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ABSTRACT

Road traffic accidents pose a significant global public health challenge, resulting in millions of deaths
and injuries each year. This paper investigates the use of artificial intelligence (AI) and machine learning
(ML) techniques to analyze and classify driver behaviors, with a particular focus on detecting aggressive
driving style on highways. A one-dimensional convolutional neural network (1D CNN) was employed to
process and analyze driving data from the UAH-DriveSet dataset and independently collected real datasets
for safe driving, with aggressive driving data simulated from this safe driving dataset. The model developed
in this research demonstrated good generalization capabilities across different drivers. The integration of
this model into real-time driver monitoring systems has the potential to significantly enhance road safety by
alerting drivers to dangerous behaviors and encouraging safer driving practices.

Keywords - Road safety, driver behavior, artificial intelligence, machine learning, aggressive driving detection,
Real-time monitoring.

1 INTRODUCTION

Road traffic accidents, a major global public health burden, result in millions of deaths and injuries annually.
World Health Organization (WHO) data indicate that approximately 1.19 million people die on roads each year,
with an additional 20 to 50 million suffering non-fatal injuries [1]. Driver behavior monitoring plays a crucial role
in promoting road safety, as aggressive driving behaviors, in particular, have often been identified as key factors
contributing to serious accidents [1]. In light of this alarming trend, developing and implementing innovative solu-
tions to enhance road safety is crucial. This article explores the application of artificial intelligence (AI) techniques
to classify driver behaviors, with a particular focus on detecting aggressive driving on highways.

Researchers have made significant advancements in leveraging machine learning techniques to identify aggres-
sive driving behaviors, paving the way for safer roads. These developments have been driven by the application of
cutting-edge algorithms, including convolutional neural networks (CNNs), support vector machines (SVMs), and
recurrent neural networks (RNNs), to analyze a wide range of driving data.

CNNs have proven particularly adept at decoding visual cues such as signs, lane markings, and traffic pat-
terns, enabling them to accurately classify driving styles based on adherence to traffic rules and road etiquette.
Karaduman and Eren (2017) [2] demonstrate the effectiveness of CNNs in achieving an accuracy of 88.02% in
distinguishing between safe and aggressive driving behaviors.

SVMs, on the other hand, demonstrate strength in pattern recognition and classification tasks, making them
well-suited for identifying aggressive driving patterns from sensor data. Wang et al. (2017) [3] showcase the po-
tential of SVMs by presenting a system that uses a semi-supervised learning approach on simulated data to classify
aggressive drivers with 86.6% accuracy.

RNNS, especially long short-term memory (LSTM) networks, have also emerged as powerful techniques for
analyzing sequential data, such as the temporal patterns exhibited in driving behavior. Mumcuoglu et al. (2019)
[4] take advantage of this ability by combining FCNs and LSTMs to achieve an F1 score of 95.88% in classifying
normal and aggressive driving styles on the UAH-DriveSet dataset.

Moreover, researchers have explored motion-based features to identify aggressive driving patterns. For ins-
tance, Matousek et al. (2019) [5] utilized a random forest model to extract these features, achieving an impressive
area under the curve (AUC) of 97.10% in predicting aggressive driving behavior.

In addition to analyzing individual driving behaviors, researchers have also investigated how situational factors
influence driving styles. Zheng et al. (2017) [6] delve into this area by examining how driving behavior in online
car-hailing services varies depending on the task at hand, using k-means clustering to identify aggressive, normal,
and cautious driving patterns.

