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Abstract  

This study addresses the resolution of a complex Vehicle Routing Problem (VRP) for CPH Agriculture, 

specifically a Multi-Depot Heterogeneous Capacitated Vehicle Routing Problem (MDHFVRP). The primary 

objective is to optimize agricultural inputs distribution by minimizing logistics costs while satisfying operational 

constraints. 

Two distinct approaches were developed and compared: an exact method using the IBM ILOG OPL CPLEX 

solver, based on the branch-and-cut algorithm, and an approximate method employing a genetic metaheuristic. 

The mathematical modeling of the problem was formulated, taking into account the company's specificities such 

as multiple depots, heterogeneous fleet, and capacity constraints. A comparative analysis of both methods 

performance was conducted, evaluating their effectiveness in terms of solution quality and computation time for 

various problem sizes. 

Results demonstrate that the exact method is more suitable for small-scale problems, offering optimal solutions, 

while the genetic algorithm proves more efficient for large instances, providing good quality solutions within 

reasonable computation times.  

Additionally, a graphical user interface named VRS (Vehicle Routing Solver) was developed to facilitate the 

solution's use by CPH Agriculture's logisticians.  

Keywords: Vehicle Routing Problem, multi-depot, heterogeneous fleet, exact method, genetic algorithm, 

logistics optimization 

Introduction : 

The Vehicle Routing Problem (VRP) has been a cornerstone of logistics optimization since its introduction by 

Dantzig & Ramser [1] in 1959. As supply chains grow increasingly complex, variants such as the Multi-Depot 

Heterogeneous Capacitated Vehicle Routing Problem MDHFVRP have emerged to address real-world challenges  

(Bettinelli et al., 2011) [2]. This study focuses on solving the MDHFVRP for CPH Agriculture, a company facing 

the intricate task of distributing agricultural inputs from multiple depots using a diverse fleet of vehicles. 

The importance of efficient routing in agriculture cannot be overstated. As Toth & Vigo [3] point out, 

optimizing distribution networks can lead to significant cost savings and improved service quality. In the 

agricultural sector, where margins are often tight and product freshness is crucial, these optimizations can make 

the difference between profit and loss. 
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This paper presents a comprehensive approach to solving CPH Agriculture's distribution challenges. We detail 

the mathematical formulation of the problem, describe the implementation of both an exact method using IBM 

ILOG OPL CPLEX and a genetic algorithm, we also conduct a comparative analysis of their computational 

performances in terms of solution quality and execution time. Additionally, we discuss the development of a user-

friendly interface for practical application.  

Related Works 

The Multi-Depot Heterogeneous Capacitated Vehicle Routing Problem (MDHFVRP) represents a complex 

extension of the classical Vehicle Routing Problem (VRP), incorporating multiple depots and a heterogeneous 

fleet with varying capacities. Several key studies have addressed this specific problem or closely related variants: 

Salhi et al. (2014)  [4] provided a comprehensive formulation of the (MDHFVRP) and proposed a variable 

neighborhood search implementation. Their work is fundamental in understanding the complexities involved in 

solving this variant of the VRP. They presented a mathematical model and developed a metaheuristic approach 

specifically tailored to the multi-depot and heterogeneous fleet aspects of the problem. 

Bolaños et al. (2018) [5] proposed a metaheuristic algorithm for solving the Multi-Depot Vehicle Routing 

Problem with a Heterogeneous Fleet (MDHFVRP). Their approach uses a modified genetic algorithm combined 

with local search strategies, featuring a hybrid initialization procedure and inter-route and intra-route neighborhood 

structures for solution improvement. This flexible framework can adapt to similar routing problems, demonstrating 

the effectiveness of combining population-based methods with local search techniques for complex VRP variants. 

