
génie electrique et informatique industriel

Project Report to Obtain the Diploma of
Master

- Field -
Telecommunication

- Specialty -
Telecommunication Systems and Networking

- Subject -

Using the Tello Edu drone for
educational purposes.

Realized by
Khaled Gasmi & Yasser Cherfaoui

Members of the Jury :
Mme Khadidja Zellat Chair
Mme Djamila Bendouda Examiner
Mme Nafissa Rezki Examiner
Mr El Hadi Khoumeri Supervisor

Algiers, Jun 25th 2024
Academic year 2023-2024

Dedication

Khaled Gasmi
My father, whose unwavering support fueled my determination throughout this journey.

My mother, whose spiritual encouragement provided unwavering strength.
My siblings, for their constant love and understanding.

To all my friends, especially those closest to me, for their unwavering camaraderie and belief
in my abilities.

Dr. El Hadi Khoumeri, our supervisor, whose guidance and expertise were instrumental in
shaping this project.

To all those dear to me and to everyone who, near or far, offered their support in countless
ways.

Yasser Cherfaoui
To my beloved parents, whose unwavering support and encouragement have been my greatest

strength throughout this journey. Their love and sacrifices have laid the foundation for all my
achievements.

To my esteemed mentor, Mr. El-Hadi Khoumeri, I extend my deepest gratitude. Your
guidance, wisdom, and unwavering belief in my abilities have been invaluable.

To my dear friends, Ilyas Brahmi and Mohamed Amine Djaballah, thank you for your
constant companionship, support, and encouragement. Your friendship has been a source of

great motivation and joy.

Acknowledgment

We would like to express our deepest gratitude to everyone who has supported us throughout
the development of this thesis. This work would not have been possible without the guidance,
encouragement, and assistance of many individuals.
First and foremost, we would like to thank our parents for their unwavering support and love.
Their trust in us has been a constant source of motivation and strength, allowing us to pursue
our goals with confidence and determination. We are forever grateful for their sacrifices and
belief in our abilities.
We are immensely grateful to our supervisor, Mr El Hadi Khoumeri, for their invaluable guid-
ance, insightful advice, and continuous encouragement throughout this project. Their expertise
and dedication have been instrumental in shaping this work, and their constructive feedback
has significantly improved the quality of this thesis. Thank you for being a constant source of
inspiration and for believing in our vision.
A special thank you goes to our friends, who have stood by us since the beginning of this journey.
Your support, encouragement, and understanding have been vital in helping us overcome the
challenges we faced. We are deeply thankful for your companionship and for always being there
to share both the highs and lows of this endeavor.
This thesis presents the development of a user interface to monitor drone states and notify users
of smoke, fire, or human presence in forests. It is the culmination of hard work, perseverance,
and the collective support of those mentioned above. We are sincerely grateful to each one of
you for your contributions to this project.

Abstract

Conducting a comprehensive review of the use of the DJI Tello drone in educational projects.
Exploring the various possibilities offered by this drone for the development of learning in
computer programming and artificial intelligence.

Résumé

Faire un état de l’art complet sur l’utilisation du drone DJI Tello dans des projets éducatifs. Ex-
plorer les différentes possibilités offertes par ce drone pour le développement de l’apprentissage
en programmation informatique et en Intelligence Artificielle.

Contents

List of Figures iii

List of Tables iv

Introduction 1

1 Tello drone 2
1.1 Introduction . 2
1.2 Technical Characteristics of Tello EDU Drone 2

1.2.1 Components and Specifications . 2
1.2.2 Operational Characteristics . 3

1.3 Educational Applications of Tello EDU Drone 3
1.3.1 Programming and Coding . 3
1.3.2 Educational Projects . 4

1.4 Individual Drone Applications . 4
1.4.1 Basic Missions . 4

1.5 Swarm Applications . 5
1.5.1 Swarm Definition: . 5
1.5.2 Environment Setup: . 6
1.5.3 Swarm Missions: . 6

1.6 AI Applications with Tello EDU Drone . 6

2 Android App to control tello 7
2.1 Introduction . 7
2.2 Android Studio . 7
2.3 App Development . 7
2.4 Initiating the Project on Android Studio . 9
2.5 Coding the UI . 9
2.6 Developing a Library to Control Tello Drone . 10

2.6.1 Library Overview . 10
2.6.2 Command Set . 13
2.6.3 Utility Functions . 13

2.7 Decoding Video Stream . 13
2.7.1 H.264 . 14
2.7.2 Decoding the Frames Received . 14

2.8 Binding the UI With Library Using View Model 16
2.8.1 ViewModel Implementation . 17
2.8.2 UI implementation . 18

2.9 App Testing and Validation . 20

i

Conclusion 23

Appendix 24

A Android concepts definition 24
A.1 Coroutines . 24
A.2 LiveData data type . 24
A.3 Scope . 24
A.4 Floating action button . 24
A.5 Activity . 25
A.6 Manifest file . 25
A.7 Socket . 25

B Layout in jetpack compose 26
B.1 Column Layout . 26
B.2 Row Layout . 26
B.3 Box Layout . 27
B.4 Modifiers in Jetpack Compose . 27

C Important function implemented in the App 28
C.1 Observation of LiveData in a Composable Function 28

C.1.1 Function Description . 28
C.1.2 Implementation Details . 29

C.2 Conversion of Image to Bitmap . 29
C.2.1 Function Description . 30
C.2.2 Implementation Details . 30

Bibliography 31

ii

List of Figures

1.1 tello drone . 2
1.2 swarm environment . 6

2.1 Figma design for the application . 8
2.2 Custom Figma icons for the application . 8
2.3 App UI results in light and dark modes. 11
2.4 Folders structure . 16
2.5 Joystick Angles . 20
2.6 Launching the App . 21
2.7 Connection the app to drone . 21
2.8 Clicking the stream drop down menu . 21
2.9 Drone streams the video . 22

