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Abstract—This article presents the creation of a digital twin for
a photovoltaic conversion chain and proposes a predictive model
for the electrical parameters of this chain using the LSTM (Long
Short-Term Memory) model. The digital twin enables accurate,
real-time simulation of the photovoltaic system, integrating short-
term forecasting to optimize performance. The LSTM model is
employed to predict critical electrical parameters such as DC
current, DC voltage, AC current, and AC voltage, based on
environmental and electrical data collected. The study demon-
strates that the LSTM model can effectively capture temporal
dependencies and provide accurate predictions, contributing to
better management and optimization of the photovoltaic system.
The results show excellent model performance with minimal
errors, and the article discusses the challenges related to the
observed discrepancies as well as opportunities to improve
forecast accuracy.

Mots-Clé—Digital Twin, Photovoltaic Conversion Chain,
LSTM Model, Short-Term Forecasting, Performance Optimiza-
tion, Electrical Parameters

I. INTRODUCTION

In the rapidly evolving field of renewable energy, solar
energy systems, while offering promising prospects for a
sustainable future, present operational challenges such as
sunlight variability, equipment degradation, and maintenance
complexity. Managing these complexities becomes crucial
to optimizing energy yields and ensuring a solid return on
investment. Traditional monitoring and maintenance methods,
which are primarily reactive, are often insufficient to meet the
demands of these sophisticated systems. This highlights the
importance of integrating advanced technologies to optimize
performance and ensure sustainability.

One of the most promising innovations in this field is
the development of a digital twin for photovoltaic (PV)
conversion chains. The concept of a digital twin bridges the
gap between the physical and digital worlds by establishing a
symbiotic relationship between virtual and real environments.
It provides a real-time virtual replica of a physical system,

equipped with predictive analysis capabilities. By analyzing
real-time data from solar installations, digital twins offer
deep operational insights, enabling preventive actions against
inefficiencies or potential failures. This real-time connection
allows organizations to make data-driven decisions, optimize
operations, and predict future behaviors. [1]

Deep learning (DL) and reinforcement learning (RL) are
among the most promising advanced methodologies applied
to digital twins in the solar energy sector. Deep learning
algorithms leverage time series data to enable accurate
energy production forecasts. Simultaneously, reinforcement
learning agents provide digital twins with the ability to
dynamically adjust system parameters in real-time, in
response to changes in environmental factors and equipment
performance. Together, these methods contribute to a more
adaptive, resilient, and efficient solar energy infrastructure. [2]

In this study, we used a machine learning method to create a
digital twin of the photovoltaic conversion chain. LSTM (Long
Short-Term Memory) networks, designed to avoid the long-
term dependency problem, are capable of capturing abstract
concepts in the sequences of the photovoltaic (PV) chain,
which improves the prediction of various parameters of this
conversion chain. This paper is organized as follows: Section 2
presents the literature review. Section 3 explains the proposed
method. Section 4 presents and discusses the experimental
results. Conclusions and some directions for future work are
provided in Section 5.

II. LITERATURE REVIEW:
Several studies have demonstrated the effectiveness of

machine learning in predicting energy production from
photovoltaic systems using various forecasting methods.
The primary objective is to achieve higher accuracy while
minimizing complexity and computational cost. A review



of photovoltaic power forecasting using machine learning
[3] It has been demonstrated that methods such as Bagging
models, deep learning, genetic algorithms, random forests,
gradient boosting, and artificial neural networks, as well as
hybrid models combining different algorithms, can produce
good results and improve the forecasting of photovoltaic solar
power.

Furthermore, forecasting techniques can be divided into
three main categories [4]. Long-term forecasting, as discussed
in article [5], explores the potential to predict energy
demand up to 10,000 hours into the future. Researchers have
considered using the Random Forest model for such long-term
forecasts. This category of forecasting can greatly assist in
planning and organizing the production, transmission, and
distribution of energy by anticipating future energy demand.

Another category of forecasting is medium-term forecasting,
which is used for the efficient operation and maintenance of
the electrical system by predicting the future availability of
electrical energy.

Short-term forecasting of photovoltaic power is the most
widely studied area, with numerous articles and studies
dedicated to it, such as those in [6]–[8], as it is essential
for real-time grid management and the efficient use of solar
energy.

Forecasting photovoltaic power using neural networks for
short- and medium-term dependencies [9] has shown that the
LSTM model exhibits good accuracy in predicting photo-
voltaic power.

III. METHODOLOGY:

In this methodology, we focus on the integration of short-
term forecasting for the design of a digital twin of a photo-
voltaic conversion chain using a Long Short-Term Memory
(LSTM) model. The integration of short-term forecasting of-
fers significant advantages, as it enables real-time optimization
and control, which are essential for maximizing efficiency
and responding quickly to dynamic environmental conditions.
This approach utilizes real-time data from sensors and weather
stations to provide accurate and immediate insights into the
performance of the photovoltaic system. As a result, the
digital twin can dynamically adjust operational parameters,
ensuring optimal energy production and load balancing. This
real-time adaptability enhances the reliability and efficiency
of the photovoltaic conversion process and allows for rapid
responses to unexpected changes, thereby reducing downtime
and maintenance costs.

