needs of kinship verification. Although this method can produce more reliable features, it
requires a large dataset of labeled samples for training, which is often lacking in the kinship
verification space. Furthermore, unlike face recognition, kinship verification requires additional
information about the persons being matched, making it difficult to annotate a big kinship
dataset. Kinship data collection is further complicated by copyright and privacy issues.

Another difficulty in kinship verification is the large intra-class variation. Because of
disparities in age, gender, and genetic inheritance, people with positive kinship relationships
can have very different facial appearances from one other. Further complicating the verification
process are variations in shape, such as change in posture and facial expression, or disparities
in the parts of the face that facial identification systems capture.

There are also two other difficulties, shape variations and illumination changes, where
the first one starts from the fact that people in facial photographs won’t always be in the same
posture or attitude, and there can be minute variations in the facial regions that face identifica-
tion algorithms pick up on. The second factor to consider is that when extracting the faces of
a child and a parent from two different source photos, the luminosity of the images may differ,
and local light reflections can cause shifts in the colors of the pixels in the image.

1.5 Kinship Verification Datasets

Kinship verification datasets are crucial for training and evaluating algorithms used to deter-
mine whether two individuals are related. Here are some popular datasets to consider:

1.5.1 KinFaceW Dataset

The KinFaceW dataset, collected by Lu et al. [23], plays a vital role in studying kinship
verification using unconstrained face images. Unconstrained images can vary greatly in lighting,
pose, and background, making them more realistic but also more challenging for algorithms.

Page 7
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KinFaceW is divided into two subsets:

- KinFaceW-I: This subset contains 1066 images forming 533 pairs. The images in these
pairs are likely captured under different conditions (different photos) but still represent
kinship relationships.

- KinFaceW-II: This subset is larger, containing 2000 images forming 1000 pairs. Here,
the images within each pair are more likely captured under similar conditions (same
photo).

In the table below 1.1, the comparison between both KinFaceW databases is shown.

Table 1.1: Statistic of the KinFaceW database [44].

KinFaceW-I KinFaceW-II
Image 1066 images – 533 pairs 2000 images – 1000 pairs
Asian people % 64.40 8
Not Asian people % 35.60 92
Source image Many images One image
Image size 64×64 pixel 64×64 pixel

1.5.2 UB KinFace Dataset

The UB KinFace database [48] is a valuable resource for kinship verification research. It contains
600 images of 400 people, specifically divided into two sets:

Set 1: This set comprises 200 pairs featuring a child and their young parent.
Set 2: This set includes 200 pairs of a child with their older parent.

1.5.3 Cornell KinFace Dataset

The Cornell KinFace dataset [8] is a collection of images specifically designed for kinship verifi-
cation research. It consists of 143 pairs of parents and children, totaling 286 individual cropped
frontal face images. Each image has a resolution of 100 x 100 pixels.

1.5.4 TSkinFace Dataset

The TSkinFace database [35] offers a unique collection of facial images designed to study tri-
subject kinship relationships. It focuses on two specific family structures:

Father-Mother-Daughter (FM-D): This category contains 502 relationships, totaling 1506 indi-
vidual face images (502 sets of 3 images).
Father-Mother-Son (FM-S): This category encompasses 513 relationships, translating to 1539
individual face images (513 sets of 3 images).
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1.6 Kinship Verification System

Any typical kinship verification system has to apply some steps, as it is resumed in the figure
1.4 :

Figure 1.4: A global system structure for kinship verification

1.6.1 Preprocessing

Preprocessing is a crucial step in image processing that involves preparing the raw image data
for further analysis or processing. The main goals of preprocessing are to improve the quality
of the image, remove unwanted distortions or noise, and enhance specific features of interest.
Common techniques include noise removal using filters, resizing and resampling images to
required dimensions, and enhancing images by adjusting contrast, brightness, and sharpness.
Also an important task which is Color Space Conversion because some algorithms may
work better in specific color spaces (e.g., RGB, Grayscale, HSV, or YCbCr), and also image
registration when we use a database so it converts each image to a vector and collects all of
them in one matrix.

1.6.2 Feature Extraction

During the kinship verification process, each facial image is analyzed to extract descriptive
features. These features are then converted into numerical representations, typically forming
two feature vectors - one for each face being compared. These feature vectors capture essential
characteristics of the facial images, essentially acting as a condensed yet informative summary
of the visual data [43].
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Several well-established techniques are commonly used for feature extraction in this context.
We will delve deeper into these methods, including Local Binary Patterns LBP, Local Phase
Quantization LPQ, Histogram LBP Hist LBP, Histogram of Oriented Gradients HOG, Bina-
rized Statistical Image Features BSIF. We will detail more in the next chapter.

1.6.3 Feature Normalization

After feature extraction, the resulting data often contains values across varying ranges. To
ensure all features contribute equally to the kinship verification process, we employ a technique
called feature normalization. This mathematical approach transforms or rescales the extracted
features into a specific range, commonly between 0 and 1 or -1 and 1 (similar to Figure 1.5).

Normalization ensures that all features operate on a comparable scale, preventing any single
feature from dominating the analysis due to its original range [27]. This is crucial for achieving
fair and accurate kinship verification results, as we will see in the results chapter.

Figure 1.5: Normalization example

1.6.4 Classification

Classification, is the process of assigning a label or category to an image or regions within an
image based on their visual characteristics or content. Image classification is commonly used
in applications such as object detection (identifying and classifying objects within an image),
facial recognition (classifying images of faces into identities), and other computer vision tasks
such as car driving [36, 25].

Classification algorithms analyze the pixel values, textures, shapes, colors, and other charac-
teristics of an image to determine which class or category it belongs to. Image classification
algorithms come in various flavors, each with its own strengths. Choosing the right technique
depends on the complexity of the task and the available data [43].

The effectiveness of image classification, like any learning process, depends on several key
ingredients [43]:
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- High quality training data: An image classification algorithm thrives on a large
dataset of well-labeled images. The more high-quality, accurately labeled images the
algorithm is trained on, the better it learns to recognize patterns and make accurate
classifications.

- Task difficulty: Not all classification tasks are created equal. Distinguishing between a
parent and a child is an easier task than identifying the relationship between them. The
complexity of the classification problem affects the accuracy achievable by the algorithm.

- Feature extraction and model selection: Selecting the right features and employing
powerful models are critical to optimal performance. These factors determine how well
the algorithm recognizes patterns for accurate classification.

1.7 Conclusion

This chapter has provided a comprehensive overview of kinship verification, emphasizing its
significance in various domains.We have highlighted the importance of biometrics and facial
recognition in kinship verification, as well as the challenges and potential applications of this
process. It sets the stage for further exploration of the technical aspects of kinship verification
in subsequent chapters.

Page 11



Chapter 2

Techniques and Innovations in Kinship
Verification Systems

2.1 Introduction

Kinship verification is an important problem in computer vision and machine learning, with
applications in areas like family photo organization, social network analysis, and forensics. This
chapter discusses the key techniques and innovations in kinship verification systems. It covers
the main steps involved, including face acquisition, feature extraction, normalization, and clas-
sification.
We started the chapter by explaining the face acquisition process, which involves detecting and
extracting faces from images. The bulk of this chapter focuses on feature extraction techniques
that have been applied to kinship verification, such as Local Phase Quantization (LPQ), His-
togram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Binarized Statistical
Image Features (BSIF). These methods capture different types of facial information that can
be useful for distinguishing between related and unrelated individuals.
The chapter also covers normalization techniques like z-score, decimal scaling, and square root
normalization, which are important steps to ensure the features are on a common scale.
Finally, we discuss classification approaches for relationship verification, including support vec-
tor machines.

