
Electrical and Industrial Computer Engineering

Final Year Project to Obtain the Diploma of

Engineering

- Field -
Telecommunication

- Specialty -
Telecommunication Systems and Networking

- Subject -

Enhanced IT Infrastructure Monitoring with
Anomaly Detection: Combining

Prometheus, Grafana and Machine Learning

Realized by

Aya Alia Abdi & Rima Boubeghel

Members of the Jury :

Mr Tarek Cherifi Chair
Mr Abdelkader Balahcene Examiner
Mme Lila Abbad Examiner
Mr El Hadi Khoumeri Supervisor

Algiers, Jun 25th 2024
Academic year 2023-2024

Dedication

Aya Alia Abdi
To my mother,

May this modest work be the fulfillment of the wishes you constantly expressed in your
prayers. You are my wellspring of love, my source of energy, my flame of determination.

This work is the fruit of the sacrifices you made for my education and upbringing.
To my father,

I want to thank you for your unwavering support and kindness throughout my school
journey. Your presence has been invaluable and has helped me move forward.

Thank you from the bottom of my heart.
To my dear sisters, Assia and Hasna.

Thank you for your constant encouragement and moral support.
To Rima, my partner and friend,

Who shared all the work with me and endured my moods during stressful times. Thank
you for all the good times we’ve had together.

To my dear friends, Asma and Khaled.
Without you, this adventure would have been so different.

Rima Boubeghel
To my dearest mother, who always believes in me, supports me, and wishes me success.
To my dear father, who always asks about me, supports me, and does the impossible for

me.
To all my sisters: Kheira, Siham, and Nihad, and to all my brothers: Mohammed and

Fares, who always encourage and guide me to go beyond my dreams.
To all my friends, who encourage me, support me, and always try to make me happy,

especially Aya and Asma . . .

Acknowledgement

We wish to express our gratitude to Allah the Almighty for granting us the courage
and patience necessary to successfully complete this work.

We would first like to express our thanks and appreciation to our supervisor, Dr.
KHOUMERI EL Hadi, Assistant Professor in the GEII department at ENST, for his
patience, availability, and invaluable guidance.

We wish to extend our deep gratitude to the jury members for their valuable contri-
bution, support, and time dedicated to evaluating our work.

We also thank the entire teaching team at the National Higher School of Advanced
Technology and the professional speakers responsible for our education, who have con-
tributed to the completion of this work.

P�l�

�wq� .T�dqt� �Aynq� ��d�tFA� ¨l`f�� �w�� ¨� Tb��rm�� �ys�� Y�� �dh§ An�¤rK�

A�A��r�¤ �A�Ayb�� �m�� xwy�y�¤r� �d�ts§ Tb��r� �A\� @yfn�¤ r§wW�¤ �ymOt�

.Hy§Aqm�� ¨� Ð¤@K�� �AKt�¯ ¨�µ� �l`t�� ��d� �wq� ,��Ð Y�� T�AR³A� .CwOtl�

ry� ªAm�±� d�§¤ �A�wl`m�� Ay�w�wnkt� Tyt�t�� Tynb�� Tb��r� �A\n�� �@¡ �hs§

.A¾Ay¶Aql� At`m��

,A�A��r� ,xwy�y�¤r� ,�A�wl`m�� Ay�w�wnkt� Tyt�t�� Tynb�� ,Tb��rm�� :Ty�Atfm�� �Amlk��

.Ð¤@K�� �AKt��

Abstract

Our project aims to enhance real-time monitoring using advanced technologies. We de-
sign, develop, and implement a monitoring system that employs Prometheus for data
collection and Grafana for visualization. Additionally, we integrate machine learning to
detect anomalies in metrics. This system facilitates IT infrastructure monitoring and
automatically identifies unusual patterns.
Keywords: Monitoring, IT Infrastructure, Prometheus, Grafana, Anomaly Detection.

Résumé

Notre projet vise à améliorer la surveillance en temps réel en utilisant des technologies
avancées. Nous concevons, développons et implémentons un système de surveillance qui
utilise Prometheus pour la collecte de données et Grafana pour la visualisation. De plus,
nous intégrons l’apprentissage automatique pour détecter les anomalies dans les métriques.
Ce système facilite la surveillance de l’infrastructure informatique et identifie automati-
quement les schémas inhabituels.
Mots Clée : Surveillance, Infrastructure Informatique, Prometheus, Grafana, Détection
d’Anomalies.

Contents

List of Figures i

List of Tables iv

Acronyms v

General Introduction 1
0.1 State of the Art . 1
0.2 Dissertation Organization . 2

1 General Information on IT Infrastructure Monitoring 3
1.1 Introduction . 3
1.2 IT Infrastructure . 3

1.2.1 Definition . 3
1.2.2 Components . 4

1.3 IT Infrastructure Monitoring . 5
1.3.1 Definition . 5
1.3.2 Monitoring Data Types . 6
1.3.3 Monitoring Data Storage . 8
1.3.4 Monitoring Tools . 8

1.4 Prometheus . 10
1.4.1 Definition . 10
1.4.2 Architecture . 11
1.4.3 Data Collection . 11
1.4.4 Recording and Alerting Rules . 14
1.4.5 Alerting and Alertmanger . 15
1.4.6 Service Discovery . 17
1.4.7 Instrumentation . 18

1.5 Grafana . 18

CONTENTS

1.6 Grafana and Prometheus Integration . 19
1.7 Conclusion . 20

2 Anomaly Detection in Time Series Data 21
2.1 Introduction . 21
2.2 Definition . 21
2.3 Anomaly Types . 22
2.4 Nature of Input Data . 24
2.5 Output of Anomaly Detection . 24
2.6 Anomaly Detection Techniques . 25
2.7 Anomaly Detection Process . 29
2.8 Conclusion . 30

3 Conception and Implementation 31
3.1 Introduction . 31
3.2 Exploited Resources . 31

3.2.1 Hardware Resources . 32
3.2.2 Software Tools . 32

3.3 Network Architecture . 34
3.4 Implementation of The Monitoring System 35

3.4.1 Prometheus . 37
3.4.2 Exporters . 41
3.4.3 Web Application Instrumentation 46
3.4.4 Establishing Alerting Mechanism in Prometheus 54
3.4.5 Data Visualisation Using Grafana 57
3.4.6 Deployment of The Monitoring System using Docker Compose . . . 61

3.5 Implementation of Anomaly Detection in Time Series Data Using LSTM
Autoencoders . 63

3.6 Conclusion . 69

4 Results and Validation 70
4.1 Introduction . 70
4.2 Validation of the Monitoring system . 70

4.2.1 Prometheus . 70
4.2.2 Container Status with CAdvisor . 73
4.2.3 Exporters . 73
4.2.4 Web Application . 77
4.2.5 Alerting . 78

CONTENTS

4.3 Grafana Dashboards . 80
4.4 Evaluating of the Anomaly Detection Model 83
4.5 Conclusion . 86
4.6 Future Work . 86

General Conclusion 88

Bibliography 90

A Configuration Files A

List of Figures

1.1 IT Infrastructure Components . 4
1.2 Monitoring Process Phases . 5
1.3 Monolith vs Distributed Monitoring Systems 9
1.4 Push vs Pull Mechanism in Monitoring Systems 10
1.5 Prometheus logo . 10
1.6 Prometheus Architecture . 12
1.7 SNMP Monitoring Architecture . 13
1.8 SNMP MIB Tree . 14
1.9 Life Cycle of Recording Rules . 15
1.10 Alerting Workflow in Prometheus . 16
1.11 Example of Alert Routing Structure in Alertmanager 16
1.12 Grafana logo . 18
1.13 Prometheus and Grafana Integration . 19

2.1 Illustration of simple anomalies in 2D . 22
2.2 Anomaly Types [1] . 22
2.3 Normal Data Distribution . 26
2.4 Skewed Data Distribution . 26
2.5 The Influence of Data Distribution on the Z-score Method 26
2.6 Performance Comparison of Deep learning-based algorithms Vs Traditional

Algorithms [1] . 27
2.7 An illustration of a LSTM Autoencoder network [2] 29
2.8 Anomaly Detection Process . 30

3.1 GNS3 Logo . 32
3.2 Initial Setup Screen of GNS3 VM . 33
3.3 Virtualbox Logo . 33
3.4 Docker Logo . 34
3.5 CAdvisor Logo . 34

i

LIST OF FIGURES

3.6 Network Architecture . 35
3.7 Network Configuration of the Router . 36
3.9 Conception and implementation of the monitoring system 36
3.8 Network Configuration of the Switch . 37
3.10 Prometheus Configuration File 1 . 38
3.11 Prometheus Configuration File 2 . 39
3.12 Checking Prometheus.yml file using Promtool 40
3.13 Recording Rules file rules.yml . 40
3.14 File-based Service Discovery . 41
3.15 Content of Systemd Service File for Node Exporter 42
3.16 Node Exporter Service Running . 42
3.17 WMI Node Exporter Service Running . 43
3.18 SNMP v3 Configuration on The Router . 44
3.19 SNMP v3 Configuration on The Switch . 45
3.20 Tree Structure of the Uploaded Django Web Application 47
3.21 The Home Page of the Web Application 48
3.22 Diagram of Alerting Rules Implementation 55
3.23 Diagram of Route Tree Implementation . 56
3.24 Configuring Prometheus as a Data Source for Grafana 58
3.25 Adding Prometheus as a Data Source to a Dashboard 58
3.26 Creating an Instance Variable in Dashboard 59
3.27 Configuring the Metric Panel . 59
3.28 Incoming Traffic Visualization of the Router 60
3.29 Incoming Traffic Visualization of the Switch 60
3.30 Incoming Traffic Visualization of both the Router and the Switch 60
3.31 Dashboard Creation for Each Target . 61
3.32 Docker Compose Services . 62
3.33 Explanatory Diagram of the Steps Carried Out 65
3.34 CPU Usage Dataset . 66
3.35 Evaluation of Training Process . 68

4.1 Scrape Targets Listed on Prometheus Targets Page 71
4.2 Continuation 1 of Scraping Targets Listed on the Prometheus Targets Page 71
4.3 Continuation 2 of Scraping Targets Listed on the Prometheus Targets Page 72
4.4 Validation of Django App Recording Rules on the Prometheus Rules Page 72
4.5 Validation of Linux Recording Rules on the Prometheus Rules Page 72
4.6 Validation of Windows Recording Rules on the Prometheus Rules Page . . 73

ii

LIST OF FIGURES

4.7 Monitoring Containers using Cadvisor . 73
4.8 Monitoring the Web App Container using Cadvisor 74
4.9 Network Throughput and Errors Monitoring with cAdvisor for the Web App 74
4.10 VM-Kali Metrics Exposed by Node Exporter 74
4.11 VM-Windows Metrics Exposed by WMI Exporter 75
4.12 SNMP Exporter User Interface . 75
4.13 Router Metrics in SNMP Exporter HTTP Endpoint 76
4.14 Web Application Metrics Exposed on Metrics Endpoint 77
4.15 Web Application Metrics scraped by Prometheus 78
4.16 Different Alerts Displayed in Prometheus Alerts Interface 78
4.17 Fired Alerts Displayed in Alertmanager Interface 79
4.18 Gmail Notification for the Fired Alerts . 80
4.19 Data Visualisation for VM-Kali . 80
4.20 Windows VM Data Visualization Dashboard 81
4.21 Data Visualisation for Router . 81
4.22 Data Visualisation for Switch . 82
4.23 Data Visualisation for Docker . 82
4.24 Data Visualisation for Web Application . 83
4.25 Detected Anomalies in Testing Dataset Using Reconstruction Error Threshold 84
4.26 Timestamps of the detected Anomalies . 84
4.27 Occurrences of Detected Anomalies in the Testing Dataset 85

iii

List of Tables

3.1 Server Specifications . 35
3.2 Parameters in an LSTM model . 67
3.3 Optimal parameter values for the LSTM model 67
3.4 Training parameters for the LSTM autoencoder 67
3.5 Optimal training parameters for the LSTM autoencoder 68

4.1 Evaluation Metrics for Anomaly Detection 85

iv

Acronyms

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

GNS3 Graphical Network Simulator-3

GNS3 VM Graphical Network Simulator-3 Virtual Machine

HDD Hard Disk Drive

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

LSTM Long Short-Term Memory

MAD Median Absolute Deviation

MAE Mean Absolute Error

MIB Management Information Base

MSE Mean Squared Error

NAT Network Address Translation

NSSM Non-Sucking Service Manager

OID Object Identifier

v

ACRONYMS

OSS Open Source Software

PromQl Prometheus Query Language

RAM Random Access Memory

RDBMS Relational Database Management System

RNN Recurrent Neural Network

SaaS Software as a Service

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SQL Structured Query Language

SSD Solid State Drive

TSDB Time Series Database

UI User Interface

VM Virtual Machine

WMI Windows Management Instrumentation

YAML Yet Another Markup Language

vi

General Introduction

In today’s interconnected world, ensuring the stability and security of IT infrastruc-
ture is crucial for organizations across various sectors. Effective monitoring systems are
essential to maintain optimal performance and protect these networks. Our project aims
to meet this requirement by leveraging advanced technologies to improve real-time mon-
itoring capabilities.

The main goal of this project is to design, develop, and implement an advanced mon-
itoring system tailored for IT infrastructure. This system integrates Prometheus and
Grafana, widely recognized tools for collecting metrics and visualizing data, respectively.
Additionally, it incorporates machine learning techniques to detect anomalies in IT in-
frastructure metrics.

Key components of the project include deploying Prometheus to efficiently gather data
from IT infrastructure components, configuring monitoring targets, and establishing cus-
tomized alerting rules. Furthermore, integrating Grafana allows for clear visualization and
detailed analysis of network performance through customized dashboards. The project
also involves training a machine learning model specifically designed to detect anomalies
in time series data collected by Prometheus. This enhancement enables the monitoring
system to automatically identify unusual patterns or behaviors in network metrics, which
could signify potential issues in real time.

0.1 State of the Art

Recently, several companies adopted Prometheus and Grafana into their DevOps pipelines,
such as Docker [3], Ericsson [4], SoundCloud [5], and GrafanaLabs [6]. Many studies lever-
aged Prometheus and Grafana to address a variety of challenges including the monitoring
and detection of anomalies while reducing human intervention [7], optimizing resource
allocation when monitoring big-data microservices-based applications [8], [9], and scaling
monitoring frameworks to accommodate the complexity of High Performance Computing
centers [10].

Also, recent research and development in IT infrastructure monitoring have focused

1

GENERAL INTRODUCTION

on enhancing the capabilities of Prometheus and Grafana through advanced machine
learning techniques. Studies have demonstrated the effectiveness of LSTM autoencoders
in various domains, including network traffic analysis, system performance monitoring,
and predictive maintenance. For instance, a study by Zhao et al. (2019) [11] showcased
the application of LSTM networks for real-time anomaly detection in cloud environments,
highlighting their ability to reduce false alarms and improve detection accuracy . Another
research by Malhotra et al. (2016) [12] explored the use of LSTM-based predictive mod-
els for identifying performance bottlenecks in microservices architectures, demonstrating
significant improvements over traditional methods .

0.2 Dissertation Organization

This project is structured into four chapters as follows:

• Chapter 1: "General Information on IT Infrastructure Monitoring" Provides an
overview of IT infrastructure monitoring, focusing on Prometheus. It details Prometheus’
architecture, data collection processes, recording and alerting rules, and integration
with Alertmanager and service discovery. Additionally, it discusses Grafana’s role
in visualizing data collected by Prometheus.

• Chapter 2: "Anomaly Detection in Time Series Data" Focuses on anomaly de-
tection within time series data. It defines anomalies, categorizes different types of
anomalies, and examines the nature of input data essential for effective anomaly
detection. The chapter elaborates on the expected outputs of anomaly detection
and reviews various techniques employed in the anomaly detection process.

• Chapter 3: "Conception and Implementation" Details the practical deployment of
a comprehensive monitoring system for IT infrastructure. It describes the network
architecture designed to support the monitoring system and the deployment of the
monitoring system using Docker Compose. The chapter also discusses anomaly
detection using LSTM autoencoders, explaining the method and steps involved.