The emphasis on short-term forecasting addresses the need
for immediate and actionable information in modern photo-
voltaic systems, promoting both operational excellence and
economic benefits.

A. DATA COLLECTION

In this work, we use a dataset comprising environmental
information collected from sensors installed in an internal
weather station, as well as electrical data from a photovoltaic
inverter. The data, sourced from Kaggle, covers a period of
30 days with 1-minute intervals between each data point. The
dataset includes the time (hour and minute), environmental
variables (irradiance, temperature, wind speed, wind direction,
and precipitation), as well as electrical variables, such as
the direct current (DC) current and voltage generated by the
photovoltaic panel, and the alternating current (AC) current
and voltage fed into the electrical grid.

B. DATA EXPLORATION

The predictive model developed in this study is a data-driven
approach. In this type of approach, the input data and its qual-
ity play a crucial role in the accuracy of predictions. Therefore,
exploring the input data is one of the main steps in data
preprocessing and feature selection [10]. In [11] , researchers
used correlation values to identify and select input features
containing relevant information. This method demonstrated
high accuracy in predictions. Table 1 presents the correlations
between weather variables and electrical measurements. The
correlation between our target variable and the two parameters,
irradiance and temperature, was particularly high, leading to
these two parameters being considered the only inputs. In
contrast, the correlations with other parameters (time, wind
speed, and wind direction) were much weaker.

Tension
DC

Current
DC

Tension
AC

Current
AC

Irradiance 0.543915 0.967080 0.671383 0.967151
Temperature 0.536676 0.791488 0.436498 0.787360

Time -0.226386 -0.352723 -0.305055 -0.259540
Wind
Speed

0.217650 0.314070 0.233604 0.318541

Wind
Direrction

0.047837 0.032502 0.109597 0.032128

TABLE I: The correlation between electrical values and
weather values.

C. Model Development:

We use the LSTM-RNN model to predict direct current
(DC), direct voltage (DC), alternating current (AC), and
alternating voltage (AC) in photovoltaic systems. LSTM
models are capable of capturing temporal variations in the
data, thereby improving forecast accuracy. In the following
subsections, we briefly describe the RNN model, explain
the structure of the proposed LSTM model, and detail the
selection of hyperparameters.

1) Basic RNN Model : During the learning phase, tradi-
tional neural networks cannot leverage the information learned
from previous time steps when modeling current data, which
is a significant limitation. Recurrent Neural Networks (RNNs)
address this issue by incorporating loops that transfer infor-
mation from one step of the network to subsequent steps, as



illustrated in Figure 1, allowing information to persist. In other
words, RNNs connect past information to the present task.
Utilizing samples from previous sequences can help better
understand the current sample.

Fig. 1: Structure of the RNN Model

2) LSTM Structure : LSTMs (Long Short-Term
Memory) are a special type of RNN (Recurrent Neural
Networks) capable of learning both short-term and long-term
dependencies [12]. Unlike RNNs, LSTMs are designed to
avoid the problem of long-term dependencies. The LSTM
network is trained using backpropagation through time,
overcoming the vanishing gradient problem. Traditional
neural networks have neurons, while LSTM networks consist
of memory blocks connected across successive layers. Each
block contains gates that manage the block’s state and output.
In the LSTM unit, there are three types of gates: the forget
gate, the input gate, and the output gate. The function of each
gate can be summarized as follows:

- The forget gate : determines which information should be
discarded from the block based on certain conditions.

- The input gate : determines which values from the input
should be used to update the memory state based on certain
conditions.

- The output gate : determines what to produce as output
based on the input and the block’s memory, also according to
certain conditions.

As shown in Figure 2, an LSTM block receives an input
sequence, and each gate uses activation units to decide
whether to activate or not. The commonly used activation
functions in an LSTM (Long Short-Term Memory) model are
as follows:

1.Sigmoid Function (σ): Used for the gates in the LSTM
(forget gate, input gate, and output gate). The sigmoid function
compresses the input into a range of 0 to 1, which is useful
for deciding how much of a certain value should be retained
or forgotten.

σ(x) = 1/(1 + e−x)

2. Tanh Function (tanh): Used in updating the cell state
and often in the hidden state. The tanh function compresses
the input into a range of -1 to 1, which helps keep values
within a controlled range while allowing for both positive and
negative values.

tanhx = (ex − e−x)/(ex + e−x)

La structure d’un LSTM comprend généralement ces
fonctions pour contrôler le flux d’information et maintenir les
dépendances à long terme.

This operation makes the state change and information
addition through the block conditional. The gates have weights
that can be learned during the training phase. Indeed, the gates
make LSTM blocks smarter than classical neurons and enable
them to remember recent sequences.