2.2 Facial Analysis

Facial analysis is divided into two parts, face detection and face recognition [5], face de-
tection is a necessary initial step to localize and extract the face region from the background.
The solution of the problem involves segmentation and extraction of faces and possibly facial
features from an uncontrolled background. The face recognition process involves performing
verification and identification (age, gender. . . ), this stage takes the probe image extracted from
the scene during the face detection stage and compares it with the database of previously
enrolled known faces to detect kinship between them as shown in the figure 2.1 below.
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Figure 2.1: A typical facial analysis system[5]

2.3 Preprocessing

Kinship image preprocessing is a crucial step in kinship verification systems. It involves prepar-
ing the facial images before feeding them into the model for analysis. The goal is to ensure
consistent data representation and improve the effectiveness of the model in recognizing kin-
ship relationships. Different algorithms might function better in specific color spaces like RGB
(standard red, green, blue), grayscale, HSV (hue, saturation, value), or YCbCr (luminance and
chrominance components). Converting images to a suitable color space can improve feature
extraction and model performance.

- Color Space Conversion

A color space, also known as a chromatic or colorimetric space, is a system for representing
and organizing all the colors that the human eye can see. It is a three-dimensional model in
which each dimension corresponds to a different attribute of color: Hue (the type of color, like
red or blue), Saturation (the intensity or clearness of the color), and Brightness (how light or
dark the color is, ranging from black to white) [11]. The figure 2.2 below illustrates the three
color space components.
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Figure 2.2: The three components of color: Hue, Value, and Saturation

• Grayscale Color Space: A grayscale color space represents colors using only black,
white, and gray levels. Each color is defined by a single brightness value, where 0 is black
and 255 is white. Grayscale images, also called monochrome images, use only brightness
and they are common in medical photography and black-and-white printing. This color
space simplifies image processing by reducing the amount of data needed compared to
full-color spaces [11].

• RGB Color Space: This color space uses the three primary colors(RGB) —Red, Green,
and Blue— to represent all the colors visible to the human eye. The concept is simple:
each color is defined by three values that represent the intensity of each primary color.
These values are typically encoded in 8 bits (ranging from 0 to 255), allowing for the
representation of 2563 (16,777,216) different colors [11].

- Image Conversion from RGB to Grayscale: Converting an RGB image to grayscale
removes the hue and saturation information, retaining only the luminance. The lumi-
nance, which represents the brightness of each pixel, is obtained by combining the bright-
ness information from the red, green, and blue channels of the RGB image [11].

• HSV Color Space: It represents colors based on three components: Hue, which rep-
resents the pure color and is measured in degrees on a color wheel; Saturation, which
measures the intensity or purity of the color; and Value, which represents the brightness
of the color. This model is more intuitive to human perception, with hue specifying the
type of color, saturation indicating how vivid or muted it is, and value denoting how light
or dark it is [4].

• YCbCr Color Space: The YCbCr color space, also known as YCbCr, separates lu-
minance (Y) from chrominance (Cb and Cr). Luminance (Y) represents the brightness
or intensity of light as perceived by the human eye, independent of color, ranging from
0 (black) to 255 (white). Chrominance Blue-difference (Cb) indicates the difference be-
tween the luminance and the amount of blue in the image, with values ranging from -128
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(maximum blue) to 127 (no blue). Chrominance Red-difference (Cr) shows the differ-
ence between the luminance and the amount of red in the image, with values from -128
(maximum red) to 127 (no red) [4].

• XYZ Color Space: The CIE (International Commission on Illumination) XYZ color
model, also known as the CIE 1931 model, is a three-dimensional coordinate system
for representing colors. It was defined by the International Commission on Illumination
(CIE) in 1931 and is the reference for many other color models. The CIE XYZ model
uses three components, X, Y, and Z, called tristimulus values, which measure the amounts
of red, green, and blue light reflected or emitted by an object, weighted by the human
eye’s spectral sensitivity. The X component represents the red light contribution to color
perception, Y corresponds to luminance or perceived brightness, and Z represents the
blue light contribution [12].

• LAB Color Space: The LAB color space is characterized by its perceptually uniformity,
which ensures that equal variations in this space result in consistent color perception for
the average human observer. This property makes it a valuable tool for color management
and the accurate color reproduction across various domains. It consists of three main
components: Luminance (L), representing brightness from absolute black to absolute
white; the A-axis, indicating the hue from pure red to pure green along a scale from -128
to 128; and the B-axis, representing saturation from pure blue to pure yellow the on a
similar scale [12].

The preprocessed data is then fed into the feature extraction stage, where it is transformed
into a more compact and informative representation.

2.4 Feature Extraction

Feature extraction is one of the most important fields in artificial intelligence. It involves trans-
forming the raw facial image data into a set of informative features [17]. It is a special form
of dimensionality reduction. The main goal of feature extraction is to obtain the most relevant
information from the original data and represent that information in a lower dimensionality
space, when the input data to an algorithm is too large to be processed, and it is suspected to
be redundant (much data, but not much information) then the input data will be transformed
into a reduced representation set of features (also named features vector).
In simpler terms, feature extraction is like identifying the key details in an image. When classi-
fying images for kinship verification, these details are crucial for grouping similar faces together.
The accuracy of the system heavily relies on extracting the most discriminative features, es-
sentially the elements that differentiate between related and unrelated individuals. Various
techniques exist for feature extraction, each with its own advantages and limitations. Choosing
the right approach allows us to capture the most valuable information from facial images for
kinship verification tasks [28].

Facial image features can be broadly categorized into four main types:

- Geometric Features: These features focus on the spatial relationships between facial
landmarks such as eyes, nose, and mouth.

- Statistical Features: Statistical features capture information like average pixel intensity
or standard deviation within specific facial regions.
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- Color Features: Color features analyze the distribution of colors within the facial image.

- Texture Features: Texture features describe the spatial variation of pixel intensities,
often used to represent wrinkles, skin roughness, or other textural patterns. This is the
focus of the following chapter.

This section will explore specific image descriptors commonly used in kinship verification re-
search. It’s important to note that while these descriptors were originally developed for texture
classification, they have also demonstrated effectiveness in representing facial images for kinship
verification tasks.

2.4.1 Local Phase Quantization LPQ

The Local Phase Quantization (LPQ) descriptor, introduced by Ojansivu et al.[2], was originally
designed for classifying blurred textures (refer to the figure 2.3). This descriptor computes the
local 2D Discrete Fourier Transform within local neighborhoods Nx of a specified size M × M
at each position x in the image f using the equation (2.1)

F (u, x) =
∑

Xx∈Nx

f(x− y)e−i2πu⊤y = w⊤
u fx (2.1)

Where :
x is the central position of the neighborhood in the image.
y is the relative offset within that neighborhood.
i2 = −1, wu is the basis vector of the 2D DFT at frequency u, and fx is a vector containing all
samples in Nx.

Figure 2.3: An example of textures with increased degrees of blurring from left to righ[2]

The Fourier coefficients of only four low 2D frequencies {u1, u2, u3, u4} are used by the LPQ to
form an eight-dimensional complex vector Fx as indicated by the equation (2.2).

Fx = [Re(F (u1, x)), . . . , Re(F (u4, x)), Im(F (u1, x)), . . . , Im(F (u4, x))]⊤ (2.2)

Where, Re(c) and Im(c) are the functions that return the real and imaginary parts, respectively,
of the complex number c.

In the subsequent step, the phase components of the four 2D DFT complex coefficients in Fx

are decorrelated and quantized into an eight-dimensional binary vector. Finally, the binary
vector is converted into an 8-bit integer code as shown in the figure 2.4
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The histogram of the LPQ 8-bit integer codes serves as the feature vector representing the
input image.

Figure 2.4: The necessary steps to build the LPQ descriptor

2.4.2 Histogram of Oriented Gradients HOG

A Histogram of Oriented Gradients (HOG) is a tool used in computer vision to detect objects
in images. It works by looking at how the direction of color changes (gradients) are distributed
in different parts of the image. HOG is good at recognizing shapes because it considers both
the strength and direction of these color changes. It creates histograms, or graphs, of these
color changes in different areas of the image to understand the object’s structure better.
to calculate the HOG, we follow steps as shown in the figure 2.5.

Figure 2.5: The main steps to calculate the HOG descriptor

1. Preprocessing:To resize the input image, it is recommended to use dimensions of 128x64
pixels. This recommendation stems from the need to combine two images, each of size
64x64 pixels, resulting in a total width of 128 pixels.

