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Abstract—Facial recognition technology has significantly
evolved over the past decade, finding applications in security,
social media, and various other fields. One of the emerging and
intriguing applications of this technology is kinship determina-
tion, which involves determining familial relationships based on
facial features. In this paper, we established the state-of-the-art
understanding of these methods is essential for advancing this
field and leveraging its potential for practical applications.

Index Terms—LBP, feature selection, kinship verification, face
analysis, feature extraction, deep learning, metric learning

I. INTRODUCTION

Facial kinship determination models aim to deter-
mine whether two individuals belong to the same
family based on faces patterns. The automatic kin-
ship systems take two facial images as input and
decide if there is a familial relationship, such as
between a parent and child or siblings. While DNA
tests are the most accurate for verifying kinship,
they are impractical for many scenarios like video
surveillance.

Early kinship determination methods used features
like Local Binary Patterns (LBP) [2], Local Phase
Quantization (LPQ) [1], and Histograms of Gra-
dients (HOG) [5] with Support Vector Machines
(SVMs) for determination [8]. These methods, how-
ever, struggled with image variations and gener-
alizing to unseen data. Recent advancements in
machine learning, particularly deep learning, have
shown superior performance with learned features.
Researchers have explored various multi-view and
multi-feature approaches for better accuracy. The
development of these sophisticated techniques un-

derscores the potential of deep learning in enhancing
kinship determination accuracy across diverse appli-
cations such as forensics, locating missing children,
and image annotation.

Additionally, two kinship determination competi-
tions were held in 2014 and 2015. The key goal of
these competitions are to compare the performance
of different methods on a new-collected dataset with
the same evaluation protocol and develop the first
standardized benchmark for kinship verification in
the wild.

II. MAIN CHALLENGES IN FACIAL KINSHIP VERIFICATION

Face Kinship verification (FKV) is a binary classi-
fication problem complicated by the fact that kinship
pairs do not share the same facial identity, show-
ing only subtle genetic similarities. Psychological
research [6] indicates that while facial similarity
and kinship judgments are correlated, they are not
identical, making FKV even more challenging. Key
challenges include large interclass variations, such
as changes in age, pose, expression, and imaging
conditions, which make it difficult to extract dis-
criminative features. Additionally, significant inter-
personal variations, like age gaps and gender dif-
ferences, further complicate FKV. Small interclass
variations also pose a problem, as positive kinship
pairs may show minimal similarities while negative
pairs might appear quite similar, making it hard to
define clear decision boundaries. Moreover, the lack
of large-scale kinship datasets hampers the develop-
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Fig. 1. Summarizing the main challenges [22]

ment of effective FKV algorithms, particularly deep
learning-based methods, due to privacy and security
concerns. Therefore, it is essential to create exten-
sive kinship datasets that accurately represent family
data worldwide to address these challenges.[22]

Figure 1 above summarizes the main challenges
of kinship determination, as well Figure 1 (bl,
b2 and b3) show interclass variations, in which
Figure 1 (b1) contains the pos sible variations within
one subject, with each image line demonstrating
influences from different factors. Then, Figure 1 (b2
and b3) illustrate the facial similarity gap between
kinship caused by age and gender differences, as
well as variations among kin pairs and families.
Figure 1 (b4) demonstrates less discrimination of
FKV that hard kin and non-kin samples exist when
kin pairs have less similarity on appearance, while
non-kin pairs inversely show significant similarities

III. FACIAL KINSHIP VERIFICATION APPROACHES

acial kinship verification approaches can be
grouped into three main types based on their key
contributions: feature extraction approaches, metric
learning approaches and deep learning techniques.
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Fig. 2. Local binary pattern method

A. Feature extraction methods

Facial description is a crucial step in any facial

analysis system. In this step, images get analyzed
using a set of signal processing techniques and
geometrical methods to look for properties useful
for representing and summarizing them into a one-
dimensional feature-vector.
In this section, we will discuss several image de-
scriptors commonly employed in research. Specif-
ically, we’ll focus on descriptors used to represent
facial images in current approaches to kinship ver-
ification. Many of these descriptors were initially
developed for texture classification and have proven
effective in accurately representing facial images
too.