Chen et al. (2021) [7] present a supervised approach leveraging Labeled Latent Dirichlet Allocation (LLDA)
to classify driver behavior. This method categorizes drivers into three distinct styles : aggressive, moderate, and
careful driving. Notably, the LLDA model achieves an average accuracy of 60.5%, surpassing the performance of
traditional classifiers like Support Vector Machines (SVM), Naive Bayes (NB), and K-Nearest Neighbors (KNN).
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Several studies have focused on classifying driver aggressiveness. Works by Jahangiri et al. (2017) [8] and
Moukafih et al. (2019) [9] employed Support Vector Machines (SVM) and Long Short-Term Memory (LSTM) al-
gorithms, respectively, to categorize driver behavior with scores reflecting aggressiveness levels. These approaches
achieved impressive accuracy, reaching 86.67% and 92.8%. Beyond classification, other research has aimed to
continuously track driving styles. For instance, the study by Wang et al. (2021) [10] utilized the Next Genera-
tion Simulation (NGSIM) dataset and a genetic algorithm (GA) to analyze car-following behaviors under various
driving scenarios.

These advances in detecting aggressive driver behavior hold immense potential for improving road safety. By
integrating these technologies into advanced driver assistance systems and in-vehicle monitoring solutions, we can
effectively alert drivers to potential dangers and encourage safer driving practices. As research continues to improve
these methods and explore new applications, we can anticipate a future in which aggressive driving behaviors
become increasingly rare, paving the way for a safer and more harmonious driving experience for everyone.

2 METHODOLOGY

To develop an effective model for detecting aggressive driving behaviors, a systematic approach was adopted.
This methodology section outlines the processes of data collection, data preprocessing, model design, and trai-
ning strategy. The objective is to ensure the robustness and reliability of the model through careful selection and
processing of data, followed by rigorous model training and evaluation.

2.1 Data collection

The data collection process involved two primary sources : the publicly available UAH-DriveSet dataset and
an independent data collection effort. The UAH-DriveSet dataset provides comprehensive data on driver behavior,
including over 500 minutes of driving data from six different drivers on highways. This dataset encompasses raw
sensor data such as GPS coordinates, accelerometer readings, gyroscope data, and detailed video recordings.

In addition to the UAH-DriveSet, we conducted an independent data collection to supplement and diversify
our dataset. This independent data collection involved an experienced driver navigating the highway, with data
gathered using an Android application. The collected data consisted of 25 minutes of safe driving only. Aggressive
driving data was then simulated from this safe driving session by manipulating parameters such as speed, safety
distance, and lane changes, among other parameters.

2.2 Data preprocessing

To ensure the data was suitable for model training and evaluation, several crucial preprocessing steps were
undertaken. The base variables used, along with their meanings, are detailed in Table 1.

TABLE 1 — Base variables and their meanings

Source Variable Meaning

Acceleration in Z (Gs) Direct acceleration for speeding and braking. Key indicator
of aggressive driving behaviors.

Acceleration in Y (Gs) Lateral acceleration. Identifies lane changes and swerving.

Filtered Acceleration (Z & | Acceleration filtered by Kalman filter. Provides cleaner si-
UAH-DriveSet Y) (Gs) gnals for detecting driving maneuvers.

Distance to ahead vehicle | Distance to the vehicle ahead. Assesses tailgating behavior.
(meters)

Time of impact to ahead ve- | Time to collision based on speed and distance. Detects risky
hicle (seconds) driving.

Number of detected vehicles | Traffic density. Context for driving behavior.

GPS speed (km/h) Vehicle speed. Identifies speeding and sudden changes.

Estimated current lane Lane position. Understands lane-changing behavior.
Self-collected Video footage Real-time driving sessions. Extracts safety distance, time of
data impact, and vehicle count using YOLO object detection.




2.2.1 Signal processing

The raw sensor data were processed using Fast Fourier Transform (FFT) to convert the signals from the time
domain to the frequency domain. This conversion enabled the filtering of noise and the extraction of relevant
features. FFT was applied four times with different component thresholds (80, 300, 600, 900), each chosen for its
specific importance :

* 80 components : Captured low-frequency information, important for identifying steady and long-term dri-

ving patterns.

* 300 components : Balanced between low and mid frequencies, useful for detecting moderate changes in

driving behavior.

* 600 components : Focused on mid-frequency information, which helps in identifying more dynamic driving

actions.