2. Compute Gradient and Orientation: The image is divided into small cells, such as
4x4 cells. Each cell is then processed individually to extract features.
First, the algorithm calculates the gradient in the x and y directions (Gx and Gy) for
each pixel in the cell. Gx represents the difference in pixel values between the right and
left neighbors, while Gy represents the difference between the top and bottom neighbors.
These gradients are calculated using the formulate (2.3).

Gx(r, c) = I(r, c + 1)− I(r, c− 1)
Gy(r, c) = I(r − 1, c)− I(r + 1, c)

(2.3)

Next, the algorithm combines these gradients to compute the total gradient magni-
tude and orientation for each pixel in the cell. The magnitude is calculated using the
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Pythagorean theorem, which gives the square root of the sum of the squares of Gx and
Gy. The orientation is calculated as shown in equation (2.4)

|G(r, c)| =
√

Gx(r, c)2 + Gy(r, c)2

θ(r, c) = arctan

(
Gy(r, c)
Gx(r, c)

) (2.4)

This process is repeated for all pixels in the cell, resulting in a set of gradient magnitudes
and orientations. For edge pixels, padding techniques are used to ensure that all pixels
can be processed in the same way.

2.4.3 Local Binary Patterns LBP

The Local Binary Patterns (LBP) is a way to describe textures in pictures [33]. It looks at
each pixel and compares it to its nearby pixels to decide if it’s light or dark, creating a code
for that pixel. This method is popular because it’s good at telling different textures apart and
is fast to compute. It’s like a common ground between different ways of analyzing textures.
One big advantage is that it can handle changes in brightness well, like when the lighting in a
picture changes. Also, it’s quick, so it can be used to look at images in real-time, even in tricky
situations.

For each pixel I(x,y), we calculate LBP following these steps:

1. Comparing a pixel’s intensity to its eight neighbors in a small square around it (3x3
neighborhood).

2. Thresholding each neighbor: if the neighbor’s intensity is greater than the center pixel’s
intensity, it becomes a 1 in a binary code. Otherwise, it becomes a 0, according to (2.5).

f(d) =
1 if d ≥ 0,

0 otherwise.
(2.5)

Where, d is the difference between the currently sampled pixel and the central pixel.

3. Combining the binary codes of all the neighbors into a single number, essentially creating
a label for the center pixel’s texture.

4. The binary code is converted to a decimal value, which represents the LBP code for
that pixel.

5. Creating a histogram that shows how many times each label appears in the image. This
histogram acts as a fingerprint for the image’s texture ( 2.6).
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Figure 2.6: Local binary patterns method with gray image

2.4.4 Histogram of Local Binary Patterns Hist LBP

The Histogram of Local Binary Patterns (Hist LBP) is a texture-color feature extraction tech-
nique initially proposed for the person re-identification domain [49]. After calculating the LBP
descriptor of an image, the LBP histogram counts how many times each unique LBP code
appears in the entire image. So, each bin in the histogram represents a specific texture pattern,
and its height shows how prevalent that pattern is in the image. By analyzing this histogram,
we can gain insights into the dominant textures present in the image. We can explain the
difference between simple LBP and Hist LBP on the table 2.1 below:

Table 2.1: Difference between LBP and Hist LBP

LBP Hist LBP
Representation local texture patterns for in-

dividual pixels
global texture patterns

Information detailed information about
texture patterns

abstract view of the overall
texture
distribution

When the histogram of LBP codes is computed, after capturing the frequency of occurrence
of each LBP code. The LBP histograms of individual cells are optionally normalized (e.g.
L2-norm) to account for illumination variations. The normalized histograms of all cells are
concatenated to form the final LBP histogram feature vector for the image or region of interest.
The dimensionality of the LBP histogram feature vector depends on the number of distinct LBP
codes possible, which is determined by the neighborhood size and the number of neighboring
pixels considered.
For example, with a 3x3 neighborhood, there are 28 = 256 possible LBP codes, resulting in a
256 dimensional histogram. The LBP histogram is effective at capturing texture information
because it encodes the local spatial structure of the image while being invariant to monotonic
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gray-level transformations (e.g., changes in illumination). However, it is sensitive to rotation
and scaling, which can be addressed by incorporating rotation-invariant and multi-scale LBP
variants.

2.4.5 Color Local Binary Patterns CLBP

In the color LBP method, we first separate each color channel (like red, green, and blue) and
apply the LBP (Local Binary Patterns) algorithm to each of these channels separately. After
that, we combine the histograms of these separate LBP computations into a single histogram.
in 3.3.1.2 here is more explanation.

2.4.6 Binarized Statistical Image Features BSIF

The Binarized Statistical Image Features BSIF is a type of descriptors similar to LBP and LPQ,
it calculates a binary code string for the pixels of a given image by thresholding the responses
of a set of n linear filters [16]. The main method consists of create a binary code for each pixel
in an image by using different filters. Each filter calculates a value for the pixel, which is then
converted to either 0 or 1 based on whether it’s above or below zero. The number of filters used
depends on how long we want the binary code to be. These filters are learned from a training
set of natural image patches, ensuring that they give us different values for different parts of
the image. This process relies on the statistical properties of real images to create descriptors,
therefore we call them binarized statistical image features BSIF.
We can express the process mathematically as follows [18]:
Let’s assume an image patch of size lxl represented by a vector x ∈ Rl2 and a filter wi ∈ Rl2 ,
the response si is calculated by the equation (2.6).

si = w⊤
i x (2.6)

Then, the ith bit bi of the bit string is calculated by the equation (2.7).

bi =
1 if si > 0

0 otherwise
(2.7)

The set of filters wi is created by maximizing the statistical independence of their responses si.
Initially, these filters wi for i = 1, 2, ..., n can be arranged into a matrix W ∈ Rn×l2 . We can
then express equation (2.6) as equation (2.8).

s = Wx (2.8)

As shown, the vector s contains all filter responses. Then, the matrix W is decomposed into
two matrices, U ∈ Rn×n and V ∈ Rn×l2 as W = UV . The matrix V is derived as a prepro-
cessing step learned from a set of natural images in the following manner: Firstly, a set of
image patches x is randomly sampled from the training images. Then, the covariance matrix
C of these patches is computed. After that, the eigenvalue decomposition of C is calculated
as C = EDE⊤, where D contains the eigenvalues of C in descending order along its main
diagonal. Next, V is defined as the first n rows of the matrix D− 1

2 E⊤. By setting z = V x (thus
s = Uz), the matrix U can be obtained using the standard Independent Component Analysis
(ICA) of the preprocessed samples z.
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NB: This process allows us to decompose the original filter responses into statistically in-
dependent components. Figure 2.7 shows the application of BSIF code in different conditions.

Figure 2.7: BSIF code person’s image under different condition, lightness, blur, gesture

To enhance the discriminative power of the feature vector extracted in the feature extraction
step, a normalization step is often applied.

2.5 Feature Normalization

As mentioned before, normalization is a step in preparing data where we adjust the values of
different features to be on a similar scale. This prevents any one feature from having too much
influence just because of its range, making machine learning models work better and more
reliably.