• Chapter 4: "Results and Validation" Provides a comprehensive overview of the
outcomes and validation processes of the implemented monitoring system. It also
discusses future work, focusing on securing the monitoring system and integrating
the anomaly detection model in real-time.

2

Chapter 1

General Information on IT
Infrastructure Monitoring

1.1 Introduction

In this chapter, we introduce the basics of IT infrastructure monitoring, covering its key
concepts and the importance of monitoring both hardware and software components.
Furthermore, we introduce Prometheus, an open-source monitoring and alerting toolkit,
outlining its architecture, data collection mechanisms, alerting capabilities, and its inte-
gration with Grafana for enhanced visualization.

1.2 IT Infrastructure

1.2.1 Definition

Information Technology (IT) infrastructure refers to all the necessary components re-
quired to support and manage enterprise IT services and environments. A strong IT in-
frastructure plays a crucial role in enhancing employee productivity and efficiency, while
also enabling the delivery of high-quality solutions to customers. It is imperative for
businesses to establish a well-designed IT infrastructure to lower the risks associated of
security issues, and ensuring optimal productivity.

In IT infrastructure, three primary types exist: traditional, cloud, and hybrid infras-
tructures [13].

• In traditional IT infrastructure, the business or organization owns and manages all
components on-site. This setup requires a significant amount of hardware, substan-

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

tial physical space, and considerable power. Consequently, traditional IT infrastruc-
ture tends to be more expensive compared to cloud infrastructure.

• Cloud Infrastructure enables businesses to access IT resources over the internet by
renting them from a cloud service provider. This setup is known as a public cloud,
but businesses also have the option to create a private cloud. Cloud infrastructure
offers flexibility, allowing access to services from various locations.

• Hybrid Infrastructure integrates traditional and cloud infrastructure, enabling com-
panies to utilize the cloud’s scalability and flexibility while maintaining sensitive
operations on-premises [13], for example: sensitive data and critical applications
can stay on-premises for better security, while less sensitive or more scalable appli-
cations can be hosted in the cloud.

1.2.2 Components

IT infrastructure consists of several key components that work together to support an
organization’s technology needs. These components include hardware, software, networks,
data centers, and cloud services as shown in Figure. 1.1. Understanding these components
is essential for designing and implementing a comprehensive IT infrastructure strategy.

Figure 1.1: IT Infrastructure Components

• Hardware encompasses the physical elements like servers, computers, printers, stor-
age devices, and networking equipment, which are essential for data input, storage,

4

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

sharing, and output. Regular evaluation and updates of hardware are crucial to
keep pace with technological advancements.

• Software, composed of code-based instructions, enables hardware to function, in-
cluding operating systems, content management systems, and web servers.

• Network manages the communication and operations between internal and external
systems through hardware like routers, switches, and hubs, as well as features such
as internet connectivity, firewalls, and security measures.

• Data centers, housing numerous servers and related components, provide a central-
ized location for managing IT equipment and data.

• Cloud services, offered by companies like Amazon Web Services, Microsoft Azure,
and Google Cloud, complement data centers by offering scalable, virtualized online
resources, providing organizations with greater flexibility and scalability.

1.3 IT Infrastructure Monitoring

1.3.1 Definition

Monitoring refers to the comprehensive process of collecting, storing, and analyzing data
related to software and hardware health, functioning and performance to identify issues
and improve system behavior [14].

The monitoring process includes several key phases as shown in Figure. 2.8.

Figure 1.2: Monitoring Process Phases

• Data Collection: Capturing data from various sources.

5

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

• Data Storage: Storing the collected data in a structured manner for easy retrieval
and analysis.

• Visualization: Creating dashboards and visual representations of the data to provide
insights and facilitate monitoring.

• Analysis: Examining the data to detect anomalies, identify trends, and diagnose
problems.

• Alerting and Recovery: Setting up alerts for specific conditions and initiating re-
covery actions to address detected issues.

1.3.2 Monitoring Data Types

Monitoring tools can collect a variety of different types of data. Each type of data serves a
unique purpose and provides different insights into the system’s performance and behavior.
That data primarily takes four forms in IT systems: events, logs, traces and metrics. Let’s
take a look at each one of them.

• Events

Events are notifications about changes or specific occurrences within the envi-
ronment [15]. They are infrequent but provide crucial context for understanding
changes in a system’s behavior.Here are some examples of events:

– Changes: Code releases, builds, and build failures.

– Alerts: Notifications generated by the primary monitoring system or integrated
third-party tools.

– Scaling Events: Adding or removing hosts or containers.

• Logs

Logs are specified information about system runtime variable values and errors, they
provide information about an event that occurred at a specific time, containing a
timestamp indicating when the event occurred and some payload [16]. Most frame-
works and libraries support logging, and it can be as straightforward as outputting
a line of text. Logs generally come in three forms:

– Plain text: The most common type, typically emitted by running processes.

– Structured: Logs in structured formats like JavaScript Object Notation (JSON),
which facilitate further processing.

6

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

– Unstructured: Logs stored in binary format, such as those generated by some
Relational Database Management System (RDBMS) like MySQL. These are
usually only useful to the system that generates them.

Logs are valuable because they provide contextual information about specific re-
quests handled by a service. Depending on the granularity of your logs, you can
identify the root cause of performance issues or debug problems without using a
debugger. While it might seem beneficial to log every single action your services
perform, you need to consider the performance implications. [17].

• Traces

Traces represent the communication flow between services and dependencies in a
distributed system, known as distributed tracing. This method captures trace in-
formation across various processes, nodes, networks, and security boundaries. Prop-
erly implemented traces provide visibility into which services are involved from the
beginning to the end of a request, as well as the duration of each service’s operations.

Distributed tracing is a method used to monitor and troubleshoot applications built
using microservices or other distributed architectures. It involves tracking requests
as they propagate through various services and components of a distributed system,
providing a comprehensive view of the system’s behavior. A key aspect of distributed
tracing is the use of Trace IDs, which are unique identifiers attached to each request
that allow tracking across different services. Spans, representing individual units of
work within a trace, capture operations or processes involved in handling a request.
Visualization tools are essential in distributed tracing, as they illustrate the path
of a request and the time spent in each component, enabling easier identification of
bottlenecks and errors [17].

• Metrics

Metrics are quantitative measures of properties of software or hardware components
that are critical for monitoring and understanding system performance [18]. Since
metric is a numeric representation, it is very convenient for any type of aggregation,
summarization, and correlation [17]. Metrics are typically collected as observations
over time, where each observation includes a value, a timestamp, and potentially
additional properties such as source or tags. This collection of observations forms a
time series, which can be visualized to provide insights into system behavior.

A classic example of time series data is the collection of website visits, or hits.
Observations about website hits are periodically collected, recording the number of

7

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

hits along with the timestamps of these observations. Additional properties such as
the source of the hit, the specific server that was hit, and other relevant information
may also be collected.

Observations are typically collected at fixed time intervals, referred to as granularity
or resolution, which can vary from one second to five minutes or even 60 minutes
or more [15]. Selecting the appropriate granularity is crucial, too coarse a gran-
ularity might miss important details. For instance, sampling Central Processing
Unit (CPU) or memory usage every five minutes may fail to capture anomalies.
Conversely, a finer granularity can lead to the need for storing and analyzing large
volumes of data. Metrics provide an overview of your system’s behavior, allowing
you to identify anomalies such as operational failures, unusual CPU or memory
usage, or performance degradation [19].

1.3.3 Monitoring Data Storage

Most monitoring data is time series data, characterized by two components: the times-
tamp indicating when the data was collected and the data itself, which can be in text
format (log data) or numerical format (metrics).

To fully leverage monitoring data, it must be stored in a database capable of efficiently
handling time series data. Specifically designed for this task, a database model known
as a time series database Time Series Database (TSDB) is employed. TSDBs have gar-
nered significant attention in the database domain, experiencing the most rapid growth
in popularity over the last two years. This surge in popularity can be attributed to the
increasing need for monitoring large-scale systems that generate substantial volumes of
time series data, as well as the proliferation of Internet of Things (IoT) devices, which
also contribute to the creation of time series data.

A significant distinction between TSDB and conventional Structured Query Language
Structured Query Language (SQL) or NoSQL databases lies in their approach to data
storage. Unlike traditional databases, TSDB consistently saves new information as IN-
SERTs rather than UPDATEs. This fundamental difference enables TSDB to maintain a
comprehensive history of saved items over time.

1.3.4 Monitoring Tools

Monitoring tools are essential for maintaining the health and performance of IT systems,
and they can be categorized based on various criteria. Here are the main criteria used to
categorize these tools:

8

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

• Monitoring Systems Architecture

Monitoring tools can be categorized into two types based on their architecture.
Figure. 1.3 distinguishes between Monolith and Distributed Monitoring Systems.

Figure 1.3: Monolith vs Distributed Monitoring Systems

In a monolithic monitoring system, all monitoring functionalities are contained
within a single service or application. This means that data collection, data storage,
visualization, analytics and alerting, are all handled by one integrated system. Ex-
ample, Nagios: Nagios [20] is a well-known monolithic monitoring tool. It performs
all aspects of monitoring from a single application. It collects data from various
endpoints, processes it to check for any anomalies, stores the data for historical
analysis, and provides alerting and visualization features.

In a distributed monitoring system, different functionalities are split across multiple
specialized services. Each service handles a specific aspect of monitoring, and they
work together to provide a complete monitoring solution. Recently, the trend has
shifted towards distributed monitoring systems,Smaller units are easier to scale,
build, and maintain. Different technologies can be utilized for different units. The
overall system becomes more resilient to errors since the failure of one part does
not affect the others. Additionally, changing parts of the system is simpler with a
distributed architecture. Example, Prometheus.

• Data Collection Methods

In monitoring, there are two primary methods for obtaining information from a client
system: push-based and pull-based monitoring. In push-based monitoring, the client
system takes the initiative by sending monitoring information to the monitoring
system. Conversely, in pull-based monitoring, the monitoring system initiates the
process by requesting information from the target system [21]. Essentially, the
distinction lies in which party makes the first move to exchange data as shown in
Figure. 1.4.

9

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

Figure 1.4: Push vs Pull Mechanism in Monitoring Systems

• Development Stage

Monitoring tools can be categorized into three types based on the development stages
of their implementation within a company: Software as a Service (SaaS) monitoring,
Open Source Software (OSS) monitoring, and custom-built monitoring. In the SaaS
monitoring stage, companies utilize ready-made SaaS tools that are easy to operate
and integrate into existing systems, offering convenience and quick deployment but
limited customization. As companies advance to the OSS monitoring stage, they
adopt open-source software tools, which provide greater customization and flexibil-
ity but require more configuration and setup time. In the custom-built monitoring
stage, companies develop their own monitoring solutions tailored to their specific
needs. This approach is typically adopted by large technology companies that en-
counter scalability or customization challenges with existing solutions. Prometheus
is an example of a custom-built monitoring tool that originated within SoundCloud
and was later released as an open-source project, illustrating the trend of internal
tools evolving into widely adopted OSS tools.

1.4 Prometheus

1.4.1 Definition

Figure 1.5:
Prometheus
logo

Prometheus is an open-source monitoring and alerting toolkit designed for
collecting time-series data. Created by SoundCloud in 2012, the project
has grown to benefit from a large and active community of developers and
users. Now maintained independently by various companies, Prometheus
joined the Cloud Native Computing Foundation in 2016 [22].to enhance its
development and clarity, becoming the foundation’s second hosted project
after Kubernetes [23].

10

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

Prometheus operates by scraping metrics via HTTP, extracting time-
series data from various targets, which can include diverse sources such as services, oper-
ating systems and applications.This time-series is a sequence of data points that typically
include continuous measurements over a specific time period. In Prometheus, time series
data is identified by a metric name and a series of key-value pairs (also called labels).
The database uses flexible query language called Prometheus Query Language (PromQl)
to store all incoming data in an efficient, compressed database on disk. Prometheus is
a flexible collection tool that can work with different components to complete the setup
and display the results.

1.4.2 Architecture

Figure. 1.6 illustrates the architecture of the Prometheus monitoring system and its
ecosystem components [24]. Prometheus pulls metrics from various jobs and exporters,
where jobs are a collection of targets with the same purpose. storing the data in a Time-
Series Database (TSDB) for efficient querying. Service discovery mechanisms, such as
Kubernetes and file-based discovery, help identify targets. The Pushgateway [25]facili-
tates the collection of metrics from short-lived jobs by allowing them to push data at
completion. The Prometheus server includes a retrieval component, the TSDB, and an
Hypertext Transfer Protocol Hypertext Transfer Protocol (HTTP) server for accessing
the data. Alertmanager receives alerts from Prometheus and sends notifications to end-
points like PagerDuty and email. For visualization, the Prometheus Web User Interface
(UI) and Grafana provide powerful interfaces, with Grafana offering advanced dashboard
capabilities. The system stores metrics on Hard Disk Drive (HDD)/Solid State Drive
(SSD) for persistence, and application programming interface Application Programming
Interface (API) clients can query the Prometheus API for data integration with other
tools.

1.4.3 Data Collection

Prometheus utilizes a pull mechanism to collect data from its targets, although a push
mechanism can be employed when necessary. The data collected is in the form of time
series. Prometheus can be configured to collect data from various devices and applications
by installing exporters or using client libraries. Some exporters, like the node exporter
and the Windows Management Instrumentation (WMI) exporter, must be installed on
the target machine to collect metrics. Others, such as SNMP, only require activation on
the target machine without additional software installation. Configuration of targets is

11

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

Figure 1.6: Prometheus Architecture

done in Prometheus’ prometheus.yml file, and sometimes in the Yet Another Markup
Language (YAML) files specific to the exporters [26].

An exporter is a software tool that can be deployed on an application or device where
monitoring is needed. Prometheus sends requests to the exporter, which collects the
requested data from the target, converts it into a format that Prometheus can read, and
sends the data back to the Prometheus server. Prometheus supports numerous exporters,
such as Node Exporter, WMI Exporter and SNMP Exporter.

• Node Exporter

Node Exporter is designed to collect data from Unix environments. It provides
hardware and kernel metrics from the target machine, such as CPU, memory, and
disk space metrics.Node Exporter is designed specifically for monitoring the machine
itself, rather than individual processes or services. It can be downloaded from the
Prometheus website and should be installed on the target machine. By default,
Node Exporter runs on port 9100. [27].

• WMI Exporter

WMI Exporter provides metrics for Windows operating systems through various
collectors that gather different system metrics. It can be run as a standalone appli-
cation or as a Windows service. By default, WMI Exporter exposes metrics on port
9182. [28].

• SNMP Exporter

12

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

The Simple Network Management Protocol (SNMP) Exporter is particularly useful
for monitoring network devices such as switches, routers, and firewalls. SNMP must
be enabled on the target device before the exporter can collect metrics from it.

The diagram in Figure. 1.7 illustrates the process of network monitoring using
Prometheus and its SNMP exporter. On the left side, a network device is being
polled for SNMP data. This data is then collected and sent to the Prometheus
SNMP exporter, which is responsible for converting the SNMP data into a format
that Prometheus can understand. The Prometheus SNMP exporter runs within
a containerized environment using Kubernetes or Docker. Once the SNMP data
is processed, it is scraped by Prometheus, which then stores the data for further
analysis and monitoring.

Figure 1.7: SNMP Monitoring Architecture

Using the SNMP Exporter requires understanding Management Information Base
(MIB)s and Object Identifier (OID)s. MIBs and OIDs specify the information that
can be retrieved from devices. An OID defines specific metrics within a MIB tree.
There are universal MIBs supported by most network devices, but some devices
require manufacturer-specific MIBs for certain information. OIDs are entered into
the snmp.yml file, where the exporter uses them to find and translate the data for
Prometheus [26].

To consider an example,The Object Identifier (OID) 1.3.6.1.2.1.1 represents the Sys-
tem group within the Management Information Base (MIB) tree as shown in Fig-
ure. 1.8. This group includes objects that provide essential information for managing
a network device such as system uptime, system name, and system description.