Fig. 2: Representation of an LSTM Cell (Long Short-Term
Memory)

3) Mathematical Representation of the LSTM Model :
like we said before Each LSTM unit has three key gates: the
input gate it , forget gate ft , and output gate ot . These gates
control how information flows through the LSTM, along with
the cell state and hidden state.

For our LSTM model, we use two input features, irradiance
and temperature , Let xt = [It, Tt] be the input vector at
time step t , where It and Tt are irradiance and temperature
respectively.

the two input feature processed through a two-layer archi-
tecture with 20 LSTM units in each hidden layer.

For each LSTM unit l1 , l2 in the first layer and the
seconde layer , at time step t:

• Forget gate : ft = σ(Wf .[ht−1, xt] + bf )
• Input gate : it = σ(Wi.[ht−1, xt] + bi)
• Cell candidate : ĉt = tanh(Wc.[ht−1, xt] + bc)
• Cell state : ct = ft.ct−1 + it.ĉt
• Output gate = ot = σ(Wo.[ht−1, xt] + bo)
• Hidden state : ht = ot.tanh(ct)

The final hidden state from the second LSTM layer ht is
passed to a dense (fully connected) layer to generate the 4
outputs ;

yt = Wout.ht + bout



where :

• Wout is the weight matrix for the output layer, mapping
the hidden state to the 4 output parameters.

• bout is the bias for the output layer .
• yt = [VDC , IDC , VAC , IAC ] the predicted outputs for

AC voltage, DC voltage, AC current, and DC current.

4) Hyperparameter Selection : In machine learning, hyper-
parameters are parameters that are not learned during training
but control the model’s structure or the training process. For
our LSTM model with a two-layer hidden architecture with
20 LSTM units in each layer, processing 50 previous time
steps of sequential data to make predictions. The chosen loss
function is the Mean Squared Error (MSE), while the ’Adam’
optimizer is used to adjust the model weights. By default, the
activation functions used in the LSTM model are the sigmoid
function for the gates and the tanh function for the cell state
and hidden state. An indefinite number of epochs was allowed,
with early stopping implemented to prevent overfitting. To
evaluate the forecasting performance of the models, we used
the Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE), defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − y∗i )
2

MAE =
1

n

n∑
i=1

|y∗i − yi|

To clarify the internal workings of our LSTM model, the fol-
lowing figure provides a visual representation of its structure.

Fig. 3: The developed model structure

IV. RESULTS AND DISCUSSION:

From the collected data, we identified three distinct days
with varying weather conditions to test the model: one very
cloudy day, one clear day, and one slightly cloudy day. The
remaining data was used for training the model. Figure 4 and
5 illustrates the variation of input features (irradiance and
temperature) in the test dataset.

Fig. 4: Irradiance Test Value Variation

Fig. 5: Temperature Test Value Variation

As shown in the results above, we can see that the LSTM
model fit the test sets very well, with a Root Mean Squared
Error (RMSE) of 0.0943 and a Mean Absolute Error (MAE)
of 0.0738 .

Based on the graphs shown in Figure 5, the prediction
model demonstrates a reasonable ability to capture the general
trend of the actual values. The model’s predictions generally
follow the pattern of the real data, suggesting that it has
learned some underlying characteristics of the system.

However, noticeable discrepancies exist between the
predicted and actual values, particularly during certain
fluctuations. These discrepancies could be attributed to
several factors:

• Noise and measurement errors: The actual data exhibits
fluctuations, likely due to measurement noise. This
inherent can impact the model’s prediction accuracy. .

• Model complexity: The current model architecture may
not sufficiently capture the nuances of output behavior. A
more advanced recurrent neural network could enhance
performance.

• Data quality and quantity: The quality and quantity of
training data greatly affect model accuracy. Insufficient
or noisy data can impede effective learning.



Fig. 6: Electrical parameter prediction using the LSTM model

Despite these discrepancies, the model can still be consid-
ered a very good predictive model, as indicated by the values
of the Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE), which suggest overall strong performance.

V. CONCLUSION AND FUTURE WORK:

In this work, we utilized the LSTM model to predict the
voltage and current parameters generated by solar panels,
as well as the voltage and current at the inverter’s output,
based solely on irradiance and temperature inputs. This
approach yielded excellent results in terms of predicting the
aforementioned electrical parameters. However, to create a
complete digital twin of a photovoltaic conversion chain, it is
necessary to include battery parameters, which entails adding
other inputs, such as time, that influence the quality of the
predictions for the entire conversion chain. Integrating the
battery component requires the development of more complex
artificial intelligence models, as well as improving the quality
and quantity of data for more effective training.

Another important aspect to consider is the optimization
of existing models to reduce computational complexity, which
would enable real-time implementation on embedded systems.
Lastly, it would be interesting to study the impact of compo-
nent degradation in the photovoltaic system on prediction ac-
curacy, as this could pave the way for predictive maintenance
strategies based on the digital twin.
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