• Min-Max Normalization: Or Re-scaling is one of the most famous methods to nor-
malize data, For every feature, the minimum value of that feature gets transformed into a
0, the maximum value gets transformed into a 1, and every other value gets transformed
into a decimal between 0 and 1 [38], following the formulate 2.9 below.

xnorm = x−min(x)
max(x)−min(x) (2.9)
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Algorithm 1 Min-Max Normalization [37]
Require: X (dataset with m instances and n features)
Ensure: Xminmax_scaled (Min-Max Scaled dataset)

1: for j = 1 to n do
2: min_valuej ← min(X[:, j]) ▷ Find the minimum value of feature j
3: max_valuej ← max(X[:, j]) ▷ Find the maximum value of feature j
4: rangej ← max_valuej −min_valuej ▷ Calculate the range of feature j
5: if rangej == 0 then
6: for i = 1 to m do
7: Xminmax_scaled[i, j]← 0 ▷ Handle cases where range is zero
8: end for
9: else

10: for i = 1 to m do
11: Xminmax_scaled[i, j]← X[i,j]−min_valuej

rangej
▷ Scale each value to the range [0, 1]

12: end for
13: end if
14: end for
15: return Xminmax_scaled

• Z-Score Normalization: It also called as standardization, in purpose to transform the
data such that it has a mean of 0 and a standard deviation of 1 [38], see figure 2.8. The
z-score value of each feature is calculated as:

z = x− µ

σ
(2.10)

Where:

◦ x is the original data point
◦ µ is the mean of the data distribution
◦ σ is the standard deviation of the data distribution

Here is the algorithm of Z-score notmalization:

Algorithm 2 Z-score Normalization [37]
Require: X (dataset with m instances and n features)
Ensure: Xz_scored (Z-score normalized dataset)

1: for j = 1 to n do
2: µj ← calculateMean(X[:, j]) ▷ Calculate mean of feature j
3: σj ← calculateStandardDeviation(X[:, j]) ▷ Calculate standard deviation of feature j
4: for i = 1 to m do
5: Xz_scored[i, j]← (X[i, j]− µj)/σj ▷ Z-score normalization formula
6: end for
7: end for
8: return Xz_scored
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Figure 2.8: Z-score normalization

• Decimal Scaling: This technique normalizes the data by adjusting its decimal point.
To apply this method, each data value is divided by the maximum absolute value in the
dataset [38]. A data value xi is normalized to x′

i using the following formula 2.11:

xi = x′
i

10n
(2.11)

Where:

◦ x is the original data point.
◦ n is the smallest integer such that the maximum absolute value of the data is less

than or equal to 1.

• L2 Normalization: It is called Euclidean normalization, it normalizes vectors or matri-
ces by scaling their elements such that their Euclidean norm (L2 norm) becomes equal to
1 [38]. Here is how we define L2 norm of a vector:
Let’s suppose we have a vector x = [x1, x2, ..., xn], the Euclidean norm is defined as 2.12

∥x∥ =
√

x2
1 + x2

2 + . . . + x2
n (2.12)

For the vector x, the L2 normalized vector xnorm = [x1norm, x2norm, ..., xnnorm] is calcu-
lated as 2.13

xnorm =
[

x1

∥x∥
,

x2

∥x∥
, . . . ,

xn

∥x∥

]
(2.13)

• Square Root Normalization: Square root normalization, or Sqrt normalization, is a
data transformation technique that adjusts data to a more appropriate range for specific
machine learning algorithms or data analysis tasks. This method is especially beneficial
for handling skewed or heavy-tailed data distributions. The process involves applying the
square root to each data point in the dataset [32].
for a vector X = [x1, x2, ..., xn].

xsqrt_normalized = [√x1,
√

x2, . . . ,
√

xn] (2.14)
The square root transformation has several useful benefits. It helps stabilize the variance
of data, which is important when the variance tends to increase with the mean, like in
count data or Poisson distributions. This makes the data more consistent and easier to
work with. It also reduces skewness, making skewed data distributions more symmetric
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and closer to a normal distribution. Additionally, it compresses the range of the data,
bringing large values closer to smaller ones. This is helpful when dealing with data that
has a wide range or outliers.

Figure 2.9: Comparison of data before and after being square root transformed [41]

• Logistic Sigmoid: It is a non-linear function that maps any real-valued input to a value
between 0 and 1. It is defined as 2.15:

σ(x) = 1
1 + e−x

(2.15)

Where:

◦ x is the input value.

• Pareto Scaling: It works by adjusting the data so that it centers around the average
and is scaled based on the square root of the standard deviation. This approach helps
keep the overall pattern of the data intact while minimizing the effect of very large values
and outliers [38].
The following describes the algorithm for computing Pareto scaling.

Input: X (dataset with m instances and n features)
Output: Xpareto_scaled (Pareto Scaled dataset)
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Algorithm 3 Pareto Scaling Normalization [37]
Require: X (dataset with m instances and n features)
Ensure: Xpareto_scaled (Pareto Scaled dataset)

1: for j = 1 to n do
2: µj ← calculateMean(X[:, j]) ▷ Calculate mean of feature j
3: σj ← calculateStandardDeviation(X[:, j]) ▷ Calculate standard deviation of feature j
4: for i = 1 to m do
5: xcentered ← X[i, j]− µj ▷ Center the data by subtracting the mean
6: if σj == 0 then
7: Xpareto_scaled[i, j]← 0 ▷ Handle cases where standard deviation is zero
8: else
9: Xpareto_scaled[i, j]← xcentered/

√
σj ▷ Scale the centered data by dividing by

square root of standard deviation
10: end if
11: end for
12: end for
13: return Xpareto_scaled

• Power Transformation: It is a combination of min-max normalization and square root
transformation on the input data. The following details the calculation of the normaliza-
tion procedure [38]:

1. Input:
- train: A two-dimensional matrix representing the training data.

2. Initialization:
◦ ntrain: Create a matrix of zeros with the same dimensions as train to store the

normalized data.
◦ tmptrain: Create another matrix of zeros with the same dimensions as train for

temporary calculations.
◦ mn: Find the minimum value for each feature in train and store it in a vector

mn.
◦ mx: Find the maximum value for each feature in train and store it in a vector

mx.
3. Preprocessing for Negative Values: remove the negative values with absolute.
4. Square Root Transformation: Apply a square root transformation to all elements in

tmptrain.
5. Calculate mean centering for each feature

The resulting normalized feature vectors are then fed into a classification stage for kinship
verification evaluation.

2.6 Classification

The last stage is to categorize the individual pairings according to the feature vectors that were
taken from the matrices that took from the preprocessing phase. Each pair in this classification
procedure is given a label that indicates whether the persons in the pair are related or not.
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A binary classifier is employed to accomplish this classification. For this, a number of methods
binary classifiers can be used, such as Random Forest, Decision Trees, Multilayer Perceptrons
(MLP), Support Vector Machines (SVM), and others. Based on the patterns seen in the data,
these classifiers examine the collected feature vectors and learn to differentiate between related
and unrelated pairs.

Support Vector Machines (SVMs) have been a popular choice for kinship verification due to
their effectiveness on various datasets [47, 46, 30]. Building upon this established approach,
this study utilizes the KinFaceW-II dataset for training the SVM classifier.

• Support Vector Machines SVM

Support Vector Machines (SVM) is a supervised learning algorithm used in machine learning
for classification and regression tasks [31]. The main idea behind SVM is to find the optimal
hyperplane that maximally separates the different classes in a dataset. This hyperplane is
chosen in such a way that it has the maximum margin, which is the distance between the
hyperplane and the nearest data points from each class, known as support vectors. SVMs is
about to transform input data into a higher-dimensional feature space using kernel functions,
it is about to map the input data points into a higher-dimensional space where the separation
between the two classes becomes easier. This allows SVM to solve complex non-linear problems
as well, enabling effective classification even for complex, nonlinear data 2.10. SVMs are adept
at handling high-dimensional data efficiently and are resistant to overfitting, making them
suitable for various classification application.
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Figure 2.10: Processing steps for SVM classification
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2.7 Conclusion

In conclusion, this chapter has provided an overview of the key techniques and innovations in
kinship verification systems. It has covered the main steps involved, from face acquisition to
preprocessing, feature extraction, normalization, and classification. We have highlighted some
of the popular feature descriptors we used in our experiments, which we will discover in the
next chapter, as well as important normalization and classification methods.
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Chapter 3

Implementation and Results

3.1 Introduction

This chapter explains how we built and tested our kinship verification system. We begin by
introducing the dataset chosen to evaluate our proposed model’s performance. Following that,
we present the details of the proposed model. We leverage various texture descriptors to extract
key features from the images. We employ a Support Vector Machine (SVM) to analyze the
extracted features and determine kinship relationships. Furthermore, we present the results of
our experiments, focusing on the system’s accuracy and its performance as visualized by ROC
curves. Finally we compares the proposed model with state-of-the-art techniques.