13

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

Figure 1.8: SNMP MIB Tree

1.4.4 Recording and Alerting Rules

Prometheus supports two types of rules that can be configured and evaluated at regular
intervals: recording rules and alerting rules. To add these rules, create a YAML file
with the appropriate rule statements and specify this file in the rule_files field of the
Prometheus configuration.

• Recording Rules

Recording rules in Prometheus are directives defined within the Prometheus config-
uration file that instruct the Prometheus server to compute and generate new time
series data based on existing metrics. These rules typically involve applying func-
tions or operators to existing metric data to derive new insights or aggregations.They
enable users to create custom metrics tailored to their specific monitoring require-
ments [29].

Recording rules are advantageous because they accelerate query performance. In-
stead of recalculating the original expressions every time, querying precomputed
results is much faster. This is particularly useful for dashboards that frequently re-
fresh and need to retrieve the same data repeatedly. It ensures quicker data access
and enhances overall system efficiency.

14

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

Figure. 3.13 illustrates the process of recording rules, starting with the creation of
a separate rules.yml file. This file defines PromQL expressions that are to be
evaluated regularly, each expression accompanied by a distinct name. Once the file
is prepared, it is fed into Prometheus. Subsequently, Prometheus evaluates these
expressions at the specified scrape interval and stores the resulting data as new time
series with unique metric names in the storage.

Figure 1.9: Life Cycle of Recording Rules

• Alerting Rules

Alerting rules enable the specification of conditions under which an alert should be
fired. These conditions are based on expressions written in PromQL, similar to how
recording rules are configured. Any results from these expressions become alerts.

1.4.5 Alerting and Alertmanger

Alerting is the process of notifying users when specific predefined criteria are met. In
Prometheus, alerting is generally divided into two main components: alert rules and
Alertmanager.

Prometheus uses alerting rules, defined in its configuration, to specify the condi-
tions under which alerts should be triggered. When a metric meets these conditions,
Prometheus triggers an alert and sends it to Alertmanager [18]. Alertmanager handles
these alerts by routing them to appropriate notification channels such as email, Telegram,
or Slack [30], as illustrated in Figure. 1.10.

15

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

Figure 1.10: Alerting Workflow in Prometheus

Alertmanager is the open-source standard for handling alerts sent by Prometheus
server and turns them into notifications. It manages the alerts by grouping similar ones,
silencing them during maintenance, routing them to the appropriate receiver and so on
[31]. We can define each alert processing as follow:

• Routing Alertmanager uses a hierarchical routing tree to manage alerts, as illus-
trated in Figure. 1.11. When an alert is generated, it first reaches the root route,
which is the initial point for processing incoming alerts. The root route evaluates
the alert against defined conditions and directs it to the appropriate child route
based on matching criteria. Each child route further processes and forwards the
alert until it reaches the intended child route, which has its receiver (e.g., an email
address) to handle the notification. If an alert does not match any specific routing
criteria, it is sent to the fallback receiver configured in the root route, ensuring that
all alerts are appropriately managed [32].

Figure 1.11: Example of Alert Routing Structure in Alertmanager

• Grouping Grouping in Alertmanager allows multiple alerts sharing similar la-

16

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

bels to be consolidated into a single group, enabling one notification per group.
This is configured using the group_by field in Alertmanager’s configuration file
alertmanager.yml. Grouping helps reduce notification overload, simplifying the
management of a large number of alerts for the recipient.

• Inhibition Inhibitions are configured through Alertmanager’s configuration file.
This process involves muting downstream alerts based on their label sets. For ex-
ample, if there are two alerts for the same cluster (one with a critical severity label
and another with a warning severity label) the system can be configured to mute
the warning severity alert if the critical severity alert is triggered. This helps avoid
notifications for alerts that are not relevant to the current issue.

• Silencing

Silencing provides the option to temporarily mute an alert when it is expected to be
triggered during scheduled procedures, such as database maintenance, or when the
alert has already been acknowledged during an incident and further notifications
are unnecessary while resolving the issue. Silences are configured through the web
interface of Alertmanager.

• Throttling

Throttles are configured in Alertmanager’s configuration file. They allow customiza-
tion of renotification settings through three key parameters:

– group_wait: Specifies the initial waiting period before sending a notification
for a group of alerts, with a default duration of 30 seconds [33].

– group_interval: Determines the interval before sending notifications for new
alerts added to an already notified group, with a default duration of 5 minutes
[33].

– repeat_interval: Sets the interval before resending notifications for an alert
that has already been notified, with a default duration of 4 hours [33].

1.4.6 Service Discovery

Service discovery is a mechanism that allows automatic discovery and monitoring of tar-
gets and services. In a static configuration, without using service discovery, each target’s
Internet Protocol (IP) address and port must be manually listed in the scrape configura-
tion. While this approach works for a few hosts, it becomes impractical for a larger fleet,

17

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

particularly for dynamic environments using containers and cloud-based instances, where
instances can frequently change, appear, and disappear [32].

Prometheus offers various service discovery options for identifying scrape targets, in-
cluding Kubernetes, Consul, and many others. For service discovery systems not currently
supported, the file-based service discovery mechanism in Prometheus may be the best so-
lution. This mechanism allows scrape targets to be listed in a JSON or YAML file, along
with metadata about those targets. Scraping targets can be configured manually, or a
separate script or process can be used to edit the service discovery file.

1.4.7 Instrumentation

Monitoring applications is achieved through instrumentation, which involves integrating
code within an application to enable it to report on its internal state. This equips the
application with the capability to provide valuable insights, allowing Prometheus to gather
detailed information about the application’s functionality and performance [34].

Instrumentation is added to application code using one of the Prometheus client li-
braries. The appropriate client library is selected based on the language in which the
application is written. This exposes the collected data via an HTTP endpoint, enabling
Prometheus to scrape the metrics at regular intervals [32].

Prometheus client libraries provide four core types of metrics: Counter, Gauge, His-
togram, and Summary. A Counter is a cumulative metric representing a single, monoton-
ically increasing value that can only increase over time or be reset to zero upon a restart.
In contrast, a Gauge represents a single numerical value that can arbitrarily increase or
decrease. These libraries handle the details of formatting and exposing metrics in the
Prometheus exposition format [18].

1.5 Grafana

Figure 1.12:
Grafana logo

Grafana, developed by Torkel Ödegaard in 2014 [35], is a powerful
and free tool designed for effective and informative data visualization.
While Grafana itself does not collect data, it seamlessly connects to
a wide range of data sources and utilizes its specialized query editor
to interact with them.

Operating as a service on a computer or server, Grafana is accessed
via a web browser, typically on port 3000. This accessibility enables
users to create interactive dashboards with versatile visualization op-
tions, drawing from diverse data sources. Grafana supports multiple

18

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

data sources, customizable alert systems, and annotations. Its flexibility extends to inte-
gration with numerous plugins, allowing it to adapt easily to different environments [36].

Moreover, Grafana serves as a robust alert system, capable of sending notifications
through email, Short Message Service (SMS) and more, enhancing its utility as a com-
prehensive monitoring and visualization platform.

1.6 Grafana and Prometheus Integration

Integrating Grafana with Prometheus provides numerous advantages for monitoring and
visualization. Grafana uses Prometheus as a data source to facilitate real-time monitoring
of systems. It offers rich visualization capabilities, allowing the creation of customized
dashboards with graphs, charts, and tables to analyze system health and performance.
Prometheus’s powerful alerting system can be integrated with Grafana to set up alerts
based on specific thresholds or conditions, delivering notifications via different channels.
Both tools are highly scalable and flexible, capable of handling large data volumes, which
makes them ideal for complex and distributed architectures.

Figure. 1.13 summarizes the integration of Prometheus and Grafana, starting with col-
lecting metrics using Prometheus and creating alerts with Alertmanager, and culminating
in visualizing the data with Grafana.

Figure 1.13: Prometheus and Grafana Integration

19

CHAPTER 1. GENERAL INFORMATION ON IT INFRASTRUCTURE MONITORING

1.7 Conclusion

In conclusion, this chapter has provided a foundational understanding of IT infrastructure
monitoring, emphasizing the critical role it plays in maintaining the health and perfor-
mance of both hardware and software components. We have explored the different types
of IT infrastructure and highlighted the essential components involved. Additionally,
we have introduced Prometheus, detailing its architecture, data collection methods, and
alerting capabilities, along with its integration with Grafana for improved visualization.

20

Chapter 2

Anomaly Detection in Time Series Data

2.1 Introduction

In this chapter, we explore the critical concept of anomaly detection within time series
data. Anomalies, which are data points that significantly deviate from expected patterns,
can indicate important and sometimes urgent insights in IT infrastructure monitoring.
Understanding these irregularities not only helps in identifying errors and system failures
but also uncovers significant events that could impact decision-making processes.

We define what anomalies are, discuss their types, and explain the methodologies
employed to detect them effectively.

2.2 Definition

An anomaly is a pattern or data point that deviates significantly from the expected
behavior or the majority of data. It stands out as unusual or irregular compared to the
established norms within the dataset [37]. For example, as illustrated in Figure. 2.1, in a
dataset with two normal regions, N1 and N2, points that fall far outside these regions, such
as o1, o2, and the points in region o3, are considered anomalies. These anomalies can arise
due to various reasons, such as errors, system breakdowns, or other atypical activities,
and they are particularly noteworthy for analysis due to their significant divergence from
the norm.

Anomaly detection is the process of identifying these irregular patterns or data points
that do not conform to the expected behavior in a dataset. This involves defining what
constitutes normal behavior and flagging anything that deviates from it as an anomaly
[38]. The challenge lies in accurately delineating the boundary of normal behavior, as
it can be imprecise and subject to change. Additionally, the definition of anomalies can

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

Figure 2.1: Illustration of simple anomalies in 2D

vary across different application domains, making it a complex task to develop universal
detection techniques.

2.3 Anomaly Types

An essential aspect of anomaly detection is understanding the nature of the anomaly.
Anomalies can be categorized in the following ways as shown in Figure. 2.2.

Figure 2.2: Anomaly Types [1]

• Point anomaly: Refers to a single data point that substantially deviates from
the overall dataset [39]. In the context of the provided figure (Figure. 2.1), points
o1, o2, and those falling within region o3 are identified as point anomalies due to
their positioning beyond the typical data distribution. Techniques for detecting
these anomalies examine how an individual data instance relates to the rest of the
dataset, whether it’s part of the training data or the test data.

• Contextual anomaly: These anomalies occur when a data point is unusual within
a specific context but appears normal otherwise. This concept, also known as a con-

22

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

ditional anomaly relies on the context defined by the dataset’s structure, which must
be clearly outlined in the problem formulation. Each data instance is characterized
by two types of attributes:

– Contextual attributes: These attributes determine the context for a given in-
stance. For example, in time-series data, time itself is a contextual attribute
that situates an instance within the entire sequence [38].

– Behavioral attributes: These attributes describe the instance’s non-contextual
characteristics. For example, in a time series dataset that records daily CPU
usage, the CPU measurements are the behavioral attributes [38].

Anomalous behavior is identified by examining the behavioral attributes within a
specific context. A data instance might be deemed a contextual anomaly in one
context but considered normal in another, despite having the same behavioral at-
tributes. Recognizing this distinction is crucial for developing effective contextual
anomaly detection techniques, as it hinges on accurately identifying both contex-
tual and behavioral attributes. Choosing to use a contextual anomaly detection
technique depends on how meaningful the contextual anomalies are for the specific
application domain. Another crucial factor is whether contextual attributes are
available. Sometimes, defining the context is straightforward, making it practical
to apply contextual anomaly detection. However, in other situations, defining the
context can be challenging, which complicates the use of these techniques.

• Collective anomaly: This type of anomalies occurs when a subset of data instances
collectively deviate from the entire dataset. While individual instances in this subset
may not be anomalies on their own, their combined occurrence forms an anomalous
pattern [37]. These anomalies are significant particularly in data with spatial or
sequential characteristics, manifesting as anomalous subgraphs or subsequences. For
example, consider the following sequence of actions occurring on a computer: ...
http-web, buffer-overflow, http-web, http-web, smtp-mail, ftp, http-web, ssh, smtp-
mail, http-web, ssh, buffer-overflow, ftp, http-web, ftp, smtp-mail, http-web ...

The highlighted sequence of events (ssh, buffer-overflow, ftp) represents a typical
web-based attack by a remote machine, followed by data being copied from the host
computer to a remote destination via FTP. This sequence is considered an anomaly,
even though the individual events are not anomalies when they appear in other
parts of the sequence.

23

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

2.4 Nature of Input Data

A key component of any anomaly detection technique is the input data, where anoma-
lies need to be identified. This input typically consists of a collection of data objects
or instances, which can also be referred to as records, points, vectors, patterns, events,
cases, samples, observations, or entities [38]. Each data instance is described by a set of
attributes, also known as variables, characteristics, features, fields, or dimensions. These
instances can be of different types, such as binary, categorical, or continuous. A data
instance might consist of a single attribute (univariate) or multiple attributes (multivari-
ate) [40]. In multivariate instances, all attributes might be of the same type or a mixture
of different types [41].

Input data can also be categorized based on the structure among data instances.
Many anomaly detection algorithms handle data with no assumed structure, referred to
as point data. Such algorithms are commonly used in network intrusion detection and
medical records anomaly detection. However, data can also have spatial or sequential
structures. In sequential data, instances have a defined order, with time-series data being
a prime example. Time-series data has been extensively studied for anomaly detection in
statistics.

2.5 Output of Anomaly Detection

The way anomalies are reported is a crucial aspect of any anomaly detection technique.
Typically, the outputs fall into one of two categories:

• Scores: Scoring techniques assign an anomaly score to each instance in the test
data, indicating how much it deviates from normal behavior. This results in a
ranked list of anomalies, allowing analysts to either focus on the top anomalies or
apply a cutoff threshold to select the most relevant ones. These techniques provide
flexibility by letting analysts use domain-specific thresholds to highlight the most
significant anomalies.

• Labels : Labeling techniques classify each test instance as either normal or anoma-
lous. While this provides a straightforward indication of whether an instance is
an anomaly, it lacks the granularity of scoring techniques. Analysts can’t directly
adjust the sensitivity of anomaly detection with labels, but they can influence it
indirectly by tweaking parameters within the detection algorithm.
Both methods have their uses, with scoring techniques offering more detailed insights
and labeling techniques providing clear, binary classifications.

24

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

2.6 Anomaly Detection Techniques

There are numerous methods for detecting anomalous events in time series data, ranging
from basic arithmetic techniques to advanced neural networks such as Long Short-Term
Memory (LSTM) autoencoders.

• Fixed Threshold Method

A fixed threshold method involves setting a predetermined value (e.g., CPU usage
> 80% or < 20%) beyond which an alert is triggered. While this approach is easy
to configure and can sometimes be useful, it does not adapt to changing patterns
over time. What might be an anomaly during peak hours may be normal during
off-peak hours. Additionally, this method does not consider the context or trends
in the data, meaning a sudden spike might be normal during certain periods but
flagged as an anomaly if only the threshold is used. Consequently, fixed thresholds
can lead to a high number of false positives (normal behavior flagged as anomalies)
or false negatives (actual anomalies not detected).

• Statistical Methods

One popular technique for anomaly detection in time series data is the use of statis-
tical methods. These methods utilize statistical properties of the data, such as the
mean, standard deviation, and distributional assumptions, to identify points that
significantly deviate from expected behavior. Common approaches include Z-score-
based methods and moving average-based methods.

Consider the Z-score method for anomaly detection:

The Z-score method for anomaly detection measures how many standard deviations
an observation is from the mean. An observation is considered an anomaly if its
Z-score exceeds a certain threshold (e.g., Z > 3). It is calculated as Z = X−µ

σ
,

where X is the data point, µ is the mean, and σ is the standard deviation. This
method, known as the Median Absolute Deviation (MAD) based Z-score method,
is useful in scenarios where data follows a normal distribution, such as detecting
anomalies in manufacturing processes. However, the Z-score method assumes nor-
mality, which may not hold true for all datasets, making it less effective for skewed
distributions [42] as explained in Figure. 2.5. It also relies on a fixed window size
for calculating mean and standard deviation, potentially missing long-term trends
or seasonal patterns. Additionally, it can be sensitive to outliers, which can skew
the results and lead to inaccurate anomaly detection.