Nucamendi-Guillén et al. (2020) [6] introduced the multi-depot open location routing problem with a 

heterogeneous fixed fleet (MD-OLRP). They developed a Mixed Integer Linear Programming (MILP) model to 

minimize total cost, select carriers to be contracted, vehicles to be used, and collection routes. To solve larger 

instances, they proposed an intelligent metaheuristic incorporating problem-specific knowledge. Their 

metaheuristic is a multi-start algorithm with two phases: construction and improvement. The construction phase 

selects a subset of vehicles and builds initial routes, while the improvement phase applies various local search 

techniques. Their main contributions include the formulation of a new problem statement, its application to a real-

world case, and the development of an effective metaheuristic to solve it. 

Our work builds upon these foundational studies, aiming to contribute to the field by comparing exact and 

metaheuristic approaches specifically tailored to the MDHVVRP, with a focus on practical applications in 

agricultural logistics. 

2 Problem Description and Mathematical Formulation 

2.1  The Multi-Depot Heterogeneous Capacitated Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) is a fundamental optimization challenge in logistics, involving the design 

of optimal routes for a fleet of vehicles to serve a set of geographically dispersed customers while minimizing total 

transportation costs (Dantzig, G. B., & Ramser, J. H., 1959) [1]. Our study focuses on a complex variant known 
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as the Multi-Depot Heterogeneous Capacitated Vehicle Routing Problem (MDHFVRP) which extends the 

classical VRP by incorporating multiple depots and a heterogeneous fleet of vehicles with varying capacities and 

operational costs [7]. This variant precisely matches the problem faced by CPH Agriculture company. 

2.2  Mathematical Model 

To address this complex problem, we adapt the mathematical model proposed by Salhi et al. [4] for the 

MDHFVRP. The model is formulated as follows : 

Let : 

𝑁 : the set of all nodes, respectively depots and clients, indexed from 1 to (m + n), where: 

- depots are indexed from 1 to m, where m is the number of depots. 

- clients are indexed from (m + 1) to (m + n), where n is the number of clients. 

𝑉 : the set of vehicle types, indexed from 1 to v. 

𝑃𝑂𝑖  : weight of the order for client i  

𝑉𝑂𝑖  : volume of the order for client i 

𝐶𝑃𝑘 : maximum weight capacity for vehicle type k 

𝐶𝑉𝑘 : maximum volume capacity for vehicle type k 

𝐶𝑓𝑘 : fixed cost of using vehicle type k 

𝐶𝑣𝑎𝑘 : variable (per kilometer) cost for vehicle type k 

𝑊𝑘 : fleet size for vehicle type k 

𝐷𝑖𝑗  : distance between nodes i and j (i, j = 1.., n+m). 

 

Decision Variables:  

𝑋𝑖𝑗
𝑘𝑑 =  {

 1 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 𝑘 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑑𝑒𝑝𝑜𝑡 𝑑 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑎𝑟𝑐 (𝑖, 𝑗)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                  

 
∀𝑖, 𝑗 = 0 … 𝑛 ;  
∀𝑘 = 1 … 𝑣 

(1.1) 

𝑌𝑖𝑗 ∶ Non-negative continuous variable that gives the total remaining weight in the vehicle before 

reaching node j by traveling arc (i,j)  
(1.2) 

𝑍𝑖𝑗 ∶ Non-negative continuous variable that gives the total remaining volume in the vehicle before 

reaching node j by traveling arc (i,j) 
(1.3) 

Objective Function : 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝐶𝑓𝑘 × 𝑋𝑖𝑗
𝑘𝑑

𝑚+𝑛

𝑗=𝑚+1

+ ∑ ∑ ∑ ∑  𝐶𝑣𝑎𝑘 × 𝐷𝑖𝑗 × 𝑋𝑖𝑗
𝑘𝑑

𝑚+𝑛

𝑗=1

 

𝑚+𝑛

𝑖=1

𝐾

𝑘=1

𝑚

𝑑=1

 

𝑚

𝑖=1

𝐾

𝑘=1

𝑚

𝑑=1

 (1.4) 
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Subject to : 