3.2 KinFaceW-II Dataset

In our experiment, we tested our classification model using the widely recognized KinFaceW-
II dataset [23], which is commonly used for studying kinship verification. The KinFaceW-II
dataset is divided into four groups, each containing 250 pairs of color images. These image
pairs depict different types of family relationships: Father-Son (FS), Mother-Son (MS), Father-
Daughter (FD), and Mother-Daughter (MD). For each kinship relation, the 250 positive pairs
(kin) are used to generate 250 negative pairs (not kin). This strategy ensures that both classes
(kin and not kin) are equally represented within the data, leading to a total of 500 image pairs
for each relation. This involves splitting the balanced data into five equal folds, each containing
100 image pairs (50 kin and 50 not kin).
The table 3.1 illustrates the structure of the KinFaceW-II dataset for each family type and the
table 3.2 presents the statistic of this dataset:

Table 3.1: Contributions of different Kinface-II source

Fold(i) matches Pairs
i Kin/non-kin image 1 image 2
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Table 3.2: The statistic of the KinFaceW-II dataset [44]

Class FD FS MD MS
Pairs of images 250 250 250 250
Asian people % 6 7.2 7.6 11.2

Not Asian people% 94 92.8 92.4 88.8

To provide a visual representation of the dataset, Figure 3.1 and Figure 3.2 showcase example
images pairs.

Figure 3.1: Example of images from the KinFaceW-II dataset as kin relationship

Figure 3.2: Example of images from the KinFaceW-II dataset as Non-kin relationship

3.3 Main process of Kinship Verification System

In the figure below 3.3, we provide an overview of the global system and illustrate how it
operates. This will give us a broad understanding of the system as a whole. In the subsequent
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sections, we will break down each process, explaining their roles and how they contribute to
the overall functionality of the system.

Figure 3.3: Kinship Verification Process Schema

3.3.1 Data Preparation

This thesis delves into the field of kinship verification, aiming to develop a method that auto-
matically determines whether two individuals in images are related. Before feeding the data
into a classifier, it undergoes several steps to ensure optimal performance. As illustrated in the
figure 3.4, the first step typically involves color space conversion, followed by feature extraction
and finally, feature normalization.
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Figure 3.4: Pipeline for feature extraction and data preparation from input images
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3.3.1.1 Data Preprocessing

This section explores the concept of color space conversion, focusing on how an RGB image, the
workhorse of digital photography, transforms when different conversion techniques are applied.
In the figure 3.5 below, we’ll look at how an RGB image, a common format for digital images,
is transformed when different color conversion techniques are applied.

Figure 3.5: RGB image conversion to different color spaces

In this algorithm, we show the logic of data preprocessing before starting the feature extraction.

Algorithm 4 Database Preparation
1: procedure Database Preparation
2: for each image I do
3: Read images
4: Convert images to HSV, YCbCr, and Grayscale color spaces
5: end for
6: end procedure

3.3.1.2 Feature Extraction

Following data preprocessing, feature extraction plays a critical role in the kinship verification
process. This step aims to identify and extract essential characteristics from the images that
can be used to determine potential kinship relationships. This work utilizes various texture
descriptors: Local Phase Quantization (LPQ), Local Binary Patterns (LBP) in grayscale, RGB,
and HSV color spaces, and Histogram of Local Binary Patterns (Hist LBP).
The figure below 3.4 shows the detailed steps involved in data preparation, as mentioned in
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the previous figure 3.3. It breaks down each stage, showing how we transform raw data into a
format ready for the system.

• Local Phase Quantization: We leverage Local Phase Quantization (LPQ) to extract
features from the dataset. This process involves first converting the original RGB images
to grayscale format. The LPQ algorithm is then applied to these grayscale images, re-
sulting in a new feature representation for each image. This new representation captures
textural information that can be beneficial for classification tasks.

• Local Binary Patterns: We employ Local Binary Patterns (LBP), as detailed in section
2.4.4, LBP, to extract features from the dataset. This process begins by converting the
original RGB images to grayscale format. The grayscale images are then subjected to
LBP analysis, resulting in a new feature representation that encodes the textural details
of each face image. The figure 3.6 shows the main steps of an LBP descriptor.

Figure 3.6: Local binary patterns features

• Color Local Binary Patterns in RGB Color Space: We utilize Color Local Binary
Patterns (Color LBP (RGB)) to capture both color and texture information from the im-
ages. Unlike LBP, which operates on grayscale images, Color LBP leverages the inherent
color information within the data. To achieve this, we first decompose the original RGB
image into its individual red, green, and blue channels, effectively creating three separate
grayscale images. Subsequently, we apply LBP to each of these grayscale channels, result-
ing in three distinct feature vectors. Finally, these three feature vectors are concatenated
to form a single, combined feature representation. This final representation incorporates
both the spatial textural patterns and the color information from the original RGB image.
Figure 3.7 summarizes the calculation of the Color LBP (RGB) features.
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Figure 3.7: Color local binary patterns steps

• Color Local Binary Patterns in HSV Color Space: In addition to applying Color
LBP to the RGB color space, we also explore its application in the HSV (Hue-Saturation-
Value) color space. This approach aims to potentially capture different aspects of color
information compared to the RGB representation. The process begins by converting the
original RGB image to the HSV color space. We then separate the HSV image into its
individual channels (Hue, Saturation, and Value). Similar to Color LBP in RGB, we
apply the LBP descriptor to each of these separate channels, resulting in three distinct
feature vectors. Finally, these three feature vectors are concatenated to form a unified
feature representation. This approach leverages the potential benefits of the HSV color
space representations for feature extraction.

• Histogram of Local Binary Patterns: The Hist LBP is a technique originally de-
veloped for person re-identification. Hist LBP aims to capture a more nuanced and
informative representation of facial features by combining texture and color information
into a single descriptor. This work aim to demonstrate the effectiveness of Hist LBP in
improving the accuracy of kinship verification compared to traditional methods.
Hist LBP is a combination between HOG and LBP 2.4.2, 2.4.4, for the purpose to improve
performances, before we go to algorithm, here is definition of some variables:

• Patches: Patches determine the size of the local regions or blocks from which
features will be extracted.
• Step size: It is the distance between the center of neighboring patches when dividing

the image, it is used to determine the level of overlap between patches.
See the figure below 3.8 :
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Figure 3.8: Difference between patches and step size

• Bins: They are the range of pixels values in the histogram,

The algorithm 5 shows Hist LBP explained after data preprocessing.

Algorithm 5 Feature Extraction with Hist LBP
1: procedure Feature extraction(I, patchSize, numBins, stepSize)
2: imsz← size(I) ▷ Get image size
3: patches← GeneratePatches(imsz, patchSize, stepSize) ▷ Generate patches
4: for patch ∈ patches do
5: for c ∈ {R, G, B, H, S, V, Y,Cb,Cr } do ▷ For each color channel
6: hist← ComputeHistogram(Ic(patch), numBins) ▷ Compute histogram
7: hist← hist/sum(hist) ▷ Normalize histogram
8: colorHist[patch, c]← hist ▷ Store color histogram
9: end for

convert I to grayscale
10: lbpFeat← LBP(I(patch), 1, patch) ▷ LBP
11: end for
12: features← Concatenate(colorHist, lbpFeat) ▷ Concatenate color histogram and LBP

features
13: end procedure

3.3.1.3 Feature Normalization

Each extracted feature vector for the parent image and the child image extracted from the Hist
LBP descriptor is separately subjected to normalization using different normalization methods
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(section 2.5).

For each descriptor, the resulting feature vectors for the parent and child are then merged to
create a single feature vector representing the pair.

3.3.2 Feature Fusion

The feature fusion technique calculates a new feature vector to represent a pair of individuals
(parent and child). This is achieved for each feature dimension by computing the absolute
difference between the corresponding feature values of the parent and child. In simpler terms,
for each feature, we take the absolute value of the subtraction between the parent’s and child’s
values for that feature.

The merged feature vector is subsequently utilized as input for the classification stage.