iii

List of Tables

1.1 Description of Tello EDU Components . 3
1.2 Operational Characteristics . 3

iv

Introduction

The advent of drone technology has revolutionized various industries, from entertainment and
photography to agriculture and logistics. Among these technological marvels, the Tello EDU
drone stands out for its versatility and educational value. Developed by Shenzhen Ryze Technol-
ogy in collaboration with DJI and Intel, the Tello EDU drone is designed specifically to provide
an engaging learning platform for programming, robotics, and STEM (Science, Technology,
Engineering, and Mathematics) education.
This thesis explores the capabilities and applications of the Tello EDU drone, focusing on its
integration into educational environments and the development of an Android application for
real-time drone control. By leveraging the drone’s advanced features and user-friendly design,
we aim to enhance the learning experience for students and educators alike.
Chapter 1 delves into the technical characteristics of the Tello EDU drone, detailing its com-
ponents, specifications, and operational capabilities. This chapter also highlights the drone’s
educational applications, illustrating how it can be used to teach programming and conduct
various educational projects.
Chapter 2 transitions to the practical aspect of drone control, guiding the reader through the
development of an Android application that transforms an Android device into a remote control
for the Tello drone. The chapter covers the entire development process, from setting up the
project in Android Studio to implementing the user interface using Jetpack Compose. It also
includes the creation of a custom library to manage drone operations and the decoding of video
streams for real-time monitoring.
The subsequent sections focus on the integration of the UI with the library using the MVVM
(Model-View-ViewModel) design pattern. This approach ensures a clean and maintainable code
structure, facilitating future enhancements and scalability. Detailed explanations of ViewModel
and UI implementations are provided, showcasing the methods used to control the drone and
display its status on the application interface.
This thesis not only highlights the technical and educational potential of the Tello EDU drone
but also provides a comprehensive guide for developing a functional and scalable drone control
application. By bridging theoretical knowledge and practical application, this work aims to
contribute to the fields of drone technology and education, inspiring further innovation and
exploration.

1

Chapter 1

Tello drone

1.1 Introduction
The Tello EDU drone [1], developed by Shenzhen Ryze Technology in collaboration with DJI
and Intel, is designed specifically for educational purposes. Its compact design, ease of use,
and advanced features make it an ideal tool for teaching programming, robotics, and STEM
(Science, Technology, Engineering, and Mathematics) concepts. The Tello EDU drone supports
multiple programming environments and languages, allowing educators to tailor their teaching
to various skill levels and subjects. The drone’s capabilities enable students to engage in hands-
on learning, fostering creativity, problem-solving, and technical skills.

Figure 1.1: tello drone

1.2 Technical Characteristics of Tello EDU Drone

1.2.1 Components and Specifications
The Tello EDU drone is compact and lightweight, with dimensions of 98×92.5×41 mm and a
weight of 87 grams. It features an integrated camera capable of 720p video streaming and 5

2

MP photos, making it suitable for various educational tasks involving image processing and
computer vision. The drone is equipped with a telemetric sensor, barometer, LED, vision
positioning system, and Wi-Fi connectivity, enhancing its operational capabilities [2].

Component Description
Propellers 3 inches
Engines Brushless motors
Drone Status Indicator LED
Camera 720p HD video, 5 MP photos
Power Button On/Off switch
Antennas Wi-Fi connectivity
Vision Positioning System Infrared and camera-based
Battery 1100 mAh, 3.8 V LiPo
Micro USB port For charging
Propeller protectors For safe indoor use

Table 1.1: Description of Tello EDU Components

1.2.2 Operational Characteristics
The Tello EDU drone is designed primarily for indoor use. It has a maximum flight distance
of 100 meters, a maximum speed of 8 m/s, and a flight time of approximately 13 minutes
on a single charge. The maximum flight height is 30 meters, providing ample range for most
educational activities.

Characteristic Specification
Maximum Flight Distance 100 meters
Maximum Speed 8 m/s
Maximum Flight Time 13 minutes
Maximum Flight Height 30 meters

Table 1.2: Operational Characteristics

1.3 Educational Applications of Tello EDU Drone
The Tello EDU drone offers a versatile platform for a wide range of educational and technical
applications. Its integration into curricula enhances learning experiences in both programming
and hands-on project development.

1.3.1 Programming and Coding
Introduction to Drone Programming:

Programming the Tello EDU drone provides an engaging way to learn coding. Learners write
code to control the drone’s movements and functions, including sending commands, receiving
data, and processing feedback to ensure smooth and responsive operation.

3

Core Programming Skills Development:

Working with the Tello helps to develop essential programming skills. They learn algorithmic
thinking and problem-solving, and gain a practical understanding of computational concepts
such as loops, conditionals, and functions.

Implementing Control Functions:

We can program the drone for basic controls such as takeoff, landing, and directional move-
ments, as well as advanced maneuvers including rotations, flips, and autonomous missions.

1.3.2 Educational Projects
Obstacle Courses:

Students can design and program the drone to navigate through obstacle courses, applying
concepts of pathfinding and sensor integration. This hands-on activity reinforces understanding
of spatial awareness and real-time decision-making.

Search and Rescue Simulations:

Simulating search and rescue operations with the Tello EDU drone teaches us about autonomous
navigation and the integration of various sensors and technologies. This application underscores
the importance of precision and reliability in programming.

Environmental Monitoring:

The drone can be programmed for environmental monitoring tasks, such as surveying areas or
collecting data on specific parameters. This project highlights the drone’s capability in data
collection and environmental science, fostering interdisciplinary learning.

1.4 Individual Drone Applications
The Tello EDU drone provides numerous opportunities to engage in both basic and advanced
programming tasks. These activities are designed to enhance the understanding of coding,
control systems, and innovative applications.

1.4.1 Basic Missions
Programming Environment:

We can program the Tello EDU drone using a variety of operating systems (Windows, Linux,
macOS) and programming languages (Python, Scratch, kotlin, Java, C++). This flexibility
allows learners to use tools they are comfortable with or to experiment with new environments.

Simple Missions

In basic missions, we program the drone to perform straightforward tasks. For example, they
might write code for the drone to take off, fly in a square pattern, and then land. These simple

4

exercises helps to grasp the fundamentals of drone control and the basics of programming, in-
cluding writing and debugging code, as well as understanding how different commands translate
into drone movements. the following python code do these simple missions:

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
drone_add = ('192.168.10.1', 8889)
sock.bind(('', 9000))
while True:

try:
msg = input('')
if not msg:

break
if 'end' in msg:

sock.close()
break

msg = msg.encode()
sent = sock.sendto(msg, drone_add)

except Exception as err:
print(err)
socket.close()
break

And we can receive its state using this python code:

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(('', 8890))
while True:

try:
data, server = sock.recvfrom(1024)
print(data.decode())

except Exception as err:
print(err)
socket.close()
break

1.5 Swarm Applications

1.5.1 Swarm Definition:
A swarm comprises multiple drones collaborating to perform collective tasks, inspired by the
natural behaviors of bees or birds. This collaborative approach enhances efficiency in applica-
tions such as search and rescue operations or environmental monitoring, allowing for compre-
hensive area coverage.

5

1.5.2 Environment Setup:
Setting up a swarm involves configuring multiple drones to connect to a central control system
as it is shown in the figure 1.2, often facilitated by a router. Each drone operates in coordination
with the others, executing commands synchronously to achieve the desired collective behavior.