25

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

Figure 2.3: Normal Data Distribution Figure 2.4: Skewed Data Distribution

Figure 2.5: The Influence of Data Distribution on the Z-score Method

The analysis of the graphs in Figure. 2.5 illustrates the effectiveness of the MAD-
based Z-score method in detecting outliers in both normal and skewed distributions.
In normal distributions, where data is evenly spread around the median, the MAD
accurately reflects the data’s dispersion. Consequently, outliers are properly iden-
tified as they significantly deviate from the median, as indicated by the threshold
for Z=3. However, in skewed distributions, where the data is not evenly spread, the
MAD underestimates the spread, particularly on the side with the long tail. This
results in high values potentially not being detected as outliers, as the MAD fails
to accurately represent the variability on the skewed side.

• Machine learning-based Algorithms

Machine Learning is a Subset of Artificial Intelligence (AI) that allows systems to
independently learn and enhance their performance without explicit programming.
Machine learning algorithms identify patterns in data and make predictions when
new data is introduced to the system.

In Machine Learning, in addition to the input data, a dataset can include labels
that indicate whether a data instance is normal or an anomaly. Based on how these
labels are utilized, anomaly detection techniques can be categorized into three types:

– Supervised Techniques: These techniques rely on having a labeled train-
ing dataset that includes instances of both normal and anomaly classes. The
typical approach involves building predictive models for each class. Any new
data instance is then compared against these models to determine its classifica-
tion. Supervised anomaly detection techniques benefit from a clear definition of
normal and anomaly behaviors, enabling the construction of accurate models.
However, a significant drawback is the high cost and effort required to obtain
accurately labeled training data, as this process is often manual and involves

26

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

expert input. To address this, some techniques introduce artificial anomalies
into a normal dataset to create a fully labeled training dataset [37], [38].

– Semi-Supervised Techniques: Methods operating in a semi-supervised man-
ner work with training data containing labeled instances only for the normal
class. This flexibility makes them more broadly applicable compared to super-
vised methods since they don’t demand labels for the anomaly class [37], [38].
.

– Unsupervised Techniques: these techniques, operating without the need for
labeled data, offer broad applicability, assuming that normal instances greatly
outnumber anomalies in the test data. However, if this assumption doesn’t
hold true, these methods may produce a high false alarm rate [37], [38]. .

• Deep Learning-based Algorithms

Deep learning, a subset of machine learning, achieves high performance and flexibil-
ity by representing data through a nested hierarchy of concepts within the layers of a
neural network. As illustrated in Figure. 2.6, deep learning outperforms traditional
machine learning, particularly as the scale of data increases. In recent years, deep
learning-based anomaly detection algorithms have gained popularity and have been
applied to a diverse range of tasks. Specifically, for detecting anomalies in time se-
ries data, LSTM autoencoders have shown superior results compared to traditional
autoencoders.

Figure 2.6: Performance Comparison of Deep learning-based algorithms Vs Traditional Algo-
rithms [1]

Consider the LSTM Autoencoder algorithm for anomaly detection in time series
data:

27

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

An autoencoder is an unsupervised neural network designed to learn the best encoding-
decoding scheme from data. Its structure typically includes an input layer, an output
layer, an encoder, a decoder, and a latent space [43]. The encoder compresses the
input data into the latent space, while the decoder reconstructs the encoded data
back to the output layer. The reconstructed output is then compared to the original
input, and the error is backpropagated through the network to update the weights
(weights are the neural network’s way of learning from data. They capture the
relationships between input features and the target output).

Given an input x ∈ Rm, the encoder compresses it to an encoded representation
z = e(x) ∈ Rn . The decoder then reconstructs this representation to produce the
output x̂ = d(z) ∈ Rm as shown in Figure. 2.7 which provides an illustration of
a LSTM Autoencoder network [2]. The autoencoder is trained by minimizing the
reconstruction error [44], [45] defined as:

L =
1

2

∑
x

∥x− x̂∥2.

The primary goal of an autoencoder is not only to copy the input to the output.
By constraining the latent space to have a smaller dimension than the input (i.e.,
n < m), the autoencoder is compelled to learn the most significant features of the
training data. Thus, a crucial aspect of an autoencoder is its ability to reduce data
dimensions while preserving the essential information of the data structure.

The LSTM autoencoder uses Long Short-Term Memory (LSTM) networks for both
the encoder and decoder. LSTMs which are type of Recurrent Neural Network
(RNN), are adept at learning patterns in data over long sequences, making them
suitable for tasks like time series forecasting and anomaly detection. An encoder-
decoder model trained exclusively on normal sequences can be effective for anomaly
detection in time-series data. Since the model learns to reconstruct only normal
instances, it will have higher reconstruction errors for anomalous sequences, which it
has not encountered during training. This approach is practical because anomalous
data are often rare or impossible to cover comprehensively.

28

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

Figure 2.7: An illustration of a LSTM Autoencoder network [2]

LSTM-based autoencoders have shown superior results in anomaly detection com-
pared to traditional autoencoders [2]. However, achieving significant improvements
in detection accuracy with LSTM-based autoencoders often requires complex net-
works with large memory requirements and high computational complexity.

2.7 Anomaly Detection Process

Every step in the process of anomaly detection is crucial, starting with the analysis of the
input data and the types of anomalies to detect. This involves understanding the nature
of the data, the characteristics of the anomalies, and other constraints and assumptions
that collectively form the problem formulation. The application domain in which the
technique is applied is also important; while some techniques are developed in a more
generic fashion and are feasible across multiple domains, others are specifically tailored to
particular application domains. In the case of time series data, considering the contextual
attribute of time dependence is essential for selecting the right techniques. Combining all
these factors is critical to selecting the appropriate technique or techniques for effective
anomaly detection, as illustrated in Figure 2.8.

29

CHAPTER 2. ANOMALY DETECTION IN TIME SERIES DATA

Figure 2.8: Anomaly Detection Process

2.8 Conclusion

In summary, detecting anomalies in time series data is essential for ensuring data accuracy
and system reliability. By understanding the types of anomalies and the methods to iden-
tify them, we can better manage and respond to unexpected events in IT infrastructure
monitoring.

30

Chapter 3

Conception and Implementation

3.1 Introduction

In this chapter, we present the conception and detailed implementation of our project,
with a primary focus on developing a robust monitoring system. This includes deploying
Prometheus for comprehensive metric collection, integrating exporters to capture specific
metrics, and instrumenting web applications for enhanced monitoring capabilities. Fur-
thermore, we describe the establishment of an alerting mechanism within Prometheus and
the utilization of Grafana for insightful data visualization.

Moreover, this chapter explores the implementation of anomaly detection techniques
tailored for analyzing time series data. We discuss the application of advanced methods,
such as LSTM autoencoders, which are capable of capturing intricate patterns in time
series data. These techniques are particularly suitable for detecting subtle anomalies
that traditional statistical methods may overlook, thereby enhancing the reliability and
effectiveness of our monitoring system.

By detailing the integration of these components and techniques, this chapter under-
scores the importance of a well-engineered monitoring system in ensuring the reliability
and performance of complex systems. The practical implementation aspects, including
deployment strategies using Docker Compose for scalability and management, are also
highlighted.

3.2 Exploited Resources

As part of our work, we use specific Hardware resources and software tools selected for
their compatibility with our needs to create a monitoring system within a Network archi-
tecture.

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

3.2.1 Hardware Resources

Processor : 1.6 GHZ Intel Core i5 (dual-core), Random Access Memory (RAM) : 16GO
2400 MHZ DDR4

3.2.2 Software Tools

For our project, we utilize Graphical Network Simulator-3 (GNS3) as a software tool to
design a network architecture involving specific virtual machines created in VirtualBox.
Additionally, we use the Graphical Network Simulator-3 Virtual Machine (GNS3 VM) to
enable connections between these virtual machines. We also employ a Python virtual en-
vironment within our project to manage dependencies and installations. Furthermore, we
deploy our project using Docker Compose to simplify management and ensure a consistent
environment across different operating systems.

3.2.2.1 Graphical Network Simulator 3 - GNS3

Figure 3.1:
GNS3 Logo

GNS3 is an open-source graphical network simulator primarily used by net-
work developers and IT professionals. Its main advantage is its ability to
create visual representations of virtual topologies, providing an overview that
facilitates real-time understanding of operations and allows for swift adjust-
ments. Despite its capacity for handling complex tasks, the interface remains
user-friendly.

3.2.2.2 Graphical Network Simulator-3 Virtual Machine - GNS3
VM

GNS3 VM is a virtual machine used in conjunction with the GNS3 network simulation
software. It acts as a backend engine for GNS3, allowing users to create and simulate
complex network topologies.
The GNS3 VM allows integration with VirtualBox by acting as an intermediary between
VirtualBox and GNS3. This allows GNS3 to manage VirtualBox virtual machines as
network devices within its simulated environments.

When the GNS3 VM is started, the screen shown in Figure. 3.2 appears, providing
essential information for accessing and managing the VM and its network simulations.

3.2.2.3 VirtualBox

32

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.2: Initial Setup Screen of GNS3 VM

Figure 3.3:
Virtualbox
Logo

VirtualBox is an open-source virtualization tool that operates across various
platforms developed by Oracle Corporation. It enables the simultaneous ex-
ecution of multiple operating systems on a single device. Developers utilize
VirtualBox to expedite their workflow by testing code across different oper-
ating systems directly from their laptops.This software is compatible with
several operating systems, including Linux, Windows, and macOS.

3.2.2.4 Python Virtual Environment

Python virtual environment is an isolated space designated for Python projects, separate
from the system-installed Python. It allows for setting up specific libraries and depen-
dencies without impacting the system’s Python installation. To create a Python virtual
environment, we utilize a module called virtualenv. This tool generates a directory that
includes all the essential executable required for using packages within a Python project.
On Linux, we can create a new Virtual environment with the command:

\$ python3 -m venv <myenv>

Once the virtual environment is created, it must be activated. Activation of the
appropriate virtual environment is necessary each time work is conducted on the project.
This can be accomplished using the following command:

33

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

\$ source <myenv>/bin/activate

3.2.2.5 Docker and Docker Compose

Figure 3.4:
Docker Logo

Docker is an open platform for developing, shipping, and running
applications. It allows to separate applications from the infrastruc-
ture, enabling faster software delivery and consistent management of
infrastructure and applications. Docker’s methodologies help reduce
the delay between writing code and running it in production.

Docker Compose is a tool used to define and run applications that involve multiple
containers. It plays a crucial role in enhancing efficiency in development and deployment
by managing containers as a unified application stack. This approach ensures consistent
deployment across diverse environments. Docker Compose simplifies the management of
the entire application stack by controlling services, networks, and storage volumes through
a unified YAML configuration file docker-compose.yml. All services defined in this file
can be created and started with a single command.

3.2.2.6 CAdvisor

Figure 3.5: CAd-
visor Logo

CAdvisor (Container Advisor) provides container users with insights
into the resource usage and performance characteristics of their run-
ning containers. It is a running daemon that collects, aggregates,
processes, and exports information about these containers.

CAdvisor itself does not have built-in storage for the metrics it
collects. Instead, it is primarily used for real-time monitoring. We
integrate it with Prometheus, which can scrape and store the data
provided by cAdvisor, allowing for historical data analysis, querying, and alerting.

3.3 Network Architecture

To create the network architecture shown in Figure. 3.6, we first install GNS3 and Virtu-
alBox. During the creation of the GNS3 VM, we allocate 2GB of RAM and 1 processor
core. The network architecture consists of three virtual machines acting as servers: Kali
Linux, Ubuntu, and Windows 10, with the specifications shown in table 3.1. Addition-
ally, we include a Cisco IOU Layer 2 switch and a Cisco 7200 router in the setup. To
ensure that the virtual machines can access the internet, we integrate a Network Address
Translation (NAT) node into the architecture.

34

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.6: Network Architecture

Server RAM Processor Disk Space IP Address
Kali Linux 3 GB 3 processor 80 GB 192.168.56.110/24

Ubuntu 2 GB 1 processor 20 GB 192.168.56.112/24
Windows 10 2 GB 1 processor 20 GB 192.168.56.200/24

Table 3.1: Server Specifications

The network is designed to provide an isolated internal network (192.168.56.0/24). The
router R2 acts as the gateway for all internal hosts to access external resources. The IOU2
switch connects all internal hosts within the subnet 192.168.56.0/24. The configuration
of the router R2 and the switch is shown in Figure. 3.7 and Figure. 3.8 respectively.

3.4 Implementation of The Monitoring System

In our project, we first deploy the monitoring system locally on the Kali Virtual Machine
(VM). Subsequently, we use Docker-Compose to deploy the system, ensuring compatibility
across various environments regardless of operating system types or versions. This section
reviews the implementation of Prometheus, exporters, alerting mechanism and Grafana
as well as the instrumentation of a web application.

The design and implementation of the monitoring system are shown in Figure. 3.9,
where all the tools are integrated to design the system. The configuration of each tool is
detailed in the following sections.

35

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.7: Network Configuration of the Router

Figure 3.9: Conception and implementation of the monitoring system

36

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.8: Network Configuration of the Switch

3.4.1 Prometheus

We begin by installing the monitoring tool Prometheus on the Kali VM. Prometheus im-
plemented as a executable file and is accompanied by several files, most notably prometheus.yml,
which serves as the configuration file of prometheus.

In this configuration file, we define the scrape interval and evaluation interval as 15
seconds. Additionally, we specify the paths to rules files and configure the alerting mech-
anism as shown in Figure. 3.10. Furthermore, we define our targets for Prometheus,
specifying each target’s address and the appropriate port to access their metrics endpoint
as shown in Figure. 3.11 in the scrape_configs section.

The targets we are monitoring include:

• Prometheus: It monitors its own metrics by default.

37

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

• Grafana: Monitor the statue of Grafana server.

• The servers: Kali, Ubuntu, Windows10.

• Django web application: Monitored for performance metrics.

• CAdvisor: Monitors container statuses.

• SNMP exporter: Provides metrics about its statue.

• Target network: Includes the network equipment, which are switch and router.

Figure 3.10: Prometheus Configuration File 1

38

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.11: Prometheus Configuration File 2

Prometheus provides a tool called promtool which is used to validate and check the
correctness of Prometheus configuration files as shown in Figure. 3.12 Promtool can also
check rules for validating alerting and recording rules using the command:

\$./promtool check rules.yml

39

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.12: Checking Prometheus.yml file using Promtool

3.4.1.1 Recording Rules

In our recording rules shown in Figure. 3.13, we create three groups: one for Linux servers,
one for Windows servers, and one for the web application. We define rules within each
group based on the jobs. For each group, we specify the expressions to aggregate, written
in PromQL, and assign new names to these expressions. It is important to follow the nam-
ing conventions for recording rules, which follow the format: level:metric:operation.
We choose these metrics because they are frequently used and regularly monitored.

Figure 3.13: Recording Rules file rules.yml

40

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

3.4.1.2 File-based Service Discovery

We apply File-based Service Discovery to two targets, Kali Linux and Ubuntu as shown
in Figure. 3.14, to observe the differences between using File-based Service Discovery and
static configuration. However, our goal is to extend this approach to all targets. By doing
so, any changes in the configuration of these targets, such as adding labels or changing IP
addresses, will be automatically applied without needing to restart the Prometheus server.
This ensures seamless updates and improved efficiency in managing our monitoring setup.

(a) Service Discovery Configuration for Kali
(b) Service Discovery Configuration for
Ubuntu

Figure 3.14: File-based Service Discovery

3.4.2 Exporters

To effectively collect system metrics, it is necessary for the target devices to expose their
metrics through an HTTP endpoint. This is achieved by installing exporters on the target
devices.

