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cused solely on planning and documentation, are now evolving into smart platforms
capable of supporting real-time monitoring, predictive analytics, and automated
maintenance workflows. This paper explores the integration of Industry 4.0 tech-
nologies such as IoT, Artificial Intelligence, and Augmented Reality within CMMS
environments. It highlights commonly adopted solutions, identifies key limitations
and discusses futures opportunities such as integrating emerging technologies like
digital twins and advanced AI tools, including Natural Language Processing (NLP)
and Large Language Models (LLM). This work aims to provide insights into build-
ing next-generation CMMS aligned with the principles of Industry 4.0.
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1. Introduction

Industry 4.0 represents a transformative process that
involves integrating its nine key pillars into manufac-
turing process. These pillars include the Industrial
Internet of Things (IIoT), Big Data and Analytics,
Cloud Computing, Simulation, and Cyber Security,
which form the foundation of this transformation [1].

In recent years, Industry 4.0 has revolutionized indus-
trial operations by introducing smart and connected
technologies. One of the most significantly impacted
areas is maintenance management, which plays a cru-
cial role in nearly every industrial production process
[2]. Many companies consider maintenance manage-
ment as the first step in adopting Industry 4.0, enabling
the shift from reactive and scheduled maintenance to
predictive maintenance [1]. This transition enhances
efficiency, flexibility, and decision-making. However,
it also requires substantial changes in manufacturing
process, human resource management, and the devel-
opment of technical expertise to handle system failures
and repairs [1, 3].

Since the first Industrial Revolution, maintenance
strategies have evolved alongside technological ad-
vancements to meet changing market demands, such
as higher product quality, lower costs, and shorter
delivery times. As industries grow more complex,
traditional maintenance methods alone are no longer
sufficient. To address this, Computerized Mainte-
nance Management Systems (CMMSs) have become
essential tools, enabling industries to effectively man-
age maintenance programs [3]. CMMS solutions help
plan maintenance tasks, improve equipment availabil-
ity, and optimize resource allocation [4]. Acting as a
centralized platform, CMMS stores and organizes all
maintenance data, allowing maintenance managers to
schedule tasks, monitor equipment performance, and
make informed decisions to enhance overall efficiency
[4].

With the emergence of Industry 4.0, advancements
such as smart sensors and automation have further en-
hanced CMMS capabilities, making them more data-
driven and intelligent [5]. By integrating Industry
4.0 technologies, modern CMMS solutions now sup-
port predictive maintenance, real-time monitoring,
and data-driven decision-making. These innovations
help companies minimize downtime, increase equip-
ment reliability, and optimize maintenance operations.

The objective of this paper is to explore the inter-
section of Computerized Maintenance Management
Systems (CMMSs) and Industry 4.0, focusing on the
technologies being integrated, the processes involved
in their implementation, and their impact on mod-
ern maintenance management. This study examines
how Industry 4.0 innovations, such as IoT, AI, and
Big Data Analytics, enhance CMMS functionalities,

enabling predictive maintenance, real-time monitor-
ing, and data driven decision making. Furthermore, it
discusses the challenges and opportunities associated
with this technological transformation and highlights
future research directions to optimize the adoption and
effectiveness of CMMS in Industry 4.0 .

The structure of this paper is as follows: Section 2 out-
lines the research methodology. Section 3 provides a re-
view of the evolution of Maintenance Management, the
roles and benefits of CMMS, and the key principles and
advantages of Industry 4.0. Section 4 examines studies
that integrate CMMS within the framework of Industry
4.0 pillars. In Section 5, these studies were analyzed
to identify the most frequently adopted technologies,
the reasons behind their adoption, the limitations ob-
served, and the technologies that remain underutilized,
along with explanations for their limited use. Section 6
presents our future outlook based on the findings and
Section 7 concludes the paper.