Figure 1.2: swarm environment

1.5.3 Swarm Missions:
Swarm missions extend the principles of individual drone missions to a coordinated group.
These missions include synchronized takeoff, precise movement patterns, and coordinated land-
ing, demonstrating the power of collective operation.
Advanced applications of swarm technology involve real-time control through a graphical in-
terface, enabling users to issue commands to the entire swarm or to individual drones. This
capability supports complex tasks such as detailed mapping, comprehensive surveillance, and
intricate coordinated maneuvers, such as drone "dances."

1.6 AI Applications with Tello EDU Drone
Implementing AI in Tello drone applications is remarkably accessible, thanks to its user-friendly
design and extensive support for educational purposes. The Tello drone is compatible with var-
ious programming environments allowing both beginners and advanced users to experiment
with AI algorithms seamlessly. The availability of comprehensive SDKs facilitates the integra-
tion of AI functionalities, enabling developers to easily implement features like autonomous
flight, object recognition, and real-time data processing. Additionally, Tello’s lightweight and
portable design, coupled with its affordability, makes it an excellent tool for schools and univer-
sities looking to incorporate AI and robotics into their curriculum. The drone’s built-in sensors
and camera provide a rich set of data for AI applications, making tasks like computer vision
and machine learning projects straightforward. Overall, the combination of intuitive software,
robust hardware, and extensive community support makes the implementation of AI in Tello
drone applications both straightforward and highly educational.

6

Chapter 2

Android App to control tello

2.1 Introduction
In previous discussions, we explored the educational potential of the Tello drone and various
practical applications it offers. Now, it’s time to delve into a hands-on example of programming
the Tello drone and controlling it in real-time.
This chapter will guide you through the development of an Android application that transforms
our Android phone into a remote control for the Tello drone. This app will manage all the
drone’s movements and receive live video streams, enabling control even when the drone is out
of sight.
We will cover the key concepts of Android development, incorporating the latest technologies
such as Jetpack Compose for the user interface instead of traditional XML files. Topics will
include design patterns, UI creation with Jetpack Compose, and writing logic code in Kotlin to
communicate with the drone and decode the video stream. This project serves as an excellent
introduction to both Android development and Tello drone control.

2.2 Android Studio
Android Studio [3] is the official integrated development environment (IDE) for Android app
development, endorsed by Google. It offers a comprehensive suite of tools and features specifi-
cally designed to streamline the development process. With its powerful code editor, intuitive
layout editor, and robust debugging tools, Android Studio provides a seamless experience for
developers. It supports the latest Android APIs and libraries, integrates with version control
systems, and offers features like intelligent code completion and real-time error checking. These
capabilities make Android Studio the best IDE for creating high-quality, efficient Android ap-
plications.
We are utilizing the latest stable release of Android Studio, codenamed "Jellyfish," which was
launched in 2023. This version brings enhanced performance, new features, and improved
stability.

2.3 App Development
To develop our android application [4], we first need to define the functionalities we aim to
integrate, ensuring a seamless user experience. Our primary objective is to enable live control
of the Tello drone using an Android device. The key functionalities identified are as follows:

7

• Button for initiating communication

• Buttons for takeoff and landing

• Joystick for forward, backward, left, and right movement

• Joystick for up, down, and left and right rotation around the Z-axis

• Dropdown list for toggling the video stream on or off

• Joystick for executing drone flips

• Indicators for displaying drone status, including battery level, temperature, altitude, con-
nection status, and streaming status

These functionalities were chosen based on their relevance and necessity for effective drone
control, as supported by previous research.
After identifying the required functionalities, we used Figma, a widely recognized tool for
UI/UX design, to visualize and refine our application layout. Through iterative design pro-
cesses, we achieved a design that is both intuitive and user-friendly, thereby enhancing the
overall user experience 2.1.

Figure 2.1: Figma design for the application

In addition to the layout, we designed custom icons specifically tailored to our application’s
needs. These icons include the joystick knob for up and down commands, as well as icons for
drone takeoff and landing, ensuring a cohesive and visually appealing interface 2.2.

Figure 2.2: Custom Figma icons for the application

The implementation of these elements was guided by best practices in UI/UX design and
Android development, ensuring that the application is not only functional but also provides a
superior user experience.

8

2.4 Initiating the Project on Android Studio
In Android Studio Jellyfish, we start by creating a new project and selecting an empty Jetpack
Compose project template. Kotlin is chosen as the programming language over Java, with the
minimum API level set to 24 and the maximum API level to 34.
Upon project creation, we consider the design pattern and package hierarchy. Although the
project is relatively small, containing only one activity, and may not necessitate rigorous adher-
ence to design patterns, it is prudent to adopt a sophisticated and well-organized code structure.
This approach ensures maintainability and scalability, particularly if the project is expanded or
made public on GitHub. Writing clean, well-structured code is beneficial for other developers
who might clone the repository and for future enhancements.
To develop our app, we chose the most popular design pattern among the Android commu-
nity, which is MVVM (Model-View-ViewModel). The MVVM pattern is distinguished by its
components:

• Model: Represents the data and business logic of the application. It is responsible for
retrieving and storing data, usually from a database or a web service. The Model is
independent of the user interface.

• View: Represents the user interface of the application. It displays the data provided by
the ViewModel and sends user actions (like button clicks) to the ViewModel.

• ViewModel: Acts as an intermediary between the Model and the View. It holds the
presentation logic, including data binding and commands that the View can call. The
ViewModel exposes the data and commands to the View in a way that is easy to bind.

In our application, the Model is the library we created to communicate with the drone, the
View is the user interface logic, and the ViewModel consists of the functions that the UI can
call to perform actions within the application.

2.5 Coding the UI
In the process of coding the Figma UI design (see Figure 2.1), we chose Jetpack Compose [5].
Jetpack Compose is a modern toolkit for building native Android UIs using a declarative
approach. It simplifies UI development by allowing us to describe the UI in Kotlin code,
which is then rendered dynamically. This approach reduces boilerplate code, promotes a more
intuitive and flexible UI design, and enables real-time UI updates and previews. It offers
easier state management, interoperability with existing Android views, and a streamlined API
that enhances productivity and code maintainability. Overall, Jetpack Compose accelerates
development and improves the quality of our Android applications.
In the UI, the main components is the joysticks. Since there is no predefined joystick component,
we had two options: use someone else’s code from GitHub or code it ourselves. Given that this
project is for educational purposes, we decided to code it ourselves. One way to achieve this is
by using the Canvas API of the Jetpack Compose library. We draw the base as a circle, add
the directions, and draw the knob. We make it movable and save its position in a mutable state
for later use.

var knobPosition by remember { mutableStateOf(Offset.Zero) }
var isDragging by remember { mutableStateOf(false) }

