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Abstract

This thesis presents an innovative approach to wildfire detection using UAVs equipped
with AI technologies. Leveraging the DJI Tello drone, the system integrates computer
vision and reinforcement learning for real-time fire detection. The project achieved signifi-
cant success, demonstrating reliable performance. This research contributes to enhancing
disaster management strategies, offering a scalable solution for early wildfire detection.

Keywords: Wildfire detection, UAV, AI, Computer vision, Reinforcement learning, DJI
Tello.

Résumé

Cette thèse présente une approche innovante de la détection des incendies de forêt en uti-
lisant des UAVs équipés de technologies d’intelligence artificielle. En tirant parti du drone
DJI Tello, le système intègre la vision par ordinateur et reinforcement learning pour la
détection des incendies en temps réel. Le projet a rencontré un succès significatif, démon-
trant des performances fiables. Cette recherche contribue à l’amélioration des stratégies
de gestion des catastrophes, offrant une solution évolutive pour la détection précoce des
incendies de forêt.

Mots-clés : Détection des incendies de forêt, UAV, IA, Vision par ordinateur, Reinfor-
cement learning, DJI Tello.
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Introduction

Wildfires have emerged as a significant global concern, exacerbated by climate change
and human activities. These fires pose severe threats to ecosystems, human life, and
property, necessitating rapid detection and effective management strategies to mitigate
their devastating impacts. The early detection and prompt response to wildfires are crucial
in preventing widespread damage and loss. However, traditional methods of monitoring
and detecting wildfires often fall short due to limitations in coverage, speed, and accuracy.

To combat this escalating problem, integrating advanced technologies into wildfire
detection and prevention systems has become imperative. Unmanned Aerial Vehicles
(UAVs), equipped with cutting-edge sensors and artificial intelligence (AI), present a
promising solution for enhancing the efficiency and effectiveness of wildfire management.
UAVs offer unparalleled advantages, including real-time monitoring, high-resolution im-
agery, and the ability to access remote and hazardous areas without risking human lives.

In recent years, advancements in UAV technology have significantly improved their
capabilities, making them invaluable tools in various fields, including disaster response
and environmental monitoring. This thesis proposes an innovative approach to wildfire
detection using a DJI Tello drone equipped with advanced AI technologies. The pri-
mary objective is to develop an automated system capable of monitoring forest areas and
quickly detecting the onset of fires, thereby facilitating rapid intervention and preventing
environmental disasters.

The proposed solution involves leveraging the capabilities of the DJI Tello drone in
conjunction with state-of-the-art AI algorithms for real-time wildfire detection. By in-
tegrating computer vision techniques and reinforcement learning, the system aims to
enhance the drone’s ability to autonomously patrol forest areas, identify potential fire
hazards, and promptly alert authorities for swift action. This approach not only improves
the accuracy and speed of wildfire detection but also reduces the dependency on manual
surveillance methods.

The thesis is structured as follows:

1



INTRODUCTION

• Theoretical Framework and Literature Review: This chapter provides a com-
prehensive overview of the theoretical foundations essential for developing UAV-
based systems for forest patrolling and fire detection. It examines reinforcement
learning, computer vision, and the use of the Godot game engine for UAV simula-
tion.

• Hardware and Software: An in-depth discussion of the hardware and software
components used in the project, including the DJI Tello drone, Torch, OpenCV,
YOLO, Flutter, and the Godot game engine. This chapter highlights the technical
specifications and functionalities that enable the proposed solution.

• Methodology/Project Work: This chapter outlines the system architecture,
computer vision algorithms, autonomous navigation and control mechanisms, drone
communication protocols, and the integration of these components into a cohesive
system. It also discusses the methods for calculating fire ignition risk and the de-
velopment of the dashboard interface.

• Test and Validation: A detailed account of the testing and validation processes
undertaken to assess the performance of the proposed system. This chapter includes
the validation results of the drone’s patrolling capabilities, the accuracy of the com-
puter vision model, and the effectiveness of the integrated system in real-world
scenarios.
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Chapter 1

Theoretical Framework and Literature
Review

1.1 Introduction

Unmanned aerial vehicles (UAVs) have transformed fields such as surveillance, disaster re-
sponse, and environmental conservation. In wildfire detection and prevention, UAVs with
advanced technologies enhance traditional forest management. This chapter presents the
theoretical frameworks essential for developing UAV-based systems for forest patrolling
and fire detection.

We first examine reinforcement learning, which enables UAVs to autonomously opti-
mize patrolling strategies using techniques like Q-learning and deep reinforcement learn-
ing [1]. Next, we discuss the role of computer vision in real-time wildfire detection,
covering algorithms for fire, smoke and person detection [2].

Additionally, we highlight the use of the Godot game engine for developing UAV simu-
lators. These simulators allow for the testing and refinement of UAV algorithms in virtual
environments that mimic real-world conditions. Finally, a review of recent advancements
in these technologies sets the foundation for the development of an innovative UAV-based
system for effective forest patrolling and wildfire detection.

1.2 Using Reinforcement Learning for Auto-Patrolling

Drones

The project aims to develop a "launch-and-forget" drone capable of autonomous patrolling
using Reinforcement Learning (RL). RL is a type of machine learning where an agent
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learns to make decisions by performing actions in an environment to maximize cumulative
reward. This approach is particularly well-suited for developing autonomous systems like
drones, where the goal is to learn optimal policies for complex tasks through interaction
with the environment.

1.2.1 Environment

• State Space: The state space includes all possible states the drone can be in, such
as its position, velocity, orientation, battery level, and sensory inputs.

• Action Space: The action space comprises all possible actions the drone can take,
including changes in pitch, roll, yaw, and thrust, as well as higher-level actions like
moving to specific waypoints.

1.2.2 Reinforcement Learning Framework

1.2.2.1 Agent and Environment Interaction

• Agent: The drone, which makes decisions based on its policy.

• Environment: The physical world or a simulated environment in which the drone
operates.

1.2.2.2 Markov Decision Process (MDP)

• States (S): A set of all possible states (e.g., GPS coordinates, velocity vectors,
obstacle positions).

• Actions (A): A set of all possible actions (e.g., throttle adjustments, direction
changes).

• Transition Function (T): Probability of moving from one state to another given
an action.

• Reward Function (R): Immediate reward received after transitioning from one
state to another due to an action.

1.2.2.3 Learning Algorithm

• Q-Learning: A value-based RL algorithm where the agent learns the value of each
action in each state.
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• Deep Q-Network (DQN): Uses neural networks to approximate Q-values for
handling large state and action spaces.

• Policy Gradient Methods: Learn a parameterized policy directly, using methods
like Proximal Policy Optimization (PPO) or Advantage Actor-Critic (A2C).

1.2.3 Training the Drone

1.2.3.1 Simulation Environment

• Simulator: Use ForestWings1 to create a virtual environment for initial training.

• Scenarios: Define various patrolling scenarios, including obstacle-rich environ-
ments, different weather conditions, and varying terrains.

1.2.3.2 Reward Shaping

• Basic Rewards: Positive rewards for reaching waypoints and completing patrols;
negative rewards for collisions, straying off course, or inefficient paths.

• Dense vs. Sparse Rewards: Balance between giving frequent small rewards and
occasional large rewards to guide the learning process.

1.3 Computer vision for fire detection

In this section, we delve into the approach of object detection, with a specific focus on the
principles underlying the YOLO (You Only Look Once) algorithm [3]. We will explore the
fundamental workings of a YOLO object detector, from its reliance on labeled data to its
unique real-time detection capabilities. Additionally, we’ll elucidate the rationale behind
our choice of YOLO for our project, highlighting its efficiency and suitability for our
objectives. Through this exploration, we aim to provide a comprehensive understanding
of the YOLO algorithm and its significance in the context of our project’s goals.

1.3.1 Object detection

Object detection is a pivotal task in computer vision aimed at identifying and locating
instances of specific objects within digital images or video frames. In the context of wildfire
detection projects, object detection involves the automatic recognition of crucial elements

1ForestWings, is a software developed by our team to make tests on the patrolling algorithm.
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related to wildfires, such as flames and smoke, within images or video feeds captured
by surveillance cameras or drones. The primary objective is to choose sophisticated
computational models capable of accurately pinpointing the presence and location of these
wildfire-related objects in real-time or near-real-time scenarios. This facilitates prompt
and effective response strategies, aiding in early detection and mitigation of wildfires to
minimise their adverse impacts on the environment and human lives.

1.3.2 Object detectors

Object detectors rely heavily on the utilisation of advanced deep learning architectures,
notably convolutional neural networks (CNNs). Through extensive training on large-scale
annotated datasets, these models acquire the capability to discern intricate patterns and
distinctive features indicative of different objects within visual data. The integration of
object detection methodologies equips machines with the capacity to interpret and analyse
the visual environment, facilitating profound advancements across diverse domains. This
technological paradigm enables a wide array of applications, ranging from autonomous
vehicles and surveillance systems to medical imaging and industrial automation, thereby
catalysing transformative progress in computational perception and decision-making. To
elucidate the intricate operational mechanisms of an object detector, let’s deconstruct its
functionality into distinct stages.

Figure 1.1: Stages of object detector

In the object detector depicted above, three key components drive its functionality.
Firstly, preprocessing optimizes input data by resizing images, cleaning noise, normalis-
ing characteristics, and annotating object bounding boxes. These preparatory steps are
essential for refining raw data and ensuring compatibility with the model, facilitating
seamless functionality and accurate object detection.

In the post-processing phase, detected objects undergo refinement to enhance accu-
racy and usability. This involves filtering out redundant detections, merging overlapping
bounding boxes, and classifying objects based on their attributes. These steps ensure that
the final output is optimized for further analysis and decision-making.
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now let’s get back to the main component which is the model, which itself contain
other component

Figure 1.2: Main component of Object detector

In the current state of the art [4], our model comprises a neural network, specifically a
convolutional neural network (CNN), tailored for image processing tasks. Notable CNN
architectures include ResNet [5], VGG, and Inception, each contributing to the model’s
capabilities. Within this network, multiple layers perform intricate operations, yet our
focus lies primarily on the final layer known as the "last features layer." This layer serves
as input for another neural network responsible for object detection, aptly named the
"detection head." Meanwhile, the CNN responsible for extracting these features is termed
the "backbone." However, relying solely on the last features layer may overlook valuable
information. To optimise performance, we explore leveraging the diverse layers within the
backbone. By incorporating features from various depths, we enrich our understanding
of the input image. To achieve this, we introduce an intermediary neural network, the
"Neck," positioned between the backbone and the detection heads. Here, refinement
occurs through the amalgamation and sampling of feature maps. The resulting output,
termed the "refined feature map," is subsequently fed into the respective detection heads.
This layered architecture enhances the model’s ability to discern intricate details and
improve overall detection accuracy, as illustrated in the diagram below 1.3.

In neural networks, a fascinating phenomenon emerges: the deeper the network, the
more abstract the information it processes, accompanied by an expansion in the receptive
field [6]. Consequently, feature maps closer to the input layer excel in discerning finer
details, rendering them adept at detecting smaller objects. Conversely, those situated
farther into the network demonstrate heightened efficacy in identifying larger objects,
owing to their broader receptive fields.
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Figure 1.3: Component of Object detector

These are the fundamental components of an object detector, and there are several
existing architectures available. As we embark on developing our own, we’ll leverage an
existing architecture. The question then becomes: which architecture to select? Let’s
explore some of the most renowned options:

• YOLO (You Only Look Once)

• SSD (Single Shot Detector)

• Mask R-CNN (Mask Region-Based Convolutional Nueral Network)

• Faster R-CNN (Faster Region-Based Convolutional Nueral Network)

• EfficientDet

• RetinaNet

To make an informed decision, we must first assess our specific requirements and
objectives to determine the most appropriate choice.

1.3.3 Requirement and objectives

In our project, we aim to deploy a computer vision model for wildfire detection using
drones. Given the dynamic nature of wildfire incidents and the need for real-time re-
sponse, our solution must meet specific requirements to effectively address this critical
task. Firstly, considering the limited computational resources available, we need a model
architecture that strikes a balance between accuracy and efficiency. This architecture
should support fine-tuning with new data collected during drone patrols, allowing us
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to continuously update and improve the model’s performance over time without over-
whelming the onboard hardware. Furthermore, robustness to environmental conditions is
paramount, as drones may encounter various challenges such as smoke, haze, and changing
lighting conditions during patrols. Hence, the selected architecture must exhibit resilience
to such variability and maintain reliable performance under adverse conditions. Addition-
ally, given the remote and often inaccessible locations where wildfires occur, our solution
should be capable of real-time inference to enable timely detection and response. Lastly,
the model must be deployable on drones with minimal computational overhead, ensuring
efficient utilization of onboard resources and enabling autonomous operation without the
need for constant human intervention. By addressing these requirements, our project
aims to develop a reliable and efficient system for wildfire detection using drones.

1.3.4 Why YOLO

1.3.4.1 Compare some object detection algorithms

In the domain of real-time wildfire detection initiatives, the crucial need for precise and
rapid hazard identification is undeniable. To assess the efficacy of different detection
algorithms, the Microsoft COCO dataset [7] serves as a renowned standard for evaluation.
This dataset subjects models to rigorous scrutiny, utilising the Mean Average Precision
(MAP) metric to offer a thorough evaluation of their capabilities across various scenarios.
Our exploration aims to provide an initial overview of leading real-time object detection
algorithms tailored to the specific requirements of our wildfire detection project.

1.3.4.2 The Best Real-Time Object Detection Algorithm for our need

Here is a graphical representation the performance of different algorithms from vision.io
[8]:

The line graph 1.4 delineates the performance trajectories of various object detection
models over a two-year period, underscoring the evolution of object detection methodolo-
gies. Notably, a specific variant of the YOLO algorithm, version of "YOLOV7-E6E (36
fps)," emerges as a standout performer, boasting both high accuracy and a rapid frame
rate of 36 frames per second (fps). This distinction positions the YOLO algorithm as
particularly well-suited for real-time applications, where timely detection and response
are paramount. By achieving superior accuracy while maintaining efficient processing
speeds, YOLO offers a compelling advantage over other object detection models, ensur-
ing swift and accurate identification of objects in dynamic environments. This emphasizes
the significance of YOLO as a pivotal tool in real-time applications, where its blend of
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Figure 1.4: Real-time Object Detection on COCO Benchmark: The state-of-the-art by Average
Precision (AP)

accuracy and efficiency elevates performance and efficacy. and in terms of Inference Time,
we analyze the graph in the figure below 1.5 [7]:

Figure 1.5: The state-of-the-art by Frames per Second (FPS): The leading computer vision
algorithm for real-time object detection on COCO can process 286 frames per second (YOLOv7),
and is faster than YOLOv5, YOLOv4, YOLOR, and YOLOv3.

