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Abstact: This article explores the kinematic mod-
eling of serial manipulators, emphasizing the sig-
nificance of workspace analysis in optimizing their
performance. Key factors such as joint forward kine-
matics and Inverse kinematics, are discussed in re-
lation to workspace characterization. Moreover, the
application of optimization algorithms, including Ge-
netic Algorithms (GA), Particle Swarm Optimization
(PSO), and Monte Carlo methods (MC), is examined
for enhancing workspace utilization and manipulabil-
ity. By integrating kinematic modeling with advanced
optimization techniques, this study aims to provide
insights into maximizing the operational capabilities
and adaptability of serial manipulators in diverse in-
dustrial applications.

Keywords: Robots, joints, workspace, forward
kinematic, inverse kinematic, optimization Al-
gorithms.
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1. Introduction

"The reachable workspace of a mechanism is the total-
ity of positions that a particular identified point of the
end-effector can reach"[1]. It is defined by the physical
limits of the robot, such as arm length and joints[2],
as well as the constraints of the environment in which
the robot operates. The workspace can be represented
as a three-dimensional volume or a surface in space,
depending on the type of movement and the configu-
ration of the robot[3][4]. The value of the workspace
lies in its direct relationship with the robot’s ability
to perform tasks efficiently [5][6].
A well-designed workspace helps optimize robot use
by maximizing the area in which it can reach and ma-
nipulate objects[7]. This results in greater operational

flexibility, increased productivity and better resource
management [8].
Applying forward kinematics and inverse kinematics
is necessary for serial robots. the forward kinematics
allows us to determine the position and the orienta-
tion of the end effector, and the inverse determines
the angles necessary to achieve the required position
and orientation of the end effector as demonstrated
in [9] and in [10]. In [11] it is explained how to de-
velop all the surfaces which form the robot workspace
starting by the Denavit-Hartenberg representation for
serial kinematic chains.
As mentioned in [12] manipulators can be divided in
three groups, general manipulators with no singular-
ities, manipulators with one single singularity on the
surface S, manipulators with two single singularity on
the surface[12] . in [13] a method for identifying the
boundary to voids of workspace of serial mechanical
manipulators is presented, and in [2] two methods for
determining dexterity of serial robotic arms.
in [14] they used a method consisting of isolating a few
singularities to determine the workspace boundaries.
Workspace optimization has several advantages over
other methods. Firstly, it helps maximize the use of
available space, which is particularly important in en-
vironments where space is limited and valuable, such
as factories and production lines, it is possible to avoid
collisions between the robot and surrounding obsta-
cles, reducing the risk of property damage and loss of
productivity. In addition, it makes it possible to im-
prove the efficiency of the robot’s movements, in par-
ticular the distances traveled and travel times. This
results in shorter work cycles, increased production
throughput and more efficient use of resources, such
as energy and time. It can help improve the safety
of operations, by causing collisions and dangerous sit-
uations, it reduces the risk of accidents and injuries
to operators and other surrounding equipment. This
helps create a safer working environment and ensures
compliance with safety standards [15].
As shown in [16] and [17] the length of the link
and volume of the robot have a proportional relation
with the workspace. In [18] using the Monte Carlo
and the multi Island genetic algorithm optimizes the
workspace of the manipulator In this study, the opti-
mization of the work space allows us to fully exploit
the potential of robots by maximizing their work area,
improving the efficiency of operations and guarantee-
ing the safety of activities which allows the creation of
systems high-performance, flexible and secure robotics
capable of meeting the changing demands of modern
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industry.[19] in [20] a modified immigration genetic
algorithm based on workspace analysis is applied to
reduce the unnecessary computation of the immigra-
tion genetic algorithm. a modified differential evolu-
tionary technique is used [21] and had significant re-
sults in optimizing the workspace in [22] they were
able to achieve a kinematic optimization to maximize
the workspace of the robot. in[23] a genetic algorithm
was used to optimize the workspace.