* 900 components : Captured high-frequency details, crucial for detecting sharp and rapid driving maneuvers.

Figure 1 illustrates a signal filtered four times with different FFT component thresholds for comparison.
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FIGURE 1 - Comparison of a signal filtered four times with different FFT component thresholds : 80, 300, 600,
and 900.

2.2.2 Additional data processing for self-collected dataset

For the independently collected dataset, the phone camera was utilized to capture real-time video during the
driving sessions. YOLO (You Only Look Once) object detection algorithm was employed to analyze the video
frames :

 Safety distance calculation : YOLO was used to detect vehicles ahead by drawing bounding boxes around
the vehicles. The focal length method was used to calculate the distance between the subject vehicle and the
detected vehicles.

¢ Vehicle count : Additionally, YOLO provided the count of vehicles ahead, contributing additional context to
the driving behavior data.

Figure 2 illustrates the pinhole method, which is essential for understanding how the distance calculations were
performed.

2.2.3 Sequence generation and data augmentation

To capture the temporal dynamics of driving behaviors, fixed-length sequences of 3000 steps (approximately
100 seconds) were generated from the continuous data streams. Random start indices were employed to ensure that
the sequences covered a broad spectrum of driving behaviors and conditions. This method also served as a form of
data augmentation, enhancing the diversity of the training data.

Additional data augmentation was performed by manipulating driving parameters to simulate aggressive and
normal driving behaviors. For aggressive driving, parameters such as speed were increased, and safety distance was
decreased. Conversely, for normal driving, speed was moderated, and safety distance was increased. This approach
helped in creating a more comprehensive dataset, allowing the model to learn from varied driving scenarios.

2.2.4 Data splitting

The dataset was divided into training and testing sets to facilitate robust model evaluation. For the data splitting,
cross-validation was used with the UAH-DriveSet to ensure robust model training and validation. Specifically, a
leave-one-subject-out cross-validation approach was implemented, where each time, data from one driver was set
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FIGURE 2 - The pinhole method for calculating distances in the context of object detection. Source : Wang, Zhang,
Liu, and Lu (2021).

aside as the test set while the data from the remaining drivers were used for training the model. This process was
repeated until each driver’s data had been used once as the test set. The independently collected data, including
the simulated aggressive driving data, was used exclusively as an additional test set. This division ensured that the
model was evaluated on unseen data, providing a reliable measure of its generalization capabilities.

2.3 Model design

Given the complexity and real-time application requirements, a one-dimensional convolutional neural network
(1D CNN) architecture was chosen. This model was selected for its efficiency in processing time-series data and
its ability to effectively capture temporal patterns.

* Convolutional Layers : These layers extract spatial features from the input data, identifying patterns related
to driving maneuvers.

* Dense Layers : Fully connected layers were used for classification, outputting probabilities for normal and
aggressive driving styles.

Figure 3 illustrates the architecture of the 1D CNN model used in this study.
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FIGURE 3 — Architecture of the 1D CNN model. Source : Authors.

2.4 Training Strategy

The model training involved careful optimization of hyperparameters and the implementation of specific tech-
niques to enhance performance :



e Learning Rate Adjustment : The ReduceLROnPlateau callback was used to monitor validation loss and
reduce the learning rate by a factor of 0.2 after two epochs without improvement, continuing until a minimum
learning rate threshold was reached.

» Early Stopping : To prevent overfitting, the EarlyStopping callback halted training after five consecutive
epochs without improvement in validation loss.

* Optimizer and Loss Function : The model was compiled using the adam’ optimizer, known for its adaptive
learning rate capabilities, and trained with the ’sparse categorical cross-entropy’ loss function.

e Validation Split : A validation split of 30% was used to ensure the model’s generalization. The model was
trained for 20 epochs with a batch size of 32.

By implementing these training strategies, we aimed to optimize the model’s performance and generalization
capabilities, ensuring its effectiveness in real-time applications.