3.4.2.1 Node Exporter

It’s crucial to configure the exporter to run as a service, ensuring it automatically restarts
upon system reboots for continuous operation without manual intervention. Here’s how
we achieve this for the Node Exporter:

Create a Systemd Service File with the command:

\$ sudo nano /etc/systemd/system/node_exporter.service

Add the content shown in Figure. 3.15 to the file.
Reload the systemd daemon to recognize the new service, Start the Node Exporter

service and enable it to start on boot:

\$ sudo systemctl daemon-reload

\$ sudo systemctl start node_exporter

\$ sudo systemctl enable node_exporter

41

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.15: Content of Systemd Service File for Node Exporter

check the status of the Node Exporter service :

\$ sudo systemctl status node_exporter

We can see that the Node Exporter service is active and running as illustrated in
Figure. 3.16

Figure 3.16: Node Exporter Service Running

3.4.2.2 WMI Exporter

We use Non-Sucking Service Manager (NSSM) to configure the WMI Exporter to operate
as a service. First, we download NSSM and extract its contents from the ZIP file. Sub-
sequently, we execute the following commands in Command Prompt or PowerShell with
administrative privileges:

42

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

> C:\Users\windows10\Downloads\nssm-2.24\nssm-2.24\win64\nssm install

windows_exporter C:\Users\windows10\Downloads\windows_exporter.exe↪→

> C:\Users\windows10\Downloads\nssm-2.24\nssm-2.24\win64\nssm set

windows_exporter Start SERVICE_AUTO_START↪→

> C:\Users\windows10\Downloads\nssm-2.24\nssm-2.24\win64\nssm start

windows_exporter↪→

To verify if the WMI Exporter service is running, execute the command:

> C:\Users\windows10\Downloads\nssm-2.24\nssm-2.24\win64\nssm status

windows_exporter↪→

The results can be observed as depicted in Figure. 3.17.

Figure 3.17: WMI Node Exporter Service Running

3.4.2.3 SNMP Exporter

Here is our approach to monitor network devices using SNMP exporter:

• We configure SNMP protocol v3 on both the router and the switch. SNMP Version
3 provides secure access to devices by authenticating and encrypting data packets
over the network.

In Figure. 3.18, we show the configuration of SNMP v3 on the router, including
the setup of the SNMP group, SNMP user, authentication protocol, and privacy
protocol. Similarly, Figure. 3.19 displays the SNMP v3 configuration for the switch.
Additionally, we specify the SNMP host server by providing its IP address, as shown
in the right side of Figure. 3.19.

43

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.18: SNMP v3 Configuration on The Router

• After enabling SNMP protocol on both the router and the switch, we install the
SNMP Exporter on the Kali machine to collect data from these two targets.

• Then, we create a new snmp.yml file, in which we define the SNMP version and the
target devices for monitoring.

auths:

router:

version: 3

44

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.19: SNMP v3 Configuration on The Switch

45

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

security_level: authPriv

auth_protocol: SHA

username: snmpuser

password: monitoring2024

priv_protocol: AES

priv_password: monitoring2024

switch:

version: 3

security_level: authNoPriv

auth_protocol: SHA

username: snmpuser

password: monitoring2024

In this file, we also specify the data to collect. SNMP data is structured in OID
trees, which are described by MIBs. OID subtrees maintain a consistent order
across different locations in the tree. For example, the order under 1.3.6.1.2.1.2.2.1.1
(ifIndex) remains the same across different parts of the tree.

- name: ifIndex

oid: 1.3.6.1.2.1.2.2.1.1

type: gauge

indexes:

- labelname: ifIndex

type: Integer

The full snmp.yml file is in Appendix A.1.

• The final step is to add snmp exporter and network devices in prometheus configu-
ration file as shown in Figure. 3.11.

3.4.3 Web Application Instrumentation

In this section, we expand our monitoring and data collection to include applications by
instrumenting a Django web application. This involves integrating additional lines of code
into the application source code to generate metrics reflecting its internal state.

We employ two distinct libraries to instrument the Django web application: the Django
Prometheus library and the Prometheus client library.

46

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

The Django Prometheus library is tailored specifically for Django applications. It
simplifies integration with Django’s internals by providing pre-configured settings. Addi-
tionally, it automates the generation and exposition of metrics across different aspects of
the Django application.

In contrast, the Prometheus client library offers extensive control and flexibility but
demands more manual configuration. It supports multiple programming languages like
Python, Go, Java, and JavaScript, allowing users to define custom metrics and create an
HTTP endpoint for exposing these metrics.

To achieve this instrumentation, we upload the web application’s codebase to the Kali
server. The structure of the application is illustrated in Figure. 3.20:

Figure 3.20: Tree Structure of the Uploaded Django Web Application

All changes are made within a Python virtual environment named django-app. In
this environment, we install the required packages and run the web application in isolation.
The web application is configured to run on localhost using port 8000. To access the
application, we use the following command:

(django-app) kali@kali:\$ python3 manage.py runserver

When accessed, the home page of the web application appears as shown in Figure. 3.21:

3.4.3.1 Web Application Instrumentation using Django Prometheus Library

To instrument the Django web application using Django Prometheus library, we follow
these steps:

47

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.21: The Home Page of the Web Application

• Install django-prometheus with the command:

(django-app) kali@kali:\$ pip install django_prometheus

• Add the following lines to settings.py file:

INSTALLED_APPS = [

...

'django_prometheus',

...

]

MIDDLEWARE = [

'django_prometheus.middleware.PrometheusBeforeMiddleware',

...

'django_prometheus.middleware.PrometheusAfterMiddleware',

]

By adding django_prometheus to INSTALLED_APPS, Django recognizes
the Django Prometheus library as part of the application setup. This allows Django
to load and utilize functionalities provided by this library.

Prometheus middleware is configured both before and after other middleware classes
to capture request duration and response duration, among other metrics.

48

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

• Include Django Prometheus in urls.py, this step enables the collection of met-
rics accessible via an HTTP endpoint at http://127.0.0.1:8000/metrics where
Prometheus can scrape the metrics. This endpoint exposes metrics in a format that
Prometheus can understand.

urlpatterns = [

...

path('', include('django_prometheus.urls')),

]

• we also enable database monitoring using Django Prometheus by modifying the
ENGINE property of the database in settings.py, replacing django.db.backends

with django_prometheus.db.backends, as shown in the following code:

DATABASES = {

'default': {

'ENGINE': 'django_prometheus.db.backends.sqlite3',

'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

},

}

• The final step involves configuring Prometheus to Scrape the metrics, in Prometheus
configuration file prometheus.yml:

- job_name: "django-app"

static_configs:

- targets: ["127.0.0.1:8000"]

3.4.3.2 Web Application Instrumentation using Prometheus Client Library

As mentioned earlier, this method allows us to configure custom metrics as needed. In
our case, we create two metrics: django_sign_in_failures and django_registered_users.

The first metric tracks the total number of failed sign-in attempts. It functions as
a counter, incrementing with each failed attempt. This metric is useful for monitoring
the health and security of the Web application. A high rate of sign-in failures might
indicate issues such as users experiencing difficulties logging in due to a bug, or a potential

49

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

security threat, such as a brute-force attack. The second metric is created to monitor the
total number of registered users in the web application. It enables administrators and
developers to track the increase in users over time, providing insights into the application’s
popularity and user engagement.

Here is our procedure to instrument the Django web application using the Prometheus
Client Library:

• Install the Prometheus Client Library by running the following command:

(django-app) kali@kali:\$ pip install prometheus_client

• Add prometheus_client to INSTALLED_APPS in settings.py:

INSTALLED_APPS = [

...

'prometheus_client',

...

]

• Create a new file metrics.py in Foodapp where we configure the metrics as follows:

from prometheus_client import Counter

sign_in_failures = Counter('django_sign_in_failures', 'Number of

failed sign-in attempts')↪→

registered_users_counter = Counter('django_registered_users',

'Number of registered users')↪→

• Update views.py which located in Foodapp directory, with the necessary changes
to increment the counters for sign-in failures and new user registrations:

#apply to sign_in_failures and registered_users_counter metrics from

metrics file↪→

from .metrics import sign_in_failures, registered_users_counter

50

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

def doLogin(request):

if request.method=="POST":

...

if utype == "Admin":

...

else:

sign_in_failures.inc()# add this line to increment

the sign-in failure counter↪→

return

render(request,"login.html",{'failure':'Incorrect

login details'})

↪→

↪→

if utype == "User":

...

else:

sign_in_failures.inc() # add this line to increment

the sign-in failure counter↪→

return

render(request,"login.html",{'failure':'Incorrect

login details'})

↪→

↪→

...

def addcust(request):

...

if form.is_valid():

try:

form.save()

registered_users_counter.inc()# add this line to

increment the number of registered users

counter

↪→

↪→

return redirect("/login")

except:

...

In this code, we import the necessary metrics and utilize the .inc() function to

51

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

increment the counts of sign-in failures and newly registered users, as specified in
the comments.

• Expose Metrics Endpoint by creating a views.py file in the FoodProject directory to
expose the created metrics to Prometheus. Below is the snippet code to accomplish
this :

from prometheus_client import exposition, REGISTRY

from django.http import HttpResponse

def metrics_view(request):

response =

HttpResponse(content_type=exposition.CONTENT_TYPE_LATEST)↪→

response.content = exposition.generate_latest(REGISTRY)

return response

When the metrics_view function is called with an HTTP request, a new HttpRe-
sponse object is created with the appropriate content type for Prometheus metrics.
The response content is then set to the latest metrics data generated by Prometheus
Client Library, and the response is returned, allowing Prometheus to scrape the met-
rics.

• Add the metrics_view to the /metrics endpoint in the urls.py file:

urlpatterns = [

path('metrics/', metrics_view, name='metrics'),

]

When a request is made to the URL http://127.0.0.1:8000/metrics, Django will call
the metrics_view function to handle the request. Furthermore, there’s no require-
ment to configure Prometheus for metric scraping because it’s already integrated
during the implementation of the web application’s instrumentation using Django
Prometheus.

52

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

3.4.3.3 Deployment of The Django Application with Docker Compose

After successfully setting up the Django application locally, it’s time to use Docker.
Docker provides an efficient way to package the Django application with its dependencies
and configurations into a self-contained unit called a container.

Here are the steps we follow to deploy the Django web application with Docker Com-
pose:

• Create a Dockerfile in the root of the application directory.
We create a Dockerfile that defines the instructions for building a Docker image.
In this Dockerfile, we specify the base image, copy the application code, install
dependencies, configure the container environment, and finally, specify the command
to launch the application server. The following is the Dockerfile for our application.

FROM python:3.9-slim

Set environment variables to ensure Python output is not buffered

ENV PYTHONDONTWRITEBYTECODE 1

ENV PYTHONUNBUFFERED 1

WORKDIR /app

COPY requirements.txt /app/

RUN pip install --no-cache-dir -r requirements.txt

COPY . /app/

RUN python manage.py collectstatic --noinput

CMD ["python", "manage.py", "runserver", "0.0.0.0:8000"]

• Add the following two libraries to the requirements.txt file:

prometheus_client==0.20.0

django_prometheus==2.3.1

• Create a docker-compose.yml file in the root of the application directory.
In this file, we define the services needed for the application. Typically, there is
a service for the application and another for the database. However, in our case,
there is only one service web, which represents the app service. This is because
the application uses SQLite, which is a file-based database and not a standalone
database server.

53

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Additionally, we specify the network which is the monitoring network and set it as
external for monitoring purposes. The port to expose is configured as 8000:8000.

• The final step is to run the application using the following command to view all the
logs and errors:

\$ sudo docker-compose up --build

Alternatively, run it as a daemon using:

\$ sudo docker-compose up -d

3.4.4 Establishing Alerting Mechanism in Prometheus

To establish alerting in Prometheus, we first create alerting rules in a new folder named
‘alerting_rules’. In this folder, we create separate files for each job, including the
operating systems and the web application, to configure the alerting rules. We established
four alerts for each operating system:

• An alert when the system is down.

• An alert when memory usage exceeds 60%, with a warning severity.

• An alert when memory usage exceeds 75% with critical severity.

• An alert when CPU usage exceeds 80%.

Additionally, we create an alert for the Django web application to trigger when the number
of sign-in failures is high. The alerting rules are configured using YAML. The diagram
below in Figure. 3.22 summarizes the configuration files for the alerting rules.

Each alert is set to trigger if the condition persists for more than 2 minutes. The
labels and annotations are used to provide additional informations for each alert. After
creating the alerting rules, we load them into the Prometheus configuration file using the
rule_files directive:

rule_files:

- "alerting_rules/linuxrules.yml"

- "alerting_rules/windowsrules.yml"

- "alerting_rules/apprules.yml"

54

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.22: Diagram of Alerting Rules Implementation

The next step involves focusing on sending firing alerts within notifications. For this
purpose, we install Alertmanager. By default, Alertmanager uses port 9093. Therefore,
we configure it in the Prometheus configuration file to transfer alerts from Prometheus to
Alertmanager as follows:

alerting:

alertmanagers:

- static_configs:

- targets:

- localhost:9093

In our case, we choose to send notifications via Gmail. Therefore, we configure the Gmail
sender for all alert notifications in the global configuration of Alertmanager using the
secure Simple Mail Transfer Protocol (SMTP) protocol:

global:

smtp_from: 'alertsservice24@gmail.com'

smtp_smarthost: smtp.gmail.com:587

smtp_auth_username: 'alertsservice24@gmail.com'

smtp_auth_identity: 'alertsservice24@gmail.com'

smtp_auth_password: 'vykc auph bqmi yaru'

55

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

In the global section, the smtp_from field sets the sender’s email address to alertsser-
vice24@gmail.com, making this the address from which alert emails will appear to come.
The smtp_smarthost defines the SMTP server and port used to send these emails,
which is Gmail’s SMTP server at smtp.gmail.com on port 587, used for SMTP with
TLS (Transport Layer Security) for secure transmission. The smtp_auth_username and
smtp_auth_identity fields both use alertsservice24@gmail.com as the email address for
authentication purposes, ensuring that Alertmanager can log in to the SMTP server. The
smtp_auth_password provides the password necessary for this authentication. Now, we

configure the route tree in the Alertmanager configuration file to send notifications to the
appropriate receivers. The route configuration is illustrated in Figure. 3.23 :

Figure 3.23: Diagram of Route Tree Implementation

As we can see, the route configuration is designed to send notifications based on the
app_type label, which categorizes alerts into three distinct groups: Linux, Windows, and
Django. Each child route within the configuration specifies the app_type, with parameters
set for grouping and throttling alerts.

• The group_wait parameter is set to 30 seconds, meaning Alertmanager waits this
duration before sending the first notification in a group.

• The group_interval is set to 5 minutes, defining how long to wait before sending a
new notification if more alerts come in for the same group.

56

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

• The repeat_interval is set to 3 hours, specifying how often to resend the notification
if the alert is still active.

Each child route directs notifications to a specific receiver based on the app_type:
Technical Service for Linux and Windows, and Application Service for Django. Ad-
ditionally, a root route is configured with a fullback receiver, which ensures that any
alerts not matched by the child routes are sent to a default email address, fullbackre-
ceiver@gmail.com. To reduce alert noise and prevent alert fatigue, we use inhibition to
silence specific alerts when higher-priority alerts are already active. In our case, when
two alerts for the same operating system are triggered: one with a critical severity and
another with a warning severity, we configure Alertmanager to mute the warning severity
alert if the critical severity alert is triggered. This is achieved by adding the following
code to the Alertmanager configuration file:

inhibit_rules:

- source_match:

severity: 'critical'

target_match:

severity: 'warning'

equal: ['app_type', 'category']

This configuration ensures that when a critical severity alert is active, any correspond-
ing warning severity alert for the same app_type and category is silenced.

3.4.5 Data Visualisation Using Grafana

After configuring Prometheus to collect target metrics, the Grafana server can be down-
loaded and installed to visualize the collected data.

Grafana can be accessed via a web browser at http://localhost:3000/. On the first
visit, the user is prompted to change the login password. The default username and
password are both ’admin’.