1) Local Binary Patterns: LBP is a texture descriptor

introduced in 1994 in [17]. LBP has proven its high
performance on several datasets, especially when
combined with the HOG descriptor.
The LBPpg(z.,y.) code of each pixel (z.,y.) is
computed by comparing the gray value g. of the
central pixel with the gray values g; for i = 0 of its
P neighbors, as follows:

P-1

LBPrr =Y s(g,

p=0

—gc)- 2" (D)

where g, is the gray value of the central pixel, g, is
the gray value of the p-th neighbor, and s(g, — g.)
is defined as:

S(gp 9e) = {O otherwise

Figure 2 explains a simple case of LBP implemen-
tation method.

2)



Many variations of the classic Local Binary Pat-
terns (LBP) method exist, and these will be intro-
duced in the following sections.

o Uniform Local Binary Patterns

The idea behind uniform LBP is that the generated
LBP codes can be split into two groups: uniform and
non-uniform codes.

An LBP code is considered uniform if it has

at most two transitions between O and 1 in its
binary form. For example, the LBP codes (0);9 =
(00000000) and (255)19 = (11111111), are uni-
form because they have no transitions between 0
and 1.
Codes like 224;,=(11100000); and (199);, =
(11000111)y are also uniform because they have
one and two transitions, respectively. In contrast,
codes like (213);p = (11010101)y and (117)yp =
(01110101)y are non-uniform because they contain
more than two transitions in their binary sequence.
[1].

To extract the uniform LBP feature vector, we
can either build a histogram using only the uniform
LBP codes or group all non-uniform codes into a
single histogram bin. There are three main reasons
for using uniform LBP:

Uniform codes represent more a) natural and
smooth features, while several transitions indicate
noise or random texture. Uniform LBP reduces the
size of the feature vector, b) simplifying the data.
Research by Ojala et al. [16] showed that uniform
patterns occur ¢) more frequently in textures than
non-uniform patterns.

« Color Local binary pattern (CLBP)

It is an extension of LBP texture descriptor, which
incorporates color information in addition to the
grayscale information used by the original LBP.
The basic idea behind CLBP is to encode the
local color and texture information in an image
by comparing the color values of a central pixel
with its neighboring pixels. This is done for each
color channel (e.g., red, green, and blue) separately,
resulting in three different LBP codes that are then
combined to form the final CLBP code.

2) Local phase quantization: LPQ is a method for
constructing local image descriptors that are robust
to blur and other types of degradations. It is based
on quantizing the Fourier transform phase in local

neighborhoods, which is a blur-invariant property
under certain conditions. Following this equation :

F(u,x) = Z flz — y)e"gmﬁy =w, f. (3)

TEN,

First, the method extracts small patches from the
original image. These patches are then transformed
into their frequency domain using Fourier trans-
forms as presented in equation 3, which helps
capture the variation in pixel values across different
frequencies. The next step involves simplifying the
phase information of these frequency components
by assigning them a specific number of bits. This
simplified phase data is then used to create a unique
description for each pixel within the patch. Lastly,
all these individual pixel descriptions are combined
to create a single overall description that character-
izes the entire image.

3) Scale Invariant Feature Transform (SIFT): The
Scale Invariant Feature Transform (SIFT) descriptor,
introduced by David G. Lowe in 2004 [14], is
a powerful tool designed to extract features from
images that are robust against various transforma-
tions. As the name suggests, SIFT features remain
consistent even when the image is scaled up or
down. Additionally, they are resilient to changes
in translation, rotation, and partially invariant to
illumination variations and affine or 3D projections.
The process of computing SIFT descriptors begins
with identifying key points in the image that are
stable and robust against geometric transformations
and small signal distortions. This is achieved by
constructing a scale-space pyramid, where the im-
age 1s repeatedly convolved with a Gaussian kernel
and sampled at different scales. The key points are
then identified as the local maxima or minima of this
scale-space representation. Once these stable key
points are localized, the next step is to represent the
local image regions around each key point in a way
that is invariant to location, scale, and rotation. To
accomplish this, Lowe proposed creating multiple
orientation planes for each key point, where each
plane contains gradients corresponding to a specific
orientation. These orientation planes capture the
local image characteristics in a way that is robust to
the aforementioned transformations, making SIFT
descriptors highly effective for various computer



vision tasks.
(See figure3)