2. Methodology

The analytical approach used to determine the bound-
ary surfaces of a manipulator starts by the geometric
and kinematic characteristics of the space in which the
robot can operate. This workspace is defined as the
volume of space that the robot’s end-effector can reach
while staying within the limits of its joints.

• The concept of forward kinematics plays a cru-
cial role in the field of robotics as it focuses on
calculating the exact position and orientation of
a robot’s end-effector, such as a gripper or tool.
This calculation is based on the joint angles or
joint displacements of the robot. By understand-
ing forward kinematics, we can establish a clear
relationship between the robot’s joint variables
and the pose of its end-effector in the workspace,
enabling precise control and manipulation of ob-
jects.

• Inverse kinematics refers to the computational
process of calculating the angles or displace-
ments of a robot’s joints in order to attain a spe-
cific position and orientation for its end-effector.
This involves solving for the joint variables of
the robot based on the desired pose of the end-
effector in the workspace, encompassing both its
position and orientation.

• Singularities in workspace analysis refer to spe-
cific points or regions within the workspace
where the robot’s Jacobian matrix becomes sin-
gular or nearly singular. These singularities pose
a challenge to the robot’s manipulability, making
it difficult to achieve certain end-effector poses
or execute specific motions.

• to optimize the workspace of the robot we must
select suitable optimization algorithms or tech-
niques for seeking optimal or nearly optimal
solutions to the workspace optimization issue.
Commonly employed optimization algorithms in
workspace optimization encompass genetic algo-
rithms, Monte Carlo methods, gradient-based

methods, and particle swarm optimization meth-
ods.

3. Forward Kinematics

As proven in [24] the set of two parallel rectangular
beams have the highest structural strength which is
used in this paper like in the following figure (1):

Figure 01: frames of a 3 dof serial robot

Assigning the frames helps to visualize the robot’s mo-
tion, furthermore to describe the position and orien-
tation of different components of the robot as shown

To create the matrix connecting two transforma-
tions, we only need a concise set of four parame-
ters to describe how one coordinate system aligns
with another. These parameters, known as Denavit-
Hartenberg (DH) parameters [25], offer a streamlined
approach to depict the connection between neighbor-
ing links in a systematic manner.and based on that we
find the following parameters :

an each term of the DH- parameters is defined as such:

1. α Link twist is the angle about Xi between
(Zi, Zi+1)

2. ai : Link length is the distance along Xi between
(Zi, Zi + 1)

3. di : Link offset is the distance along Zi between
(Xi−1, Xi)

4. θi : Joint angle is the angle about Zi between
(Xi−1,Xi)

The homogeneous transformation matrix T 0
i , which

defines the orientation and position of the ith frame
relative to the base coordinate system, is obtained
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by multiplying the successive transformation matrices
from T i

i−1 [11].

T 0
i =

i∏
j=1

Tj
j−13 (1)

T i−1
i =

[
R0

i P 0
i

0 1

]
(2)

where:
1. R0

i : rotational matrix from the ith coordinate
frame to 0th coordinate frame.

2. P 0
i : the position vector with respect to the 0th

coordinate frame.
the general formula of T 0

i is given by

T i−1
i =


cθi −sθi 0 αi−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1d1

0 0 0 1

 (3)

where c = cos and s = sin

therefore applying to our robot we find:

T 0
4 = T 0

1 .T 1
2 .T 2

3 .T 3
4 (4)

from 3 and 4 we find:

T 0
4 =


c1c23 −c1s23 s1 c1c23.L3 + c1c2L2

s1c23 −s1c23 −c1 s1c23.L3 + s1c23L2

s23 c23 0 s23.L3 + s2L2 + L1

0 0 0 1

 (5)

the last column represents the Cartesian coordinates
of the position of the origin of the end effector frame
4 with respect to the reference frame 0.

x = c1c23.L3 + c1c2L2

y = s1c23.L3 + s1c23L2

z = s23.L3 + s2L2 + L1

(6)

by finding the expressing of (x, y, z) in 6 we have
achieved the purpose of forward kinematics