To create dashboards for visualizing the collected data, a data source needs to be
configured. Set the data source name and URL to point to the Prometheus server as
shown in Figure. 3.24:

57

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.24: Configuring Prometheus as a Data Source for Grafana

Dashboard visualization in Grafana allows the creation of custom dashboards by con-
figuring each panel within the target dashboard. We begin by adding a new dashboard
and select Prometheus as the data source, as shown in Figure. 3.25.

Figure 3.25: Adding Prometheus as a Data Source to a Dashboard

Creating variables in the dashboard is essential for making it dynamic and reusable.
For example, to visualize the network equipments data of our architecture, we can create
a variable instance to select each equipment’s IP address in each panel. To create this
variable, we navigate to the dashboard settings and create a new variable as shown in
Figure. 3.26. We select the options "Multi-value" and "Include All" to enable multiple
values to be selected simultaneously and to include an option for all variables.

58

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.26: Creating an Instance Variable in Dashboard

This method is applied to all necessary variables. After creating the variables, we
configure the panels with the desired metric queries using PromQL. By using the instance
variable, we can create a panel to visualize the rate of incoming traffic over five minutes,
configuring the query as shown in Figure Figure. 3.27.

Figure 3.27: Configuring the Metric Panel

After creating the metric and adjusting the visualization options located on the right,
run the query to get the metric visualization. The visualization can aggregate all equip-
ment metrics by selecting "All" in the instance variable, or it can display metrics for a

59

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

single piece of equipment by selecting the IP address of the equipment in the instance
variable, as shown in Figure. 3.29, Figure. 3.28 and Figure. 3.30.

Figure 3.28: Incoming Traffic Visualization of the Router

Figure 3.29: Incoming Traffic Visualization of the Switch

Figure 3.30: Incoming Traffic Visualization of both the Router and the Switch

In our project, we create dashboards for each target in the IT infrastructure, as shown
in Figure. 3.31. We base their creation on the method we recently discussed, except
for server dashboards. For servers, we utilize existing predefined dashboards for Node
Exporter and WMI Exporter, which we then adjust to integrate into our project.

60

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.31: Dashboard Creation for Each Target

3.4.6 Deployment of The Monitoring System using Docker Com-

pose

To effectively deploy and manage a comprehensive monitoring system, we have created
a repository named monitoring. This repository serves as the main directory housing
all subdirectories and the docker-compose.yml file for orchestrating the deployment.
Within this repository, we have organized subdirectories for each primary monitoring tool:
Prometheus, Alertmanager, and SNMP Exporter. Each subdirectory contains specific
configuration YAML files and setup instructions tailored to the respective tool.

Our Docker Compose setup includes six containers: Prometheus, Alertmanager, SNMP
Exporter, Node Exporter, cAdvisor, and Grafana, as illustrated in Figure. 3.32. This con-
figuration enhances the flexibility of our monitoring system, allowing it to be deployed
seamlessly across various environments.

In the Docker Compose YAML file, we specify the version as version: ’3.7’.
Within the services section, we define configurations for each service. The follow-
ing snippet provides the configuration for the Prometheus service: it uses the latest
prom/prometheus image, assigns the container name prometheus, and mounts local di-
rectories (./prometheus for configuration and prom_data:/prometheus for data storage).
The command section specifies Prometheus configuration options, including the path to
prometheus.yml, storage settings, and lifecycle management. Port 9090 is exposed for
web access, and restart: always ensures the container automatically restarts in case of
failure. Lastly, the service is connected to the monitoring network to ensure connectivity
with other services within the same Docker Compose setup, as well as with the Django
application service which exists in another docker compose setup.

61

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.32: Docker Compose Services

version: '3.7'

services:

prometheus:

image: prom/prometheus:latest

container_name: prometheus

volumes:

- ./prometheus:/etc/prometheus

- prom_data:/prometheus

command:

- '--config.file=/etc/prometheus/prometheus.yml'

- '--storage.tsdb.path=/prometheus'

- '--web.enable-lifecycle'

ports:

- 9090:9090

restart: always

networks:

- monitoring

62

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

networks:

monitoring:

external: true

volumes:

prom_data:

grafana-data:

The second snippet from the docker-compose.yml file defines crucial configurations for
the monitoring setup. It includes definitions for networks and volumes necessary for
the deployment. The monitoring network is specified with external: true, indicating
its existence outside the current Docker Compose setup and ensuring connectivity with
external services and applications. Volumes prom_data and grafana-data are declared to
store persistent data for Prometheus and Grafana respectively, ensuring data durability
and reliability even during container restarts or updates.

The full Docker-compose.yml file is in appandix A.2.
Now, we can easily manage and deploy the entire monitoring stack with a single

command.

$ cd monitoring

$ sudo docker-compose up -d

3.5 Implementation of Anomaly Detection in Time Se-

ries Data Using LSTM Autoencoders

In this section, we establish anomaly detection in time series data using deep learning
LSTM autoencoders. This technique is applied to CPU usage data due to the increasing
reliance on cloud infrastructure and virtual machines for storage and computing in the
era of big data. High CPU usage can lead to server crashes, making early detection of
anomalies essential. Effective monitoring of CPU usage helps prevent crashes and ensures
smooth cloud operations.

To effectively monitor CPU usage and detect anomalies, we employ LSTM autoen-
coders.These deep learning models are particularly well-suited for time series data due to
their ability to capture temporal dependencies. This approach has shown the best results
in this field [43], [46]. By training the LSTM autoencoder on normal CPU usage patterns,

63

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

we can identify deviations that indicate potential anomalies.
Diagram 3.33 shows the steps we carried out to implement and utilize LSTM autoen-

coders for anomaly detection in CPU usage. The process begins with data collection and
preprocessing, followed by the training of the LSTM autoencoder on normal CPU usage
patterns. Once trained, the model is used to monitor CPU data and detect anomalies.

64

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Figure 3.33: Explanatory Diagram of the Steps Carried Out
65

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Let’s explain each step in detail.

3.5.0.1 Data Collection

The chosen dataset is sourced from Amazon SageMaker [47] and includes timestamps and
CPU values ranging from 0 to 100. It comprises 18,051 samples, spanning from May 14,
2014, at 01:14:00 to July 15, 2014, at 17:19:00, with timestamps recorded every 5 minutes.
As shown in Figure. 3.34. This dataset contains two anomalies at ’2014-07-12 02:04:00’
and ’2014-07-14 21:44:00’.

Figure 3.34: CPU Usage Dataset

3.5.0.2 Data Preparation

Before using the dataset for training or testing, thorough preparation is essential. The
first step is data preprocessing, which involves cleaning the data and handling any miss-
ing values by imputation. Next, we apply scaling to the data to standardize the features.
Finally, the dataset is split into training and testing sets. Typically, 90% of the data
(comprising normal instances without anomalies) is allocated for training, while the re-
maining 10% is used for testing. Anomalies are included only in the testing dataset for
evaluation purposes.

3.5.0.3 Model Definition

Before presenting the experimental results, let’s define the LSTM model configuration.
The model is characterized by several key parameters: the number of LSTM layers stacked,
the number of units (neurons) in each layer, the activation function used, and the dropout
rate. Each parameter configuration influences the model’s ability to learn and generalize
from the data. The description of each parameter is given in table 3.2.

66

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

Parameter Description
LSTM Layers Number of LSTM layers stacked in the model
LSTM Units Number of units (neurons) in each LSTM layer
Time Steps Number of time steps or sequence length for each input sample

Activation Function Activation function used in LSTM layers (e.g., sigmoid, tanh, relu)
Dropout Rate Fraction of neurons to randomly drop during training

Table 3.2: Parameters in an LSTM model

Below in table 3.3, we present the optimal parameter values that yielded the best
results. These values were determined by varying the parameters to assess their impact
on the model’s performance.

Parameter Optimal Value
LSTM Layers 2
LSTM Units 128 in layer1/ 64 in layer 2
Time Steps 10 samples

Activation Function relu
Dropout Rate 0.2

Table 3.3: Optimal parameter values for the LSTM model

3.5.0.4 Model Training

In the model training step, we configure several key parameters to optimize the perfor-
mance of the LSTM autoencoder. The batch size determines the number of samples
processed before the model’s internal parameters are updated. Epochs refer to the num-
ber of complete passes through the entire training dataset. The learning rate controls the
size of the steps the optimizer takes to minimize the loss function. The optimizer adjusts
the learning process to improve convergence. Additionally, a portion of the data is set
aside as the validation set to monitor the model’s performance and prevent overfitting.

Below is a table summarizing these parameters and their descriptions:

Parameter Description
Batch Size Number of samples processed before updating model parameters

Epochs Number of complete passes through the entire training dataset
Learning Rate Step size used by the optimizer to update model parameters

Optimizer Algorithm used to adjust the learning process (e.g., Adam, RMSprop)
Validation Size Proportion of data set aside to evaluate model performance during training

Table 3.4: Training parameters for the LSTM autoencoder

Based on our experiments, we identified the optimal training parameters for the LSTM

67

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

autoencoder. We found that a batch size of 32, running for 9 epochs, with a learning rate
of 0.01, and using the Adam optimizer yielded the best results. Additionally, a validation
size of 10% was used to monitor the model’s performance and prevent overfitting during
training. Below is a table summarizing these optimal values:

Parameter Optimal Value
Batch Size 32

Epochs 9
Learning Rate 0.01

Optimizer Adam
Validation Size 10%

Table 3.5: Optimal training parameters for the LSTM autoencoder

3.5.0.5 Training Evaluation

In the training evaluation step, we assess the model’s performance using Mean Squared
Error (MSE) loss for both training and validation datasets. Below in Figure. 3.35a is the
graph of training and validation loss in terms of the number of epochs:

(a) Training and Validation MSE Loss over
Epochs (b) Train MAE Loss Histogram

Figure 3.35: Evaluation of Training Process

The graph in Figure. 3.35a shows the training and validation MSE loss over 9 epochs.
Both losses start high but decrease significantly within the first few epochs. By the 3rd
epoch, the validation loss stabilizes, indicating that the model is generalizing well. The
training loss continues to decrease slightly, suggesting the model is fine-tuning without
overfitting.

The histogram in Figure. 3.35b illustrates the distribution of Mean Absolute Error
(MAE) loss for the training samples. The majority of the samples have a very low MAE

68

CHAPTER 3. CONCEPTION AND IMPLEMENTATION

loss, concentrated around 0.0 to 0.1, indicating that the model predictions are close to the
actual values for most of the training data. There are a few samples with higher MAE
losses, but they are relatively infrequent.

3.5.0.6 Detecting Anomalies

In the anomaly detection step, we calculate the reconstruction error for each data point.
The reconstruction error is the difference between the original data and the data recon-
structed by the LSTM autoencoder. To identify anomalies, we set a threshold value.
Based on various experiments, the following threshold has provided the best results.
THRESHOLD = np.max(reconstruction_error)* 0.78 This threshold is determined by
taking 78% of the maximum reconstruction error observed during the training phase, cal-
culated as:

Data points with reconstruction errors exceeding this threshold are flagged as anoma-
lies.

3.6 Conclusion

In conclusion, this chapter has detailed the design and implementation of our project’s
monitoring system. By deploying Prometheus for metric collection, integrating exporters
for targeted metrics, and utilizing Grafana for data visualization, we have established
a robust framework for real-time monitoring. Moreover, our exploration of advanced
anomaly detection techniques, such as LSTM autoencoders, demonstrates a proactive
approach to ensuring system reliability.

69

Chapter 4

Results and Validation

4.1 Introduction

In this chapter, we present the results and validation of the monitoring system setup. This
includes a detailed overview of the performance and status of the entire network archi-
tecture, demonstrating how effectively Prometheus and Grafana can track and visualize
metrics across different technologies. Additionally, we evaluate the anomaly detection
model using LSTM autoencoders, specifically focusing on CPU usage. The evaluation
is conducted using appropriate parameters to ensure the precision and reliability of the
anomaly detection mechanism.

4.2 Validation of the Monitoring system

In this section, we present the results and dashboards from the monitoring system setup.
These dashboards illustrate the performance and status of the entire network architecture,
showcasing how effectively Prometheus and Grafana can track and visualize metrics across
different technologies.

4.2.1 Prometheus

After configuring Prometheus to scrape metrics from targets, it is essential to validate that
metrics are being successfully collected. This validation can be performed on the Targets
page in Prometheus. This page lists all the scrape targets and their current status, as
shown in Figure. 4.1 and Figure. 4.2 and Figure. 4.3.

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.1: Scrape Targets Listed on Prometheus Targets Page

Figure 4.2: Continuation 1 of Scraping Targets Listed on the Prometheus Targets Page

71

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.3: Continuation 2 of Scraping Targets Listed on the Prometheus Targets Page

As depicted in the figure, all configured targets from the prometheus.yml file are
displayed on the Targets page. Each target’s status is shown as ’UP’ along with the
last scrape time and scrape duration. This information confirms that Prometheus is
successfully scraping metrics from the targets.

We can also check the recording rules on the Rules page in Prometheus to ensure
they are configured correctly, Figures Figure. 4.4, Figure. 4.5 and Figure. 4.6 provide
confirmation.

Figure 4.4: Validation of Django App Recording Rules on the Prometheus Rules Page

Figure 4.5: Validation of Linux Recording Rules on the Prometheus Rules Page

72

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.6: Validation of Windows Recording Rules on the Prometheus Rules Page

4.2.2 Container Status with CAdvisor

cAdvisor is up and accessible via port 8080. As shown in Figure. 4.7, the seven containers,
including the Django web app, are visible.

Figure 4.7: Monitoring Containers using Cadvisor

This interface allows us to monitor the resource usage and performance of each con-
tainer in real time. Figure. 4.8 and Figure. 4.9 show the real time monitoring of te web
app.

4.2.3 Exporters

• Node Exporter and WMI Exporter

Node Exporter and WMI Exporter are operational and exposing the collected met-
rics from the servers to HTTP endpoints, as illustrated in Figures Figure. 4.10 and
Figure. 4.11.

73

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.8: Monitoring the Web App Con-
tainer using Cadvisor

Figure 4.9: Network Throughput and Errors
Monitoring with cAdvisor for the Web App

Figure 4.10: VM-Kali Metrics Exposed by Node Exporter

74

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.11: VM-Windows Metrics Exposed by WMI Exporter

• SNMP Exporter

The SNMP exporter is up and running, accessible via the Kali IP address and port
9116. In Figure. 4.12, we see the interface of the SNMP exporter. The interface
includes three fields: target, authentication, and module. We fill these fields with the
router information, and upon clicking ’submit’, we can visualize the router metrics
as shown in Figure. 4.13.

Figure 4.12: SNMP Exporter User Interface

75

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.13: Router Metrics in SNMP Exporter HTTP Endpoint

The metrics shown in the red frame in Figure. 4.13 represent the operational status
of each router interface. For instance, the GigabitEthernet2/0 interface was inten-
tionally shut down, changing its ifOperStatus metric to 2, indicating the interface
is down. The meanings of each number in ifOperStatus are as follows:
1: Up - The interface is operational.
2: Down - The interface is not operational.
3: Testing - The interface is in testing mode.
4: Unknown - The operational status of the interface is unknown.
5: Dormant - The interface is waiting for an external event.
6: NotPresent - Some component (typically, a hardware component) is missing.
7: LowerLayerDown - The interface itself is OK, but an interface it depends on is
down.

76

CHAPTER 4. RESULTS AND VALIDATION

4.2.4 Web Application

To verify the instrumentation of the web application, we access the /metrics endpoint
in the web browser using http://127.0.0.1/metrics, as depicted in Figure Figure. 4.14.
Additionally, to ensure that these metrics are scraped by Prometheus for monitoring, we
filter the metrics by the job name ’django-app’, which is configured in prometheus.yml,
as shown in Figure. 4.15.

Figure 4.14: Web Application Metrics Exposed on Metrics Endpoint

77

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.15: Web Application Metrics scraped by Prometheus

As we can see the two figures demonstrate the successful instrumentation of a Django
web application using both the django_prometheus library and the Prometheus client
library. The metrics shown in the red frame in Figure. 4.14 are the custom metrics created
using the Prometheus client library, while the others are generated by the django_prometheus
library.