Keypoint descriptor

Fig. 3. Example of SIFT descriptor

4) Learning-based descriptor (LE): The learning-
based descriptor (LE), introduced by Cao et al.
[4], is a feature extraction technique that involves
sampling neighboring pixels around each pixel in
an image. The sampling process selects a subset of
pixels that belong to different concentric rings, or
circles centered on the current pixel. The authors
recommended sampling 8R pixels from each ring
with radius R, for instance, 16 pixels would be
sampled from a ring with a radius of 2. Several
types of sampling patterns were experimented with,
as illustrated in their paper [4]. After sampling, the
low-level feature vector obtained from the neigh-
boring pixels is normalized to a unit-length vector,
enhancing its robustness to illumination changes.
The next step involves clustering the pixels into
M groups using K-Means clustering on the feature
vectors extracted during the sampling step. Finally,
the image is represented by a 1xM histogram, where
each bin corresponds to one of the M clusters
obtained from the clustering process. This learning-
based descriptor aims to capture local image char-
acteristics in a compact and robust manner, making
it suitable for various computer vision tasks,

5) Binarized Statistical Image Features (BSIF): It is
a method for constructing local image descriptors
that efficiently encode texture information and are
suitable for histogram-based applications. The ap-
proach is based on statistics of natural images,
which improves its modeling capacity compared to
other methods like Local Binary Patterns (LBP) and
Local Phase Quantization (LPQ).

The process of BSIF involves several key steps.

Initially, local image patches are extracted from the
input image, allowing a focused analysis of specific
areas within the image. Subsequently, the responses
of linear filters are computed for each of these
patches, capturing important information about the
image’s texture. These filter responses are then
binarized by applying a threshold at zero, converting
the responses into binary form. The resulting bina-
rized responses are combined to generate a binary
code string for each pixel. Finally, these binary
code strings are aggregated to form a histogram,
which encapsulates the texture properties within a
subregion of the image, providing a comprehensive
representation of the image’s texture characteristics.
[9]

6) Histogram of oriented gradiant: The Histogram of
Oriented Gradients (HOG) is a sophisticated method
used in computer vision to detect objects in images.
It works by counting how often gradients (changes
in pixel intensity) point in specific directions within
different parts of an image. This approach creates
a detailed and reliable representation of both the
appearance and shape of objects in the image. [3]

Here’s how HOG works: first, it calculates gra-
dients across the entire image using methods like
the Sobel operator or Canny edge detector. Then, it
divides the image into smaller sections called cells
and computes a histogram for each cell, showing the
distribution of gradient directions. These histograms
capture the intensity changes or edges within each
part of the image.

To make the descriptors more accurate, HOG nor-
malizes these local histograms across larger areas
called blocks. This normalization helps HOG ignore
differences in brightness and shadows, making it
robust even when lighting conditions change.

Overall, HOG is valued for its ability to handle
variations in lighting and its resistance to common
geometric transformations like rotation and scaling
(though it’s sensitive to changes in object orienta-
tion). It’s also efficient to compute, using a grid of
evenly spaced cells with overlapping normalization.

HOG finds applications in a wide range of tasks
such as detecting objects in images and videos, clas-
sifying images based on their content, and retrieving
images that are similar in appearance. Its versatility
and reliability make it a cornerstone in the field of
computer vision.



B. Metric learning methods

Since facial similarity between parents and chil-
dren is generally higher than that between unrelated
individuals, it is crucial to develop effective ap-
proaches for verifying parenting from facial images.
Metric learning is a method that aims to learn an
automatic similarity measure from data rather than
using pre-defined distances. In the context of facial
kinship verification, the goal is to learn a metric
where the distance between a pair of faces with a
parent-child relationship is smaller than the distance
between a pair without a relationship.