4. Inverse kinematics

Now by using equation 6 we will try to derive the ex-
pression of (θ1, θ2, θ3)

y

x
= c1c23.L3 + c1c2L2

s1c23.L3 + s1c23L2
= s1

c1
(7)

y

x
= tanθ1 (8)

so:

θ1 = arctan2( y

x
) (9)

as for θ3 we start by summing the squares of 6 find :

c3 = x2 + y2 + z2 − (L2
1 + L2

2 + L2
3)

2L2L3
(10)

using the Pythagorean trigonometric identity:

s3 = ±
√

1 − c3 (11)

θ3 = 2.atan
s3

c3
(12)

and for θ2 we found:

θ2 = atan2[ (z − L1)(c1 − s1)
x − y

] − atan2[ (s3L3

c3L3 + L2
] (13)

the explicit procedure of how we got this result is well
explained in [24]

5. Workspace Identification

The workspace can be identified analytically using the
equations obtained from the forward kinematics cal-
culations. Since −1 ≤ cosθ ≤ 1 which means that:

−2L2L3 ≤ x2 + y2 + z2 − 2L1z + 2L2
1 − (L2

1 + L2
2 + L2

3 ≤ 2L2.L3

(14)
simplifying 14 :

(L2 − L3)2 ≤ x2 + y2 + (z − L12)2 ≤ (L2 + L3)2 (15)

we notice that the result is a sphere of a center at
(0, 0, L1), with an inner radius of (l2 − L3) and an outer
radius of (l2 + L3), the workspace is generated in Mat-
lab and shown in the figure where is the red surface
represents the boundaries of the workspace as shown
in figure (2).

figure 02: workspace simulation

5.1. Jacobien

The Jacobian of the position vector is important to
understand the robot workspace and its limitations,
by identifying singularities in the Jacobian matrix.
It’s also needed for the workspace optimisation, by
identifying optimal joint configurations that maximize
reachability and manipulability
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The position vector generated by a point on the end-
effector of a serial robot is expressed by;

G(q) =
[
x(q) y(q) z(q)

]
(16)

where we have G(q) ∈ R3 and q =
[
q1 q2 q3

]
which G(q) represents all the achievable points of the
workspace
The equation of the Jacobian J for a 3-DOF serial
robot is given by:

J =

 ∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

 (17)

where x, y, and z represent the coordinates of the end-
effector of the robot, and q1, q2, and q3 are the joint
angles

6. optimization methods

6.1. the genetic algorithm

Genetic algorithms are designed to solve optimiza-
tion problems, specially those where the work space
is complicated. they are widely used in various fields,
including engineering, data science, parameter opti-
mization, complex system design, and many others,
due to their ability to find effective solutions in com-
plex and multidimensional search spaces.

In the context of optimizing robot workspace, the op-
timization process typically begins with defining a set
of potential workspace configurations or parameters,
which can include factors such as joint angles, link
lengths, and end-effector positions. Each configura-
tion represents a potential solution to optimizing the
robot’s workspace.
The genetic algorithm evolves this initial set of
workspace configurations through multiple iterations.
At each iteration, the algorithm applies selection,
crossover, mutation, and natural selection operations
to refine the workspace configurations. to further ex-
plain we have the following steps:

1. Selection: Workspace configurations that lead to
improved workspace performance metrics, such
as increased reachability or reduced interference
with obstacles, are selected for further explo-
ration.

2. Crossover: Pairs of selected workspace config-
urations are combined to create new configura-
tions by exchanging components of their param-

eters. This exchange allows the algorithm to ex-
plore new combinations of parameters that may
lead to better workspace optimization.

3. Mutation:Occasionally, random changes are
introduced to the parameters of selected
workspace configurations to promote diversity in
the population of solutions and prevent conver-
gence to local optima.

4. Natural selection: Less effective workspace con-
figurations are discarded, while the most promis-
ing configurations are retained for subsequent it-
erations.