∑ ∑ ∑ 𝑋𝑖𝑗
𝑘𝑑 = 1

𝑚+1

𝑖=1

𝑣

𝑘=1

𝑚

𝑑=1

 ∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 (1.5) 

∑ ∑ ∑ 𝑋𝑖𝑗
𝑘𝑑 = 1

𝑚+1

𝑗=1

𝑣

𝑘=1

𝑚

𝑑=1

 ∀𝑖 = 𝑚 + 1. . . 𝑚 + 𝑛 (1.6) 

∑ 𝑋𝑖𝑗
𝑘𝑑  = 

𝑚+1

𝑖=1

∑ 𝑋𝑗𝑖
𝑘𝑑 

𝑚+1

𝑖=1

 
∀𝑘 = 1 … 𝑣; ∀𝑗 = 1 … 𝑚 + 𝑛; 
∀𝑑 = 1 … 𝑚 

(1.7) 

∑ ∑ 𝑌𝑖𝑗  =  ∑ 𝑃𝑂𝑗

𝑚+𝑛

𝑗=𝑚+1

𝑚+𝑛

𝑗=𝑚+1

𝑚

𝑖=1

  (1.8) 

∑ ∑ 𝑍𝑖𝑗  =  ∑ 𝑉𝑂𝑗

𝑚+𝑛

𝑗=𝑚+1

𝑚+𝑛

𝑗=𝑚+1

𝑚

𝑖=1

  (1.9) 

∑ 𝑌𝑖𝑗 −

𝑚+𝑛

𝑖=1

∑ 𝑌𝑗𝑖

𝑚+𝑛

𝑖=1

 =  𝑃𝑂𝑗  ∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 (1.10) 

∑ 𝑍𝑖𝑗 −

𝑚+𝑛

𝑖=1

∑ 𝑍𝑗𝑖

𝑚+𝑛

𝑖=1

 =  𝑉𝑂𝑗 ∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 (1.11) 

𝑌𝑖𝑗 ≤ ∑ ∑ 𝐶𝑃𝑜𝑘 ×  𝑋𝑖𝑗
𝑘𝑑

𝑣

𝑘=1

𝑚

𝑑=1

 
∀𝑖 = 1 … 𝑚 + 𝑛; 
∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 

(1.12) 

𝑍𝑖𝑗 ≤ ∑ ∑ 𝐶𝑉𝑘 × 𝑋𝑖𝑗
𝑘𝑑

𝑣

𝑘=1

𝑚

𝑑=1

 
∀𝑖 = 1 … 𝑚 + 𝑛;  
∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 

(1.13) 

𝑋𝑑𝑖
𝑘𝑏 = 0 

∀𝑖 = 𝑚 + 1 … 𝑚 + 𝑛;  
∀𝑘 = 1 … 𝑣;  𝑑 ≠ 𝑏 = 1 … 𝑚 

(1.14) 

𝑋𝑖𝑑
𝑘𝑏 = 0 

∀𝑖 = 𝑚 + 1 … 𝑚 + 𝑛;  
∀𝑘 = 1 … 𝑣;  𝑑 ≠ 𝑏 = 1 … 𝑚 

(1.15) 

𝑌𝑖𝑗 ≤  ∑ ∑( 

𝑣

𝑘=1

𝑚

𝑑=1

𝐶𝑃𝑜𝑘 − 𝑃𝑂𝑖) ×  𝑋𝑖𝑗
𝑘𝑑 

∀𝑖 = 1 … 𝑚 + 𝑛; 
∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 

(1.16) 

𝑍𝑖𝑗 ≤  ∑ ∑( 

𝑣

𝑘=1

𝑚

𝑑=1

𝐶𝑉𝑘 − 𝑉𝑂𝑖) ×  𝑋𝑖𝑗
𝑘𝑑 

∀𝑖 = 1 … 𝑚 + 𝑛; 
∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 

(1.17) 