The distance between any parent-child facial image
pair [21](x;,y;) can be defined as:

dy(Xi,y;) = \/(Xi —y)TM(xi—y;) (D

where M is symmetric and positive semi-definite,
and it can be decomposed into M = WTIW.
Therefore, the distance metric can be reformulated
as:

dM(Xi>Yj) = \/(Xz - Yj)TWTW<Xi - Yj) ()
= [Wx; — Wyl 3)

Among the early approaches to tackle kinship

verification, Somanath and Kambhamettu [18] ap-
plied ensemble learning techniques. Later, Zhou et
al. [28] learned a set of weak bilinear similarity
functions from kinship databases. They did this by
minimizing the kinship constraints between pairs
of images (forcing images of related people to be
similar) and maximizing the diversity of the learned
similarities.
Zhao et al. [26] proposed a novel metric learning
method called the Multiple Kernel Similarity Metric
(MKSM). In this method, instead of using a single
Mahalanobis distance metric, the similarity compu-
tation is essentially based on an implicit non-linear
feature mapping. The overall MKSM is a weighted
combination of base similarities and thus has the
ability to fuse features.

C. Deep learning methods

Traditional hand-crafted feature extraction meth-
ods are limited in their ability to describe features
effectively. In contrast, CNN-based deep learning
methods excel at capturing complex, non-linear
patterns. These methods can learn efficient feature

embeddings from raw data by applying task-specific
constraints, bypassing the need for traditional hand-
crafted feature extraction rules [22]. With the rapid
advancement of deep learning in computer vision
and the availability of large-scale kinship datasets,
researchers began exploring deep learning tech-
niques for kinship analysis around 2016. Various
innovative deep learning architectures have been
employed, including basic neural networks [20],
deep metric learning , auto-encoder-based architec-
tures [10], and attention networks [24].

The first method, proposed by Wang et al. [20],
consists of two stages: feature extraction and deep
metric learning. Traditional methods are used to
extract facial features, which are then processed
through non-linear auto-encoders and a Mabha-
lanobis distance metric to project the features into
a non-linear space. However, this approach has a
drawback: it uses LBP features, which lack the
detailed information of the original image. The
first end-to-end deep learning method for kinship
verification was introduced by Zhang et al. [25].
Their network takes two stacked facial images as
input and outputs the verification result.

1) Deep Metric Learning Methods: To optimize the
distance between two input facial images, Zhou
and al [27] incorporated a distance metric into
network training, leading to the development of
Deep Metric Learning methods. A typical network
architecture used is the Siamese Network. Unlike
single-stream networks, Siamese networks have two
parallel streams with shared weights and use the
distance metric as a loss function. This setup helps
the network learn an optimal feature space where
positive pairs (related individuals) have small dis-
tances and negative pairs (unrelated individuals)
have large distances.

Li and al [11]. proposed the Similarity Metric-
based Convolutional Neural Networks (SMCNN)
method. This network takes two facial images, X
and Y, as inputs, with G(-) representing the output
of the fully connected (FC) layer. The /;-norm is
used to compute the distance between the two output
embeddings, as shown in Equation 4:

D(X,Y) = ||G(X) = GY)|x 4)

During training, Li et al. introduced a threshold
(7) to further distinguish positive and negative sam-



ples, with labels y = 1 for positive samples and
y = —1 for negative samples. The cost function of
the network is defined as:

Lsyenny = f(1 =y(r — D(X,Y))) )

where f(-) is the generalized logistic loss func-
tion. Gradient descent is used to optimize the con-
volutional neural networks.

Commonly used metric-based loss functions in-
clude Contrastive Loss and Triplet Loss. These
functions are based on distance measurements like
Euclidean distance. Contrastive loss takes positive
and negative pairs as inputs, while triplet loss uses
three inputs: the anchor (a), the positive (p), and
the negative (n). This setup clusters positive sample
pairs and separates positive and negative samples.

The efficiency and performance of deep metric
learning techniques depend significantly on the se-
lection of sample pairs/tuples. Hard Sample Min-
ing methods have been proposed to address this,
focusing on finding positive sample pairs with large
distances and negative sample pairs with small dis-
tances within training batches. This approach gen-
erates large backward losses and effectively trains
the network [12, 24].

2) Architectures Based on Auto-Encoders: Another ap-
proach to deep kinship verification involves auto-
encoders (AE) [10]. The first application of auto-
encoders in kinship verification aimed to train a
model for facial feature extraction [20], producing
a reduced feature representation of the input.