9

Additionally, we save the state of whether the knob is being dragged or not. The code for the
knob is as in the code snippet below. Instead of drawing the knob directly, we set it as an
image because we are using complex knobs, like a drone icon or an airplane control handle,
which would be difficult to draw directly on the canvas.

private fun DrawScope.drawJoystickKnob(position: Offset, knobImage:
ImageBitmap, joyStickSize: Int) {↪→

drawImage(knobImage, Offset((joyStickSize+40)/2f,
(joyStickSize+40)/2f) + position)↪→

}

If we leave the knob like this, it will move all around the screen, which is not desirable. There-
fore, we set limitations on its movement. In our case, it is useful to have the coordinates in
polar coordinates because the radius can represent the strength (e.g., speed of the drone), and
the angle represents the direction. We created a function to perform this transformation from
Cartesian coordinates.

private fun Offset.getDistance(other: Offset): Float {
return kotlin.math.sqrt((x - other.x).pow(2) + (y - other.y).pow(2))

}

private fun Offset.getAngle(other: Offset): Float {
return kotlin.math.atan2((y - other.y).toDouble(), (x -

other.x).toDouble()).toFloat()↪→

}

We organized this code in a component folder so we can call it from the main UI file and reuse
it for all the joysticks in the application by simply changing the knob and base shape. This is
one of the advantages of Jetpack Compose, as opposed to using XML, where we would have to
copy and paste the code whenever needed.
For other components, we used simple components already available in the Compose library.
Additionally, we used Material UI for beautiful and functional components, such as floating
action buttons, images, texts, and drop-down menus. These implementations are relatively
straightforward. The final results are shown in Figure 2.3.

2.6 Developing a Library to Control Tello Drone
In our project, we developed a Kotlin library specifically designed to control the Tello drone,
aimed at enhancing its utility in educational applications. This library offers a comprehensive
suite of functions to manage various drone operations, encompassing nearly all the function-
alities provided by the Tello SDK [6]. While our application leverages only a subset of these
features to meet our specific needs, the library is versatile and can be utilized by other devel-
opers or learners to create a wide range of applications. This makes it an invaluable resource
for anyone looking to explore and innovate with the Tello drone in and Android app.

2.6.1 Library Overview
The Tello control library offers a comprehensive suite of functionalities designed to facilitate
seamless interaction with the Tello drone. This robust library supports a range of capabilities,
including command-based control, state reading, and real-time video streaming [2].

10

(a) Entering screen in dark mode. (b) Control screen in dark mode.

(c) Entering screen in light mode. (d) Control screen in light mode.

Figure 2.3: App UI results in light and dark modes.

This class provides an array of methods to manage various tasks such as establishing a con-
nection with the drone, issuing commands for flight operations, and handling video streams
efficiently. By encapsulating these core functionalities within a user-friendly file, the Tello
control library simplifies the process of drone control and enhances the overall user experience.

Connection Handling

The library enables seamless connection to the Tello drone via a WiFi network. The connect
method establishes a connection to the drone’s command interface.
The drone’s IP address is 192.168.10.1, and commands can be sent through port 8889. To
switch the drone to SDK mode, we send the "command" instruction. Once the drone receives
this command, it will execute any subsequent commands. The following functions demonstrate
how to establish the connection and prepare the Tello drone to execute commands.

@Throws(IOException::class)
fun connect(ip: String = "192.168.10.1", port: Int = 8889) {

socket = DatagramSocket(port)
socket.connect(InetAddress.getByName(ip), port)
sendCommand("command")

}

Additionally, the stateConnect method connects to the state interface through port 8890 to
receive the state of the Tello drone, such as battery level, altitude, speed, and more. This
function will receive the data as follows:

pitch:%d;roll:%d;yaw:%d;vgx:%d;vgy:%d;vgz:%d;templ:%d;temph:%d;tof:%d;
h:%d;bat:%d;baro:%.2f;time:%d;agx:%.2f;agy:%.2f;agz:%.2f;\r\n

11

Command Execution

The library provides a set of methods to control the drone, with the most important being the
sendCommand method, as most other methods in the library rely on it. This method takes a
command string, checks if the command is not empty, and the binding state of the command-
sending socket, encodes the command, and sends it to the drone. All of this logic is handled
within a try-catch block for error handling.

@Throws(IOException::class)
fun sendCommand(command: String): String {

try {
if (command.isEmpty()) return "Empty command."
if (!socket.isConnected) return "Socket Disconnected."

val sendData = command.toByteArray()
val sendPacket = DatagramPacket(sendData, sendData.size,

socket.inetAddress, socket.port)↪→

socket.send(sendPacket)

...

return response
} catch (e: Exception) {

Log.d("exception in sendCommand", "send command exception $e")
return "$e"

}
}

Real-time Video Streaming

One of the key features of the library is its ability to receive and process the video stream
from the drone. The receiveStream method handles the video stream and decodes it using
Android’s MediaCodec.
The drone transmits the video stream via the UDP protocol on port 11111. The video is sent as
a series of binary data, which must be decoded to obtain the desired frames for display. This
process will be explained in more detail in later sections. Below is a simplified version of the
function:

@Throws(IOException::class)
fun receiveStream(port: Int = 11111) {

// Setup MediaCodec and DatagramSocket for video streaming
val format =

MediaFormat.createVideoFormat(MediaFormat.MIMETYPE_VIDEO_AVC, 960, 720)↪→

// Setup format and codec
m_codec =

MediaCodec.createDecoderByType(MediaFormat.MIMETYPE_VIDEO_AVC)↪→

m_codec.configure(format, null, null, 0)
m_codec.start()

// Receiving video stream

12

videoSocket = DatagramSocket(null)
videoSocket.reuseAddress = true
videoSocket.broadcast = true
videoSocket.bind(InetSocketAddress(port))
val message = ByteArray(2048)
while (true) {

val videoPacket = DatagramPacket(message, message.size)
videoSocket.receive(videoPacket)
videoBytes.postValue(videoPacket.data)
// Further processing and decoding

}
}

2.6.2 Command Set
The library supports a wide range of commands for controlling the drone, including basic flight
commands such as takeoff and land, as well as more complex maneuvers like flips and rotations.
These commands are executed using the sendCommand function, which encapsulates all the
necessary logic to communicate with the Tello drone. By defining these commands within
the library rather than in the ViewModel, we ensure scalability and flexibility. This design
allows for the development of higher-level functions that can, for example, execute a sequence
of commands autonomously. Leveraging Kotlin’s functional programming capabilities, we can
create sophisticated control routines that meet the requirements of various educational and
research applications.
@Throws(IOException::class)
fun takeOff() = sendCommand("takeoff")

@Throws(IOException::class)
fun land() = sendCommand("land")

@Throws(IOException::class)
fun flip(direction: FlipDirection) = sendCommand("flip

\${direction.direction}")↪→

2.6.3 Utility Functions
To ensure robust command validation, the library includes several utility functions to check the
validity of command arguments. These functions help maintain the integrity of the commands
sent to the drone.
private fun Int.isValidDistance() = this.toMetric() in distanceRange
private fun Int.isValidSpeed() = this in speedRange
private fun ArrayList<Int>.isValidDistance() = this.all {

it.isValidDistance() }↪→

2.7 Decoding Video Stream
the Tello drone encodes the camera frames in H.264 format before broadcasting them. There-
fore, it is necessary to decode the video stream upon receiving it to retrieve and display the

13

frames. Naturally, the decoding process must use the same H.264 format used for encoding.