𝑌𝑖𝑗 ≥  ∑ ∑ 𝑃𝑂𝑗

𝑣

𝑘=1

𝑚

𝑑=1

×  𝑋𝑖𝑗
𝑘𝑑 

∀𝑖 = 𝑚 + 1 … 𝑚 + 𝑛; 
∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 

(1.18) 

𝑍𝑖𝑗 ≥  ∑ ∑ 𝑉𝑂𝑗

𝑣

𝑘=1

𝑚

𝑑=1

× 𝑋𝑖𝑗
𝑘𝑑 

∀𝑖 = 𝑚 + 1 … 𝑚 + 𝑛; 
∀𝑗 = 𝑚 + 1. . . 𝑚 + 𝑛 

(1.19) 

𝑌𝑖𝑗 = 0 ∀𝑖 = 𝑚 + 1 … 𝑚 + 𝑛; ∀𝑗 = 1. . . 𝑚 (1.20) 

𝑍𝑖𝑗 = 0 ∀𝑖 = 𝑚 + 1 … 𝑚 + 𝑛; ∀𝑗 = 1. . . 𝑚 (1.21) 

𝑌𝑖𝑗 = 0 ∀𝑖 = 1. . . 𝑚; ∀𝑗 = 1. . . 𝑚 (1.22) 
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The objective function (1.4) seeks to minimize the total cost of the tours. Constraint (1.5) ensures that each 

client is visited only once. Constraint (1.6) guarantees that at most one type of vehicle from a given depot will 

cover an arc (i,j). Constraint (1.7) ensures the conservation of flows (a vehicle entering a client site must leave it). 

Constraints (1.8) and (1.9) ensure that the total weight and volume of goods leaving all depots are exactly equal to 

the total weight and volume of goods requested by all clients, respectively. Constraints (1.10) and (1.11) ensure 

that the remaining weight and volume after visiting client j are exactly the weight and volume before visiting this 

client minus the weight and volume of their order, respectively. Constraints (1.12) and (1.13) ensure that the weight 

and volume capacities of the vehicle of any type are not exceeded, respectively. Constraints (1.14) and (1.15) 

ensure that a vehicle leaving a depot (or returning to a depot) cannot be connected to a different depot, respectively. 

Constraints (1.16) and (1.17) impose that the weight and volume on an arc cannot be greater than the weight and 

volume on the vehicle after delivery to client iii on the arc (i,j) and originating from any depot, respectively. 

Constraints (1.18) and (1.19) Constraints (1.18) and (1.19) ensure that the remaining weight and volume after 

traveling arc (i,j) are non-negative, respectively. These constraints together form a comprehensive model to 

optimize vehicle routing considering various practical constraints related to vehicle capacity, order fulfillment, 

and cost minimization. 

This comprehensive mathematical formulation captures the complexities of CPH Agriculture's distribution 

system, providing a solid foundation for developing solution approaches. 

3. Solution Approaches 

To address the complex MDHFVRP for CPH Agriculture, we employed two distinct approaches: an exact 

method using IBM ILOG CPLEX and an approximate method using a Genetic Algorithm. This dual approach 

allows us to compare the performance and applicability of both methods for various problem sizes. 

3.1  Exact Method: IBM ILOG OPL CPLEX 

We utilized IBM ILOG CPLEX Optimization Studio for the exact solution method. For problems involving 

integer variables, such as our MDHFVRP, CPLEX employs a Branch-and-Cut approach [8].  