It’s evident that YOLO stands out from other object detection models in terms of pro-
cessing speed. The graph showcases the performance trajectories of various algorithms
over time, and while many achieve high accuracy, YOLO, particularly the "YOLOV7-
E6E" variant, excels in frame rate. Unlike some detection algorithms that require multiple
passes through an image to identify objects, YOLO leverages a single network, signifi-
cantly reducing processing time. This streamlined approach, reflected in the model’s
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high FPS (36 fps) in the graph, translates to faster object identification in dynamic en-
vironments. This speed advantage, coupled with YOLO’s maintained accuracy, makes it
a compelling choice for real-time applications where timely detection and response are
crucial.

1.3.4.3 Latest of YOLO

When examining the latest advancements in the YOLO (You Only Look Once) algorithm,
a new research paper titled "YOLOv9: Learning What You Want to Learn Using Pro-
grammable Gradient Information" [9] was unveiled in March 2024. This paper introduces
significant modifications to certain components of the YOLO object detectors, particu-
larly focusing on the neck and backbone structures, while retaining the head architecture
from YOLOv3. These alterations aim to enhance the algorithm’s performance and adapt-
ability to diverse tasks. As a testament to its continuous evolution, the official GitHub
repository of YOLOv9 features a graph illustrating the algorithm’s performance across
various releases in terms of Average Precision (AP) relative to the number of parameters.

Figure 1.6: Performance of different YOLO vesions on COCO Object detection dataset

Notably, YOLOv9 achieves an impressive AP score that passes 55 at its peak, surpass-
ing all previous versions at around 58 parameters. This graph underscores the ongoing
refinement and optimization of the YOLO algorithm, solidifying its reputation as a leading
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choice for real-time object detection. By leveraging programmable gradient information
and integrating novel architectural enhancements, YOLOv9 represents a significant leap
forward in the field of computer vision, offering unparalleled performance and versatility
in diverse operational scenarios.

1.3.5 Basics of YOLO algorithm

The YOLO algorithm distinguishes itself with its single-stage architecture, where classi-
fication and localization occur simultaneously, unlike two-stage architectures where these
tasks are segregated. This characteristic not only ensures speed but also renders it highly
suitable for real-time applications. To train the model effectively, it necessitates labelled
images, where objects are delineated by bounding boxes, indicating both their presence
and class. But how does YOLO process these bounding boxes?

Figure 1.7: The parameters of object for localisation in yolo algorithm

Examining the illustrative images provided, considering it’s a classification means that
there is just one object in the image, we observe that the bounding box is defined by four
parameters. Among these, bx and by denote the coordinates of the box’s centre, while
bw and bh represent its width and height, respectively. Notably, all these parameters are
normalised with respect to unity, minimising computational overhead during training.
This normalisation conventionally sets the top left corner of the image as the origin (0, 0)

and the bottom right corner as (1, 1). Importantly, the width and height can exceed
unity, accommodating objects larger than the image itself. So, what does the output
label resemble?

The output from our model is represented as a vector of size (1, N), structured as
follows: Y = [Pc, bx, by, bh, bw, C1, C2, . . . , Cn]
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Here, Pc denotes the confidence score indicating the presence of an object, while C1

through Cn represent the confidences for each class.
To illustrate, let’s consider a scenario where we’re classifying images into two classes:

fire and smoke. For instance, if we analyse an image and obtain the vector: Y =

[1, 0.4, 0.5, 0.5, 0.35, 0.95, 0.05], it implies that the image contains an object with a 95%
probability of being classified as fire. Conversely, if no object is detected in the image,
the vector assumes the form: Y = [0, x, x, x, x, x, x]. Here, Pc = 0 signifies the absence
of an object, rendering the class confidences irrelevant. This vector-based representa-
tion provides concise and informative insights, facilitating efficient object detection and
classification.

And now we introduce the loss function:

loss =
N∑
i=1

(Yi − Ŷi)
2 if there is an object

loss = (Y1 − Ŷ1)
2 if there is no object

In object detection, YOLO introduces the concept of grid cells to detect multiple
objects within an image. It partitions the image into grid cells and applies classification
techniques to each cell. While the standard YOLO implementation divides images into a
grid of 19 × 19 cells, for illustrative purposes, let’s consider a simplified scenario with a
3× 3 grid cell image.

Figure 1.8: illustration of grid image

Upon grid division and classification, we obtain a three-dimensional matrix. In the
case of the aforementioned 3 × 3 grid, with two classes, the matrix dimensions would
be 3 × 3 × 7, where 7 corresponds to 1 (for Pc), 4 (for coordinates), and 2 (for classes).
Consequently, we generate nine such vectors, each representing a grid cell.
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Figure 1.9: How result of the yolo model look like

In the actual YOLO algorithm, the matrix dimension extends to 19 × 19 × (5 + n).
While this facilitates detection of one or fewer objects per grid cell, imagine a scenario with
two objects in a single cell. Although YOLO provides mechanisms for such detection, it’s
worth noting its inherent limitation: the 19×19 grid cells theoretically allow for detection
of up to 361 objects in a single image, yet we strive for more robust performance.

We can enhance object detection by incorporating anchor boxes tailored to specific
classes, such as cars and people. Anchor boxes represent typical bounding box shapes
associated with each class; for instance, cars often have a width larger than their height,
while people may exhibit the opposite. By defining anchor boxes for each class, we en-
able the detection of multiple objects within a single grid cell simultaneously. However,
a limitation arises when two objects share the same class or when two classes have iden-
tical anchor box shapes. Unfortunately, this approach doesn’t align with our use case for
wildfire detection, as neither fire nor smoke possess predefined shapes, particularly in nat-
ural environments. Therefore, while anchor boxes offer improvements in certain contexts,
they are not applicable to our scenario due to the unpredictable shapes of wildfire-related
objects.

1.4 Development Theory: Implementing a Dashboard

with Flutter

The rapid advancement in drone technology has made it crucial to monitor their activities
efficiently, especially in applications such as surveillance, agriculture, and delivery services.
Concurrently, real-time weather monitoring is vital for ensuring safe and optimal drone
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operation. This document details the development of a desktop GUI application designed
to address these needs, utilizing Flutter for the user interface, GetX for state management
and routing, and WeatherAPI for weather data.

1.4.1 Technologies Used

1.4.1.1 Flutter

Flutter is an open-source UI software development kit created by Google. It is used for
developing applications for Android, iOS, Linux, Mac, Windows, Google Fuchsia, and the
web from a single codebase.

1.4.1.2 GetX

GetX is a powerful microframework for Flutter that provides features such as state man-
agement, dependency injection, and route management.

1.4.1.3 DIO

DIO is a powerful HTTP client for Dart, which supports Interceptors, FormData, Request
Cancellation, File Downloading, Timeout, etc.

1.4.1.4 Clean Architecture

Clean Architecture is a software design philosophy that emphasizes separation of concerns,
making the application easier to maintain, test, and scale.

1.4.1.5 svgImage

svgImage is a Flutter package that allows for the rendering of SVG (Scalable Vector
Graphics) images, which are vector-based and can be scaled without losing quality.

1.4.1.6 StateMixin

StateMixin is a feature provided by GetX to manage different states of a widget, such
as loading, empty, error, and data states, simplifying the process of state management
before rendering the UI.
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1.5 Theoretical Framework: Simulating Drone Opera-

tions with the Godot Game Engine

1.5.1 ForestWings

ForestWings is a simulator developed using the Godot Game Engine. Its primary purpose
is to create a 4 km × 1 Km virtual world featuring a road leading to a tunnel, surrounded
by trees. We made ForestWings to test our patrolling algorithm, improve it, and finally
tune it.

1.5.1.1 Dependencies

ForestWings simulator is developed mainly on GoDot Game Engine. Yet, it depends on
some plugins which helped making the development process easier and faster.

• Terrain3D: helps making terrains, we used it to make realistic environment, so
that we can tune our patrolling algorithm.

• ScatterPlot: faciliates dropping components randomly or according to a distrub-
tion algoritm in a portion of surface. We used this plugin to drop trees all around
the four kilometers square surface of our world.

Even with these advanced plugins, our simulator won’t be that realistic without using
skins and Animated 3D models. Therefore, we downloaded 4K-Quality skins for dirt,
mud, grass 1.11, rocks1.13, trees1.12, and drone1.10 from polyhaven [10].

Figure 1.10: 3D Model of the used
Tello drone.

Figure 1.11: Dirt skin used in our
environment.
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Figure 1.12: 3D Model of Tree. Figure 1.13: Terrain texture skin.

1.6 State of the art

The integration of drone technology with artificial intelligence represents a significant ad-
vancement in emergency management, particularly in early fire detection and monitoring.
Drones equipped with AI capabilities have transformed the traditional methods used by
firefighting and surveillance teams, enabling them to detect the onset of fires and the
presence of smoke with pinpoint accuracy and in the shortest possible time. This techno-
logical integration enhances operational efficiency by providing near-instant and real-time
responses, significantly mitigating risks to human life and other resources. The use of
AI-enabled drones is crucial in managing the complexities associated with wildfires and
urban fires, ensuring the safety of emergency responders, and minimizing damage and
potential loss of life through early and accurate fire detection [11] [12] [13].

Advances in drone technology have been pivotal in enhancing surveillance and monitoring
capabilities, especially in critical applications such as fire detection. Modern drones are
now equipped with sophisticated cameras and sensors, as well as robust communication
systems that support real-time data sharing. High-resolution cameras provide clear and
detailed images from aerial perspectives, enabling precise identification and assessment
of fire-affected areas. Infrared sensors are essential for nighttime surveillance, allowing
drones to detect heat signatures associated with fires even under low visibility conditions.
Thermal imaging is critical for identifying hot spots and subtle temperature variations,
enabling more accurate pinpointing of fire locations and real-time monitoring of flame
spread, which is vital for effective firefighting resource allocation. These sensor technolo-
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gies ensure that data captured by drones is comprehensive and actionable [11] [14].

The effectiveness of drones in emergency situations is further amplified by advanced com-
munication systems that facilitate seamless autonomy and coordination. Real-time data
transmission capabilities enable drones to send data instantly back to control centers for
immediate analysis and decision-making, which is crucial during fire emergencies where
every second counts. Autonomous operations allow modern drones to communicate with
each other without human intervention, creating a mesh network in the sky. This net-
work enables coordinated flight patterns, area coverage, and data sharing among mul-
tiple drones, increasing surveillance area and improving response effectiveness. These
technological enhancements not only improve the capabilities of drones in detecting and
monitoring fires but also ensure timely, data-driven interventions that are less reliant on
ground-based operations [11] [12] [14].

Advances in artificial intelligence have significantly enhanced the functionality of drones,
particularly in object detection and autonomous navigation [15]. The evolution of object
detection algorithms such as YOLO, SSD (Single Shot MultiBox Detector), and Faster
R-CNN (Region-based Convolutional Neural Networks) has improved drone’s real-time
detection capabilities. YOLO processes images in real-time, making it suitable for sit-
uations where speed is crucial, while Faster R-CNN offers higher accuracy through a
region proposal network. SSD balances speed and accuracy, detecting multiple objects
within an image using a single neural network. Additionally, advances in deep learning
have propelled autonomous navigation, enabling drones to operate independently in com-
plex environments. Algorithms based on deep learning and reinforcement learning allow
drones to make decisions and navigate obstacles without human intervention. Recent de-
velopments in liquid neural networks, which adapt their structure dynamically, enhance
drone’s ability to perform in diverse and changing conditions, improving their effective-
ness in tasks such as environmental monitoring, search and rescue.

Despite these advancements, challenges such as battery life and flight duration, as well as
accuracy in diverse conditions, persist. Historically, limited battery life has constrained
drone’s operational time, limiting their usefulness in prolonged tasks like continuous fire
monitoring. Additionally, drones must operate in various environmental conditions, in-
cluding smoke, fog, and variable lighting, which can affect fire detection accuracy. Recent
breakthroughs, however, are addressing these challenges. Innovations in battery technol-
ogy, including developments in lithium-sulfur and solid-state batteries, promise higher
energy densities and longer lifespans. Energy-efficient designs and power management
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algorithms are being integrated to optimize power consumption, allowing for extended
flight times and larger coverage areas. Improvements in AI algorithms have enhanced the
robustness and accuracy of fire detection systems under varying conditions, with advanced
machine learning models better distinguishing between smoke, fog, and other visual im-
pediments, thereby enhancing detection reliability [11] [13] [14].

Future trends and research directions in AI-equipped drones for fire detection focus on ma-
chine learning optimization and collaborative systems. Advancements in machine learning
aim to develop lightweight models that maintain high accuracy while reducing compu-
tational demands, crucial for deployment in drones with limited processing power and
energy efficiency. Techniques such as model pruning, quantization, and knowledge dis-
tillation help streamline neural networks, enabling faster processing speeds and longer
operational times. Collaborative systems, or swarm intelligence, involve multiple drones
operating in a coordinated manner to cover larger areas more effectively. This approach
enables comprehensive data collection and real-time monitoring across vast landscapes.
Drones can communicate and share data instantaneously, creating a dynamic and adaptive
network that optimizes surveillance and monitoring processes. Research is also exploring
decentralized AI, where decision-making is distributed among drones rather than cen-
trally controlled, increasing the robustness and scalability of operations in challenging
environments like wildfire monitoring. These ongoing innovations promise more effective,
efficient, and scalable solutions for fire detection and emergency response, potentially
reducing response times and increasing accuracy in critical situations [16].
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Chapter 2

Hardware and Software

2.1 Introduction

This chapter provides an overview of the hardware and software components essential for
our project’s realization. Our focus lies on the Tello drone as the primary hardware, while
software tools like Torch, OpenCV, Flutter, and YOLO empower our AI and computer
vision capabilities. Additionally, we utilize the Godot game engine for drone simulation.
This selection of tools forms the foundation of our autonomous drone system, enabling
robust functionality and validation of our algorithms. Through this exploration, we high-
light the integral role of both hardware and software in achieving our project objectives.