2. Research methodology

2.1. Research method

The research approach adopted in this study is a Sys-
tematic Literature Review (SLR). This method was
selected for its ability to offer a structured, transpar-
ent, and reproducible overview of the current state of
knowledge. Unlike traditional or descriptive literature
reviews, the SLR provides a more comprehensive and
methodical synthesis of relevant academic work. It is
recognized as a scientific and informative method for
systematically collecting, analyzing, and synthesizing
research findings on a specific topic. As noted by [6],
a systematic literature review is an efficient technique
for hypothesis testing, summarizing the results of ex-
isting studies, and evaluating the consistency among
them. Furthermore, SLRs enable readers to gain a
deep understanding of the literature and help identify
gaps in the research area [7].

The objective of this SLR is to explore the evolution
of maintenance systems, understand the roles and ben-
efits of Computerized Maintenance Management Sys-
tems (CMMS), and analyze their integration with In-
dustry 4.0 technologies.
To guide this review, the following research questions
(RQs) were formulated:

• RQ1: How have maintenance management sys-
tems evolved across different industrial revolu-
tions? What are their key functions, types of
maintenance used, and challenges encountered?

• RQ2: What is a CMMS? What are its core func-
tions, benefits, and limitations in its traditional
form?

• RQ3: What is Industry 4.0? What are its
core technologies, principles, and strategic advan-
tages?
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• RQ4: How can CMMS be integrated with Indus-
try 4.0 technologies? What technologies are most
relevant?

2.2. Search strategy

Given the structured nature of an SLR, the search
strategy followed four main steps:

2.2.1 Selection of databases

To ensure a comprehensive and reliable collection of
relevant literature, searches were conducted across
multiple academic databases and platforms. The pri-
mary sources included Scopus, ScienceDirect, IEEE
Xplore, ResearchGate, MDPI, and Taylor & Fran-
cis, which are widely recognized for their rigorous
peer-reviewed content in the fields of engineering, in-
formation systems, and management sciences. These
databases were selected to ensure access to a wide
range of peer-reviewed and high-impact journal ar-
ticles relevant to the research topic. The focus was
strictly on academic publications, to maintain a con-
sistent level of scientific rigor and reliability across the
selected literature. In some cases where institutional
access was limited, Sci-Hub was cautiously utilized as
an access tool, solely for retrieving full-text versions
of articles identified through legitimate searches. Key-
words and Boolean operators were carefully tailored
for each database to refine results and ensure relevance
to the research objectives.

2.2.2 Inclusion Criteria and Search Terms

To ensure the relevance and quality of the literature
included in this study, specific inclusion criteria were
applied during the selection process:

Only peer-reviewed journal articles were considered,
ensuring a high level of scientific reliability. The re-
view was limited to publications written in English and
published between 2019 and 2025, in order to focus on
the most recent and relevant developments.

The search strategy involved the use of specific key-
words such as “CMMS”, “Industry 4.0”, “Integration”.
These terms were combined using the Boolean opera-
tor AND to refine the results, while OR was used to
explore the integration of individual Industry 4.0 tech-
nologies with CMMS. A screening process was carried
out by reviewing the titles, abstracts, introductions,
and conclusions of the articles to assess their relevance
to the research objectives.

Furthermore, the search strategy was iteratively re-
fined by incorporating additional keywords and syn-
onyms discovered during the initial review, includ-
ing terms like “smart manufacturing”, “digital main-
tenance”, “maintenance 4.0”, and “e-maintenance”.

2.2.3 Article Selection and Analysis

An initial pool of 250 articles was identified based on
the predefined search criteria. The titles and abstracts
of these articles were independently evaluated by the
two authors (acting as reviewers), who categorized
each article as either: Adequate, partially adequate or
inadequate.

Articles deemed inadequate by at least one reviewer
were excluded from the study. Those considered par-
tially adequate were subjected to a second round of
evaluation to determine their final eligibility. The
remaining articles underwent a full-text review, dur-
ing which relevant information was systematically ex-
tracted and organized into a structured database for
further analysis.