3.3.3 Classification

In our experiment, the prepared data is split into 80% for the training phase and 20%
for the testing phase. This split is utilized for cross-validation The training data is then
fed into a linear SVM classifier because it is the best choice in this field to generate a trained
model. Subsequently, the system uses this model to predict outcomes for the remaining 20% of
the data reserved for testing. The predicted results are compared with the actual test data to
calculate the accuracy of each k-fold (k=1,2,3,4,5), and the mean accuracy across the 5 folds
is determined. This process is repeated for each type of relationship, resulting in four distinct
models: model-FD, model-FS, model-MD, model-MS. the figure 3.9 below resume the
training process for each model.
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Figure 3.9: The training process for the system to get four models, model-FD, model-FS,
model-MD, model-MS

We employ a 5-fold cross-validation technique to train and evaluate the SVM classifier. This
process helps ensure the model’s generalizability and reduces the risk of overfitting to the
specific training data.

Cross-Validation

Cross-validation is a resampling technique used to evaluate our model on an unseen dataset
and estimate their performance on new, unseen data. It is a way to assess how well a model
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will generalize to new data, and it helps to reduce overfitting, which occurs when a model fits
the training data too closely and fails to generalize well to new, unseen data [3].
The basic idea of cross-validation is to divide the available dataset into two parts: a training set
and a validation set (or test set), as presented in the figure 3.10. The model is trained on the
training set, and its performance is evaluated on the validation set. This process is repeated
multiple times, with different portions of the data used as the training and validation sets each
time. The final performance measure is typically the average of the performance measures
across all iterations.

Figure 3.10: 5-fold cross validation explained [42]

We assess the performance of the SVM classifier using various evaluation metrics.

3.4 Evaluation Metrics

To comprehensively evaluate the performance of our kinship verification model, we employed
three key metrics: Accuracy, Receiver Operating Characteristic (ROC) curve analysis, and
Area Under the ROC Curve (AUC).

3.4.1 Accuracy

Accuracy in machine learning is a metric that measures the proportion of correct predictions
made by a model out of the total number of predictions. It is one of the most widely used
evaluation metrics for image classification tasks, where the goal is to assign the correct class
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label (or category) to each instance in the dataset. It is calculated as below :

Accuracy = Number of Correct Predictions
Total Number of Predictions (3.1)

Or in another term by using confusion matrix where it summarizes the performance of a
classification model by comparing the predicted class labels with the true class labels (ground
truth) for a set of instances.

Figure 3.11: Confusion matrix for machine learning

And with that we define accuracy as :

Accuracy = TP + TN
TP + TN + FP + FN (3.2)

Accuracy is often expressed as a percentage, ranging from 0% (all predictions are incorrect) to
100% (all predictions are correct). The importance of accuracy in machine learning lies in its
ability to provide a simple and intuitive measure of a model’s overall performance. It is easy to
interpret and understand the results of our work. By offering a clear indication of how well a
model is performing in making correct predictions, accuracy serves as a fundamental benchmark
for evaluating and comparing different models. Its straightforward nature allows for quick
assessments and facilitates communication of results to stakeholders who may not have a deep
technical background. However, while accuracy is a fundamental metric for evaluating model
performance, ROC (Receiver Operating Characteristic) curves offer a more comprehensive view
of a classifier’s performance.

3.4.2 Receiver Operating Characteristic

ROC curves (Receiver Operating Characteristic curves) are a crucial tool for assessing the
performance of machine learning models, They provide an effective means to see how any pre-
dictive model can distinguish between the true positives and negatives, particularly in binary
classification tasks [1], where there are two distinct output classes, in our case we have Kin or
No kin. An ROC curve illustrates the relationship between the true positive rate (TPR) and
the false positive rate (FPR). The TPR indicates the proportion of actual positives correctly
identified by the model, while the FPR represents the proportion of actual negatives incorrectly
classified as positives. An ideal classifier achieves a TPR of 1 and an FPR of 0.
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3.4.3 Area Under the Curve

In the context of a ROC curve, the AUC represents the area under the ROC curve. The AUC’s
value ranges from 0 to 1, with the following interpretations:

- AUC = 0.5: The classifier is no better than random guessing.

- AUC < 0.5: The classifier is worse than random guessing.

- 0.5 < AUC < 1: The classifier is better than random guessing, with higher values indi-
cating better performance.

- AUC = 1: The classifier is perfect, with no false positives or false negatives.

3.5 Experimental Protocol for Classification

In this section, we’ve outlined the classification system we created to verify kinship, or family
relationships. This system is carefully designed to be thorough and adaptable, allowing it to
handle different types of data and scenarios. By using this system in our tests, we were able
to develop a reliable method for confirming whether people are related, based on features like
facial similarities or genetic information.

3.5.1 Evaluation of Different Descriptors

We used accuracy 3.4.1 as a primary tool to evaluate the performance of the classification model
because it provides a straightforward and intuitive measure of how well the model is performing
overall. Accuracy is easy to understand and interpret, making it a convenient metric for quickly
assessing the effectiveness of the model. This section presents the evaluation results for various
feature extraction techniques employed in our kinship verification system. These techniques
include Local Phase Quantization (LPQ), Local Binary Patterns (LBP) in grayscale, RGB,
and HSV color spaces, and Histogram of Local Binary Patterns (Hist LBP). The evaluation
focuses on the performance of each technique in terms of accuracy. The results presented in the
following table demonstrate that the Histogram of Local Binary Patterns (Hist LBP) descriptor
achieved the most favorable results compared to the other descriptors evaluated in this study.

Table 3.3: Evaluation of different feature descriptors based on accuracy

F-D% F-S% M-D% M-S% Mean accuracy%
LBP gray 73 69 69 68 70
Color LBP RGB 72 72 71 70 71
Color LBP HSV 79 80 82 84 81
LPQ 58 64.8 54.8 55.2 58.2
Hist LBP 84 88 90 92 88.5

To further illustrate the effectiveness of Hist LBP, Figure 3.12 presents a comparison of its
performance against other feature descriptors. This visual representation allows for a clearer
understanding of how Hist LBP compares to other descriptor.
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Figure 3.12: Accuracy estimation using SVM with different feature extractors

As shown in the 3.12, Hist LBP is the feature extractor that provides the best accuracy with a
default configuration (nbins=16, Paches=32, step size=8). Based on this, we focus on it further
and enhance its development.

3.5.2 Impact of Different Parameters on the Hist LBP Descriptor

To identify the optimal configuration for the Hist LBP extractor, we conducted a grid search
experiment. This experiment systematically evaluated the impact of different parameter values
on the extractor’s performance. Specifically, we focused on tuning the parameters related to:
Patches and bins.

The grid search explored various combinations of these parameter values. The best performing
combination, as determined by the accuracy achieved using 5-fold cross-validation (described
in section 3.3.3), was then used for further experiments. Table 3.4 summarizes the accuracies
obtained with different parameter settings while maintaining a step size of 16 and exploring
patch sizes specifically set to 64.

Table 3.4: Accuracy results using Hist LBP descriptor with change of patches and bins

bins patches F-D % F-S % M-D % M-S % Mean accuracy %
8 64 83.8 85.6 91.2 92 88.15
16 64 84.4 85.8 90.6 94 88.7
32 64 84.8 86.4 92.2 88.8 88.05
64 64 84.6 86.4 91.6 91 88.45

Table 3.4 reveals that variations in the number of bins have a minimal effect on accuracy. Based
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on this observation, we opted to proceed with a fixed bin value of 16.

We will now focus on adjusting the patch parameters to assess their influence on performance.
Notably, the step size will be set equal to the patch size, eliminating any overlap between
extracted patches. Following this evaluation, we will investigate the impact of introducing
overlap between patches. We will analyze how incorporating overlap affects the results and
potentially identify a further improvement in accuracy. The table 3.5 presents the obtained
results.

Table 3.5: Accuracy results with step size variation

patches step size F-D% F-S% M-D% M-S % Mean accuracy%
32 32 79.8 86.2 90.4 87.4 85.95
32 16 83 88 90.2 87.8 87.25
32 8 83.8 87.6 91.2 87.2 87.45
32 4 83.8 87.8 91.4 87.2 87.55
32 2 83.2 88.8 91.4 92 88.85

When we reduce the step size in data analysis, we improve accuracy because we take more
frequent samples. This increased frequency means that the data segments overlap more, so we
capture more detailed information and lose less data. As a result, important patterns are less
likely to be missed, making our analysis more precise and reliable. In simpler terms, smaller
steps mean we get a clearer and more data.