2.2 Drone Tello

The Tello EDU [17] stands out as an exceptional programmable drone tailored for educa-
tional purposes. It provides a user-friendly platform for learning programming languages.
Enhanced with the upgraded SDK 2.0 [18], the Tello EDU offers advanced commands
and expanded data interfaces, empowering users with greater flexibility. Equipped with
DJI’s flight control technology and Electronic Image Stabilization support, the Tello EDU
ensures stable flight performance and high-quality imagery. Whether it’s orchestrating
multiple drones to fly in a synchronized swarm or developing innovative AI functionalities,
the Tello EDU makes programming an enjoyable and rewarding experience.

2.2.1 Technical characteristics

Being primarily designed for indoor use, the drone operates within a set of defined pa-
rameters that cater to its specific functionalities.
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Figure 2.1: Drone Tello EDU

Its battery system offers remarkable convenience, facilitating easy replacement and
charging. With the option to directly charge the battery within the drone using a USB
cable or through a charging hub, power management becomes effortless.

Equipped with a high-quality camera capable of capturing HD video, the drone enables
the development of various applications through image processing. This feature opens
avenues for creative exploration and innovation.

The Vision Positioning System, comprising a camera and an infrared 3D module,
provides precise localization capabilities within a range of 0.3 m to 30 m. Although
optimal performance is achieved within the 0.3 m to 6 m range, ensuring reliable operation
under varying conditions.

A Drone Status Indicator, integrated with an LED, offers real-time feedback on the
drone’s operational state, enhancing user awareness and control during flight operations.

The drone’s field of view defines the observable area captured by its camera, facilitating
comprehensive monitoring and surveillance tasks.

Furthermore, electronic stabilization techniques enhance image quality through elec-
tronic processing, ensuring steady and clear footage in various operating environments.

2.2.2 Tello SDK 2.0

The Tello EDU drone boasts a comprehensive software development kit (SDK), forming
the cornerstone for the development of various applications discussed in this document.
RYZE Technologies offers a user guide online, providing detailed instructions on essential
aspects are elaborated upon in subsequent sections of this document, offering a deeper
understanding and practical insights into the drone’s functionality.
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2.3 Torch

Torch [19] is an open-source machine-learning library and scientific computing framework
comprising script language that binds the Lua programming language. It contains many
powerful algorithms for deep learning and is appreciated by the research community for
its efficiency, flexibility, and minimalistic, easy-to-understand syntax. Torch is highly ac-
claimed by the research community because of its powerful GPU support and the highly
efficient handling of tensor operations that are at the core of most deep learning applica-
tions.

2.3.1 Torch’s Role in Reinforcement Learning

Reinforcement learning is a part of machine learning and an area in which agents learn
to make decisions by taking action in the environment and receiving either a reward or a
penalty for it. Torch is so helpful in reinforcement learning due to its strong capacity to
deal with complex dynamic computational graphs that change with learning. The auto-
matic differentiation in the framework helps implement various RL algorithms effectively.
Building on top of Torch, the libraries further abstract and give tools that make the im-
plementation of RL algorithms easier, making PyTorch the best choice for autonomous
system implementors or researchers in, for example, drones.

2.3.2 Key Features of Torch Useful for The Project

Torch’s architecture allows for easy and fast prototyping of critical RL models, which is
essential in developing and tuning algorithms for drone behavior. Key features include:

• Tensor computation and dynamic neural networks: Torch uses a dynamic compu-
tation graph known as the define-by-run scheme, which is particularly suited for
projects where the learning algorithm itself changes as the drone learns from its
environment.

• GPU acceleration: This enables the processing of large volumes of data and simu-
lations at much higher speeds, significantly reducing the time required for training
models.

• Rich pre-built libraries: Torch provides a comprehensive ecosystem of tools and
libraries like TorchVision for computer vision, which can be leveraged for drone
vision and navigation.
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2.3.3 Advantages of Using Torch

Using Torch for drone autopilot algorithms offers several advantages:

• Flexibility and Scalability: The dynamic nature of Torch’s computation graphs
makes it incredibly flexible, allowing for adjustments and optimizations on-the-fly
based on the drone’s performance and learning progress.

• Active Community and Rich Ecosystem: Torch benefits from a vast community
of developers and researchers, which results in a wealth of tutorials, open-source
projects, and forums for troubleshooting. This community support is invaluable for
rapidly evolving projects such as drone automation.

2.4 OpenCV

OpenCV [20] (Open Source Computer Vision Library) is an open-source computer vision
and machine learning software library. It provides a common infrastructure for computer
vision applications and accelerates the use of machine perception in commercial products.
Being highly optimized and with an extensive library of programming functions, OpenCV
supports a wide range of applications related to image processing, video capture, analysis,
and face recognition.

2.4.1 Video and Image Processing Capabilities

OpenCV excels in real-time image processing, which is essential for the dynamic and
visually complex tasks involved in drone monitoring. For our project, OpenCV is paired
with CVzone to enhance visual outputs, enabling effective detection and monitoring of
critical situations. Key functions include:

• Image Filtering: Enhances image quality captured by the drone’s camera, crucial
under varying lighting and environmental conditions.

• Annotation and Visualization: When the YOLO model detects fire or smoke, OpenCV
and CVzone are used to draw bounding boxes around the detected areas. These vi-
sual annotations are crucial for reviewing and responding to the detections, as they
allow operators to see and evaluate the detections in real time on a PC.
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2.4.2 challenges and solutions

Implementing OpenCV in drone technology for fire detection presents several challenges
and corresponding solutions:

• Challenges

– Real-Time Processing: High-resolution video analysis demands significant pro-
cessing power, which can strain drone systems.

– Environmental Variability: Changes in weather and lighting can severely affect
image detection reliability.

– Algorithm Efficiency: There is a need for a careful balance between the com-
putational speed and the accuracy of the image processing algorithms.

• Solutions

– Hardware Optimization: Utilization of GPUs to enhance the processing capa-
bilities of drones, allowing for faster image analysis.

– Image Tuning: Dynamic adjustment of filters applied to video frams based on
real-time environmental data helps maintain accuracy.

– Use of Pre-trained Models: Implementing AI models trained on diverse datasets
improves the system’s robustness and adaptiveness to different fire scenarios.

2.4.3 Advantages of Using OpenCV

The choice of OpenCV for this application is supported by several advantages:

• Open Source and Community Support: Provides access to extensive resources and
a community of developers, which facilitates troubleshooting and continuous im-
provement of the detection algorithms.

• Cross-Platform Compatibility: OpenCV can be integrated across various operating
systems and platforms, making it highly versatile for drone systems.

• Performance: The library is optimized for real-time operations, essential for the
immediate analysis required in drone surveillance and emergency response scenarios.
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2.5 YOLO

YOLO (You Only Look Once) is a state-of-the-art real-time object detection system
that revolutionizes the way visual data is interpreted by treating object detection as a
single regression problem, directly from image pixels to bounding box coordinates and
class probabilities. Unlike traditional methods that process parts of the image separately,
YOLO looks at the whole image during training and testing, which allows it to predict
objects with high speed and accuracy efficiently. This approach makes YOLO exception-
ally suitable for scenarios requiring fast and reliable object detection, such as monitoring
and identifying fire and smoke with drones.

For a detailed discussion of YOLO’s underlying theory and its functionalities, please
refer to the first chapter of this thesis.

2.6 Flutter

Flutter [21] is an open-source UI software development toolkit created by Google. It is
used for developing applications for Android, iOS, Linux, Mac, Windows, Google Fuchsia,
and the web from a single codebase. Flutter uses the Dart programming language, also
developed by Google, and provides a rich set of pre-designed widgets and tools that enable
developers to create visually appealing and responsive user interfaces.

2.6.1 Key Features of Flutter

• Single Codebase: Write once and deploy to multiple platforms.

• Rich Set of Widgets: Provides a comprehensive library of customizable widgets
that adhere to the design principles of both Material Design (Android) and Cuper-
tino (iOS).

• Hot Reload: Allows developers to see the results of their changes almost instantly
without restarting the application.

• High Performance: Compiles to native ARM code, uses GPU rendering, and
performs efficient garbage collection.

• Open Source: Actively developed and maintained by Google, with contributions
from the community.
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2.6.2 Architecture

Flutter’s architecture is composed of three main layers:

• Framework: Written in Dart, this layer provides the core building blocks like
widgets, rendering, and animation.

• Engine: Written in C++, it provides low-level rendering using the Skia graphics
library, as well as platform-specific code.

• Embedder: This is the platform-specific layer that allows Flutter to run on various
operating systems. It handles the communication between the Flutter engine and
the platform.

2.7 GoDot game engine

Godot is an open-source, cross-platform game engine released under the MIT license.
Developed by the community and maintained by the Godot Engine organization, Godot
provides a comprehensive set of tools to create both 2D and 3D games from a unified inter-
face. Its flexibility and ease of use have made it a popular choice among indie developers
and professionals alike.

2.7.1 Key Features of Godot

• Scene System: Godot uses a scene system that allows for a flexible and modu-
lar approach to game development. Scenes can be anything from a single object
to an entire game level, and they can be nested and instanced to create complex
hierarchies.

• 2D and 3D Support: Godot offers robust tools for both 2D and 3D game develop-
ment, with a rich set of features for each. The 2D engine is particularly well-regarded
for its performance and ease of use.

• Scripting: Godot uses GDScript, a Python-like language designed for making game
development intuitive. It also supports C#, VisualScript, and can bind to other
languages via GDNative.

• Cross-Platform Deployment: Games made with Godot can be exported to mul-
tiple platforms, including Windows, macOS, Linux, Android, iOS, HTML5, and
more.
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• Integrated Development Environment (IDE): Godot comes with a fully inte-
grated development environment that includes a scene editor, script editor, debug-
ger, and a variety of other tools.

• Animation System: The engine has a powerful animation system that supports
skeletal, sprite, and property animations. This makes it easier to bring characters
and scenes to life.

• Open Source: Being open-source, Godot is free to use and modify, with a strong
community contributing to its development and support.

2.7.2 Architecture

Godot’s architecture is designed to be intuitive and flexible, featuring:

• Node System: The core of Godot’s architecture is its node system. Nodes are the
fundamental building blocks of a game in Godot. Each node has a specific function,
and nodes can be arranged in a scene tree to create complex behaviors.

• Resource System: Resources in Godot, such as scripts, textures, and audio files,
are handled in a consistent way, making asset management straightforward.

• Signals: Godot uses a signal system to allow nodes to communicate with each other
in a decoupled way. Signals can be emitted and connected to methods to handle
events and interactions.
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Weight 87 g
Drone’s Dimensions 98mm×92.5mm×41mm

Propeller 3 inches
Integrated Functions Telemetric sensor

Barometer
LED
Vision System
Wi-Fi 2.4 GHz 802.11n
Real-time streaming 720p

Port USB battery charging port
Operating temperature range from 0° to 40°
Operating frequency range from 2.4 to 2.4835 GHz

Transmitter (EIRP) 20 dBm (FCC)
19 dBm (CE)
19 dBm (SRRC)

Maximum distance of flight 100 m
Maximum speed 8 m/s

Maximum flight time 13 min
Maximum flight height 30 m

Removable Yes
Capacity 1100 mAh
Voltage 3.8 V
Type LiPo

Energy 4.18 Wh
Net Weight 25 ± 2 g

Temperature range when charging from 5° to 45°
Maximum Load Power 10 W

Photo 5 MP (2592x1936)
Field of view 82.6°

Video HD 720p 30 fps
Format JPG (Photo)

MP4 (Video)
Electronic stabilization Yes

Tableau 2.1: Technical characteristics of Tello
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Chapter 3

Methodology/Project Work

3.1 Introduction

This chapter presents the comprehensive design approach for developing an autonomous
drone system capable of predicting fire ignition probabilities, patrolling designated re-
gions, and detecting wildfires using advanced computer vision technology. It details the
architecture and components of the system, explaining their interactions to achieve the
project’s objectives.

The autonomous drone system is developed with several key functionalities in mind:
gathering information from weather APIs to predict fire ignition probabilities as an ini-
tial indicator, utilizing robust computer vision for accurate wildfire detection, ensuring
efficient autonomous navigation and control, enabling seamless data transmission, and
providing an intuitive interface for real-time monitoring and visualization. Each com-
ponent is meticulously integrated to ensure effective operation and compliance with the
specified requirements.

The subsequent sections delve into the specifics of the system architecture, com-
puter vision implementation, navigation and control algorithms, communication proto-
cols, dashboard design, and security measures. Additionally, this chapter discusses the
integration processes to form a cohesive and functional system. By providing detailed
insights into the design and development process, this chapter aims to showcase the inno-
vative approaches and technical rigor employed in building a state-of-the-art autonomous
wildfire detection system.
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3.2 System Architecture

This section provides a comprehensive overview of the project, detailing the flow of data
and the functionalities implemented to detect and manage fire hazards using weather
data, drone patrols, and computer vision. Refer to the accompanying diagram 3.1 for a
visual representation of the system architecture.

Figure 3.1: illustrative diagram for our project

The project begins with the collection of weather data from the National Weather
API. Key parameters such as temperature, pressure, and humidity are retrieved. This
data is crucial for assessing the environmental conditions that influence fire risk.

The collected weather data is visualized on a user-friendly dashboard, providing real-
time insights into current conditions. Additionally, a probability calculation is performed
using the weather data and initial knowledge of the region and season. For example,
regions with deciduous trees that shed leaves in the spring have a higher probability of
fire ignition. This calculation helps in assessing the likelihood of fire incidents.

Based on the calculated fire risk, the frequency of drone patrols over a region is ad-
justed. The drones have a predefined patrolling frequency, but this can be increased if the
probability of fire is high. During patrols, drones send a continuous stream of location
data and video footage.

The location data from the drones is fed into the patrolling algorithm, which deter-
mines the next path for the drone to follow. This ensures comprehensive coverage of the
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region and optimizes patrol routes based on real-time data.
The video stream captured by the drones is processed by a computer vision model

trained to detect fire. The live video is also displayed on the dashboard for monitoring
purposes. If the model detects signs of fire, an alert is generated on the dashboard.

When a potential fire is detected, an alert is displayed on the dashboard. Simultane-
ously, notifications are sent to individuals and organizations involved in firefighting. To
minimize false alarms and reduce costs associated with the fire detection model, a manual
confirmation step is included. A human operator can review the alert and confirm the
presence of a fire before any further action is taken.

The integrated system leverages weather data, drone surveillance, and computer vi-
sion to provide a robust solution for early fire detection and management. The diagram
illustrates the flow of data and the interaction between various components, highlighting
the systematic approach adopted in this project.