This iterative process continues until a termination
condition is met, such as a maximum number of it-
erations, insufficient improvement in the solution, or
convergence to an optimal solution. Ultimately, the
genetic algorithm provides a solution or an approxi-
mation of a solution to the optimization problem.
in the following figure (03) we visualize the process of
a GA:

figure 03: Process of the Genetic Algorithm

6.2. Proces of Particle Swarm Opti-
mization

Applying the Particle Swarm Optimization (PSO) to
optimize the workspace of a robot involves finding con-
figurations of the robot’s joints or parameters that
maximize the reachable workspace [26]. which usually
needs the following steps:

• Termination Criteria:: Define the termination
criteria for the PSO algorithm, which determines
when the optimization process should stop. This
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could be based on a maximum number of itera-
tions, a threshold for the improvement in fitness
value, or a combination of both.

• Convergence Analysis: Monitor the convergence
of the PSO algorithm by tracking the fitness val-
ues of the particles over iterations. Analyze the
convergence behavior to ensure that the algo-
rithm is progressing towards finding optimal or
near-optimal solutions for the robot’s workspace.

• Validation and Testing: Validate the optimized
robot configurations by conducting simulations
or physical experiments to verify their perfor-
mance in the real-world environment. Test the
robot’s reachability, manipulability, and other
workspace characteristics to ensure that the
optimization process has indeed improved the
robot’s capabilities.

• Fine-tuning and Iteration: If the obtained re-
sults are not satisfactory, consider fine-tuning
the PSO algorithm parameters or revisiting the
objective function definition to better capture
the desired workspace characteristics. Iterate
the optimization process until the desired level
of performance is achieved.

• Application and Deployment: Once the op-
timized robot configurations have been vali-
dated and fine-tuned, deploy them in practi-
cal applications where the improved workspace
can enhance the robot’s performance and effi-
ciency. This could include industrial automa-
tion, robotic surgery, or any other field where
precise and optimized robot movements are cru-
cial. . figure 04: Proces of Particle Swarm Optimization

algorithm

6.3. Monte Carlo Optimisation Algo-
rithm

Monte Carlo optimization utilizes random sampling
techniques to approximate solutions for optimization
problems, diverging from deterministic algorithms by
generating random samples and evaluating their per-
formance iteratively [18].
This method is beneficial for complex or high-
dimensional search spaces where traditional methods
struggle, efficiently exploring such spaces by sampling
numerous points and evaluating their performance to
provide a flexible and scalable optimization approach
as shown in figure 6.3.
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figure 05: Process of the monte carlo Algorithm

7. Discussion

When optimizing the workspace for serial manipula-
tors, each algorithm has its strengths. Genetic Algo-
rithms (GA) are highly adaptable to different prob-
lems but are complex and moderately fast. Particle
Swarm Optimization (PSO) is simpler to implement,
converges quickly, and is also highly adaptable. Monte
Carlo (MC) methods are the easiest to implement but
can be slower and require many samples for accuracy.
The best choice depends on the specific needs, balanc-
ing complexity, speed, and adaptability.

• Criteria:
◦ GA algorithm: natural selection and genet-

ics
◦ PSO algorithm: Simulates flocking behav-

ior
◦ MC algorithm: random sampling

• Optimization Type:
◦ GA algorithm: Global optimization
◦ PSO algorithm: Global optimization
◦ MC algorithm: Stochastic optimization

• Convergence Speed:
◦ GA algorithm: Moderate
◦ PSO algorithm: Fast
◦ MC algorithm: Variable

• Complexity:
◦ GA algorithm: High

◦ PSO algorithm: Moderate
◦ MC algorithm: Simple

• Adaptability:
◦ GA algorithm: Highly adaptable to differ-

ent problems
◦ PSO algorithm: Highly adaptable to differ-

ent problems
◦ MC algorithm: Adaptable but may require

many samples for accurate results
• Ease of Implementation:

◦ GA algorithm: Moderate to high complex-
ity

◦ PSO algorithm: Easy
◦ MC algorithm: Easy

7.1. kinematic modeling and optimiza-
tion algorithms

Kinematic modeling and optimization algorithms are
closely related in the context of serial manipulators.
Kinematic modeling provides a mathematical descrip-
tion of the manipulator’s motion, which includes the
relationships between joint parameters and the end-
effector’s position and orientation. This model is cru-
cial for defining the workspace and constraints that
the optimization algorithm will work with.