Prior to plotting the ROC curve, we calculated the Area Under the Curve (AUC) metric. The
results of this calculation are presented below.
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Figure 3.13: ROC curves with Hist LBP for patches=32, bins=16, step size=2

From the ROC curves, we can see that the AUC is above 0.5, which means our SVM classifier is
performing well, and our parameters are on point. To make our system even better, we should
consider adding normalization (refer to section 2.5). This technique can improve the classifier by
making sure all features are on the same scale, which helps the model perform more accurately.
By normalizing our data, we can achieve even better and more reliable results, making our
classification model stronger and more effective.

3.5.3 Impact of Normalization on the Hist LBP Descriptor

As discussed in section 2.5, normalization plays a crucial role in enhancing the performance
of machine learning models. To understand its effect more completely, we experimented with
different types of normalization techniques. The goal was to observe whether and how these
normalization methods influence the model’s accuracy and to look for the best classification
model. The table 3.6 below presents the results of these experiments while step size=8:
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Table 3.6: Mean accuracy after different normalization techniques, step size=8

normalization Patches Bins F-D % F-S % Md % M-S % mean accuracy %
16 8 82.2 87 91.4 93 88.4
32 8 82.8 85.4 91.2 92 87.85min max
32 64 85.6 87.6 92.6 94 89.95
16 8 81 85.8 90.4 89 86.55
32 8 81.4 85.4 91 91 87.2zscore function
32 64 85 86.8 92 95 89.7
16 8 82 86.6 91.6 93 88.35
32 8 80.6 87.2 87.8 91 86.65decimal scaling
32 64 82.4 87.4 91.2 94 88.75
16 8 84.4 89.2 93.6 96 90.8
32 8 85.4 88.4 93.8 96 90.9sqrt
32 64 86.2 89 93.2 96 91.1
16 8 83 87.2 92 91 88.3
32 8 83.8 86.2 91.2 90 87.8logistic sigmoid
32 64 86 86.4 92.8 93 89.55
16 8 82 87.2 92.6 95 89.2
32 8 83.6 85.8 92 93 88.6pareto scaling
32 64 84.2 85.8 92.6 94 89.15

power norm
16 8 84.4 89.2 93.6 96 90.8
32 8 85.4 88.4 93.8 96 90.9
32 64 86.2 89 93.2 96 91.1

The findings presented in the table highlight the significant influence of normalization tech-
niques on the accuracy of our kinship verification models. Notably, most normalization meth-
ods, except for Pareto scaling, achieve favorable results when using a patch size of 32. This
suggests that patch size plays a crucial role in performance, while the impact of bin values
appears to be less pronounced.

Based on these insights, we have chosen to focus further investigation on the power normaliza-
tion method (refer to section 2.5 for details).

3.5.4 Impact of Power Normalization on the Hist LBP Descriptor

We will explore different parameter settings for power normalization while maintaining a bin
value of 16, as suggested by the results presented in the table 3.5. Our objective is to identify the
configuration that maximizes model accuracy. The following table presents the mean accuracy
results obtained when applying power normalization with varying step size parameters.
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Table 3.7: Mean accuracy results from power normalization by adjusting step size parameter

patches step size F-D % F-S % M-D % M-S % mean accuracy %
32 1 84.6 89.4 93.8 95 90.9
32 2 84.6 90.8 94 97 91.6
32 3 83.6 89.6 94 96 90.8
32 4 84.2 90.40 93.4 96 91
32 6 84.6 90.4 93.2 96 91.05
32 8 84.6 90.2 93.6 96 91.2

By analyzing the data presented in the table 3.7, we can evaluate the influence of the step size
parameter on the performance of the kinship verification model. Notably, the table reveals that
a step size of 2 with a patch of 32 and number of bins of 16 yields the most favorable outcome
among the tested values.

To further assess the performance of our classification model equipped with the optimal Hist
LBP configuration, we will generate Receiver Operating Characteristic ROC curves. This visual
representation allows us to analyze how variations in the power normalization parameters affect
the model’s ability to discriminate between kinship classes (kin vs. non-kin). By examining
the ROC curves, we can gain valuable insights into the model’s effectiveness in separating the
positive and negative classes.
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Figure 3.14: ROC curves for patches=32, bins=16, step size=2, with power norm normal-
ization

3.5.5 Impact of Power Normalization on Best Hist LBP Configura-
tion

This section explores the influence of power normalization on the performance of the best Hist
LBP configuration. We present the results for both accuracy (table 3.8) and Area Under the
ROC Curve (AUC) (table 3.9).

Technique F-D % F-S % M-D % M-S % Mean Accuracy %
without normalization 83.2 88.8 91.4 92 88.85
with power normalization, 84.6 90.8 94 97 91.6

Table 3.8: Comparison of Hist LBP Accuracy: Power Normalization vs. No Normalization,
patches=32, bins=16, step size=2
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Technique F-D % F-S % M-D % M-S % Mean AUC %
without normalization 91.65 95.28 96.912 93.872 94.45
with power normalization, 92.26 96.33 97.97 95.17 95.43

Table 3.9: Comparison of Hist LBP AUC: Power Normalization vs. No Normalization,
patches=32, bins=16, step size=2

The analysis reveals that applying power normalization, compared to no normalization, leads
to an improvement in AUC values and accuracy. While the specific increase is (∼ 1% for AUC
and ∼ 3% for accuracy), this enhancement is considered significant for our kinship verification
system.

This observation suggests that scaling the data using power normalization before training the
SVM classifier likely contributes to improved performance in correctly classifying data instances.

3.6 Comparison with State-of-the-Art Techniques

The optimal configuration identified in the preceding section is evaluated in comparison to the
state-of-the-art results for the KinFaceW-II database. As presented in the following table 3.10,
our model achieves superior results on KinFaceW-II dataset, surpassing all previously reported
methods.

Page 48



Implementation and Results

Authors Classifier Feature FD % FS % MS % MD % Mean Accuracy %
Lu & al [22] SVM HOG 71.6 79.6 73.3 69.6 73.5
Faraki & Al
[10]

- LBP 78.4 75.6 68.6 73.2 74

Lui & Zhu [29] SVM LBP - - - - 74.7
Lian &Zhou
[20]

- HOG 71.2 81.4 74.8 73 75.1

Qin & al[19] - - 71.6 77.2 79 73.4 75.3
Lu & al[34] SVM - - - - - 75.4
Yan & al[24] SVM LBP +

TPLBP +
SIFT +
LE

74.3 76.9 77.4 77.6 76.5

Duan & Tan
[52]

SVM LBP +
SPLE +
SIFT

74.7 77.3 77.8 78 77

Yan & al [7] - LBP 76.2 82.4 76.6 73.2 77.1
H.Yan[51] SVM LBP +

SPLE +
SIFT

76.5 78.5 78.5 79.5 78.3

Hu & al [50] SVM LE 76.1 79.8 79.8 80 78.7
J.Hu & al[15] - LBP +

TPLBP +
SIFT +
LE

78.2 82.4 78.8 80.4 80

Fang & al [9] - HOG 77 85 80.4 78.4 80.2
Tan & al[14] - LBP +

TPLBP +
SIFT +
LE

79.8 80.4 78.8 81.8 80.2

Lu & al [26] SVM - 73.8 82.6 82.8 84 80.8
Liu & al [21] SVM SIFT 77 85.4 81.6 81.6 81.4
Fang &
Houang [44]

SVM LBP 82 87 71 87 81.8

Our ap-
proach

SVM Hist LBP
with
power
normal-
ization

84.6 90.8 94 97 91.6

Table 3.10: Comparison of Hist LBP descriptor with State-of-the-Art Techniques
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3.7 Application: Graphical user interface

To ensure the proposed kinship verification model is intuitive and easy to use, we developed a
logic that helped us to realize a graphical interface.

Figure 3.15: Kinship Verification Framework

The figure below 3.16, shows the first interface that the user find when he wants to use it.

Our kinship verification system utilizes a graphical interface developed in MATLAB to guide
the user through the process. Here’s a step-by-step explanation:

• Initial Interface (Figure 3.16): The user encounters this first screen upon launching
the application. It likely displays essential instructions or system information.