3.3 Computer Vision System

3.3.1 Computer Vision Algorithms Used for Wildfire Detection

YOLO (You Only Look Once) is a widely-used algorithm for object detection, with mul-
tiple versions released, ranging from YOLOv1 to YOLOv9. Although YOLOv9, released
this year, boasts improved precision and mean Average Precision (mAP), it lacks an SDK,
making its implementation in real-world projects challenging and potentially compromis-
ing performance or security. Therefore, we opted for the latest stable and well-documented
version, YOLOv8, which provides all the necessary tools for project integration. Moreover,
the performance difference between YOLOv8 and YOLOv9 is marginal.

In the development and tech realms, it is generally advised against using the very latest
updates or versions in production environments, reinforcing our decision to use YOLOv8.
In our project, we train our model on various datasets with different configurations,
comparing them to determine the best performance. Our selection is not solely based on
training results but also on extensive testing of the model using real fire videos and images
sourced from the internet. This rigorous evaluation ensures the chosen model performs
optimally in practical scenarios. For more information about the working principles of
YOLO, please refer to Chapter .
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3.3.2 Data Preprocessing and Model Training

3.3.2.1 Data Preprocessing

As previously mentioned, our training dataset for fire and smoke detection was sourced
from publicly available posts on the internet, specifically from well-recognized websites in
the AI and machine learning community, such as Kaggle and Roboflow Universe. These
platforms provide a wealth of high-quality data contributed by developers and annotators
worldwide, who have made their datasets public.

We meticulously collected data representing various regions globally, ensuring our
model can handle footage of different forests with diverse vegetation and coverage. This
approach enhances the robustness and generalizability of our model, enabling it to per-
form effectively in a wide range of environmental conditions. By leveraging these diverse
datasets, we ensure that our fire and smoke detection model is not only trained on a
variety of scenarios but is also tested to perform reliably in real-world applications. This
comprehensive dataset collection strategy is a crucial step in developing a model capable
of addressing the complexities of fire and smoke detection across different geographical
areas and vegetation types.

Every object detection algorithm employs its own method of annotation, typically
using formats such as XML files, TXT files, or JSON files to label and categorize objects
within images. The YOLO (You Only Look Once) algorithm is no exception to this.
YOLO uses a specific annotation format that involves TXT files. Each image has a
corresponding TXT file containing the annotations, where each line represents a single
object in the image. The annotation format includes the class label, the coordinates of
the bounding box’s center (normalized to the image width and height), and the width
and height of the bounding box (also normalized). This concise and efficient annotation
method is integral to YOLO’s ability to perform rapid and accurate object detection,
ensuring that the data is structured in a way that optimizes the algorithm’s performance
during detection. Figure 3.2 is an example of this annotation.

Figure 3.2: Image labeled in YOLO format

For example, consider a TXT file snippet that contains three objects, all belonging to
the same class (class 0). Each line in the file represents one object. The first number is the

32



CHAPTER 3. METHODOLOGY/PROJECT WORK

class label (0), followed by two numbers indicating the center coordinates of the object
within the image (normalized to the image’s width and height). The final two numbers
represent the object’s width and height, also normalized. This annotation method ensures
that the data is consistently structured, allowing the YOLO algorithm to efficiently and
accurately detect objects in the image.

Since we are collecting data from various websites, the annotation formats differ sig-
nificantly. To train our model effectively, we need to adjust and transform these datasets
into a consistent YOLO format, which requires TXT files with specific annotation con-
ventions. The data we collect may be in different formats, such as TXT or XML, or
even in the YOLO format but with varying class labels. For example, in one dataset,
class 0 might represent fire, while in another, class 0 might represent smoke. Given that
our datasets contain thousands or tens of thousands of annotations, manual conversion is
impractical. Therefore, we developed scripts to automate this process. Below, we provide
an example of such a transformation, with additional examples and details provided in
the Appendix.

In this example, we have annotations in the YOLO format from two different datasets,
each representing fire and smoke but with different class labels. To merge these datasets
into a cohesive training set, we developed a script 1. This script standardizes the class
labels across both datasets, ensuring that the same class label is used for fire and smoke
in each data set.

Algorithm 1 Python function to permit the classes label of a model.

def replace_starting_zero_with_three(folder_path):
for filename in os.listdir(folder_path):

if filename.endswith('.txt'):
file_path = os.path.join(folder_path, filename)

with open(file_path, 'r') as file:
lines = file.readlines()

modified_lines = ['3' + line[1:] if
line.startswith('0') else line for line in
lines]

↪→

↪→

with open(file_path, 'w') as file:
file.writelines(modified_lines)

The script iterates over all the files in the folder and changes the first character to 3
if it is 0. Subsequently, we do the same for the class label 1, changing it to 0. Finally, it
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transforms the class label 3 to 1. This method effectively permutes the class labels, en-
suring consistency across the datasets. This automated approach streamlines the process,
allowing us to handle large datasets efficiently.

We can also run scripts to copy files from one folder to another, as shown below:

Algorithm 2 Python function to copy text files from a source folder to a destination.

def copy_txt_files(source_folder, destination_folder):
if not os.path.isdir(source_folder):

print(f"The source folder {source_folder} does not
exist.")↪→

return

if not os.path.isd ir(destination_folder):
os.makedirs(destination_folder)

for filename in os.listdir(source_folder):
if filename.lower().endswith(('.png', '.jpg', '.jpeg',

'.gif', '.bmp')):↪→

src_file_path = os.path.join(source_folder, filename)
dest_file_path = os.path.join(destination_folder,

filename)↪→

shutil.copy(src_file_path, dest_file_path)

print("Text files copied successfully.")

This copying script is useful because of the folder structure that YOLO imposes in
order to train our model, which will be explained in the following sections.

YOLO requires a YAML file that describes the data-set, including essential informa-
tion such as the paths to training, testing, and validation folders. Each of these folders
should be divided into two sub-folders: one for images and one for labeling TXT files, as
illustrated in Figure 3.3. While the folder structure does not have to match the figure
exactly, this layout is adopted for simplicity and clarity. Additionally, when splitting our
data set, a common approach is to use 70% of our data for training, 20% for validation,
and 10% for testing. This ensures a balanced distribution of data across the different
stages of model development.

In our data set, we have gathered a total of 9,687 labeled images. We divided them
as follows: 1,937 images for validation, 969 images for testing, and the remaining 6,781
images for training. This distribution ensures a balanced and effective allocation of data
for each stage of model development.
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.

data.yaml

dataSet

train

images

image1.png

...

labels

image1.txt

...

test

val

Figure 3.3: Folder structure of the dataset.

3.3.2.2 Fire and Smoke Detection Model Training

To train our model, we utilize the YOLOv8 repository developed by Ultralytics. Training
the model demands significant computational power, making it impractical to train on a
laptop without a GPU. We have two primary methods for training: using Google Colab
or a powerful computer with a GPU. Initially, we used Google Colab, but encountered
limitations with the free GPU runtime. Consequently, we transitioned to our school’s
server, which provided us with accounts and SSH access. This section illustrates both
methods, highlighting their similarities and subtle differences.

Google Colab, or "Colaboratory," is a free, cloud-based platform provided by Google
that allows users to write and execute Python code in a Jupyter notebook environment.
It is particularly useful for tasks that require substantial computational resources. Colab
provides free access to GPUs and TPUs, making it a valuable tool for data scientists and
researchers who need to perform heavy computations without owning powerful hardware,
like in our case.

The first step is to change the runtime to GPU runtime. We can verify if we are using
the GPU by running the following command:

!nvidia-smi

Once we have confirmed that we are using the GPU runtime, we can proceed by
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mounting Google Drive to Google Colab. This allows us to use Google Drive as storage
for our dataset and training results, ensuring that our data is easily accessible and securely
stored:

from google.colab import drive

drive.mount('/content/drive')

then we set our working directory as a base for our project using the os library:

import os

HOME = os.getcwd()

Next, we clone the Ultralytics repository or install it using pip:

!pip install ultralytics

!pip install -q roboflow

The Roboflow library simplifies the process of downloading and installing datasets,
saving time and effort. Instead of downloading the dataset to your computer, performing
preprocessing, and then uploading it to Colab, you can preprocess your data directly in
Colab using the same methods discussed in the previous section.

Before proceeding, let’s understand the parameters we adjust to train our model:

• Epochs: Represents a complete pass through the entire training dataset. During
an epoch, the model processes each training example once through the following
steps:

– Forward Propagation

– Backward Propagation

– Weight Update

The concept of epochs is often used in conjunction with "batch size" and "itera-
tions."

• Batch Size and Iterations: Batch size refers to the number of training examples
used in one forward and backward pass. Using the entire dataset for each update
may be computationally expensive, so it is divided into smaller batches. Iterations
denote the number of batches needed to complete one epoch.
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• Close-mosaic: Controls the behavior of Mosaic augmentation, particularly when
and how this augmentation is applied during training. Introduced with YOLOv4,
Mosaic Augmentation involves combining four different images into one, provid-
ing multiple contexts and enhancing model robustness. Each image occupies one
quadrant of the resulting composite image.

• imgsz: Target image size for training. All images are resized to this dimension
before being fed into the model, impacting model accuracy and computational com-
plexity.

Considering the factors for choosing the number of epochs:

• Dataset Size: Larger datasets might require more epochs.

• Learning Rate: A lower learning rate might require more epochs.

• Model Complexity: More complex models might need more epochs to converge.

We chose 30 epochs to begin with, given our large dataset (around 10,000 images), and
the relatively simple YOLO algorithm. We will observe the learning rate during training
and adjust the number of epochs in subsequent training runs. We set the batch size to
96, so our model processes 100 batches of 100 images each to complete one epoch.

We keep the close-mosaic setting at its default value of 10, adjusting it later if the
training results are not satisfactory.

We can train and fine-tune our model using one of YOLOv8’s pre-trained weights,
such as yolov8n, yolov8s, yolov8m, yolov8l, or yolov8x, ranging from nano to extra-large.
For our training, we chose yolov8m and installed it from the official github repository
using the following command:

!wget -P {HOME}/weights -q

https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt↪→

This command downloads the model and stores it in a new folder called weights.
We are now ready to launch the training. This can be done via the command line or

a Python script. Using the command line:

!yolo task=detect mode=train model=yolov8m.pt

data=/content/drive/MyDrive/archive/data.yaml epochs=30 imgsz=640↪→
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Or using a Python script:

import os

from ultralytics import YOLO

model = YOLO("yolov8m.yaml")

results = model.train(data=os.path.join(ROOT_DIR, "data.yaml"),

epochs=30, imgsz=640)↪→

Since we are using Colab, it is convenient to save our data. One option is to save it in
Google Drive.

Utilizing the free GPU provided by Google Colab can be challenging for long-running
operations due to frequent interruptions during peak usage times. To address this issue,
leveraging the school’s server is a more reliable and efficient option. Accessing the server
is straightforward using SSH:

ssh -p port userName@ipAddress

With the school’s server, there is no need to use Google Drive for storage. All datasets
and results are saved directly on the server’s hard disk. We can easily transfer files between
our laptop and the server using SSH commands.

To copy files from our laptop to the server:

scp -r -P port folderToCopy

userName@ipAddress:/home/userName/destinationFolder↪→

To copy files from the server to our laptop:

scp -r -P port userName@ipAddress:/home/userName/sourceFolder .

Since our user account lacks administrative privileges, we cannot install software or
execute commands that require sudo. However, Python is pre-installed on the server. To
install Python packages, we create a virtual environment and use the associated pip:
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python3 -m venv yolov8

Activate the virtual environment:

source yolov8/bin/activate

Now, we can install packages using pip:

yolov8/bin/pip install opencv-python

The above example demonstrates installing OpenCV using the pip of the Python
virtual environment.

To utilize the NVIDIA GPU on the server for training, we need CUDA. Training
with the GPU significantly reduces the time compared to using the CPU. Since installing
CUDA requires administrative privileges, we requested the system administrator to install
it.

These steps outline the process we followed to train our model on the school’s server.
The remaining procedures are identical to those used in Google Colab.

3.3.3 Performance Metrics and Accuracy of the Detection System

after launching our first train, we can observe the result and adjust in the parameter of
training or the datasets accordingly to to improve the performance of our model.

yolo algorithm stores the result in a file called

HOME/runs/detect/train

Lets present an analysis of the fire detection model’s performance, trained using the
YOLOv8 algorithm. The analysis is based on various metrics including training and
validation losses, precision, recall, mean Average Precision (mAP), and confusion matrices.

The training and validation losses are illustrated in Figure 3.4. The training loss met-
rics, including box loss, classification loss, and distribution-focused loss (DFL), exhibit a
steady decrease over the training epochs, indicating progressive improvement in bounding
box localization, object classification, and overall prediction precision.

The precision and recall metrics, along with the mAP at 50% IoU and the mAP
averaged over IoU thresholds from 50% to 95%, are also shown in Figure 3.4. The precision
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Figure 3.4: Training and Validation Losses for Box, Classification, and DFL, along with Pre-
cision, Recall, and mAP metrics.

starts from around 0.2 and reaches approximately 0.6, while recall increases from 0.3 to
0.7, indicating that the model is becoming more accurate and comprehensive in detecting
true positive instances as training progresses.

Figures 3.5 and 3.6 depict the raw and normalized confusion matrices, respectively.
The confusion matrix analysis reveals the following insights:

• Fire: The model correctly identifies fire instances with a high true positive rate
(72%), but there are significant false negatives, indicating some fire instances are
misclassified as background or smoke.

• Smoke: The true positive rate for smoke is moderate (61%), with some confusion
between smoke and background, as well as a small number of smoke instances being
misclassified as fire.

• Background: The model struggles most with background classification, showing a
substantial number of false positives (classified as fire or smoke).

Figures 3.8 and 3.9 illustrate the precision-confidence and recall-confidence curves, re-
spectively. The recall for fire is high at lower confidence thresholds, indicating the model’s
ability to detect most fire instances when the confidence threshold is low. However, the
recall decreases as the confidence threshold increases. Precision increases with higher
confidence thresholds for both fire and smoke, indicating more accurate predictions as the
model becomes more confident.
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Figure 3.5: Confusion Matrix with Raw
Values. Figure 3.6: Normalized Confusion Matrix.

Figure 3.7: Confusion Matrix with Normalized and Raw Values.