3 RESULTS

3.1 UAH-DriveSet drivers scores

Before evaluating the model performance, it is essential to understand the real scores of each driver provided
in the UAH-DriveSet. For each trip, the driver has an aggressiveness score and a normal score, which serve as a
baseline for validating the model’s predictions. Table 2 provides more details about these scores.

TABLE 2 — Driver scores : Driving scores, on a scale of 10, of drivers instructed to drive aggressively on the
highway. Source : Romera, Bergasa, Arroyo, (2016)[12].

Driver | Normal behavior score | Aggressive behavior score
Driver 1 5.1 4.0
Driver 2 1.2 6.1
Driver 3 54 34
Driver 4 3.7 5.3
Driver 5 1.3 7.3
Driver 6 4.8 4.6

3.2 Model performance

The one-dimensional convolutional neural network (1D CNN) was evaluated using cross-validation on the
UAH-DriveSet dataset and the independently collected dataset. The following metrics were used to assess the
model’s performance : accuracy, precision, recall and F1-score. These metrics were calculated for both the cross-
validation folds and the collected dataset to provide a comprehensive evaluation of the model.

3.2.1 Cross-validation results

The leave-one-subject-out cross-validation approach applied to the UAH-DriveSet provided detailed perfor-
mance metrics for each driver. The performance metrics across all cross-validation folds are summarized in Table
3, and confusion matrices for each driver are provided in Figure 4.

Driver 3,4, 5 Driver 1 Driver 2 Driver 6
Style Pre | Recall | F1 Score | Pre | Recall | F1 Score | Pre | Recall | F1 Score | Pre | Recall | FI Score
Aggressive | 1.00 | 1.00 1.00 0.00 | 0.00 0.00 1.00 | 0.60 0.75 1.00 | 0.73 0.84
Normal 1.00 | 1.00 1.00 0.50 | 1.00 0.67 0.71 | 1.00 0.83 0.79 | 1.00 0.88
Average 1.00 | 1.00 1.00 0.25 | 0.50 0.33 0.86 | 0.80 0.79 0.89 | 0.86 0.86

TABLE 3 - Driver performance metrics : Precision, Recall, and F1 Score for normal and aggressive driving styles

3.2.2 Collected dataset results

The results for the independently collected dataset are as follows :
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FIGURE 4 — Confusion matrices for each driver. Source : Authors.

* Accuracy : 99%
¢ Precision : 99%
e Recall : 99%

* Fl-score : 99%

3.2.3  Model efficiency and lightweight characteristics

An essential aspect of the 1D CNN model is its lightweight architecture, making it suitable for real-time appli-
cations on devices with limited computational resources. The model’s size, number of parameters, and inference
time were evaluated to illustrate its efficiency. The 1D CNN model contains approximately 15,474 parameters,
resulting in a total model size of 60.45 KB. The inference time was measured on Google Colaboratory CPU (In-
tel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz) at approximately 0.12 seconds per prediction, highlighting
the model’s capability for real-time performance.

4 DISCUSSION

4.1 Comparison with UAH-DriveSet real scores

The performance of the 1D CNN model was thoroughly evaluated against the real scores provided in the
UAH-DriveSet. Each driver’s aggressiveness and normal driving scores were compared with the model’s confu-
sion matrices to validate the accuracy of the model’s predictions. The comparison is summarized in Table 4.

TABLE 4 — Comparison of UAH-DriveSet real scores and our model Predictions

UAH-DriveSet real scores | Our model predictions

Driver Normal Aggressive Normal | Aggressive Alignment ‘
Driver 1 5.1 4.0 0 100 Good
Driver 2 1.2 6.1 0 100 Perfect
Driver 3 54 34 100 0 Good
Driver 4 3.7 53 61 39 Not bad
Driver 5 1.3 7.3 0 100 Perfect
Driver 6 4.8 4.6 27 73 Good

The alignment between the model’s predictions and the UAH-DriveSet real scores demonstrates that the 1D
CNN effectively identifies aggressive and normal driving behaviors. This validation confirms the model’s robust-



ness and reliability in practical scenarios. Moreover, the consistent performance across various drivers indicates
the model’s strong generalization capability. This ability to accurately predict driving behaviors across different
individuals showcases the model’s potential for widespread application in real-world settings, ensuring that it can
adapt to diverse driving patterns and styles.