2.7.1 H.264
H.264 [7] is a widely used video compression standard known for its high compression efficiency
and broad compatibility. It reduces the size of video files while maintaining quality, making
it ideal for streaming and storage. Decoding H.264 involves interpreting and decompressing
the encoded video data using Sequence Parameter Set (SPS) and Picture Parameter Set (PPS)
headers, which provide essential information about the video stream’s configuration and in-
dividual frames. This process enables playback of high-quality video on various devices and
platforms.

2.7.2 Decoding the Frames Received
In this section, we delve into the receiveStream() function to understand its components and
how it decodes the received video stream. This process requires some external libraries, which
we import using the gradle build system. We add these dependencies and synchronize gradle
to save the changes and import the libraries. The required libraries are media, jcodec, and
exoplayer. The following lines of code are added to the build.gradle file:

implementation("androidx.media:media:1.7.0")
implementation("org.jcodec:jcodec:0.2.3")
implementation("com.google.android.exoplayer:exoplayer-core:2.15.1")

First, we define the headers of the H.264 format, specifically the SPS and PPS. We then declare
the format using MediaFormat, specifying characteristics of our stream such as height, width,
frame rate (FPS), and resolution. The following code snippets illustrate this:

val headerSps = byteArrayOf(0, 0, 0, 1, 103, 77, 64, 40, -107, -96, 60, 5,
-71)↪→

val headerPps = byteArrayOf(0, 0, 0, 1, 104, -18, 56, -128)
val format = MediaFormat.createVideoFormat(MediaFormat.MIMETYPE_VIDEO_AVC,

960, 720)↪→

After setting these video specifications, we initialize the MediaCodec and place it within a
try-catch block to handle IO exceptions:

try {
m_codec =

MediaCodec.createDecoderByType(MediaFormat.MIMETYPE_VIDEO_AVC)↪→

m_codec.configure(format, null, null, 0)
startMs = System.currentTimeMillis()
m_codec.start()

} catch (e: IOException) {
e.printStackTrace()
return

}

14

Next, we create a list of byteArray to store the bytes received from the datagram socket, which
is used to receive the stream on port 11111. We open a while loop to continually capture the
UDP stream. The loop condition is set to true, and we include a breaking condition to exit the
loop if the streaming socket is closed.
We also write the logic to save the received byteArray until they accumulate to a certain
amount necessary for processing. The following code processes the byteArray when it contains
at least one frame:

if (len < 1460) {
destPos = 0
val data = output.toByteArray()
output.reset()
output.flush()
output.close()
val inputIndex = m_codec.dequeueInputBuffer(-1)
if (inputIndex >= 0) {

val buffer = m_codec.getInputBuffer(inputIndex)
if (buffer != null) {

buffer.clear()
buffer.put(data)
val presentationTimeUs = System.currentTimeMillis() -

startMs↪→

m_codec.queueInputBuffer(inputIndex, 0, data.size,
presentationTimeUs, 0)↪→

}
}

}

In the above code:

• When a packet with a length less than 1460 bytes is received, it indicates the end of a
frame.

• destPos is reset and the complete frame is processed.

• The frame data is copied into the codec’s input buffer and queued for decoding.

After this, we extract the decoded frames:

val image = m_codec.getOutputImage(outputIndex)

Finally, we convert the frame into a bitmap format to display it on the screen:

val bm = imgToBM(image)

There is no predefined function for this transformation, so we create our own function. The
source code for this function is provided on GitHub.
One problem we encounter is that when we receive the UDP stream, we want to save it live with-
out downloading it to the phone’s disk. This can be achieved using the queue data structure.
A queue follows the First-In-First-Out (FIFO) principle, making it suitable for temporarily
storing frames for display:

15

val bm = imgToBM(image)
try {

if (!queue.isEmpty()) {
queue.clear()

}
queue.put(bm)

} catch (e: InterruptedException) {
e.printStackTrace()

}

We declare this queue as an argument to the function, allowing us to call the function as needed
and pass the queue without any changes.

2.8 Binding the UI With Library Using View Model
In this section, we will discuss the binding of the UI and the library to make our application
functional. As mentioned previously, we are using the MVVM design pattern to construct this
application. Consequently, we have structured the packages as illustrated in Figure 2.4.

Figure 2.4: Folders structure

Package structure is crucial in Android development. The way we organize them can vary based
on our project requirements. A well-structured project can be highly scalable in the future,
whether it involves numerous features or minimal expansion. In our application, we have two
screens: an entry screen, which displays the app logo and a button to enter the control screen,
and the control screen itself.
Since our project has potential for future scalability—such as adding auto-patrolling using mis-
sion pads or integrating a face recognition model for the drone to follow its user—we have chosen

16

to organize our project according to features. Currently, we have one primary feature: control-
ling the drone. Within the feature package, we have created sub-packages for data (containing
data logic), domain (containing business logic), and presentation (containing everything related
to the UI, such as components and view models). Additionally, we included a utils package
for other necessary classes related to the control feature. We also created a separate package
called lib to store our library.