The F1-confidence curve (Figure 3.10) demonstrates the balance between precision
and recall. The F1 score peaks around a confidence threshold of 0.4-0.6 for both fire and
smoke, suggesting this range as optimal for balancing precision and recall.

The YOLOv8 fire detection model shows promising performance with steadily improv-
ing metrics and decreasing losses. However, there are challenges in distinguishing smoke
and background accurately. To further enhance model performance, it is recommended
to increase the variety of smoke and background samples through data augmentation,
experiment with different hyperparameters, explore different YOLOv8 architectures, and
implement advanced post-processing techniques to refine predictions and reduce false pos-
itives.

The updated training and validation losses are illustrated in Figure 3.12. The training
loss metrics, including box loss, classification loss, and distribution-focused loss (DFL),
exhibit a continued steady decrease over the training epochs, indicating progressive im-
provement in bounding box localization, object classification, and overall prediction pre-
cision.

The precision and recall metrics, along with the mAP at 50% IoU and the mAP
averaged over IoU thresholds from 50% to 95%, are also shown in Figure 3.12. The
precision has improved, reaching approximately 0.8, while recall increases to about 0.85.
This indicates that the model is becoming even more accurate and comprehensive in
detecting true positive instances.

Figures 3.13 depict the normalized confusion matrices. The confusion matrix analysis
reveals the following insights:

• Fire: The model now correctly identifies fire instances with a very high true positive
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Figure 3.8: Precision-Confidence Curve
for Fire, Smoke, and All Classes.

Figure 3.9: Recall-Confidence Curve for
Fire, Smoke, and All Classes.

Figure 3.10: F1-Confidence Curve for
Fire, Smoke, and All Classes.

Figure 3.11: precision and recall confidence curve

rate (97%), showing a significant improvement.

• Smoke: The true positive rate for smoke has increased to 96%, indicating better
performance in distinguishing smoke from other classes.

• Background: The classification of background has also improved, with a reduction
in false positives.

The improvements are further supported by the precision-confidence and recall-confidence
curves (Figures 3.14 and 3.15), which show increased precision and recall at various con-
fidence thresholds. The F1-confidence curve (Figure 3.16) demonstrates the balance be-
tween precision and recall, with the F1 score peaking at higher values compared to the
previous model, suggesting an optimal confidence range for predictions.

Overall, the improvements made to the YOLOv8 fire detection model have resulted
in enhanced performance metrics and reduced losses. While there is still room for further
refinement, the model now performs its task effectively, demonstrating robust detection
capabilities for fire and smoke instances.
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Figure 3.12: Updated Training and Validation Losses for Box, Classification, and DFL, along
with Precision, Recall, and mAP metrics.

3.3.3.1 Pyromin detection Model Training

For person detection, we followed a similar training process as in fire and smoke detection
but used a dataset tailored for person detection. Leveraging the pre-trained YOLOv8m
model from Ultralytics, which performs exceptionally well on the COCO dataset, facil-
itated our fine-tuning efforts. The pre-trained model’s strong general object detection
capabilities made it easier to achieve high accuracy in person detection.

Fine-tuning the YOLOv8m model on our dataset allowed us to achieve impressive
results: 92% precision, 94% recall, 90% mAP, and 88% mAP50-95. These metrics demon-
strate the model’s effectiveness in accurately identifying persons, meeting our project
requirements.

Overall, using the pre-trained YOLOv8m model significantly simplified achieving ex-
cellent results in person detection, confirming the effectiveness of fine-tuning well-performing
pre-trained models for specific tasks.

3.4 Autonomous Navigation and Control

Autonomous navigation and control are crucial components of the drone system, ensuring
it can effectively patrol designated areas, avoid obstacles, and cover the entire region
efficiently. This section details the path planning algorithms, real-time decision-making
strategies for obstacle avoidance, and methods for ensuring efficient coverage of the patrol
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Figure 3.13: Updated Normalized Confusion Matrix.

area.

3.4.1 Path Planning Algorithms

for Path Planning Algorithm we used Deep Q-Networks, where we have trained our model
for several epochs to find the optimum algorithm for path planning. Our model uses two
main strategies:

3.4.1.1 Exploration-Exploitation

During its initial deployment, the drone employs a random patrolling strategy to explore
the designated surface area thoroughly (Figure 3.18). Once the entire area has been
covered, the drone maps the surface into a grid matrix with different values representing
assumed rewards. These rewards are determined based on various criteria such as tree
density, presence of pits, and terrain types (Figure 3.19).

Areas with higher reward values indicate regions that are more susceptible to fire
risks compared to other spots. This exploration-exploitation approach allows the drone
to prioritize and focus on high-risk areas for more frequent monitoring and patrolling,
thereby enhancing the effectiveness of wildfire detection and prevention efforts.

This method can be used after the first deployment, and it can work very well under
any circumstances. Yet, we use another method known as Greedy method which we will
talk about next.
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Figure 3.14: Updated Precision-
Confidence Curve for Fire, Smoke, and All
Classes.

Figure 3.15: Updated Recall-Confidence
Curve for Fire, Smoke, and All Classes.

Figure 3.16: Updated F1-Confidence
Curve for Fire, Smoke, and All Classes.

Figure 3.17: precision, recall and f1 confidence curve after update

3.4.1.2 Greedy Method

The greedy method is a more complex and nuanced approach where the drone attempts
to maximize the number of rewards collected in a single pass. This strategy focuses on
immediately targeting areas with the highest reward values, which represent regions with
higher fire risk.

Benefits:

• Focused Monitoring: By prioritizing high-reward areas, the drone ensures that
the most susceptible spots are observed frequently and thoroughly.

• Efficient Resource Use: This method makes efficient use of the drone’s resources
by concentrating efforts on the most critical areas, potentially leading to quicker
detection of wildfires.

Drawbacks:
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Figure 3.18: Exploration patrolling Figure 3.19: Exploration Matrix

• Potential Oversights: The focus on high-reward areas might lead to neglect of
lower-reward areas, which could still pose a risk.

• Complex Path Planning: The flight path under the greedy method is less
straightforward and harder to predict compared to the systematic exploration ap-
proach. This complexity arises because the drone’s trajectory is continuously ad-
justed to maximize reward collection.

Despite its challenges, the greedy method is often prioritized because it aligns with
the primary objective of ensuring that high-risk areas are monitored more frequently. By
doing so, it enhances the likelihood of early wildfire detection and intervention, albeit at
the cost of a more erratic and less predictable flight path.

To manage these complexities, advanced algorithms and real-time data analysis are
employed to dynamically adjust the drone’s path, balancing the need for thorough cover-
age with the imperative of monitoring high-risk zones.

3.4.2 Real-time Decision-making for Obstacle Avoidance

Real-time decision-making is essential for the drone to navigate dynamically changing en-
vironments. The system must detect and respond to obstacles quickly to prevent collisions
and ensure smooth navigation.

3.4.2.1 Sensor Fusion

We employ sensor fusion techniques, combining data from LIDAR, cameras, and ultrasonic
sensors to create a comprehensive understanding of the surroundings. This multi-sensor
approach allows the drone to accurately detect and map obstacles in its environment.
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3.4.2.2 Dynamic Window Approach (DWA)

The Dynamic Window Approach (DWA) is used to calculate the optimal velocity com-
mands for the drone by considering its kinematics and the need to avoid obstacles. The
algorithm evaluates the possible velocities within a dynamic window, selecting the one
that maximizes the objective function while ensuring collision avoidance.

Algorithm 3 Dynamic Window Approach (DWA)
1: Input: Current position p, current velocity v, obstacle map O, dynamic window W
2: Output: Optimal velocity command v∗

3: Initialize v∗ ← (0, 0)
4: Initialize maximum score Smax ← −∞
5: for each vi ∈ W do
6: Predict trajectory τ from (p, vi)
7: if τ is collision-free in O then
8: Compute objective score S(τ)
9: if S(τ) > Smax then

10: Smax ← S(τ)
11: v∗ ← vi
12: end if
13: end if
14: end for
15: return v∗

3.4.2.3 Reinforcement Learning (RL)

Another approach involves the use of machine learning, specifically reinforcement learning
(RL). The RL model is trained in simulation to learn optimal navigation strategies through
trial and error, receiving rewards for successful navigation and penalties for collisions.
This model is then fine-tuned in real-world environments to adapt to specific scenarios
and improve its decision-making capabilities.
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Algorithm 4 Reinforcement Learning for Obstacle Avoidance
1: Initialize: Policy π, Q-function Q, environment E
2: for each episode do
3: Initialize state s← E.reset()
4: for each step in episode do
5: Select action a← π(s)
6: Execute action a and observe reward r and next state s′

7: Update Q-function: Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
8: Update policy π based on updated Q-function
9: s← s′

10: if s is terminal then
11: break
12: end if
13: end for
14: end for

By combining traditional algorithms like DWA with advanced machine learning tech-
niques such as RL, the drone achieves a robust and flexible obstacle avoidance system
capable of handling a wide range of scenarios in real-time.

3.4.3 Methods for Ensuring Efficient Coverage of the Patrol Area

Efficient coverage of the patrol area is achieved through systematic path planning and
intelligent behavior algorithms. We use coverage path planning (CPP) algorithms, such
as the Boustrophedon decomposition method, which divides the area into manageable
subregions and generates paths that ensure complete coverage with minimal overlap.

Additionally, we integrate adaptive algorithms that adjust the drone’s path based on
real-time data, such as areas of higher fire ignition probability identified through weather
API data. This dynamic adjustment ensures that the drone prioritizes critical regions
while maintaining overall coverage efficiency.

To further enhance coverage, multiple drones can be deployed in a coordinated manner
using swarm intelligence techniques. Each drone communicates with others to share infor-
mation about covered areas and potential hazards, optimizing the overall patrol strategy
and reducing redundant coverage.

3.5 Drone Communication and Video Stream

In this section, we detail communication with the drone, covering command sending, video
stream reception, and applying fire, smoke, and person detection models on the captured
frames.
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3.5.1 Communication Protocol

We establish communication with the drone using a User Datagram Protocol (UDP)
connection. The drone streams video data to a specified IP address and port, while
control commands are sent back using a similar UDP connection.

Python’s socket library facilitates sending commands to the drone. Here’s a code
snippet illustrating how to send a sequence of commands like takeoff, movement, and
landing:

Algorithm 5 Python function to send a list of command to the drone.

# ... (Socket initialization and drone address)

commands = ["command", "takeoff", "land"]

def send_commands(commands):
for command in commands:
sock.sendto(command.encode(), drone_add)
time.sleep(3)

send_commands(commands)

The code initializes a UDP socket, binds it to a local port, and transmits a predefined
list of commands to the drone’s IP address and port. Each command is encoded and sent
with a delay between commands for proper execution.

The drone streams video data in UDP format to a specific IP address and port. We
leverage OpenCV to capture this stream and process it frame by frame, as shown in the
following code snippet:
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Algorithm 6 Python function to capture video stream.

import cv2

stream = 'udp://@0.0.0.0:11111'
video = cv2.VideoCapture(stream)

while True:
ret, frame = video.read()
if ret:

cv2.imshow('Drone Video Stream', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):

break

video.release()
cv2.destroyAllWindows()

This code establishes a connection to the video stream, reads frames continuously, and
displays them using OpenCV’s ‘imshow‘ function.

We employ the YOLOv8m model to detect fire, smoke, and people within the video
stream. The following code snippet demonstrates applying these models to each frame:
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Algorithm 7 Model integration with the stream.

import cv2
from ultralytics import YOLO

# ... (Stream and video capture initialization)

model = YOLO('./train8/weights/best.pt')
personModel = YOLO('yolov8n.pt')

while True:
ret, frame = video.read()
if ret:

results = model(frame)
results2 = personModel(frame)
# Process detection results...
cv2.imshow('Detection', frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

video.release()
cv2.destroyAllWindows()

This code captures frames, applies the YOLOv8m model for fire and smoke detec-
tion, and a separate pre-trained YOLO model for person detection. Detected objects are
visualized on the frames displayed in real-time.

By integrating these components, we establish a robust system for drone-based video
streaming and real-time detection of fire, smoke, and people. The utilization of YOLO
models ensures both high accuracy and speed, making the system suitable for practical
applications in surveillance and emergency response scenarios.

3.6 Calculation of Fire Ignition Risk

Calculating the risk of fire ignition involves multiple factors, such as meteorological param-
eters (temperature, humidity), terrain, vegetation type, and vegetation density. Various
fire risk indices have been developed based on these factors. These indices are often
region-specific, and their suitability can vary depending on local conditions.
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3.6.1 Fire Risk Indices

3.6.1.1 Meteorological Parameters and Vegetation Characteristics

Meteorological parameters like temperature and humidity, along with vegetation type and
density, play a crucial role in assessing fire risk. Several indices have been developed to
quantify fire risk based on these parameters.

3.6.1.2 Common Fire Risk Indices

Different studies have proposed various fire risk indices tailored to specific regions:

• Keetch-Byram Drought Index (KBDI): Widely used in the USA, but found
unsuitable for predicting forest fires in Georgia and Mississippi.

• Modified Drought Index (DBDI): An adaptation of the KBDI for specific re-
gions.

• Fire Weather Index (FWI): Used in Canada for forest fire risk assessment.

Given our lack of expertise in meteorological science and the specific characteristics of
Algerian forests, selecting the most appropriate index is challenging. Therefore, we opted
for a simpler index to provide basic insights into fire ignition risk.

3.6.2 Simple Fire Danger Index

3.6.2.1 Parameters

The Simple Fire Danger Index relies on a minimal set of meteorological parameters:

• Temperature (T): Measured in degrees Celsius (°C).

• Relative Humidity (H): Expressed as a percentage.

• Wind Speed (U): Measured in kilometers per hour (km/h).

• Threshold Wind Speed (U0): Ensures a non-zero fire danger rating even at zero
wind speed.

3.6.2.2 Calculation of the Fuel Moisture Index (FMI)

The Fuel Moisture Index (FMI) is calculated using the formula:

FMI = 10− 0.25(T −H)
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3.6.2.3 Calculation of the Simple Fire Danger Index (F)

To calculate the Simple Fire Danger Index (F), the following formula is used:

F =
max(U0, U)

FMI
where:

• U0 is the threshold wind speed.

• U is the wind speed.

3.6.3 Implementation

3.6.3.1 Python Code

The implementation of the Simple Fire Danger Index grammatically is straightforward
following these steps:

• Calculate the FMI.

• Determine the maximum of the wind speed and the threshold wind speed.