The overall methodology adhered to a standard SLR
structure, which included the following steps:

1. Duplicate removal ;
2. Title and abstract screening ;
3. Application of inclusion/exclusion criteria ;
4. Full-text analysis and data extraction.

The results of this selection process are summarized in
Table 1:

Selection
Stages

Identified Deduped Post
Abstract

Post
Fulltext

Total
number

250 150 100 48

Table 1: Article selection summary.

2.2.4 Classification and Storing

The articles were categorized according to the research
questions (RQs), which helped in organizing the liter-
ature review:

• MMS Evolution: From Industry 1.0 to 3.0;
• CMMS: Concepts, benefits, and challenges;
• Industry 4.0: Technologies and principles ;
• Integration of Industry 4.0 with CMMS.

For Research Question 4 (RQ4), the selected papers
were further divided into the following categories:

• Use Cases ;
• Theoretical Studies.

The results of this classification are illustrated in Fig-
ure 1 , which shows the distribution of selected articles
across the four main research questions. This visual-
ization highlights that a significant number of articles
focused on Industry 4.0 technologies, reflecting the
current interest and relevance of this topic in academic
research.
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Figure 1: Number of articles according to the research
questions

Additionally, Figure 2 presents a more detailed view,
mapping individual articles to their corresponding cat-
egories. This classification allows for a clearer under-
standing of the focus areas of each paper and supports
a thematic synthesis of the literature.

Figure 2: Classification of articles according to the re-
search questions

In summary, the methodology adopted in this study
was carefully designed to ensure both depth and re-
liability in exploring the intersection between CMMS
and Industry 4.0. By following the principles of a Sys-
tematic Literature Review, we ensured a transparent
and replicable process, grounded in academic rigor.
Each step from database selection to the classification
of articles was carried out with the aim was to gather
the most relevant, recent, and useful information avail-
able on the topic. The categorization of the selected
literature not only helped structure the review around
key research questions, but also laid the groundwork
for a focused and meaningful analysis in the following
sections.

By following this structured methodology, we aim to
provide a well-rounded understanding of how mainte-
nance systems have evolved over time, present a clear
overview of CMMS and Industry 4.0 technologies, and
highlight and analyze the current integration strategies
of these technologies with CMMS that are shaping the
future of maintenance systems.

3. Literature review on CMMS
and industry 4.0

3.1. Maintenance Management Sys-
tems (MMS): Evolution, Key
Functions, and Challenges

Maintenance refers to all technical, managerial, and
administrative actions taken throughout an item’s life-
cycle, to retain or restore it to a state where it can
perform its required function [4, 8]. Its main objec-
tives are to ensure system safety, extend equipment
lifespan, maintain operational efficiency, and protect
human well-being [9].

In industrial installations where productivity, reliabil-
ity, and safety are essential, the importance of effective
maintenance has led to the emergence of maintenance
management [9, 10], which is defined as the system-
atic organization of maintenance activities aimed at
optimizing asset performance and maximizing return
on investment (ROI) through the selection of suitable
maintenance strategies and efficient asset handling
[9, 10].

As maintenance activities became more complex, the
need to standardize and optimize them gave rise to
maintenance management systems (MMS) [9]. While
maintenance management defines “what” must be done
and "why," MMS addresses “how” to execute these
tasks, acting as a practical tool to implement and
monitor maintenance strategies in a structured way.
These systems facilitate the organization of mainte-
nance activities, including equipment tracking, spare
parts inventory, task scheduling, time management,
and workforce coordination [10, 11].
Driven by advances in computing, MMS evolved from
early Failure Modes and Effects Analysis (FMEA)
into more sophisticated Computerized Maintenance
Management Systems (CMMS), offering expanded ca-
pabilities for planning, tracking, and optimizing main-
tenance activities [1, 9].