Auto-encoder methods are motivated by the cor-
relation between inputs and outputs and can be cate-
gorized into traditional auto-encoders [20] and neu-
ral network (NN)-based auto-encoders. Traditional
auto-encoders learn the relation mapping represen-
tation by minimizing a loss function designed to fit
two input images, while NN-based auto-encoders
use multiple layers of projection and optimize the
network through back-propagation.

Liang et al. [13] utilized intermediate layers to
describe the relationship between input features and
their encodings.

IV. RELATED WORKS

The first study on kinship verification was re-
ported in 2010 by Fang et al.[8]. The authors
compared the performance of an automatic kinship

verification method against human performance.
However, they used the Cornell KinFace database
which has limited data (only 150 parent/child pairs).
Their initial attempt was to verify the resemblance
between parent-child pairs. They based this on
extracting 22 facial feature descriptors for classi-
fication such as skin color, facial structure iden-
tification of eyes, mouth, distance-based features,
as well as statistical features like histogram of
oriented gradients (HOG). Then, to classify the
face pairs as kin or non-kin, either the k-nearest
neighbor (KNN) classifier with Euclidean metric or
a support vector machine (SVM) with a radial basis
function kernel was used. Although this technique
gave good results, it did not extend well to general
kinship verification due to physical and genetic
variations such as age difference between father and
son or gender (brother/sister) for example. Genetic
statistics-based studies critically observed that par-
ents younger facial images resemble their children
more than images captured when they are older.
This led to the creation of the UB KinFace database,
comprising face images of children, young parents,
and old parents. Using this database, Xia et al.[23]
proposed the transfer learning (TSL) method in
hopes of reducing the large distribution divergence
between children and old parents, by leveraging an
intermediate distribution close to both distributions
as well as using Gabor wavelets for feature extrac-
tion. This approach improved the overall kinship
verification accuracy and made the task more dis-
criminative. After that, two databases KinFaceW-1
and KinFaceW-II were assembled by Lu et al. [15]
to guide further research. The availability of these
databases motivated more researchers to contribute
to this topic. They also proposed the Neighborhood
Repulsed Metric Learning (NRML) method, where
metric learning aims to learn a good distance metric
to minimize distances between positive kin image
pairs while pushing non-kin image pairs farther
apart. This method was tested using different local
feature descriptors like Local Binary Patterns (LBP),
Histogram of Oriented Gradients (HOG), and Scale-
Invariant Feature Transform (SIFT). Fang et al.
proposed a new approach for kinship verification
on their FamilylOl dataset [8], by modeling the
problem as reconstructing a face from mixed parts
across a set of families, inspired by the biological



inheritance process. Their approach segments the
face into parts (eyes, nose, mouth..) instead of taking
the whole face, and reconstructs each part as a linear
combination of parts from the dataset. To evaluate
this approach, they used a dense SIFT descriptor on
resized 61x49 pixel facial images [7].

The table I above shows facial verification ap-
proaches with different methods.
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V. CONCLUSION

The field of kinship verification is rapidly evolv-
ing, with researchers continually pushing the bound-
aries of accuracy and exploring innovative applica-
tions. As these challenges are met, kinship verifi-
cation holds the potential to become an even more
valuable tool across various sectors.

However, as the technology advances, ensuring
the security and privacy of the data involved be-
comes increasingly critical. Robust security mea-
sures must be implemented to protect sensitive
information from unauthorized access and misuse.

Looking to the future, kinship verification systems
could see broader utilization in several areas. In law
enforcement, they could enhance the identification
and reunification of missing persons and trafficked
individuals. In genealogy, these systems could pro-
vide more accurate family tree constructions and
help individuals connect with their biological rela-
tives. Social services could use kinship verification
to streamline processes in adoption and foster care,
ensuring that children are placed with their biolog-
ical relatives when appropriate.

Further advancements in machine learning and
biometric technologies will likely enhance the reli-
ability and applicability of kinship verification sys-
tems. Continued research and development, coupled
with a focus on ethical and secure practices, will be
essential to fully realizing the benefits of kinship
verification while safeguarding individual privacy
rights.
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