2.8.1 ViewModel Implementation
We created the ViewModel file and named it LiveControlViewModel.kt. This file is located
in the presentation package of the control feature. In this file, we write functions necessary to
control our drone and retrieve its state, such as checking whether it is connected or not and if
it is streaming nor not.
First, since our library is a class, we need to create an instance of this class:

val tello = Tello()

Now we can use the tello object to access all the properties and methods of the class library.
Let’s examine the connectivity function:

fun connect() {
viewModelScope.launch(Dispatchers.IO) {

tello.connect()
delay(1500)
stateConnect()
if (tello.isConnected) {

isConnected.postValue(true)
}

}
}

The above function uses the connect() method from our library. Although it may seem
redundant, it is not. We use A in this function and post the connection state to a mutable A
variable to visualize this state on the screen. First, let’s clarify why we used coroutines and
LiveData variables.
We are sending and receiving data from the drone while interacting with the UI. Since UI
components run on the main thread, executing these communication processes on the main
thread would cause temporary UI freezes, which is undesirable. Therefore, we use coroutines.
Creating and running a coroutine is straightforward. As shown in the connect() function code
snippet, we use:

viewModelScope.launch(Dispatchers.IO) {}

In this declaration, we observe two things which are the A and the dispatcher. In this example,
we chose viewModelScope and Dispatchers.IO. We selected viewModelScope to ensure that
our function does not run outside the lifecycle of our ViewModel, which itself is related to
the app’s lifecycle. This prevents data leakage and performance issues due to long-running
background processes. We chose Dispatchers.IO because it is optimized for IO-bound tasks,
such as reading from or writing to files, accessing databases, and making network requests.
The function posts the connection state to a mutable LiveData variable, allowing us to observe
the changes and display them on the screen later on when we need to. We also observe other
mutable data, such as streaming state and Tello state:

17

val isConnected = MutableLiveData(false)
val telloStates = MutableLiveData<Map<String, String>>()
val isStreaming = MutableLiveData(false)

In Kotlin, MutableLiveData can hold any data type. For example, we have MutableLiveData
for Boolean and another for a Map of strings.
We obtain the values for this map from the receiveTelloState() function, which captures
the state sent from Tello as a string and transforms it into a map for easier data retrieval:

private fun stateConnect() {
viewModelScope.launch(Dispatchers.IO) {

while (true) {
val text = tello.stateConnect()
val keyValuePairs = text.split(";")
val sensorData: MutableMap<String, String> =

mutableMapOf()↪→

for (pair in keyValuePairs.indices) {
if (pair == keyValuePairs.lastIndex) break
val (key, value) =

keyValuePairs[pair].split(":")↪→

sensorData[key] = value
}
telloStates.postValue(sensorData)
delay(200)

}
}

}

In this function, we use the stateConnect() method from the library to receive the state as a
string. We then perform some logic to transform the string into a map, as shown in the code
snippet.

This overview highlights the work done in the ViewModel and our approach. All other functions
follow a similar pattern, creating functions for commands like disconnect, stream on, stop
stream, and take off...

2.8.2 UI implementation
In this section, we discuss how our UI responds to user actions, such as clicking a A or moving
the joystick knob, and how the text representing the Tello’s status updates accordingly.
Floating action buttons are straightforward to handle for click events because they have an
onClick listener by default. Here is an example of how we handle the landing command using
the floating action button:

FloatingActionButton(
onClick = {

try {
controlViewModel.land()

} catch (e: Exception) {

18

Log.d("main UI errors", "error found: \$e")
}

}
)

However, things can get a bit more complex with the connect button, where we want the
button to change its color and logo based on the connection status. This can be achieved by
implementing a conditional statement to check the connectivity and set the appropriate color
and logo accordingly.
To display the status, we implement an observer that monitors the LiveData and updates the
UI based on the observed data:

val isConnected = observeLiveData(controlViewModel.isConnected).value ?: false
val isStreaming = observeLiveData(controlViewModel.isStreaming).value ?: false

The observeLiveData() function is not predefined; we created it to take LiveData as an
argument and return a mutable state:

fun <T> observeLiveData(liveData: LiveData<T>): MutableState<T?>

When observing the state, we can change the necessary UI components using conditional state-
ments or simple variable assignments.
For the joystick, we receive the knob’s position in polar coordinates. To send a command to
the drone, indicating how it should move, we use the command:

rc left/right forward/backward up/down yaw

The angle is provided in radians, and the axes are shown in Figure 2.5:
Based on the figure, we use the following conditional statements to construct the command rc
a b c d:

if (angle <= 45 && angle > -45) rcs[0] = (r * cos(radAngle) * 0.5).toInt()
if (angle <= 135 && angle > 45) rcs[1] = (-r * sin(radAngle) * 0.5).toInt()
if (angle <= -45 && angle > -135) rcs[1] = (-r * sin(radAngle) * 0.5).toInt()
if (angle <= -135 || angle > 135) rcs[0] = (r * cos(radAngle) * 0.5).toInt()
try {

controlViewModel.sendRc(rcs[0], rcs[1], rcs[2], rcs[3])
} catch (e: Exception) {

Log.d("rc command error", "error in constructing the rc command")
}

Lastly, to display the video stream, we first create a variable for the queue:

val videoQueue = remember { ArrayBlockingQueue<Bitmap>(1) }

We then call the ViewModel function to display the bitmap images, passing the queue as shown:

VideoScreen(controlViewModel, videoQueue = videoQueue)

This overview covers the main components used in this project. Although we have not discussed
the dropdown menu or the layout structure (such as columns and rows), all UI code can be
found in the GitHub repository.

19

Figure 2.5: Joystick angles

2.9 App Testing and Validation
Upon completing the application development, we installed it on our device and conducted
thorough testing to ensure proper functionality. The UI was smooth, and all components
operated correctly.
We then connected the application to our Tello drone, which successfully established a con-
nection. We toggled the streaming button, and the video stream functioned as expected. The
drone was capable of performing all expected movements, including directional movement and
flips. However, we encountered an issue with the forward flip; the drone was unstable and
crashed into the floor during attempts to flip forward.
Another issue identified was with the joystick knob, which is placed on the canvas as an image.
This design choice made it non-scalable with the device screen, potentially causing problems
on devices with different screen resolutions. We plan to address and fix this issue in a future
update.
To validate the project’s performance, we provide a series of images showcasing the application
in its working state (Figures 2.6 - 2.7 - 2.8 - 2.9).

20

Figure 2.6: Launching the App

Figure 2.7: Connection the app to drone

Figure 2.8: Clicking the stream drop down menu

21

Figure 2.9: Drone streams the video

22

Conclusion

This thesis explores the multifaceted capabilities of the Tello EDU drone and the development
of an Android application for real-time control, showcasing its potential in educational and
practical applications. The Tello EDU drone, with its advanced features and ease of use,
serves as an excellent tool for teaching programming, and various STEM concepts. Our project
demonstrates how this drone can be integrated into an Android application to enhance the
learning experience and provide hands-on engagement with cutting-edge technology.
Through the development and testing phases, we established a robust connection between the
application and the drone, ensuring smooth operation and responsiveness. The application
successfully manages the drone’s movements, captures live video streams, and provides an in-
tuitive user interface for real-time control. Despite encountering minor issues, such as instability
during forward flips and scalability concerns with the joysticks, the overall functionality and
performance of the application validate its effectiveness and potential for future enhancements.
This work contributes to the fields of drone technology and education by offering a comprehen-
sive guide for developing scalable drone control application. By bridging theoretical knowledge
with practical implementation, we aim to inspire further innovation and exploration.