This section will discuss the evolution of maintenance
management systems from Industry 1.0 to Industry 3.0,
highlighting how maintenance practices evolved across
each industrial era. It will also examine the emergence
of Computerized Maintenance Management Systems
(CMMS), their impact on maintenance operations, and
the limitations of traditional CMMS that have created
the need for advanced automation solutions in the con-
text of Industry 4.0.
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3.1.1 Evolution of MMS through industrial
revolutions: From its origin to industry
3.0

The term Industrial Revolution was initially popular-
ized by English economic historian Arnold Toynbee to
describe Britain’s economic development from 1760 to
1840 [8]. It is defined as the rapid and dramatic change
that creates an industrialized society, transforming it
in ways that earlier purported industrial revolutions
never achieved [8].

Industry 1.0: the era of reactive maintenance

The first industrial revolution, often referred to Indus-
try 1.0, began in England and was marked by innova-
tive changes. A key development of this period was the
invention of stream engines by James Watt in 1765,
which became a symbol of this transformative era [4, 8].

During this period maintenance practices were primar-
ily reactive, known as “breakdown maintenance”, or
“corrective maintenance”, later termed Maintenance
1.0. This approach involved taking actions only after a
failure occurred, which reduced maintenance costs and
extended intervals, but led to frequent breakdowns,
safety issues, and high repair costs [8, 12].

According to [13], Maintenance decisions were based
on operator’s experience, with data gathered manu-
ally and stored in memory. There were no structured
tools or formal data management; knowledge transfer
relied on verbal communication, making it prone to
errors and inconsistencies. Maintenance practices were
subjective end lacked reliability due to the absence of
analytical approaches and documentation.

Industry 2.0: The shift to preventive mainte-
nance

The second industrial revolution, which began in late
1870s, was marked by significant advancements in
electrification and the introduction of assembly lines.
This period saw the widespread adoption of mass pro-
duction based on electrically powered lines, replacing
stream and water power in many industries [4, 8].

As machines became more complex and production
volumes increased, frequent unplanned breakdowns
caused higher costs and operational disruptions [8].
This led to the rise of “Preventive Maintenance”, also
known as “Maintenance 2.0” [8]. Which involves per-
forming scheduled maintenance tasks to prevent un-
planned downtime such as lubrication, adjustments, oil
change, and advanced diagnosis to avoid unexpected
failures [12, 14]. While this approach increased system
availability, reduced failure rates, and extended system
lifespan, it also has drawbacks, including higher costs
due to routine part replacements, the need for more
spare parts, and the possibility of unnecessary mainte-
nance [8, 12, 14].

In this era, data sources expanded to include both oper-
ators and machines. Although data collection was still
manual, it began to be documented in writing, allow-
ing for better tracking and analysis. Reliability theory,
particularly the bathtub curve, was introduced to pre-
dict failure rates more effectively [13]. Data transfer
became more reliable through written records, and
maintenance activities were more structured, marking
a transition toward formalized data management [13].

Industry 3.0: The rise of proactive maintenance
and early CMMS

The third industrial revolution, began in 1969 with the
development of the first programmable logic controller
(PLC) and lasted until the early 1990s [8]. Marked
by advances in automation, electronics, and informa-
tion technology, which revolutionized manufacturing
and industrial processes [4, 8]. Maintenance practices
evolved by combining both Corrective and Preventive
actions with data-driven analysis [8], leading to the
emergence of proactive maintenance, which focused on
addressing potential issues early in a product’s lifecy-
cle to prevent future failures [8, 15].

Operators played a key role in early fault detection
through sensory observations, helping reduce break-
downs and enabling timely intervention [15]. This
proactive approach extended equipment lifespan, re-
duced spare parts inventory, and improved cost-
efficiency, though it required major cultural and or-
ganizational changes [8].

This period marked a significant shift in maintenance
practices. Data collection became semi-automated
through the use of basic sensors and digital tool,
with information stored in databases, enabling bet-
ter retrieval and analysis. Conventional algorithms
enhanced failure prediction, while digital file sharing
enhanced communication and reliability. Addition-
ally, information system increasingly supported main-
tenance management, reducing errors and improving
efficiency [13, 15].