• Genetic Algorithms (GA): Kinematic models
help establish the fitness functions used in GA.
By simulating various configurations of the ma-
nipulator, GAs can explore a vast solution space
to find optimal configurations that maximize the
workspace or minimize certain kinematic con-
straints.

• Particle Swarm Optimization (PSO): PSO al-
gorithms benefit from the kinematic models to
evaluate the performance of each particle in the
swarm. The kinematic model ensures that each
potential solution (particle) adheres to the ma-
nipulator’s physical constraints and achieves the
desired optimization goals.

• Monte Carlo (MC) Methods: In MC methods,
kinematic models are used to randomly sample
configurations within the manipulator’s opera-
tional space. The kinematic model ensures that
the sampled configurations are valid, and the op-
timization process can then identify regions of
the workspace that meet specific criteria.

8. Conclusions
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these paper has presented an analysis of three degree
of freedom (3dof) serial robot in which the forward
and inverse kinematic analyses were carried out to es-
tablished the workspace. furthermore, a set of opti-
mization algorithms of workspace were explained. In
summary, kinematic modeling defines the search space
and constraints for optimization algorithms, ensuring
that the solutions found are physically feasible and op-
timal for the manipulator’s performance. While this
paper did not fully covered all the aspects about the
workspace analysis and optimization, but it did gave
a better understanding about it for future references
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A. Annex

The computation of Jacobian singularities has been
expanded to include the computation of sets of singu-
lar parameters. This new formulation allows for the
computation of the boundary of any manipulator with
any number of independent variables or degrees of
freedom. Additionally, the Jacobian method has been
extended to handle non-square Jacobians through a
row rank deficiency method. In this general formula-
tion, the resulting Jacobian is not square, and three
types of singular behavior can be observed. Singular
behavior refers to geometric entities within the acces-
sible set that pose difficulties in satisfying equation5.1.
If the Jacobian is a square matrix, the singularities can
be computed by setting the determinant of the Jaco-
bian equal to zero. therefore

0 =

 ∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

 (18)

By solving equation 5.1 with respect to the indepen-
dent variables we get the following singularites,

• Rank-deficiency singularity set: this singularity
occurs when

S1 = p ∈ Rn; dimNull(Ĵ) ≥ 1.forsomeq
}

(19)

The constant generalized coordinates subset p
from q makes the analytic Jacobian singular,
while Null represents the dependent rows in the
matrix Ĵ.

• Rank-deficiency of reduced-order accessible set
When reaching the boundary of a surface, the
edge of a geometric entity is swept. In order to
determine these entities, the accessible set needs
to be reduced by substituting a value for one of
the parameters. Both upper and lower limits
are taken into consideration. Once the set is re-
duced, the null space criteria of equation5.1 is
applied. Each variable in the set is constrained
by upper and lower limits, By substituting a
limit (qi min or qi max) into the wrist point,
the position vector for the reduced order set is
obtained, resulting in the set losing one degree
of freedom by fixing one link.

S2 = p ∈ Rn; dimNull(Ĵ) ≥ 1.forsomeq∗}
(20)
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• Constraint singularity set: boundary is reached
when the number of constant parameters equals
the dimensions of Xn

w or P 0
n . Entities that are

due to active parameter constraints are called
constraint singularity sets and are defined by:

S3 = p ∈ Rn :
[
q0

i q0
j

]
fori, j = 1ton; i ̸= j

}
(21)

The constraint singularity set is a combination of
all constant parameters, i.e. for each combina-
tion of the limits of the constraints, there exists
a hyperentity.

• total singularities set is the combinition of the
previous ones and are given by:

S = S1 ∪ S2 ∪ S3 (22)
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