23

Appendix A

Android concepts definition

A.1 Coroutines
Coroutines in Android provide a modern and efficient approach to asynchronous programming,
offering more readable and maintainable code compared to traditional threads. They allow
for sequential code execution while handling asynchronous tasks, simplifying the complexity
typically associated with callbacks. Unlike threads, which are heavier and resource-intensive,
coroutines are lightweight and can be suspended and resumed without blocking the main thread.
This enables coroutines to manage a higher number of concurrent tasks without the performance
overhead of creating and managing multiple threads.

A.2 LiveData data type
LiveData variable is a lifecycle-aware, observable data holder that enables UI components to
update automatically when the underlying data changes. As part of Android’s Architecture
Components, LiveData manages UI-related data in a lifecycle-conscious manner. By observing
LiveData, activities and fragments can respond to data changes without risking memory leaks or
crashes due to stopped activities. LiveData ensures updates are sent only to active observers,
making it a safe and efficient choice for updating the UI in response to data changes. This
results in a cleaner architecture and more responsive user interfaces.

A.3 Scope
In Android development, a scope specifies the context in which certain operations can be ex-
ecuted and dictates their lifecycle. Scopes are especially crucial when working with Kotlin
coroutines, as they help manage coroutine execution in alignment with the lifecycle of compo-
nents like activities, fragments, and view models.

A.4 Floating action button
A Floating Action Button (FAB) is a prominently displayed button that hovers above the
interface of an Android application, providing quick access to a primary action or feature.

24

A.5 Activity
An Android activity is a distinct, focused operation that a user can engage in. It acts as
the primary entry point for user interaction, typically displaying a user interface for a specific
task. Each activity is an instance of the Activity class and operates within a defined lifecycle
managed by the Android operating system, encompassing states like creation, start, resume,
pause, stop, and destruction. Activities are essential components of an Android application,
facilitating user interactions and navigation across various parts of the app.

A.6 Manifest file
The Android Manifest file, AndroidManifest.xml, is a vital XML document found in the root
directory of every Android application. It supplies the Android operating system with critical
information about the application, such as its components (activities, services, broadcast re-
ceivers, and content providers), required permissions, utilized or needed hardware and software
features, and other important metadata. Additionally, the manifest file specifies the applica-
tion’s package name, version details, and minimum and target API levels. It plays a crucial
role in defining the structure and behavior of an Android application.

A.7 Socket
A socket serves as one endpoint in a bidirectional communication link between two programs
operating on a network. It is associated with a port number, enabling the TCP layer to identify
the target application for incoming data.

25

Appendix B

Layout in jetpack compose

In Android development using Jetpack Compose, layout management and placement of UI
elements are key to building responsive and dynamic applications. Jetpack Compose offers
various layouts like Column, Row, and Box, along with powerful modifiers to customize the
appearance and behavior of UI components.

B.1 Column Layout
A Column layout arranges its children vertically. Each child is placed one below the other. This
is useful for creating vertical lists of items or stacking elements vertically.

Column(
modifier = Modifier.fillMaxSize(),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally
) {

Text("Item 1")
Text("Item 2")
Text("Item 3")

}

B.2 Row Layout
A Row layout arranges its children horizontally. Each child is placed next to the previous one.
This is useful for creating horizontal lists of items or aligning elements side by side.

Row(
modifier = Modifier.fillMaxWidth(),
horizontalArrangement = Arrangement.SpaceAround,
verticalAlignment = Alignment.CenterVertically
) {

Text("Item 1")
Text("Item 2")
Text("Item 3")

}

26

B.3 Box Layout
A Box layout allows for stacking elements on top of each other. This is useful for creating
overlays or combining multiple elements in a single space.

Box(
modifier = Modifier.fillMaxSize()
) {

Image(painterResource(R.drawable.image), contentDescription = null)
Text("Overlay Text", modifier = Modifier.align(Alignment.Center))

}

B.4 Modifiers in Jetpack Compose
Modifiers in Jetpack Compose are used to decorate or augment UI components. They allow
you to set properties such as size, padding, alignment, background color, and more.
Common Modifiers:

• Modifier.fillMaxSize(): Makes the component fill the maximum size of its parent.

• Modifier.padding(16.dp): Adds padding around the component.

• Modifier.align(Alignment.Center): Aligns the component to the center of its parent.

• Modifier.background(Color.Gray): Sets the background color of the component.

Modifiers are chained together to achieve the desired effect:

Text(
"Hello, World!",
modifier = Modifier
.fillMaxWidth()
.padding(16.dp)
.background(Color.LightGray)
.align(Alignment.CenterHorizontally)
)

27

Appendix C

Important function implemented in the
App

C.1 Observation of LiveData in a Composable Function
It is often necessary to observe changes in LiveData and reflect those changes in the UI. The
following Kotlin code demonstrates a composable function that observes LiveData and updates
the UI accordingly.

@Composable
fun <T> observeLiveData(liveData: LiveData<T>): MutableState<T?> {

val observedState = remember { mutableStateOf(liveData.value)
}↪→

DisposableEffect(liveData) {
val observer = Observer<T> { value ->

observedState.value = value
}
liveData.observeForever(observer)
onDispose {

liveData.removeObserver(observer)
}

}
return observedState

}

C.1.1 Function Description
The observeLiveData function is a generic composable function that takes a LiveData object
of any type T and returns a MutableState containing the observed value. This function ensures
that the UI is updated whenever the LiveData changes, by leveraging the Jetpack Compose
framework.

Parameters

• liveData: LiveData<T>: The LiveData object to be observed.

28

Return Value

• MutableState<T?>: A mutable state containing the value of the observed LiveData.

C.1.2 Implementation Details
• val observedState = remember { mutableStateOf(liveData.value) }: Initializes a

mutable state to hold the current value of the LiveData. The remember function ensures
that this state is retained across recompositions.

• DisposableEffect(liveData): Sets up a side effect to observe the LiveData. The
DisposableEffect is used to manage the lifecycle of the observer, ensuring that it is
properly disposed of when no longer needed.

• val observer = Observer<T> { value -> observedState.value = value }: Defines
an observer that updates the mutable state whenever the LiveData value changes.

• liveData.observeForever(observer): Starts observing the LiveData object.

• onDispose { liveData.removeObserver(observer) }: Ensures that the observer is
removed when the composable leaves the composition, preventing memory leaks.