4.2.5 Alerting

Once we run Alertmanager and restart Prometheus, the Prometheus Alerts interface loads
alerts from the configuration file, as shown in Figure. 4.16:

Figure 4.16: Different Alerts Displayed in Prometheus Alerts Interface

This interface represents the status of various alerts configured in Prometheus. Each
alert’s status (inactive, pending, or firing) helps operators quickly identify issues:

78

CHAPTER 4. RESULTS AND VALIDATION

• Green alerts refer to inactive alerts, indicating that the monitored conditions are
normal.

• Yellow alerts refer to pending alerts. In this case, we have one pending alert named
SignFailureHigh, which indicates that the condition has been detected but is waiting
for the specified duration before firing the alert (we have already configured it for 2
minutes).

• Red alerts refer to firing alerts. In this instance, there is one firing alert indicating
that the condition has persisted for the defined duration, and the alert is actively
being triggered.

Alertmanager displays the fired alerts within its web interface, as shown in Figure. 4.17.

Figure 4.17: Fired Alerts Displayed in Alertmanager Interface

The figure illustrates that there are two firing alerts grouped by the app_type label
’linux,’ which are NodeMemoryUsageAbove60% for both VM-Kali and VM-Ubuntu.

Additionally, the notifications of these fired grouped alerts have been sent to Gmail,
in a single notification, as depicted in Figure. 4.18.

79

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.18: Gmail Notification for the Fired Alerts

4.3 Grafana Dashboards

In this section, we present the created dashboards. These dashboards are configured to
be viewable by supervisors without editing privileges. From the Windows 10 VM, we log
in using the supervisor account previously created in Grafana. The data visualizations
for specific targets are displayed in the following dashboards.

Figure 4.19: Data Visualisation for VM-Kali

80

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.20: Windows VM Data Visualization Dashboard

Figure 4.21: Data Visualisation for Router

81

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.22: Data Visualisation for Switch

Figure 4.23: Data Visualisation for Docker

82

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.24: Data Visualisation for Web Application

After visualizing the result, we notice that the greatest advantage of using Prometheus
and Grafana is their ability to monitor and visualize all aspects of IT infrastructure within
a single, unified dashboard, regardless of the diverse technologies involved. Prometheus
excels at collecting and storing metrics data from various sources, while Grafana provides
powerful visualization tools to display this data in a coherent and customizable manner.

4.4 Evaluating of the Anomaly Detection Model

The final step in the anomaly detection using LSTM autoencoders involves evaluating
the model’s performance. This is done using several metrics, including Precision, Recall,
F1 Score, and the Confusion Matrix. Precision measures the accuracy of the anomaly
predictions, indicating how many of the detected anomalies are indeed actual anomalies.
Recall evaluates the model’s ability to find all actual anomalies within the dataset. The
F1 Score provides a balanced measure of both Precision and Recall, which is particularly
important in cases where the dataset may be imbalanced.

• Precision

Precision is the ratio of true positive predictions to the total predicted positives:

Precision =
TP

TP + FP

where TP is the number of true positives and FP is the number of false positives.
It indicates how many of the predicted anomalies are actual anomalies.

83

CHAPTER 4. RESULTS AND VALIDATION

• Recall

Recall, also known as sensitivity, is the ratio of true positive predictions to the total
actual positives:

Recall =
TP

TP + FN

where TP is the number of true positives and FN is the number of false negatives.
It measures the ability of the model to identify all actual anomalies.

• F1 Score

The F1 Score is the harmonic mean of precision and recall, providing a balance
between the two metrics:

F1 Score = 2
PrecisionRecall

Precision + Recall

It is useful when the dataset is imbalanced, providing a single metric that balances
precision and recall.

The model was tested on a testing dataset that contained two anomalies occurring
at ’2014-07-12 02:04:00’ and ’2014-07-14 21:44:00’. After setting the threshold for the
reconstruction error, the model detected three anomalies, as depicted in Figure 4.25. We
extracted the timestamps of these anomalies, shown in Figure 4.26, and visualized their
occurrences within the testing dataset, illustrated in Figure 4.27.

Figure 4.25: Detected Anomalies in Testing Dataset Using Reconstruction Error Threshold

Figure 4.26: Timestamps of the detected Anomalies

84

CHAPTER 4. RESULTS AND VALIDATION

Figure 4.27: Occurrences of Detected Anomalies in the Testing Dataset

In Table 4.1, we provide the evaluation metrics for the model.

Parameter Value
True Positives (TP) 2
False Positives (FP) 1
False Negatives (FN) 0

Precision 0.67
Recall 1.00

F1 Score 0.80

Table 4.1: Evaluation Metrics for Anomaly Detection

Here is the interpretation of the results:
The model correctly identified 2 true positives (TP), meaning it accurately flagged

2 instances as anomalies. However, it also produced 1 false positive (FP), where a non-
anomalous instance was mistakenly classified as an anomaly. There were no false negatives
(FN), indicating that the model did not miss any actual anomalies. The precision of the
model is 0.67, which means that 67% of the instances identified as anomalies are indeed
anomalies. The recall is 1.00, indicating that the model successfully identified all the
anomalies present in the dataset. The F1 score, which is the harmonic mean of precision
and recall, is 0.80. This score suggests that the model maintains a reasonably balanced
performance between precision and recall.

The evaluation results indicate that the LSTM autoencoder model performs well in
terms of recall, as it detected all the anomalies in the dataset. This is particularly impor-
tant in scenarios where missing an anomaly could have significant consequences. However,
the model does generate some false positives, as evidenced by the precision score of 0.67.
This is likely due to the data imbalance, with only two anomalies in the entire dataset,
making these anomalies rare.

85

CHAPTER 4. RESULTS AND VALIDATION

4.5 Conclusion

In conclusion, the monitoring system setup using Prometheus and Grafana has proven to
be highly effective in tracking and visualizing metrics across various technologies within
the network architecture. The validation results confirm the successful configuration
and operation of the system, highlighting its capability to provide real-time insights and
ensure optimal performance. Furthermore, the evaluation of the LSTM autoencoder-
based anomaly detection model demonstrates its ability in identifying anomalies in CPU
usage. This robust monitoring and anomaly detection solution not only enhances visibility
into the IT infrastructure but also facilitates proactive management and troubleshooting,
thereby improving overall system reliability and efficiency.

4.6 Future Work

For our future work, enhancing the security of our monitoring system and integrating our
LSTM autoencoder model for real-time anomaly detection are pivotal goals. These two
approaches will significantly elevate the robustness and intelligence of our IT infrastruc-
ture monitoring.

Securing the Monitoring System: To ensure the security of our monitoring system,
which currently leverages Prometheus and Grafana, we must implement comprehensive
security measures. One effective approach is the deployment of a proxy server. A proxy
server can act as an intermediary between the user and our monitoring system, filtering re-
quests and blocking malicious traffic. This setup can help prevent unauthorized access and
shield sensitive data from potential threats. Additionally, we should consider implement-
ing HTTPS for encrypted communication, securing API endpoints with authentication
and authorization mechanisms, and regularly updating our software to patch any vulner-
abilities. Network segmentation and the use of firewalls can further isolate the monitoring
system from other parts of the network, minimizing the risk of lateral movement in case
of a breach. By integrating these security measures, we can protect our monitoring infras-
tructure against cyber threats and ensure the integrity and confidentiality of the collected
data.

Integrating the Anomaly Detection Model in Real-Time: The integration
of our LSTM autoencoder model for real-time anomaly detection with Prometheus and
Grafana is the next critical step in enhancing our monitoring capabilities. This integration
will enable us to automatically identify and respond to anomalies in time series data,
thereby improving our proactive maintenance and incident response strategies. To achieve

86

CHAPTER 4. RESULTS AND VALIDATION

this, we need to establish a data pipeline where Prometheus continuously collects metrics
and forwards them to the anomaly detection model. This can be done by setting up a
custom exporter or using a service like Kafka for real-time data streaming. Once the
model processes the data and detects an anomaly, it can generate alerts that are fed back
into Prometheus. Grafana can then visualize these alerts, providing real-time dashboards
that highlight abnormal patterns and potential issues. This seamless integration will
allow us to leverage the predictive capabilities of our model, enabling more intelligent and
automated monitoring of our IT infrastructure.

By focusing on these two future work approaches, we can significantly enhance both
the security and intelligence of our IT monitoring system, ensuring it is robust, secure,
and capable of providing actionable insights in real time.

87

General Conclusion

In this thesis, we have presented the development and implementation of a comprehen-
sive IT infrastructure monitoring system utilizing Prometheus and Grafana. The primary
objective of the project was to create a robust and efficient monitoring solution capable
of providing real-time insights into the health and performance of IT systems. By inte-
grating advanced anomaly detection techniques using Long Short-Term Memory (LSTM)
autoencoders, we aimed to enhance the system’s ability to identify and respond to un-
usual patterns in time-series data, thereby improving overall reliability and operational
efficiency.

Throughout the project, we encountered several challenges. The complexity of config-
uring Prometheus and integrating it with various exporters for specific metric collection
required meticulous attention to detail. Additionally, the implementation of LSTM au-
toencoders for anomaly detection presented difficulties in tuning the model parameters
and ensuring accurate detection without generating false positives. The deployment of
the system using Docker Compose also required careful consideration to ensure scalability
and consistent performance across different environments.

Despite these challenges, the project achieved significant results. The implemented
monitoring system demonstrated its capability to provide real-time monitoring and alert-
ing, with Prometheus effectively collecting and storing time-series data and Grafana of-
fering powerful visualization tools. The integration of LSTM autoencoders for anomaly
detection proved successful, allowing the system to identify subtle anomalies that tradi-
tional methods might overlook. The deployment strategy using Docker Compose ensured
the system’s scalability and ease of management, making it adaptable to various IT envi-
ronments.

The success of this project opens up numerous opportunities for further development
and enhancement. Future work could focus on improving the anomaly detection tech-
niques, exploring more advanced machine learning models, enhancing the security of our
monitoring system, and integrating our LSTM autoencoder model for real-time anomaly
detection. These approaches will significantly elevate the robustness and intelligence of

88

GENERAL CONCLUSION

our IT infrastructure monitoring.
In conclusion, this thesis has demonstrated the potential of combining Prometheus and

Grafana with advanced anomaly detection techniques to create a powerful and scalable
IT infrastructure monitoring system. While the project faced several challenges, the
results achieved highlight the system’s effectiveness and reliability. The ability for further
development and enhancement ensures that this solution can continue to evolve, meeting
the demands of increasingly complex IT environments and providing a robust framework
for ensuring system health and performance.

89

Bibliography

[1] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection:
A survey. arXiv preprint arXiv:1901.03407, 2019.

[2] H Du Nguyen, Kim Phuc Tran, Sébastien Thomassey, and Moez Hamad. Forecasting
and anomaly detection approaches using lstm and lstm autoencoder techniques with
the applications in supply chain management. International Journal of Information
Management, 57:102282, 2021.

[3] Docker documentation. https://docs.docker.com/config/daemon/prometheus.
Accessed 20 June 2024.

[4] Ericsson blog,. https://www.ericsson.com/en/blog/2023/11/

how-to-automate-resource-dimensioning-in-cloud. Accessed 20 June 2024.

[5] “soundcloud, soundcloud blog. https://developers.soundcloud.com/blog/

prometheus-monitoring-at-soundcloud. Accessed 20 June 2024.

[6] Grafana, grafanalabs. https://grafana.com/oss/prometheus. Accessed 20 June
2024.

[7] Octavian Mart, Catalin Negru, Florin Pop, and Aniello Castiglione. Observability in
kubernetes cluster: Automatic anomalies detection using prometheus. In 2020 IEEE
22nd International Conference on High Performance Computing and Communica-
tions; IEEE 18th International Conference on Smart City; IEEE 6th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 565–570.
IEEE, 2020.

[8] Élisson da Silva Rocha, Leylane GF da Silva, Guto L Santos, Diego Bezerra, André
Moreira, Glauco Gonçalves, Maria Valéria Marquezini, Amardeep Mehta, Mattias
Wildeman, Judith Kelner, et al. Aggregating data center measurements for avail-
ability analysis. Software: Practice and Experience, 51(5):868–892, 2021.

90

https://docs.docker. com/config/daemon/prometheus
https: //www.ericsson.com/en/blog/2023/11/how-to-automate-resource-dimensioning-in-cloud
https: //www.ericsson.com/en/blog/2023/11/how-to-automate-resource-dimensioning-in-cloud
https://developers.soundcloud.com/blog/ prometheus-monitoring-at-soundcloud
https://developers.soundcloud.com/blog/ prometheus-monitoring-at-soundcloud
https://grafana.com/oss/ prometheus

BIBLIOGRAPHY

[9] Roland Mark Erdei and Laszlo Toka. Optimal resource provisioning for data-intensive
microservices. In NOMS 2022-2022 IEEE/IFIP Network Operations and Manage-
ment Symposium, pages 1–6. IEEE, 2022.

[10] Nitin Sukhija and Elizabeth Bautista. Towards a framework for monitoring and ana-
lyzing high performance computing environments using kubernetes and prometheus.
In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation (SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI), pages 257–262. IEEE, 2019.

[11] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier
detection. Journal of machine learning research, 20(96):1–7, 2019.

[12] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, Puneet Agarwal, et al. Long short
term memory networks for anomaly detection in time series. In Esann, volume 2015,
page 89, 2015.

[13] Atlassian. « it infrastructure: Definition components ». atlassian,. https://

www.atlassian.com/itsm/it-operations-management/it-infrastructure. Ac-
cessed: 2024-05-19.

[14] Janne Sirviö. Monitoring of a cloud-based it infrastructure. 2021.

[15] James Turnbull. The art of monitoring. James Turnbull, 2014.

[16] Marcello Cinque, Raffaele Della Corte, and Antonio Pecchia. Microservices monitor-
ing with event logs and black box execution tracing. IEEE transactions on services
computing, 15(1):294–307, 2019.

[17] Radoslav Gatev. Introducing Distributed Application Runtime (Dapr). Springer,
2021.

[18] Julien Pivotto and Brian Brazil. Prometheus: Up & Running. " O’Reilly Media,
Inc.", 2023.

[19] Slawek Ligus. Effective Monitoring and Alerting: For Web Operations. " O’Reilly
Media, Inc.", 2012.

[20] Nagios xi | nagios. https://www.nagios.com/products/nagios-xi/. Accessed:
2024-06-16.

91

https://www.atlassian.com/itsm/it-operations-management/it-infrastructure
https://www.atlassian.com/itsm/it-operations-management/it-infrastructure
https://www.nagios.com/products/nagios-xi/

BIBLIOGRAPHY

[21] Jean-Philippe Martin-Flatin. Push vs. pull in web-based network management. In
Integrated Network Management VI. Distributed Management for the Networked Mil-
lennium. Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated
Network Management.(Cat. No. 99EX302), pages 3–18. IEEE, 1999.

[22] Lei Chen, Ming Xian, and Jian Liu. Monitoring system of openstack cloud platform
based on prometheus. In 2020 International Conference on Computer Vision, Image
and Deep Learning (CVIDL), pages 206–209. IEEE, 2020.

[23] Production-grade container orchestration. https://kubernetes.io/. Accessed:
2024-06-16.

[24] Prometheus. overview | prometheus. https://prometheus.io/docs/

introduction/overview/. Accessed: 2024-05-22.

[25] “pagerduty | real-time operations | incident response | on-call.” pagerduty,. https:

//www.pagerduty.com/. Accessed: 2024-06-16.

[26] Tiia Leppänen. Data visualization and monitoring with grafana and prometheus.
2021.

[27] Prometheus. monitoring linux host metrics with the node exporter | prometheus.
https://prometheus.io/docs/guides/node-exporter/. Accessed: 2024-05-21.

[28] « promcat ». promcat,. https://promcat.io/apps/wmi. Accessed: 2024-05-21.

[29] Prometheus. recording rules | prometheus. https://prometheus.io/docs/

prometheus/latest/configuration/recording_rules/. Accessed: 2024-05-22.