Another essential characteristic of the this model is its lightweight nature. With a total of 15,474 parameters
and a model size of 60.45 KB, the model is compact enough for real-time applications. The inference time of
approximately 0.12 seconds further supports its suitability for deployment in resource-constrained environments,
such as mobile devices and in-vehicle systems.

4.2 Classification of self-collected and simulated driving data

The model’s ability to classify both collected normal data and simulated-aggressive data demonstrates its sen-
sitivity to the modified variables. This evaluation was crucial in confirming that the 1D CNN model not only
performs well on standard datasets but also adapts effectively to variations introduced in the driving behavior.

The aggressive data was simulated by altering several key driving variables, including :

* Speed : Increased speeds to mimic aggressive driving behavior.

* Lane Changing : More frequent and abrupt lane changes.

* Traffic Volume : Increased traffic volume to simulate more complex driving scenarios.

» Safety Distance : Reduced safety distances to ahead vehicles, representing riskier driving patterns.

* Time of Impact : Decreased time of impact to the vehicle ahead, indicating more aggressive following
behavior.

The results showed that the model effectively recognized these changes and classified the driving behavior ac-
curately. This demonstrates that the 1D CNN model takes into account the modified variables to simulate aggres-
sive driving, confirming its robustness and sensitivity to different driving conditions. This sensitivity is essential
for real-world applications where driving behaviors can vary significantly, ensuring that the model remains reliable
and effective in diverse environments.

4.3 Limitations and future work

While the model shows promising results, several limitations were identified :
* Variability in driving behavior : The natural variability among different drivers can pose challenges for
model generalization. Further training with a more diverse driver population is recommended.
 Simulated data limitations : Although the simulated aggressive driving data provided useful testing sce-
narios, it may not fully capture the complexity of real-world aggressive driving behaviors. Future research
should focus on collecting more authentic aggressive driving data.
* Real-time constraints : Although the model itself is fast, the data preprocessing steps, particularly the sa-
fety distance measuring and vehicle count using YOLO, need to be optimized for real-time application in
systems with limited computational resources.

Future work should aim to address these limitations by expanding the dataset with more diverse and realistic
driving behaviors, optimizing the model for various hardware platforms, and exploring additional features that
could further enhance the model’s performance.

5 CONCLUSION

This study aimed to develop and evaluate a lightweight one-dimensional convolutional neural network (1D
CNN) model for detecting aggressive driving behaviors using both the publicly available dataset UAH-DriveSet
and an independently collected dataset. A key objective of the study was to ensure the model’s generalizability
across different drivers, thereby enhancing its applicability in diverse real-world scenarios. The model’s perfor-
mance was validated against real scores from the UAH-DriveSet, demonstrating high accuracy and robustness in
identifying normal and aggressive driving patterns.

Key findings include :

* High performance and generalizability : The alignment between the model’s confusion matrices and the
UAH-DriveSet real scores for each driver confirms its reliability and highlights its strong capability to gene-
ralize across different drivers. This ability to consistently perform well across a diverse set of drivers is the



main goal of the study, showcasing the model’s potential for widespread application in real-world settings.
» Efficiency : The model’s lightweight architecture makes it suitable for real-time applications. However,
optimization of the preprocessing steps, particularly the safety distance measuring and vehicle count using
YOLO, is necessary for deployment in resource-constrained environments.

In conclusion, the 1D CNN model developed in this study demonstrates significant promise for real-time driver

behavior monitoring systems, providing a valuable tool for enhancing road safety and reducing the incidence of
aggressive driving.
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