𝑍𝑖𝑗 = 0 ∀𝑖 = 1. . . 𝑚; ∀𝑗 = 1. . . 𝑚 (1.23) 

𝑌𝑖𝑖 = 0 ∀𝑖 = 𝑚 + 1. . . 𝑚 + 𝑛 (1.24) 

𝑍𝑖𝑖 = 0 ∀𝑖 = 𝑚 + 1. . . 𝑚 + 𝑛 (1.25) 

𝑋𝑖𝑗
𝑘𝑑 = 0 

∀𝑖 = 1 … 𝑚; ∀𝑗 = 1 … 𝑚; 
∀𝑘 = 1 … 𝑣; ∀𝑑 = 1 … 𝑚 

(1.26) 

𝑋𝑖𝑖
𝑘𝑑 = 0 

∀𝑖 = 1 … 𝑚 + 𝑛; ∀𝑘 = 1 … 𝑣;  
∀𝑑 = 1 … 𝑚 

(1.27) 

∑ ∑ ∑ 𝑋𝑖𝑗
𝑘𝑑  ≤  𝑊𝑘  

𝑚+𝑛

𝑗=𝑚+1

𝑚

𝑖=1

𝑚

𝑑=1

 ∀𝑘 = 1 … 𝑣 (1.28) 
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Figure 1: Implementation of the MDHFVRP Mathematical Model in CPLEX 
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3.2  Approximate Method: Genetic Algorithm 

3.2.1  Algorithm Design 

 

Figure 2: Steps of the Genetic Algorithm [9] 

 

The Algorithm follows a standard structure (Mitchell [10]), as illustrated in Figure 2 : 

1. Initial Phase :  

o Chromosome Creation: Randomly generate an initial population of solutions. 

o Fitness Evaluation: Calculate the fitness of each chromosome based on total cost. 

2. Evolutionary Loop :  

o Parent Selection: Use methods like roulette wheel or tournament selection. 

o Crossover: Recombine parent chromosomes to produce offspring. 

o Mutation: Introduce random variations in offspring to explore new solution spaces. 

o Evaluation: Calculate fitness of new chromosomes. 

o Population Update: Form new generation by selecting best individuals from parents and offspring. 

3. Termination :  

o Stop when maximum generations are reached or a satisfactory solution is found. 

3.2.2  Implementation in Python 

The following figure shows the Genetic Algorithm's implementation in Python with specific adaptations for 

the MDHFVRP [11] :  
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Figure 3: Implementation of the Genetic Algorithm in Python 
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The genetic algorithm shown in the figure is designed to solve our HFVRP problem using the predefined 

functions shown in the table below :  

Predifined function Role 

initial_population Creates the initial set of solutions 
target_function Evaluates the fitness of each solution 
fitness_function Calculates fitness scores 

breeding Generates new offspring solutions 

mutation Introduces random changes to solutions 

elite_distance Identifies the best solution in a population 
plot_tour_coordinates Visualizes the route 
draw_routes_on_map Generates a map of the final solution 

show_report Produces a summary of the solution 
Table 1: Predefined Functions and Their Roles 

3.3 Comparison between the two methods :  

To evaluate the performance of both the exact method (CPLEX) and the approximate method (Genetic 

Algorithm), we conducted extensive tests on various problem sizes. The instances were categorized into three 

classes: Small: m ≤ 5, n ≤ 13, v ≤ 6, Medium: 3 ≤ m ≤ 5, 25 ≤ n ≤ 35, 10 ≤ v ≤ 13 and  Large: 3 ≤ m ≤ 5, 50 ≤ n ≤ 

60, 15 ≤ v ≤ 20, Where m is the number of depots, n is the number of clients, and v is the number of vehicle types. 

Tests were conducted on a Windows system with an Intel Core i9-10900K CPU (3.7 GHz) and 32GB RAM, 

using only one CPU core for fair comparison, the following table shows one example test of each category of 

instants. 