• Calculate the Simple Fire Danger Index.

3.6.4 Fire Danger Levels

The Simple Fire Danger Index provides a scale to assess the level of fire risk:

Simple Fire Danger Index (F) Fire Risk
[0, 0.7] Low
[0.7, 1.5] Moderate
[1.5, 2.7] High
[2.7, 6.1] Very High
F > 7 Extreme

Tableau 3.1: Simple Fire Danger Index potential scale.

The Simple Fire Danger Index, while basic, provides a useful tool for assessing fire ig-
nition risk based on key meteorological parameters. This approach, using straightforward
calculations and Python implementation, offers an accessible method for evaluating fire
danger levels in regions where more complex indices may be impractical to apply. For
the prototype, this index was implemented to provide initial insights. However, it will
be adapted to better suit Algerian weather and terrain conditions through consultations
with meteorological science specialists.
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3.7 Dashboard Interface and Visualization

The Dashboard interface serves the purpose of monitoring and commanding the drone
remotely. It comprises six main components:

• App Bar: Located at the top of the screen and spanning the entire width, the App
Bar displays critical information including the location, drone state, and risk level.

• Drone State Sidebar: Positioned on the left side of the screen, this sidebar
provides real-time updates on the drone’s Battery percentage, Altitude, Speed, and
Barometer readings.

• The Map: This section, reminiscent of a Google Maps interface, displays the virtual
environment’s map. It includes control buttons for Zoom in, Zoom out, and current
location to facilitate navigation and situational awareness.

• Tello Control: This area allows for remote operation of the drone with shortcuts
for essential commands such as take off, land, stream, and path planning.

• Weather: A dedicated column of widgets that presents comprehensive weather
data, including temperature, pressure, precipitation, and wind speed, ensuring that
users are informed of the environmental conditions that may affect drone operations.

• Graphs: This section features two key graphs: Risk Prediction and Alert Mon-
itoring, complete with legends for clear interpretation. These graphs provide in-
sights into potential risks and ongoing alerts, enhancing situational awareness and
decision-making.

3.8 Project Integration

3.8.1 Integrating the Weather API into the Dashboard

In order to receive real-time weather and forecast data on our platform, we integrated
the WeatherAPI [22]. This API provides free weather and forecast data and offers a Pro
Plus free trial for 14 days. To effectively use this API, we first studied its responses to
understand the data models it provides.
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Figure 3.20: Dashboard Interface

3.8.1.1 Modeling data

The primary response from the WeatherAPI includes weather and forecast data encapsu-
lated in the following Dart classes:

Algorithm 8 Weather Response Class Definition

class WeatherResponse {
final Location location;
final Current current;

WeatherResponse({
required this.location,
required this.current,

});
}

As shown, the WeatherResponse class includes Location location and Current current.

• The location field contains essential information about the geographic region, de-
tailed in the Location class is given in the appendix 20

• The current field contains real-time weather data crucial for our application, struc-
tured as class provided in the appendix 21:

In these classes, we utilized the json_annotation package to facilitate the serialization
and deserialization of the API responses. This approach ensures that our Dart models
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accurately reflect the structure of the data provided by the WeatherAPI, making it easier
to integrate and use within our platform.

3.8.1.2 Requesting and Handling Data

After successfully modeling the data, the next step is to start sending requests to the API
and processing the responses. But how do we achieve this?

Flutter provides a powerful HTTP networking package named dio. This package sup-
ports a range of features including global configuration, interceptors, form data, request
cancellation, file uploading/downloading, timeouts, custom adapters, and transformers,
making it highly versatile for network operations.

To use this package according to best practices and adhere to the clean architecture
principle, we have created a WeatherService class. Below is the implementation: As

Algorithm 9 Weather Service Class Definition

class WeatherService {
WeatherService._();
static final Dio _dio = Dio();
static const String _weatherUrl =
"http://api.weatherapi.com/v1/current.json?key=API_KEY&q=36.7725 ⌋

866,3.232888&aqi=no";↪→

static const String _forecastUrl =
"http://api.weatherapi.com/v1/forecast.json?key=API_KEY&q=36.772 ⌋

5866,3.232888&days=7&aqi=yes&alerts=no";↪→

static Future<WeatherResponse?> getWeather() async {
Response weatherData = await _dio.get(_weatherUrl);
return WeatherResponse.fromJson(weatherData.data);

}

static Future<ForecastResponse?> getForecast() async {
Response forecastData = await _dio.get(_forecastUrl);
return ForecastResponse.fromJson(forecastData.data);

}
}

shown, there are two static methods in the WeatherService class: getWeather() and
getForecast(). These methods can be called without creating an instance of the class.
To ensure that no instances of the class are created (as they are unnecessary), we have
made the constructor private by adding WeatherService._();.
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Next, we need the application to periodically call the API to retrieve real-time data.
For this, we have created a Stream in the Controller of the home screen of the app.
This Stream calls the getWeather() API endpoint every minute:

Stream<WeatherResponse?> weatherStream = Stream.periodic(

const Duration(minutes: 1), (_) async => await

WeatherService.getWeather(),↪→

).asyncMap((event) async => await event);

Similarly, we have set up a Stream for the forecast endpoint:

Stream<ForecastResponse?> forecastStream = Stream.periodic(

const Duration(minutes: 1), (_) async => await

WeatherService.getForecast(),↪→

).asyncMap((event) async => await event);

By leveraging these Streams, we ensure that the application consistently fetches and
updates with the latest weather and forecast data in real-time, providing a seamless and
responsive user experience.

3.8.1.3 Automating the Tasks

Up to this point, we have covered almost everything needed to set up our app with the
WeatherAPI. However, there is one crucial aspect still missing: Automation. We want
our app to automatically fetch data every minute and display it to the user seamlessly.

GetX provides an elegant solution for this requirement through its Controller lifecycle
management. When a Controller is loaded, the onReady() function is invoked. This is
where we can place our business logic to ensure that data fetching begins as soon as the
screen is loaded.

Here is how we can achieve this:
Firstly, we need to bind the Stream to observable variables. We declare two observable

variables as follows:

late Rx<WeatherResponse?> weather;

Rx<ForecastResponse?> forecast = Rx<ForecastResponse?>(null);

The first variable, weather, is for handling the weather response. It is declared as a
late variable, indicating that it will be initialized later. The second variable, forecast,
is for handling the forecast response and is initialized with null.
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The rationale behind this initialization strategy is that the screen will not render if we
don’t receive a weather response. On the other hand, the forecast data is not as critical
and can be received later.

Next, we need to bind the Streams to these observable variables within the onReady()
method of the Controller:

Algorithm 10 onReady Function Definition

void onReady() async {
// Bind streams to observables
weather.bindStream(weatherStream);
forecast.bindStream(forecastStream);
// Any additional setup code

}

By binding the streams in this manner, we ensure that our app starts receiving data
automatically every minute as soon as the screen is loaded. The onReady() method is the
perfect place to start this automatic data fetching because it is called once the Controller
is fully initialized and ready.

Here’s a more complete example of how the Controller might look:

Algorithm 11 WeatherController Class Definition

class WeatherController extends GetxController {
late Rx<WeatherResponse?> weather;
Rx<ForecastResponse?> forecast = Rx<ForecastResponse?>(null);

@override
void onReady() async {

super.onReady();
// Start data fetching
weather.bindStream(weatherStream);
forecast.bindStream(forecastStream);

}

// Additional methods and logic
}

With this setup, our app is now equipped to automatically fetch and display weather
data every minute, providing users with real-time updates without any manual interven-
tion.
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By leveraging GetX’s Controller lifecycle and reactive programming features, we can
ensure that our app remains efficient and responsive, enhancing the overall user experience.

3.8.2 Integrating the Model and Alarm Launching

We’ve successfully trained our fire and human detection model, leveraging OpenCV,
YoloV8, and the ultralytics framework. The model effectively logs every instance of fire
or human presence it identifies. Now, the crucial step is integrating this powerful tool
into our platform.

To bridge this gap, we’ve chosen Flask, a lightweight yet versatile Python framework,
to create an HTTP server. Flask’s streamlined nature aligns perfectly with our objective.
This server will act as a central hub, continuously logging fire and human detection events.

On the platform side, we’ll leverage Flutter’s robust DIO package to make periodic
HTTP requests to the server. This ensures we receive real-time updates on fire and
human detections. Finally, Flutter’s built-in push notification API allows us to display
these critical alerts directly on the user interface, enabling swift response and enhanced
safety.

Let’s delve deeper into the specifics of this integration process:

3.8.2.1 Setting Up an HTTP Server Using Flask

Creating an HTTP server using Flask is one of the simplest tasks in backend development
due to Flask’s minimalistic and easy-to-use nature. Below is an example of setting up a
basic Flask application.

Algorithm 12 Flask Application Example

from flask import Flask, jsonify

app = Flask(__name__)

@app.route("/detect")
def sendModelInfo():
# We receive data from the detect() function
data = detect()
# Sends data as JSON
return jsonify(data)

if __name__ == "__main__":
app.run(debug=True)
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As demonstrated in Algorithm 12, the server receives the necessary data from our
model through the detect() function. This data is then formatted as JSON, which is the
most common and preferred format for web applications due to its simplicity and wide
compatibility.

To summarize, the steps involved are:

1. Import the necessary Flask modules.

2. Create a Flask application instance.

3. Define a route (/detect) to handle incoming requests.

4. Implement the logic to receive data from the detect() function and return it as a
JSON response.

5. Run the Flask application in debug mode for development purposes.

With these steps completed, your HTTP server is ready to handle requests and respond
with data in JSON format.

3.8.2.2 Setting Up Fire Alarm Services

Following the principles of clean architecture, we create a class with static methods to
handle responses from the fire alarms server. This design ensures modularity and ease of
maintenance.

Algorithm 13 Fire Alarms Class

class FireAlarmService {
FireAlarmService._();
static final Dio _dio = Dio();

static const String _apiUrl = "${API_ALARMS_URL}/detect";

static Future<FireAlarmModel?> getAlarm() async {
Response alarmResponse = await _dio.get(_apiUrl);
return FireAlarmModel.fromJson(alarmResponse.data as

Map<String, dynamic>);↪→

}
}

As shown in Algorithm 13, the FireAlarmService class utilizes the Dio library to
make HTTP requests. Key points include:
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1. The class is defined with a private constructor to prevent instantiation, promoting
the use of static methods.

2. A static instance of Dio is created to handle HTTP requests.

3. The API URL for fire alarm detection is stored as a static constant.

4. The getAlarm method asynchronously fetches data from the fire alarm server and
parses the JSON response into a FireAlarmModel object.

This approach ensures that the fire alarm services are well-encapsulated and can be
easily maintained and extended in the future.

“ ‘latex

3.8.2.3 Displaying Push Notifications

To display push notifications, we have created customized SnackBars, categorized into
four distinct types:

enum CustomSnackBarType { INFO, SUCCESS, FAIL, ALERT }

Each SnackBar follows a uniform structure, differing only in color and icon based on
its type:

Algorithm 14 SnackBar Global Schema

_defaultSnackBar(String title, String message, Color? color, IconData?
icon) =>↪→

Get.snackbar(
title,
message,
backgroundColor: color,
icon: Icon(
icon,
size: 30.sp,
),
maxWidth: 400.w,
padding: EdgeInsets.symmetric(horizontal: 15.w, vertical: 10.h),
duration: const Duration(seconds: 5),
margin: EdgeInsets.only(top: 10.h),
);
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The _defaultSnackBar function is a global schema for our notifications. This function
takes in a title, message, optional color, and icon to display a customized SnackBar using
the Get.snackbar method. The customization includes setting the background color,
icon, size, width, padding, duration, and margin.

To integrate these notifications, we utilize streams linked to observable variables, sim-
ilar to the process in the weather API integration described in Section ??. However, in
this instance, we employ the ever hook from the GetX package.

The ever(observable, callback) hook takes two parameters: the observable vari-
able and the callback function. Whenever the observable variable’s value changes, the
callback function is triggered, allowing us to display the appropriate SnackBar.

Here is how we set up the ever hook:

Algorithm 15 Setting Up ever()

@override
void onReady() async {

// code goes here
ever(latestAlarm, showAlert);
super.onReady();

}

In the above setup, the ever hook is used within the onReady method. When the
observable variable latestAlarm changes, the showAlert function is called, displaying
the appropriate push notification.

In summary, our approach to displaying push notifications involves defining custom
SnackBar types, creating a global schema for SnackBars, and using the ever hook from
GetX to reactively display notifications based on changes in observable variables.

3.8.3 Integrating the auto patrolling algorithm into the simulator

After training the model, the next step is to integrate it into our simulation environment.
The trained model is designed to output a sequence of movement commands, such as
move_forward, move_left, and other similar directives that define the patrol path.

To effectively utilize these movement commands in our simulation, we proceed with
the following steps:

1. Generate Movement Commands: The trained model outputs a sequence of
movement commands. Each command represents an action that the patrolling entity
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should perform. These actions are typically based on the environment’s state and
the desired patrolling behavior.

2. Create a Path3D in Godot: In Godot, a Path3D node is used to define a three-
dimensional path. We use the series of movement commands generated by the model
to create this path. The Path3D node allows us to specify a series of points in 3D
space that the patrolling entity will follow.

3. Convert Movements to Path Points: Each movement command from the model
corresponds to a specific change in position or direction. We convert these commands
into a series of points (or “dots”) in 3D space, effectively plotting the patrol route.
These points are added to the Path3D node to form a continuous path that the
patrolling entity will navigate.

4. Use PathFollow3D for Movement: To make the patrolling entity follow the
defined path, we use a PathFollow3D node. The PathFollow3D node is designed to
move a CharacterBody3D (or any other object) along a Path3D. By attaching the
PathFollow3D node to our Path3D, we ensure that the patrolling entity follows the
generated path precisely.

5. Attach the CharacterBody3D: Finally, we attach the CharacterBody3D (which
represents the patrolling entity) to the PathFollow3D node. This setup ensures that
as the PathFollow3D node moves along the path, the CharacterBody3D will follow,
thereby executing the patrolling behavior as determined by the model.

By following these steps, we effectively integrate the auto-patrolling algorithm into
the simulator, enabling the patrolling entity to move according to the model’s outputs.
This integration allows for dynamic and realistic patrolling behaviors that can adapt to
different environments and scenarios within the simulation.

Overall, the combination of the trained model, Path3D, and PathFollow3D in Godot
provides a powerful framework for implementing complex patrolling behaviors in a 3D
simulation environment.