[30] Slack. « what is slack? » slack help center,. https://slack.com/help/articles/

115004071768-What-is-Slack-. Accessed: 2024-06-16.

[31] Prometheus. alertmanager | prometheus. https://prometheus.io/docs/alerting/
latest/alertmanager/. Accessed: 2024-05-21.

[32] James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

[33] Prometheus. configuration | prometheus. https://prometheus.io/docs/alerting/
latest/configuration/. Accessed: 2024-05-22.

[34] Mike Julian. Practical Monitoring: Effective Strategies for the Real World. " O’Reilly
Media, Inc.", 2017.

92

https://kubernetes.io/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.pagerduty.com/
https://www.pagerduty.com/
https://prometheus.io/docs/guides/node-exporter/.
https://promcat.io/apps/wmi
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://slack.com/help/articles/115004071768-What-is-Slack-
https://slack.com/help/articles/115004071768-What-is-Slack-
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/configuration/

BIBLIOGRAPHY

[35] Mainak Chakraborty and Ajit Pratap Kundan. Monitoring cloud-native applications:
lead agile operations confidently using open source software. Springer, 2021.

[36] Simo Vuorinen. Monitoring integration systems and visualization. 2022.

[37] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Outlier detection: A survey.
ACM Computing Surveys, 14:15, 2007.

[38] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A sur-
vey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[39] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of net-
work anomaly detection techniques. Journal of Network and Computer Applications,
60:19–31, 2016.

[40] Jason Brownlee. Deep learning for time series forecasting: predict the future with
MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018.

[41] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. A review on
outlier/anomaly detection in time series data. ACM Computing Surveys (CSUR),
54(3):1–33, 2021.

[42] Abdulmalik Shehu Yaro, Filip Maly, and Pavel Prazak. Outlier detection in time-
series receive signal strength observation using z-score method with s n scale estimator
for indoor localization. Applied Sciences, 13(6):3900, 2023.

[43] Sepehr Maleki, Sasan Maleki, and Nicholas R Jennings. Unsupervised anomaly detec-
tion with lstm autoencoders using statistical data-filtering. Applied Soft Computing,
108:107443, 2021.

[44] Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep au-
toencoders. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 665–674, 2017.

[45] Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau. Autoencoder-
based network anomaly detection. In 2018 Wireless telecommunications symposium
(WTS), pages 1–5. IEEE, 2018.

[46] Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael Weyrich. A
survey on anomaly detection for technical systems using lstm networks. Computers
in Industry, 131:103498, 2021.

93

BIBLIOGRAPHY

[47] “machine learning service - amazon sagemaker - aws.” amazon web services, inc.
https://aws.amazon.com/sagemaker/. Accessed 20 June 2024.

94

https://aws.amazon.com/sagemaker/

Appendix A

Configuration Files

A.1 SNMP Configuration File

auths:

router:

version: 3

security_level: authPriv

auth_protocol: SHA

username: snmpuser

password: monitoring2024

priv_protocol: AES

priv_password: monitoring2024

switch:

version: 3

security_level: authNoPriv

auth_protocol: SHA

username: snmpuser

password: monitoring2024

modules:

standard_mibs:

walk:

- 1.3.6.1.2.1.1 #sys_mibs

- 1.3.6.1.2.1.2.2.1

A

APPENDIX A. CONFIGURATION FILES

- 1.3.6.1.2.1.31.1.1 # ifXTable

- 1.3.6.1.2.1.2.2.1.10 # ifInOctets

- 1.3.6.1.2.1.2.2.1.16 # ifOutOctets

metrics:

- name: ifInOctets

oid: 1.3.6.1.2.1.2.2.1.10

type: counter

help: "Incoming octets on the interface"

indexes:

- labelname: ifIndex

type: gauge

- labelname: ifDescr

type: DisplayString

- name: ifOutOctets

oid: 1.3.6.1.2.1.2.2.1.16

type: counter

help: "Outgoing octets on the interface"

indexes:

- labelname: ifIndex

type: gauge

- labelname: ifDescr

type: DisplayString

- name: ifOperStatus

oid: 1.3.6.1.2.1.2.2.1.8

type: gauge

help: "Interface operational status"

indexes:

- labelname: ifIndex

type: gauge

- name: ifIndex

oid: 1.3.6.1.2.1.2.2.1.1

type: gauge

B

APPENDIX A. CONFIGURATION FILES

indexes:

- labelname: ifIndex

type: Integer

lookups:

- labels:

- ifIndex

labelname: ifDescr

oid: 1.3.6.1.2.1.2.2.1.2

type: DisplayString

- labels:

- ifIndex

labelname: ifName

oid: 1.3.6.1.2.1.31.1.1.1.1

type: DisplayString

- labels:

- ifIndex

labelname: ifAlias

oid: 1.3.6.1.2.1.31.1.1.1.18

type: DisplayString

- name: ifSpeed

oid: 1.3.6.1.2.1.2.2.1.5

type: gauge

indexes:

- labelname: ifIndex

type: Integer

lookups:

- labels:

- ifIndex

labelname: ifDescr

oid: 1.3.6.1.2.1.2.2.1.2

type: DisplayString

- labels:

- ifIndex

labelname: ifName

oid: 1.3.6.1.2.1.31.1.1.1.1

C

APPENDIX A. CONFIGURATION FILES

type: DisplayString

- name: sysUpTime

oid: 1.3.6.1.2.1.1.3

type: counter

lookups:

- labels:

labelname: sysDescr

oid: 1.3.6.1.2.1.1.1.0

type: DisplayString

- labels:

labelname: sysName

oid: 1.3.6.1.2.1.1.5.0

type: DisplayString

- labels:

labelname: sysLocation

oid: 1.3.6.1.2.1.1.6.0

type: DisplayString

- labels:

labelname: sysContact

oid: 1.3.6.1.2.1.1.4.0

type: DisplayString

A.2 Docker Compose Configuration File

version: '3.7'

services:

prometheus:

image: prom/prometheus:latest

container_name: prometheus

volumes:

- ./prometheus:/etc/prometheus

D

APPENDIX A. CONFIGURATION FILES

- prom_data:/prometheus

command:

- '--config.file=/etc/prometheus/prometheus.yml'

- '--storage.tsdb.path=/prometheus'

- '--web.enable-lifecycle'

ports:

- 9090:9090

restart: always

networks:

- monitoring

grafana:

image: grafana/grafana:latest

container_name: grafana

volumes:

- ./grafana:/etc/grafana/provisioning/datasources

- grafana-data:/var/lib/grafana

ports:

- 3000:3000

environment:

- GF_SECURITY_ADMIN_PASSWORD=admin

- GF_SECURITY_ADMIN_USER=admin

- GF_METRICS_ENABLED=true

restart: always

networks:

- monitoring

alertmanager:

image: prom/alertmanager:latest

container_name: alertmanager

volumes:

- ./alertmanager:/etc/alertmanager

command:

- '--config.file=/etc/alertmanager/alertmanager.yml'

ports:

- 9093:9093

E

APPENDIX A. CONFIGURATION FILES

restart: always

networks:

- monitoring

snmp-exporter:

image: prom/snmp-exporter:latest

container_name: snmp-exporter

volumes:

- ./snmp-exporter/snmp.yml:/etc/snmp-exporter/snmp.yml

command:

- '--config.file=/etc/snmp-exporter/snmp.yml'

ports:

- 9116:9116

restart: always

networks:

- monitoring

node-exporter:

image: prom/node-exporter:latest

container_name: node-exporter

ports:

- 9100:9100

restart: always

volumes:

- /proc:/host/proc:ro

- /sys:/host/sys:ro

- /:/rootfs:ro

command:

- '--path.procfs=/host/proc'

- '--path.rootfs=/rootfs'

- '--path.sysfs=/host/sys'

networks:

- monitoring

cadvisor:

image: gcr.io/cadvisor/cadvisor:latest

F

APPENDIX A. CONFIGURATION FILES

container_name: cadvisor

ports:

- "8080:8080"

volumes:

- /:/rootfs:ro

- /var/run:/var/run:ro

- /sys:/sys:ro

- /var/lib/docker/:/var/lib/docker:ro

- /dev/disk/:/dev/disk:ro

devices:

- /dev/kmsg:/dev/kmsg

restart: always

privileged: true

networks:

- monitoring

networks:

monitoring:

external: true

volumes:

prom_data:

grafana-data:

A.3 Alerting Rules Configuration File

• Linux Rules

groups:

- name: linux-rules

rules:

G

APPENDIX A. CONFIGURATION FILES

- alert: NodeExporterDown

expr: (up{job="VM-Kali"} == 0 or up{job="VM-Ubunto"} == 0)

for: 2m

labels:

severity: critical

app_type: linux

category: server

annotations:

summary: "Node Exporter is down"

description: "Node Exporter is down for more than 2 minutes"

- record: job:node_memory_Mem_bytes:available

expr: (node_memory_MemAvailable_bytes /

node_memory_MemTotal_bytes) * 100↪→

- alert: NodeMemoryUsageAbove60%

expr: 60 < (100 - job:node_memory_Mem_bytes:available) < 75

for: 2m

labels:

severity: warning

app_type: linux

category: memory

annotations:

summary: "Node memory usage is going high"

description: "Node memory for instance {{ $labels.instance

}} has reached {{ $value }}%"↪→

- alert: NodeMemoryUsageAbove75%

expr: (100 - job:node_memory_Mem_bytes:available) >= 75

for: 2m

labels:

severity: critical

app_type: linux

category: memory

annotations:

H

APPENDIX A. CONFIGURATION FILES

summary: "Node memory usage is very HIGH"

description: "Node memory for instance {{ $labels.instance

}} has reached {{ $value }}%"↪→

- alert: NodeCPUUsageHigh

expr: 100 - (avg by(instance)

(irate(node_cpu_seconds_total{mode="idle"}[1m])) * 100) > 80↪→

for: 2m

labels:

severity: critical

app_type: linux

category: cpu

annotations:

summary: "Node CPU usage is HIGH"

description: "CPU load for instance {{ $labels.instance }}

has reached {{ $value }}%"↪→

• Windows Rules

groups:

- name: windows-rules

rules:

- alert: WMIExporterDown

expr: up{job="VM-Windows10"} == 0

for: 2m

labels:

severity: critical

app_type: windows

category: target

annotations:

summary: "WMI Exporter is down"

description: "WMI Exporter is down for more than 2 minutes"

- record: job:wmi_physical_memory_bytes:free

I

APPENDIX A. CONFIGURATION FILES

expr: (wmi_os_physical_memory_free_bytes /

wmi_cs_physical_memory_bytes) * 100↪→

- alert: WindowsMemoryUsageAbove60%

expr: 60 < (100 - job:wmi_physical_memory_bytes:free) < 75

for: 2m

labels:

severity: warning

app_type: windows

category: memory

annotations:

summary: "Windows memory usage is going high"

description: "Windows memory for instance {{

$labels.instance }} has left only {{ $value }}%"↪→

- alert: WindowsMemoryUsageAbove75%

expr: (100 - job:wmi_physical_memory_bytes:free) >= 75

for: 2m

labels:

severity: critical

app_type: windows

category: memory

annotations:

summary: "Windows memory usage is HIGH"

description: "Windows memory for instance {{

$labels.instance }} has left only {{ $value }}%"↪→

- alert: WindowsCPUUsageHigh

expr: 100 - (avg by (instance)

(rate(wmi_cpu_time_total{mode="idle"}[1m])) * 100) > 80↪→

for: 2m

labels:

severity: warning

app_type: windows

category: cpu

annotations:

J

APPENDIX A. CONFIGURATION FILES

summary: "Windows CPU usage is HIGH"

description: "CPU load for instance {{ $labels.instance }}

has reached {{ $value }}"↪→

• Web Application Rules

groups:

- name: app-rules

rules:

- alert: SignInFailuresHigh

expr: sum(rate(django_sign_in_failures_total[5m])) > (10/300)

10 failures / 5 min = 300 sec↪→

for: 2m

labels:

severity: warning

app_type: django

annotations:

summary: "High number of failed sign-in attempts"

description: "The rate of failed sign-in attempts in Django

has exceeded the threshold for instance {{ $labels.instance }}"↪→

app_link: 'http://127.0.0.1:8000/'

A.4 Alertmanager Configuration File

global:

smtp_from: 'alertsservice24@gmail.com'

smtp_smarthost: smtp.gmail.com:587

smtp_auth_username: 'alertsservice24@gmail.com'

K

APPENDIX A. CONFIGURATION FILES

smtp_auth_identity: 'alertsservice24@gmail.com'

smtp_auth_password: 'vykc auph bqmi yaru'

route:

group_by: ['app_type']

group_wait: 10s

group_interval: 5m

repeat_interval: 3h

receiver: Fallback_receiver

routes:

- match:

app_type: linux

receiver: Technical_Service

group_wait: 30s

group_interval: 5m

repeat_interval: 1h

- match:

app_type: windows

receiver: Technical_Service

group_wait: 30s

group_interval: 5m

repeat_interval: 1h

- match:

app_type: django

receiver: Application_Service

group_wait: 30s

group_interval: 5m

repeat_interval: 1h

receivers:

- name: Fallback_receiver

email_configs:

- to: 'fallbackreceiver@gmail.com'

L

APPENDIX A. CONFIGURATION FILES

- name: Technical_Service

email_configs:

- to: 'technicalservice@gmail.com'

- name: Application_Service

email_configs:

- to: 'applicationservice@gmail.com'

inhibit_rules:

- source_match:

severity: 'critical'

target_match:

severity: 'warning'

equal: ['app_type', 'category']

\end{itemize}

M

	List of Figures
	List of Tables
	Acronyms
	General Introduction
	0.1 State of the Art
	0.2 Dissertation Organization

	1 General Information on IT Infrastructure Monitoring
	1.1 Introduction
	1.2 IT Infrastructure
	1.2.1 Definition
	1.2.2 Components

	1.3 IT Infrastructure Monitoring
	1.3.1 Definition
	1.3.2 Monitoring Data Types
	1.3.3 Monitoring Data Storage
	1.3.4 Monitoring Tools

	1.4 Prometheus
	1.4.1 Definition
	1.4.2 Architecture
	1.4.3 Data Collection
	1.4.4 Recording and Alerting Rules
	1.4.5 Alerting and Alertmanger
	1.4.6 Service Discovery
	1.4.7 Instrumentation

	1.5 Grafana
	1.6 Grafana and Prometheus Integration
	1.7 Conclusion

	2 Anomaly Detection in Time Series Data
	2.1 Introduction
	2.2 Definition
	2.3 Anomaly Types
	2.4 Nature of Input Data
	2.5 Output of Anomaly Detection
	2.6 Anomaly Detection Techniques
	2.7 Anomaly Detection Process
	2.8 Conclusion

	3 Conception and Implementation
	3.1 Introduction
	3.2 Exploited Resources
	3.2.1 Hardware Resources
	3.2.2 Software Tools

	3.3 Network Architecture
	3.4 Implementation of The Monitoring System
	3.4.1 Prometheus
	3.4.2 Exporters
	3.4.3 Web Application Instrumentation
	3.4.4 Establishing Alerting Mechanism in Prometheus
	3.4.5 Data Visualisation Using Grafana
	3.4.6 Deployment of The Monitoring System using Docker Compose

	3.5 Implementation of Anomaly Detection in Time Series Data Using LSTM Autoencoders
	3.6 Conclusion

	4 Results and Validation
	4.1 Introduction
	4.2 Validation of the Monitoring system
	4.2.1 Prometheus
	4.2.2 Container Status with CAdvisor
	4.2.3 Exporters
	4.2.4 Web Application
	4.2.5 Alerting

	4.3 Grafana Dashboards
	4.4 Evaluating of the Anomaly Detection Model
	4.5 Conclusion
	4.6 Future Work

	General Conclusion
	Bibliography
	A Configuration Files
	A.1 SNMP Configuration File
	A.2 Docker Compose Configuration File
	A.3 Alerting Rules Configuration File
	A.4 Alertmanager Configuration File