 Method m n v CPU-T (s) 
Solution’s 

quality 

Small instances Exact 2 8 3 80.10 Optimal 

 Approximate 2 8 3 63.14 Optimal 

Medium size instances Exact 3 25 10 1521.59 Optimal 

 Approximate 3 25 10 314.18 Feasible 

Large size instances Exact 3 50 15 +1600.00 / 

 Approximate 3 50 15 1546.07 Feasible 

Table 2: Computational Results for Exact and Approximate Methods 

For small instances, both methods consistently found optimal solutions. The exact method generally 

outperformed the genetic algorithm in terms of computation time. For example, in a base case (m=2, n=8, v=3), 

CPLEX took 80.10 seconds while the genetic algorithm took 63.14 seconds. However, for medium-sized 

problems, the exact method began to show limitations. For a base case (m=3, n=25, v=10), CPLEX found the 

optimal solution in 1521.59 seconds, while the genetic algorithm provided a near-optimal solution in just 314.18 

seconds. Finally, for large instances, the exact method consistently hit the time limit without providing solutions. 

The genetic algorithm, however, continued to produce near-optimal solutions. For instance, in a case with m=3, 

n=50, v=15, the genetic algorithm provided a near-optimal solution in 1546.07 seconds. 

In conclusion, while the exact method provides guaranteed optimal solutions for small instances, the genetic 

algorithm demonstrates superior scalability and practical applicability for larger, more complex routing problems 

typical in real-world scenarios. 
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4. Vehicle Routing Solver (VRS) Interface 

4.1  Software Architecture 

 
Figure 4: Vehicle Routing Solver (VRS) Main Interface 

The VRS is a comprehensive, multi-tabbed application designed for efficient transportation planning. It 

consists of seven main tabs, each with interactive controls tailored to specific functions. This structure allows 

users to manage all phases of the routing process from a single, user-friendly interface, making it a powerful tool 

for transport planning operations. 

 

4.2  User Interaction and Functionalities 

The VRS offers a range of functionalities across its various tabs: 

Tab Functionality 

Clients Tab 

• Data Import: Users can load client data from Excel 

files. 

• Data Management: Ability to add, modify, and delete 

client information directly through the graphical 

interface. 

Warehouses Tab 

• Data Import: Similar to the Clients tab, allows 

importing warehouse data. 

• Data Management: Direct addition, deletion, or 

modification of warehouse details. 

Orders Tab 

• Data Import and Management: Importing order data 

and manipulation (adding, deleting, modifying) of 

delivery orders. 

Vehicles Tab 
• Configuration: Definition and adjustment of vehicle 

properties such as type, capacities, and costs. 

Solver Tab 

• Route Configuration: 

  - Open/Closed: Choice between an open route where 

the vehicle doesn't return to the starting point, or closed 

where it does. 
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• Resolution Mode: 

  - Auto: The system automatically determines the best 

algorithm parameters based on the data. 

  - Manual: Users can adjust genetic algorithm 

parameters such as population size, crossover rate, etc. 

• Algorithm Execution: 

  - "Start" button: Launches the algorithm execution with 

provided parameters and shows real-time progress. 

  - Log Display: Real-time visualization of operation 

logs, helping diagnose problems or track progress. 

Table 3: Tab’s Functionalities 

4.3  Visualization of results 

The VRS provides comprehensive tools for visualizing and interpreting the optimization results : 

Report : The Report tab displays the optimization results in a tabular format, showing detailed information about 

the routes for each vehicle.  

Geographic Map :  

 
Figure 5 : VRS Displayed Geographic map. 

The Geographic Map tab offers a graphical display of the optimized routes on a map, which can be viewed in a 

web browser 

Conclusion : 

The study addressed the MDHFVRP for CPH Agriculture by comparing exact and approximate methods. The 

exact method using CPLEX proved optimal for small problems but unsuitable for large instances. The genetic 

algorithm demonstrated better scalability, providing near-optimal solutions for large problems within reasonable 

time frames. 

A user interface, the Vehicle Routing Solver (VRS), was developed to integrate the genetic algorithm, allowing 

CPH Agriculture's logisticians to efficiently optimize their daily operations. 

Future work will focus on enhancing the VRS with additional features such as map visualization, automatic 

method selection, and incorporation of more complex constraints, thus broadening its applicability to various 

real-world logistics scenarios. 
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