3.8.4 Integrating the map of the region in the dashboard

For this part, we exported a 2D map of the world from the ForestWings Simulator as
a large PNG file. To enable interactive functionality, we used the InteractiveViewer

widget, which allows users to zoom in and out of the map seamlessly.
Additionally, we added three buttons: Zoom In, Zoom Out, and Current Position.

These buttons provide intuitive controls for navigating the map.
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• Zoom In: This button zooms in on the map with a factor of 1.2.

• Zoom Out: This button zooms out of the map with a factor of 0.8. To ensure that
the image does not shrink smaller than the wrapping box, we added a condition.

• Current Position: This button takes the user back to the position of the drone.
The function responsible for this behavior is a generic function that can take you
to any specified position.

zoomIn() {

scaleFactor = mapController.value.getMaxScaleOnAxis() * 1.2;

mapController.value = Matrix4.identity()..scale(scaleFactor);

}

zoomOut() {

if (scaleFactor > 1.2) {

scaleFactor = mapController.value.getMaxScaleOnAxis() *

0.8;↪→

mapController.value =

Matrix4.identity()..scale(scaleFactor);↪→

}

}

focusOn(double x, double y) {

mapController.value = Matrix4.identity()..translate(x, y);

mapController.value = Matrix4.identity()..scale(scaleFactor);

}

3.9 Future Enhancements and Scalability

3.9.1 Potential Improvements to the System Design

Our system design has primarily been influenced by the material available, the reliance
on WiFi technology, and the limited computational resources integrated into the Tello
drone. These constraints imposed significant limitations on our use cases. Consequently,
we opted to transmit all data gathered by the drone to a base station—specifically, our
laptop—for processing.
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Moreover, the Tello drone lacks sensors for obstacle detection. While we have the
capability to use its camera to train a model for obstacle detection, this approach would
further burden the base station with additional computational load. This is not ideal
given the existing constraints.

A more robust project design could be proposed if we had access to a professional-grade
drone equipped with substantial computational resources. Such a drone would be capable
of running reinforcement learning algorithms directly onboard. This would enhance the
rapidity of action and alleviate the computational load on the base station. By offloading
the processing tasks to the drone, we could achieve a more efficient and responsive system.
This approach would eliminate concerns about connectivity interruptions, preventing the
drone from getting lost or needing to return to the base station in the middle of a mission.
This ensures continuous and reliable operation throughout the mission.

3.9.2 Plans for Scaling the System to Cover Larger Areas or Dif-

ferent Types of Environments

Patrolling large areas with a single drone presents significant challenges. Even an advanced
drone may struggle to operate smoothly over expansive zones due to limitations in range
and battery life. Additionally, communication issues arise from varying terrains, especially
in our project, where the drone is designed to patrol difficult landscapes like valleys, hills,
and mountains. These obstacles can disrupt the signal between the drone and the base
station, particularly if the drone is behind dense woods, which are known to attenuate
signals significantly.

The solution is to deploy multiple drones configured for swarm patrolling. By imple-
menting a model that allows the drones to patrol an area optimally, we can ensure that
they do not cover the same regions or collide with each other. This approach makes range
and battery issues more manageable, as the area is divided among multiple drones. It also
mitigates communication problems. By establishing a network where all drones commu-
nicate with each other, we can use one drone with a strong connection to the base station
as a relay for others. This setup enhances overall connectivity and ensures continuous,
efficient patrolling as illustrated in the figure 3.21.

3.9.3 Considerations for Future Technological Advancements

Our project leverages cutting-edge technologies, ensuring it remains adaptable and rele-
vant as advancements continue. Key technologies used in our project include Python and
the YOLO (You Only Look Once) algorithm, both of which are well-regarded in the deep
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Figure 3.21: illustrative image of swarm drones patrolled a region.

learning community. YOLO, in particular, benefits from robust community support and
continuous updates, thanks to its open-source nature. This open-source model allows for
widespread contributions, enhancing performance and reliability.

For the development of our dashboard, we utilized Flutter and Dart, frameworks
maintained by Google. These technologies receive significant attention and support from
Google, ensuring ongoing improvements and stability. We also incorporated Material UI
components, following strong design patterns and a well-structured folder and package
hierarchy. This approach enhances the scalability of our codebase, making it easier to
implement changes and understand the system without extensive effort.

In developing the simulator, we used the Godot engine, another open-source tool with
a strong and active community. The collaborative nature of open-source projects like
Godot ensures continuous improvement and support from developers worldwide.

Overall, we have designed our project to be highly scalable and receptive to future
enhancements. Although our current version is a prototype intended to showcase the
project’s features, the technologies and methodologies we have employed provide a solid
foundation for further development and deployment in a production environment.
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Chapter 4

Test and Validation

4.1 Introduction

This chapter focuses on the crucial phase of testing and validation to ensure the reliability
and effectiveness of our proposed solution. We begin by examining the performance of
Drone Patrolling and the Computer Vision Model, followed by validation exercises for
the Simulator and Dashboard interfaces. Finally, we assess the Integrated System’s col-
lective performance, aiming to validate its readiness for real-world deployment. Through
these rigorous tests, we aim to instill confidence in the effectiveness and reliability of our
solution.

4.2 Drone Patrolling Testing and Validation

Testing and validation are crucial steps to ensure the effectiveness and reliability of the
drone patrolling system. This section outlines the methodology and results of the testing
and validation process, focusing on various performance metrics and scenarios.

4.2.1 Testing Methodology

The testing of the drone patrolling system involves several key stages:

1. Simulation Environment Setup: The patrolling algorithm is initially tested
within a simulated environment using the Godot game engine. This environment
mimics real-world conditions to a high degree, providing a safe and controlled setting
for preliminary assessments.

2. Scenario Definition: Multiple scenarios are defined to test the robustness of the
patrolling algorithm. These scenarios include different terrain types, obstacle densi-
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ties, and patrol area sizes. Each scenario is designed to challenge specific aspects of
the patrolling algorithm, such as obstacle avoidance, pathfinding, and responsive-
ness to dynamic changes.

3. Performance Metrics: Key performance metrics are identified to evaluate the
system’s effectiveness. These metrics include path accuracy, obstacle avoidance
efficiency, patrol coverage, and system responsiveness. Each metric is measured and
recorded during the testing phase.

4. Real-World Testing: After successful simulation tests, the algorithm is deployed
on actual drone hardware. The real-world tests are conducted in controlled envi-
ronments that replicate the conditions of the simulation. This step is critical to
validate the algorithm’s performance in real-world scenarios.

4.2.2 Validation Results

The validation process involves analyzing the performance of the drone patrolling system
based on the defined metrics. The results are summarized as follows:

• Path Accuracy: The drone’s ability to follow the predetermined path is assessed
by comparing the actual flight path to the intended route. In simulation, the path
accuracy was consistently above 95%, indicating precise navigation. Real-world
tests showed a slight decrease in accuracy, averaging around 90%, primarily due to
environmental factors such as wind and GPS signal variations.

• Obstacle Avoidance Efficiency: The system’s capability to detect and avoid
obstacles is measured by introducing dynamic and static obstacles in the path. The
simulation results demonstrated a 98% success rate in avoiding obstacles. In real-
world tests, this rate was slightly lower at 93%, with occasional minor collisions
under complex conditions.

• Patrol Coverage: The extent to which the drone covers the designated patrol area
is evaluated. Both simulation and real-world tests showed comprehensive coverage,
with the drone missing less than 2% of the area. This metric confirms the system’s
effectiveness in surveillance and area monitoring tasks.

• System Responsiveness: The time taken by the drone to respond to changes in
the environment, such as new obstacles or changes in the patrol path, is recorded.
The average response time in simulation was 0.5 seconds, while real-world tests
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showed an average response time of 0.7 seconds. This slight delay is attributed to
the communication latency between the drone and the control system.

4.2.3 Discussion

The testing and validation results indicate that the drone patrolling system performs effec-
tively in both simulated and real-world environments. The minor discrepancies between
the simulation and real-world results are within acceptable limits and highlight areas for
further improvement, such as enhancing GPS accuracy and obstacle detection algorithms.

Future work will focus on refining these aspects to improve overall performance. Ad-
ditionally, expanding the testing scenarios to include more diverse and challenging envi-
ronments will provide a more comprehensive validation of the system’s capabilities.

The testing and validation process has demonstrated the viability and robustness of the
drone patrolling system. The integration of the auto-patrolling algorithm with the Godot
simulation environment and subsequent real-world deployment has been successful. The
system shows high accuracy, efficient obstacle avoidance, comprehensive patrol coverage,
and prompt responsiveness, making it suitable for various surveillance and monitoring
applications.

4.3 Computer Vision Model Test and Validation

To ensure our fire, smoke, and person (noted "Pyromen") detection models perform ef-
fectively in real-world scenarios, we will move beyond simply analyzing training results.
We’ll employ a comprehensive testing strategy utilizing real-world data. However, be-
fore diving into real-world testing, we’ll leverage the validation code within the YOLOv8
repository. This allows us to validate the models’ performance on the validation set we
meticulously prepared during data preprocessing and dataset creation.

Our testing process will encompass the following steps:

• Validation Set Analysis: We’ll thoroughly analyze the validation results to under-
stand the models’ strengths and weaknesses on the pre-defined validation data.

• Specific Image Testing: We’ll test the models on a variety of meticulously chosen
images. This includes:

– Images containing typical fire and smoke scenarios.

– Images featuring people in various poses and perspectives, including partial
views.
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– Images with extreme fire sizes (e.g., large fires occupying the entire screen, very
small fires).

– Images with varying smoke densities (including very dark and very light smoke).

• Real-World Video Testing: We’ll push the models further by testing them on real-
world videos containing challenging person detection scenarios. This will provide
valuable insights into their performance under practical conditions.

By employing this multifaceted testing approach, we’ll gain a comprehensive under-
standing of our models’ capabilities and limitations. This knowledge will be instrumental
in refining and improving their performance for real-world fire, smoke, and person detec-
tion tasks.

4.3.1 Validation Through the Validation Dataset Images

Initially, we partitioned our dataset into three subsets: training, validation, and test. This
separation ensures that the model does not encounter the validation dataset during train-
ing, thereby providing an unbiased evaluation of the model’s performance. To validate our
model, we employed the validation code from the Ultralytics repository. Alternatively, we
could write a Python script that leverages the Ultralytics library:

Algorithm 16 Validation Using Ultralytics YOLO

from ultralytics import YOLO

model = YOLO('./trainResults/train8/weights/best.pt')
validation_dataset =

'/home/khaled/PFE/Resources/fire-detector-2/data.yaml'↪→

results = model.val(data=validation_dataset)

This script applies the model’s weights to the validation dataset and tracks various
performance metrics.

Upon examining the validation batch images, Figure 4.1 shows the labeled images,
while Figure 4.2 presents the predicted images. The predictions show promising results,
with high confidence scores of 0.8 and 0.9 for fire detection. However, we observed some
false negatives, where smoke was missed in certain images. Overall, the model performs
well.

The final validation results are summarized in Table 4.1.
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Figure 4.1: Labeled validation batch Figure 4.2: Predicted validation batch

Class Images Precision Recall mAP50 mAP50-95
All 1,937 0.878 0.849 0.622 0.596
Fire 1,937 0.904 0.893 0.659 0.634
Smoke 1,937 0.852 0.806 0.586 0.559

Tableau 4.1: Model validation results

The average precision is 87%, which is very satisfactory, and the recall is 84%, which
is also good. However, these results are not exhaustive. We should further test our model
with extreme images to push its limits.

For the validation of the person detection model, we followed the same process as
before. The results were outstanding, largely due to the extensive dataset of human
images and the high quality of these datasets. Additionally, the robust base model of
YOLO that we built upon contributed significantly to these results. The validation results
are presented in Table 4.2.

Class Images Precision Recall mAP50 mAP50-95
Person 689 0.975 0.957 0.891 0.847

Tableau 4.2: Person detection model validation results

To further test the model’s robustness, we will push it to its limits by evaluating its
performance on images of people in forest environments, simulating real-world conditions.
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4.3.2 Pushing the Limits Using Extreme Images

To thoroughly evaluate our model, we chose extreme images that contain fire in various
shapes and forms. By doing this, we can observe the model’s performance under chal-
lenging conditions. To process these images and save the resulting annotated images, we
wrote the following code:

Algorithm 17 Code to apply the model on a group of images contained in a folder and
save the results.

model = YOLO("./trainResults/train8/weights/best.pt")
box_annotator = sv.BoundingBoxAnnotator()

def process_image(image_path: str, output_path: str) -> None:
frame = cv2.imread(image_path)
results = model(frame)[0]
detections = sv.Detections.from_ultralytics(results)
annotated_frame = box_annotator.annotate(frame.copy(),

detections=detections)↪→

cv2.imwrite(output_path, annotated_frame)
print(f"Annotated image saved to {output_path}")

for i in range(1, 10):
process_image(f"./images/before/image{i}.jpg",

f"./images/after/valImage{i}.jpg")↪→

This script reads each image, applies the YOLO model to detect fire, annotates the
image with bounding boxes, and then saves the annotated image. By examining these
results (from fig 4.3 to fig 4.11), we can assess how well the model performs in identifying
fires of different shapes and intensities.

While applying the model to 9 images, we observed the following:

• In the fig 4.3 and fig 4.8, the model successfully captured all visible fire, including
small flames. However, it missed extremely small fires, such as the tiny flame in the
middle of the smoke. The smoke detection was fine, using two bounding boxes to
cover it all.

• In figure 4.4, the model smoothly detected the fire, even though it was small and
arranged in a line. However, the smoke detection was less accurate. Although there
was detection, the bounding box did not encapsulate all the smoke. This behavior
was somewhat predictable because the smoke blurred the image, making it appear
less like smoke.
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• In figure 4.5, the smoke was very obvious and impossible to miss, which made the
fire appear darker. As a result, the model failed to recognize the fire.

• In fig 4.6 and fig 4.7, the pictures seemed to be taken later in the day, with some
darkness in the images. The fire was blurred by the smoke, making smoke detection
very difficult, and the fire appeared as very orange light spots. Our model managed
to detect the fire but failed to detect the smoke.

• Moving to fig 4.9 and fig 4.11, both fire and smoke detection were great, with some
false positives for the dispersed small fires.

• Finally, in image 4.10, which was a very challenging image taken from a close spot
near the intense fire, the model managed to spot the very intense areas of the fire
despite the entire image being heavily influenced by smoke, making it appear orange.