• Selecting Parent Image (Figure 3.17): When the user clicks the "Parent Image" button
(Figure 3.16), a file selection window appears (Figure 3.17a) allowing them to choose the
parent’s image.

• Parent Image Display (Figure 3.17b): Once selected, the chosen parent’s image is
displayed on the main interface.

• Selecting Child Image(Figure 3.16): Following the same principle, clicking the "Child
Image" button (Figure 3.16) prompts a file selection window (Figure 3.18a) for choosing
the child’s image.
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• Child Image Display (Figure 3.18b): The selected child’s image is then displayed
alongside the child’s image on the main interface.

• Relationship Selection (Figure 3.19): The user chooses the relationship type they
want to verify (likely kin or not kin) through an appropriate interface element as shown
in Figure 3.19.

• Verification Result: After processing the images and the selected relationship type,
the system displays the final result. Figure 3.20 might illustrate a successful verification
(images are likely kin), while Figure 3.21 could represent an unsuccessful verification
(images are likely not kin).

Figure 3.16: The basic user interface

(a) When the user clicks on Parent image, it
shows the files that we want to choose from

(b) The parent image displays on the basic
interface

Figure 3.17: Selecting Parent Image
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(a) When the user clicks on child image, it
shows the files that we want to choose from

(b) The child image displays on the basic in-
terface

Figure 3.18: Selecting Child Image

Figure 3.19: User Selection of Relationship Type for Verification
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Figure 3.20: The final result (images are likely kin)

Figure 3.21: The final result (images are likely not kin)
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3.8 Conclusion

The chapter wraps up by summarizing how we built and tested the kinship verification system.
Our system proved to be effective, achieving 91.6% accuracy rate using the Hist LBP descriptor
to analyze facial images. It also demonstrated robustness, handling variations in the number of
patches and bins used during feature extraction well. We highlight the potential uses for this
system in areas like law enforcement and social media, and we suggest some future improvements
to make the system even better.
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General Conclusion

Facial kinship verification uses computer vision techniques to analyze facial images and deter-
mine if two individuals are belong to the same family. This project introduces a novel approach
to kinship verification that leverages the strengths of the Histogram of (Hist LBP) descriptor.
Hist LBP offers a significant advantage by capturing both texture and color information, po-
tentially leading to a richer feature representation compared to traditional methods that rely
on individual features like shapes, textures or colors. The extracted features are then fed into
a Support Vector Machine (SVM) classifier, a robust machine learning algorithm trained using
5-fold cross-validation for reliable model evaluation. This approach helps mitigate overfitting
and ensures the generalizability of the system.

To demonstrate the effectiveness of the explored approach, we conduct a comprehensive eval-
uation on the KinFaceW-II benchmark, a widely used dataset for kinship verification. This
analysis goes beyond just accuracy by comparing our system’s performance with established de-
scriptors like Local Phase Quantization (LPQ) and (LBP) across various color spaces (grayscale,
RGB, and HSV). We further investigated the impact of different normalization techniques ap-
plied to the Hist LBP descriptor by adjusting parameters to identify the optimal settings for
future experiments. By analyzing the performance with various normalization approaches, we
gain insights into how data scaling affects the effectiveness of feature extraction for kinship ver-
ification. The proposed model with power norm normalization technique achieved the highest
accuracy of 91.6% for the optimal configuration parameters of Hist LBP descriptor. This find-
ing demonstrates the potential of Hist LBP for kinship verification, especially when combined
with appropriate normalization techniques. Based on accuracy, we compared our system’s per-
formance against state-of-the-art descriptors. This comparison demonstrates that the proposed
model surpassing many comparative state-of the art techniques presented in this work.

Currently, the evaluation focused on the KinFaceW-II benchmark. In the future, we propose
to apply the proposed model to a wider range of kinship verification datasets. This broader
evaluation will provide a more comprehensive understanding of the system’s performance across
various facial characteristics, ethnicities, and image qualities.

While Hist LBP has demonstrated promising results for feature extraction, its potential can be
further amplified by combining it with other complementary descriptors. Future work proposes
investigating the fusion of Hist LBP features with other techniques like shape-based or deep
learning-based feature extractors. This combined approach could potentially capture a richer
and more informative representation of facial features, potentially leading to improved kinship
verification accuracy.
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Abstract

Facial Kinship Verification, the process of identifying family relationships through facial images, is
gaining more interest due to its many applications. This work proposes the use of feature extraction
technique for kinship verification: the Histogram of Local Binary Patterns (Hist LBP). Hist LBP offers
a richer representation of facial features by capturing both texture and color information. We evaluate
its effectiveness against established methods like Local Phase Quantization (LPQ) and Local Binary
Patterns (LBP) across various color spaces to assess its potential for improvement. Furthermore, we
explore the impact of different normalization techniques applied to the Hist LBP descriptor in order to
further enhance performance. The normalized Hist LBP features are then fed into a Support Vector
Machine (SVM) classifier with 5-fold cross-validation for robust model training and evaluation.We
evaluate the system’s performance using the KinFaceW-II benchmark, allowing us to analyze the
impact of Hist LBP on kinship verification accuracy compared to existing approaches. Ultimately,
this work strives to contribute to the advancement of facial kinship verification technology by providing
a robust and effective solution.
Keywords: Features, color space, classification, descriptors

Resume

La vérification de la parenté faciale, qui consiste à identifier les relations familiales à partir d’images
faciales, suscite un intérêt croissant. Ce travail présente une nouvelle technique d’extraction de carac-
téristiques appelée Histogramme des motifs binaires locaux (Hist LBP), qui capture les informations
de texture et de couleur des visages. L’efficacité de Hist LBP est comparée à des méthodes établies
comme la quantification de phase locale (LPQ) et les motifs binaires locaux (LBP) dans divers espaces
colorimétriques. Des techniques de normalisation sont également explorées pour améliorer les perfor-
mances. Les caractéristiques normalisées sont ensuite utilisées dans un classificateur SVM avec valida-
tion croisée en 5 parties. Les performances du système sont évaluées avec le référentiel KinFaceW-II
pour analyser l’impact de Hist LBP sur la précision de la vérification de la parenté. L’objectif est de
contribuer à l’avancement de cette technologie en proposant une solution robuste et efficace.
Mot cle: Caractéristiques, espace colorimétrique, classification, descripteurs


	List of acronyms
	List of Figures
	List of symbols
	List of Tables
	General Introduction
	Generality about Kinship Verification
	Introduction
	Biometrics
	Facial Recognition
	Kinship Verification
	Applications of Kinship Verification
	Automatic Kinship Verification Challenges

	Kinship Verification Datasets
	KinFaceW Dataset
	UB KinFace Dataset
	Cornell KinFace Dataset
	TSkinFace Dataset

	Kinship Verification System
	Preprocessing
	Feature Extraction
	Feature Normalization
	Classification

	Conclusion

	Techniques and Innovations in Kinship Verification Systems
	Introduction
	Facial Analysis
	Preprocessing
	Feature Extraction
	Local Phase Quantization LPQ
	Histogram of Oriented Gradients HOG
	Local Binary Patterns LBP
	Histogram of Local Binary Patterns Hist LBP
	Color Local Binary Patterns CLBP
	Binarized Statistical Image Features BSIF 

	Feature Normalization
	Classification
	Conclusion

	Implementation and Results
	Introduction
	KinFaceW-II Dataset
	Main process of Kinship Verification System
	Data Preparation
	Data Preprocessing
	Feature Extraction
	Feature Normalization

	Feature Fusion
	Classification

	Evaluation Metrics
	Accuracy
	Receiver Operating Characteristic
	Area Under the Curve

	Experimental Protocol for Classification
	Evaluation of Different Descriptors
	Impact of Different Parameters on the Hist LBP Descriptor
	Impact of Normalization on the Hist LBP Descriptor
	Impact of Power Normalization on the Hist LBP Descriptor
	Impact of Power Normalization on Best Hist LBP Configuration

	Comparison with State-of-the-Art Techniques
	Application: Graphical user interface 
	Conclusion

	General Conclusion
	Bibliography