C.2 Conversion of Image to Bitmap
In Android development, converting an image from the YUV format to a Bitmap format is
a common requirement for processing and displaying camera frames. The following Kotlin
function, imgToBM, demonstrates how to perform this conversion efficiently.

fun imgToBM(image: Image): Bitmap {
val p = image.planes
val y = p[0].buffer
val u = p[1].buffer
val v = p[2].buffer
val ySz = y.remaining()
val uSz = u.remaining()
val vSz = v.remaining()
val jm8 = ByteArray(ySz + uSz + vSz)
y.get(jm8, 0, ySz)
v.get(jm8, ySz, vSz)
u.get(jm8, ySz + vSz, uSz)
val yuvImage = YuvImage(jm8, ImageFormat.NV21, image.width,

image.height, null)↪→

val out = ByteArrayOutputStream()
yuvImage.compressToJpeg(Rect(0, 0, yuvImage.width,

yuvImage.height), 75, out)↪→

val imgBytes = out.toByteArray()
return BitmapFactory.decodeByteArray(imgBytes, 0,

imgBytes.size)↪→

}

29

C.2.1 Function Description
The imgToBM function converts an Image object in YUV format to a Bitmap object, which can
be easily displayed in an Android application. This conversion is essential for handling raw
camera frames and rendering them on the screen.

Parameters

• image: Image: The input image in YUV format, typically obtained from a camera
preview.

Return Value

• Bitmap: The resulting bitmap that can be displayed in an ImageView or processed further.

C.2.2 Implementation Details
• val p = image.planes: Retrieves the three planes (Y, U, and V) from the input image.

• val y = p[0].buffer, val u = p[1].buffer, val v = p[2].buffer: Extracts the buffers
for the Y, U, and V planes.

• val ySz = y.remaining(), val uSz = u.remaining(), val vSz = v.remaining(): De-
termines the size of each plane buffer.

• val jm8 = ByteArray(ySz + uSz + vSz): Allocates a byte array to hold the combined
YUV data.

• y.get(jm8, 0, ySz), v.get(jm8, ySz, vSz), u.get(jm8, ySz + vSz, uSz): Copies
the Y, U, and V data into the byte array.

• val yuvImage = YuvImage(jm8, ImageFormat.NV21, image.width, image.height, null):
Creates a YuvImage object from the YUV data, specifying the NV21 format and the image
dimensions.

• val out = ByteArrayOutputStream(): Initializes a ByteArrayOutputStream to hold
the JPEG-compressed image data.

• yuvImage.compressToJpeg(Rect(0, 0, yuvImage.width, yuvImage.height), 75, out):
Compresses the YUV image to JPEG format and writes it to the output stream.

• val imgBytes = out.toByteArray(): Converts the output stream to a byte array.

• return BitmapFactory.decodeByteArray(imgBytes, 0, imgBytes.size): Decodes the
byte array into a Bitmap object and returns it.

30

Bibliography

[1] ryzerobotics. Tello edu drone, 2024-April-08. [online] Available: https://www.
ryzerobotics.com/tello-edu.

[2] wiedu. Detailed information on the tello edu app, 2024-Mai-05. [online] Available: https:
//www.wiedu.com/telloedu/faq_en.html.

[3] Android Doc. android studio, 2024-April-24. [online] Available: https://developer.
android.com/studio.

[4] Android Doc. Android doc, 2024-April-20. [online] Available: https://kotlinlang.org/
docs/android-overview.html.

[5] Android Doc. Jetpack compose documentation, 2024-April-20. [online] Available: https:
//developer.android.com/develop/ui/compose/.

[6] ryzerobotics. Tello sdk, 2024-April-08. [online] Available: https://dl-cdn.ryzerobotics.
com/downloads/Tello/Tello%20SDK%202.0%20User%20Guid.

[7] github. H.264, 2024-April-24. [online] Available: https://github.com/topics/h264.

[8] eduporium. Tips and tricks, the dji tello edu drone, 2024-June-02. [online] Available:
https://developer.android.com/develop.

[9] itu. H.264, 2024-April-21. [online] Available: https://www.itu.int/rec/T-REC-H.264.

31

https://www.ryzerobotics.com/tello-edu
https://www.ryzerobotics.com/tello-edu
https://www.wiedu.com/telloedu/faq_en.html
https://www.wiedu.com/telloedu/faq_en.html
https://developer.android.com/studio
https://developer.android.com/studio
https://kotlinlang.org/docs/android-overview.html
https://kotlinlang.org/docs/android-overview.html
https://developer.android.com/develop/ui/compose/
https://developer.android.com/develop/ui/compose/
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guid
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guid
https://github.com/topics/h264
https://developer.android.com/develop
https://www.itu.int/rec/T-REC-H.264

32

Abstract

Conducting a comprehensive review of the use of the DJI Tello drone in educational projects.
Exploring the various possibilities offered by this drone for the development of learning in
computer programming and artificial intelligence.

Résumé

Faire un état de l’art complet sur l’utilisation du drone DJI Tello dans des projets éducatifs. Ex-
plorer les différentes possibilités offertes par ce drone pour le développement de l’apprentissage
en programmation informatique et en Intelligence Artificielle.

	List of Figures
	List of Tables
	Introduction
	Tello drone
	Introduction
	Technical Characteristics of Tello EDU Drone
	Components and Specifications
	Operational Characteristics

	Educational Applications of Tello EDU Drone
	Programming and Coding
	Introduction to Drone Programming:
	Core Programming Skills Development:
	Implementing Control Functions:

	Educational Projects
	Obstacle Courses:
	Search and Rescue Simulations:
	Environmental Monitoring:

	Individual Drone Applications
	Basic Missions
	Programming Environment:
	Simple Missions

	Swarm Applications
	Swarm Definition:
	Environment Setup:
	Swarm Missions:

	AI Applications with Tello EDU Drone

	Android App to control tello
	Introduction
	Android Studio
	App Development
	Initiating the Project on Android Studio
	Coding the UI
	Developing a Library to Control Tello Drone
	Library Overview
	Connection Handling
	Command Execution
	Real-time Video Streaming

	Command Set
	Utility Functions

	Decoding Video Stream
	H.264
	Decoding the Frames Received

	Binding the UI With Library Using View Model
	ViewModel Implementation
	UI implementation

	App Testing and Validation

	Conclusion
	Appendix
	Android concepts definition
	Coroutines
	LiveData data type
	Scope
	Floating action button
	Activity
	Manifest file
	Socket

	Layout in jetpack compose
	Column Layout
	Row Layout
	Box Layout
	Modifiers in Jetpack Compose

	Important function implemented in the App
	Observation of LiveData in a Composable Function
	Function Description
	Parameters
	Return Value

	Implementation Details

	Conversion of Image to Bitmap
	Function Description
	Parameters
	Return Value

	Implementation Details

	Bibliography