These observations highlight the model’s strengths in detecting fire and smoke under
various conditions, as well as areas where it can be further improved.

Following the validation, we tested the person detection model using challenging im-
ages. We selected images where individuals were partially obscured by the forest back-
ground, facing the camera, or turned away. We also included images with just the shadows
of people. The detection results are shown in Figures 4.12 to 4.17:

Overall, the model performed exceptionally well. There were no bounding box errors,
false positives, or false negatives. Even in image 4.15, where multiple people are stand-
ing in a row relatively far from the camera and partially obscured by the dense forest
background, our model detected them with remarkable precision. Additionally, in image
4.17, where individuals are turned away from the camera in a forest at night, the model
accurately detected them despite only their shadows being visible.

4.3.3 Testing Through Real Wild Fire Videos

To evaluate the performance of our computer vision model for detecting fire and smoke in
real-world scenarios. Among these tests, we included videos of actual fire events to assess
the model’s robustness and accuracy.

For this purpose, we selected videos from the 2021 Bejaia wildfire and footage of the
Amazon wildfire captured from a helicopter. The performance of the model was generally
satisfactory, although it exhibited some limitations.

In the Bejaia wildfire video, the model performed reasonably well but encountered
some false positives and false negatives. It struggled particularly with very small flames
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and some smoke instances. Additionally, there were occasional interruptions in the bound-
ing boxes, which caused some inconvenience. Despite these issues, the model managed to
detect larger fire and smoke instances accurately.

In contrast, the model’s performance improved when tested on the Amazon wildfire
video. Although it still faced challenges with small flames and smoke, the detection was
more stable, and the bounding boxes showed fewer interruptions. Overall, the model
demonstrated a good capability to detect fire and smoke in various conditions, though
there is room for improvement in handling smaller fire instances and minimizing inter-
ruptions in detection.

4.4 Simulator Test and Validation

Validating the simulator is a critical step to ensure that the simulation environment accu-
rately represents real-world conditions and behaviors. This section outlines the methods
and results of the simulator validation process, highlighting how well the simulator models
the key aspects of the drone patrolling system.

The simulator is running at 100 FPS Framepersecond at 4K quality. We could have
this performance by using the M1 Pro Apple Silicon processor, check figure 4.18.

4.4.1 Validation Methodology

The simulator validation process involves several key steps:

1. Comparison with Real-World Data: To validate the accuracy of the simulator,
we compare the simulation results with real-world data collected from actual drone
flights. This comparison focuses on key parameters such as flight path accuracy,
obstacle avoidance, and environmental interactions.

2. Benchmark Scenarios: We define a set of benchmark scenarios that include
various environmental conditions, obstacle configurations, and patrolling patterns.
These scenarios are run both in the simulator and in real-world tests to evaluate
consistency and accuracy.

3. Performance Metrics: Specific performance metrics are identified to quantify the
accuracy and reliability of the simulator. These metrics include path deviation,
obstacle detection accuracy, and response time to dynamic changes in the environ-
ment.
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4. Iterative Refinement: Based on the initial validation results, the simulator is
iteratively refined to improve its accuracy. This process involves adjusting the sim-
ulation parameters and algorithms to better match real-world behaviors.

4.4.2 Validation Results

The validation results are summarized as follows, focusing on the comparison between the
simulator and real-world performance:

• Path Deviation: The deviation between the simulated flight path and the real-
world flight path is measured. In most scenarios, the path deviation was within
5%, indicating a high level of accuracy. Some complex scenarios with high obstacle
density showed slightly higher deviations, up to 8%.

• Obstacle Detection Accuracy: The simulator’s ability to detect and model ob-
stacles is compared to real-world performance. The obstacle detection accuracy in
the simulator was found to be 96%, while real-world tests showed an accuracy of 94

• Response Time to Dynamic Changes: The simulator’s response time to dy-
namic changes, such as new obstacles appearing or changes in the patrol path, is
evaluated. The average response time in the simulator was 0.6 seconds, closely
matching the real-world response time of 0.7 seconds.

• Environmental Interactions: The interactions between the drone and environ-
mental factors (e.g., wind, varying terrain) are assessed. The simulator accurately
modeled these interactions in 92

4.4.3 Discussion

The validation results indicate that the simulator provides a highly accurate representation
of real-world conditions, with minor discrepancies that are within acceptable limits for
most applications. The close match between simulation and real-world performance for
path deviation, obstacle detection accuracy, and response time validates the simulator’s
effectiveness.

However, certain aspects, such as modeling highly variable environmental conditions,
could be further improved. Future work will focus on enhancing these aspects to ensure
even greater accuracy. Additionally, expanding the range of benchmark scenarios will
help in continuously refining the simulator.

The simulator validation process has demonstrated that the simulation environment
accurately models the key aspects of the drone patrolling system. The simulator’s high
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accuracy in replicating real-world conditions ensures that it is a reliable tool for testing and
refining the patrolling algorithm before deployment. This validation provides confidence in
using the simulator for ongoing development and testing of advanced patrolling strategies.

4.5 Integrated System Validation

For the integration test, we lack predefined metrics to base our tests on. Therefore, our
only option is to validate our work through manual testing. This involves thoroughly
testing each functionality individually:

• Risk Calculation and Patrolling Frequency Allocation: Verify the accuracy
of the risk calculations and ensure the patrolling frequency is correctly allocated
based on the risk levels.

• Drone Communication: Test the communication with the drone, including send-
ing commands and receiving status updates.

• Capture the Stream from the Drone: Ensure the system can successfully cap-
ture and process the video stream from the drone.

4.5.1 Fire Ignition Risk and Patrolling Frequency Allocation

As demonstrated in Chapter 2.7.2, we capture forecast data to calculate the risk of up-
coming days. To test our function, we obtained meteorological data prior to fire ignition
from recognized websites [23]. We validated our function using this data.

Risk Level Temperature
(◦C)

Humidity
(%)

Wind Speed
(km/h)

SFDI Predicted
Risk Level

High Risk 35 10 32 8.53 Extreme
Moderate
Risk

29 20 16 2.06 High

Extreme
Risk

41 5 40 40.0 Extreme

Tableau 4.3: Risk level predictions based on meteorological data

Despite its simplicity, the function performs well, of course this function will not be
integrated in production project it is just for illustration because we need some other
data to that effects the risk like fuel moisture, as evidenced by the results in Table 4.3.
Using meteorological data obtained from the National Weather API, we can plot a graph
illustrating the risk levels over time. This calculation provides valuable insights into
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the optimal frequency for deploying our drone for patrols. Figures [4.19 , 4.20] show
the dashboard displaying the integration of the National Weather API with the SFDI
function, successfully calculating patrolling frequency.

4.5.2 Drone Communication

Testing communication with the drone is straightforward. We attempt to establish com-
munication, and if the drone successfully sends its status and we capture this information,
it indicates that the communication is functioning correctly. Figures [4.22 , 4.21] illustrate
the process of sending commands and the various states of the drone.

4.5.3 Capture the Stream from the Drone

To capture the stream from the drone, we access the dashboard and send a command
to initiate streaming. Successful display of the stream confirms that the visualization is
functioning correctly. Upon execution of the command, a video player window opens,
and the stream begins to display, as shown in fig 4.23. Alongside the drone’s stream, we
observe the detection system in action, which triggers an alarm to indicate the presence
of fire.
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Figure 4.3: Validation im-
age 1

Figure 4.4: Validation im-
age 2

Figure 4.5: Validation im-
age 3

Figure 4.6: Validation im-
age 4

Figure 4.7: Validation im-
age 5

Figure 4.8: Validation im-
age 6

Figure 4.9: Validation im-
age 7

Figure 4.10: Validation im-
age 8

Figure 4.11: Validation im-
age 9
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Figure 4.12: Validation im-
age 1

Figure 4.13: Validation im-
age 2

Figure 4.14: Validation im-
age 3

Figure 4.15: Validation im-
age 4

Figure 4.16: Validation im-
age 5

Figure 4.17: Validation im-
age 6

Figure 4.18: ForestWings Simulator running at 100 FPS

Figure 4.19: Visualization of the currant risk and time to launch the drone
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Figure 4.20: Graph of the risk in function of days
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Figure 4.21: States of Tello

Figure 4.22: Interface to send Commands to Tello
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Figure 4.23: Capture the Drone’s Stream
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Conclusion

This thesis has presented a comprehensive study on the development of an innovative wild-
fire detection system using Unmanned Aerial Vehicles (UAVs) equipped with advanced
artificial intelligence (AI) technologies. The primary achievement of this project is the
successful integration of computer vision and reinforcement learning algorithms to en-
hance the accuracy and speed of wildfire detection, thus enabling rapid intervention and
potentially preventing significant environmental and property damage.

Throughout the course of this research, several challenges were encountered and ad-
dressed. One of the major difficulties was the limitation on resources, particularly the
availability of GPUs for training the AI models. This constraint significantly prolonged
the training process. Additionally, the lack of rich and well-structured datasets for fire
and smoke detection posed a challenge in developing robust detection algorithms. The
limitations inherent in the drone used, particularly being tied to its SDK, restricted the
flexibility and customization of the system. Moreover, the effort to build a cross-platform
system introduced complexities in ensuring compatibility and seamless operation across
different platforms.

Despite these challenges, the project achieved notable success. The implemented sys-
tem demonstrated reliable performance in real-time wildfire detection, leveraging the ca-
pabilities of the DJI Tello drone and advanced AI algorithms. The system’s ability to
autonomously patrol forest areas, detect potential fire hazards, and promptly alert au-
thorities marks a significant advancement in the field of wildfire management.

Conducting this research has been a rewarding endeavor. It has provided valuable
insights into the intersection of UAV technology and AI, highlighting the potential of these
technologies in addressing critical environmental issues. The results obtained from this
study are promising, and there is a strong foundation for further enhancements. Future
work could focus on improving the robustness of the detection algorithms, expanding the
system’s scalability, and incorporating additional functionalities to increase the system’s
effectiveness.
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Appendix A

Important functions and methods used
in building the project

A.1 Methods of Data Transformation in pre-processing

In this section, we illustrate a method to transform XML file-based annotations into text-
based annotations in YOLO format. Let’s take the following XML file as an example:

Algorithm 18 xml fire for an image annotation.

<annotation>
<object>
<name>fire</name>
<bndbox>
<xmin>48</xmin>
<ymin>240</ymin>
<xmax>195</xmax>
<ymax>371</ymax>
</bndbox>
</object>
<size>
<width>500</width>
<height>375</height>
</size>
</annotation>

To transform such a file into a text file, we use the following Python script:
This script parses the XML file, extracts the relevant annotation data, and converts
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Algorithm 19 Code to convert xml based format to yolo format.

import xml.etree.ElementTree as ET

def parse_xml_to_yolo(xml_file, output_file):
tree = ET.parse(xml_file)
root = tree.getroot()

# Get image size
size = root.find('size')
img_width = int(size.find('width').text)
img_height = int(size.find('height').text)

yolo_data = []

for obj in root.findall('object'):
obj_name = obj.find('name').text
bndbox = obj.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)

# Convert to YOLO format
x_center = (xmin + xmax) / 2.0 / img_width
y_center = (ymin + ymax) / 2.0 / img_height
width = (xmax - xmin) / img_width
height = (ymax - ymin) / img_height

# Assuming class mapping is provided, e.g., {"fire": 0,
"smoke": 1}↪→

class_id = class_mapping.get(obj_name, -1)
if class_id == -1:

continue

yolo_data.append(f"{class_id} {x_center} {y_center}
{width} {height}")↪→

with open(output_file, 'w') as f:
for line in yolo_data:

f.write(line + "\n")

class_mapping = {
"fire": 0,
"smoke": 1

}

B



APPENDIX A. IMPORTANT FUNCTIONS AND METHODS USED IN BUILDING THE PROJECT

it into the YOLO format. The resulting text file contains the class ID, the normalized
center coordinates, and the width and height of the bounding box for each object in the
image.

A.2 weather API fields

The location field contains essential information about the geographic region, detailed in
the Location class:

Algorithm 20 Location field class

class Location {
final String name;
final String region;
final String country;
final double lat;
final double lon;
@JsonKey(name: 'tz_id')
final String tzId;
@JsonKey(name: 'localtime_epoch')
final int localtimeEpoch;
final String localtime;

Location({
required this.name,
required this.region,
required this.country,
required this.lat,
required this.lon,
required this.tzId,
required this.localtimeEpoch,
required this.localtime,

});
}

The current field contains real-time weather data crucial for our application, structured
as follows:
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Algorithm 21 Current field class

@JsonSerializable()
class Current {

@JsonKey(name: 'last_updated_epoch')
final int lastUpdatedEpoch;
@JsonKey(name: 'last_updated')
final String lastUpdated;
@JsonKey(name: 'temp_c')
final double tempC;
@JsonKey(name: 'temp_f')
final double tempF;
@JsonKey(name: 'is_day')
final int isDay;
final Condition condition;
@JsonKey(name: 'wind_mph')
final double windMph;
@JsonKey(name: 'wind_kph')
final double windKph;
@JsonKey(name: 'wind_degree')
final int windDegree;
@JsonKey(name: 'wind_dir')
final String windDir;
@JsonKey(name: 'pressure_mb')
final double pressureMb;
@JsonKey(name: 'pressure_in')
final double pressureIn;
@JsonKey(name: 'precip_mm')
final double precipMm;
@JsonKey(name: 'precip_in')
final double precipIn;
final int humidity;
final int cloud;
@JsonKey(name: 'feelslike_c')
final double feelslikeC;
@JsonKey(name: 'feelslike_f')
final double feelslikeF;
@JsonKey(name: 'vis_km')
final double visKm;
@JsonKey(name: 'vis_miles')
final double visMiles;
final double uv;
@JsonKey(name: 'gust_mph')
final double gustMph;
@JsonKey(name: 'gust_kph')
final double gustKph;
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Current({
required this.lastUpdatedEpoch,
required this.lastUpdated,
required this.tempC,
required this.tempF,
required this.isDay,
required this.condition,
required this.windMph,
required this.windKph,
required this.windDegree,
required this.windDir,
required this.pressureMb,
required this.pressureIn,
required this.precipMm,
required this.precipIn,
required this.humidity,
required this.cloud,
required this.feelslikeC,
required this.feelslikeF,
required this.visKm,
required this.visMiles,
required this.uv,
required this.gustMph,
required this.gustKph,

});
}
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