The Emergence of CMMS

The evolution of maintenance during the third indus-
trial revolution paralleled with the emergence of the
first and second generations of Computerized Mainte-
nance Management Systems (CMMS), a maintenance
software designed to simplify maintenance tasks, and
improve monitoring in manufacturing [16, 17]. The
earliest CMMS, introduced in the 1960s, using punch-
card technology to record and manage routine main-
tenance tasks, marked the beginning of maintenance
digitalization [4, 18].

The first generation of CMMS, introduced in the 1970s,
focused primarily on data registration and administra-
tion, providing basic support for maintenance data
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management, offering limited functionality, but rep-
resented the initial steps toward automating mainte-
nance tasks, laying the foundation for more advanced
systems [15].

In the 1980s and 1990s, the second generation of
CMMS expanded to include cost control, work order
management, and Maintenance, Repair, and Operat-
ing supplies (MRO) management, while also integrat-
ing with financial modules, reflecting the increasing
complexity and digitalization of maintenance [15].

3.1.2 Core functions and benefits of CMMS

A CMMS has become an essential tool due to its crucial
role in optimizing maintenance operations and improv-
ing asset management across various industries[4, 18].
It acts as a centralized database that stores detailed in-
formation related to assets, spare parts, personnel, and
maintenance strategies. By handling large volumes of
data, a CMMS supports trend analysis, helping or-
ganizations refine their maintenance strategies, and
make more informed, data-driven decisions [4]. It also
provides real-time feedback, making maintenance pro-
cesses more responsive and efficient [4].

Many CMMS platforms also support user interaction,
planning, and collaboration through access control
and shared documentation [19]. They also improve
efficiency through preventive maintenance scheduling,
inventory tracking, and integration with other systems,
helping to reduce breakdowns, extend equipment life,
control costs, and ensure regulatory compliance [18].
Furthermore, they enhance collaboration and account-
ability by allowing user interaction, task tracking, and
real-time notifications. Moreover, they build a knowl-
edge base of past issues and solutions, speeds up spare
parts procurement, and supports better supplier nego-
tiations [20].

Lastly, CMMS supports informed decision-making by
offering powerful analytics and reporting features.
Managers can evaluate data on energy use, equipment
downtime, maintenance costs, and performance trends
to improve strategic planning, operational efficiency,
and resource allocation [10, 16].

3.1.3 Limitations of traditional CMMS and
the need for automation

The shift from traditional maintenance methods to
Information and Communication Technologies (ICT)-
based systems, such as CMMS, has become essential,
especially as the systems must evolve alongside tech-
nological advancements [4]. With the increasing digiti-
zation and automation in recent years, the demands on
maintenance management have changed significantly.
Traditional CMMS still play a key role by centraliz-
ing maintenance data [4]. However, their limitations
prevent the full realization of Industry 4.0’s potential.

One major drawback is their reliance on manual data
entry [4, 5], which is both time-consuming and prone
to errors. Moreover, without direct integration with
machines, CMMS cannot effectively support predictive
maintenance or real-time data-driven decision-making
[5]. As noted by [21], these systems also lack advanced
decision analysis capabilities, which is crucial for mod-
ern maintenance strategies.

To address these limitations, [22] suggests integrating
diagnostic, prognostic, machine learning, and decision-
support algorithms into existing CMMS platforms.
These tools can analyze equipment data, forecast fail-
ures, and recommend optimized maintenance actions.
When integrated, the CMMS could automatically plan
and schedule maintenance tasks based on real time
insights.

Additionally, incorporating the latest technologies en-
ables information to be transmitted to the systems
immediately, eliminating the need for manual data
entry. By collecting and analyzing data in real time,
the system can process insights and transfer them to
humans for final decision-making [4]. This capability
enables maintenance managers to oversee and monitor
multiple operations or facilities simultaneously [4].

3.2. Industry 4.0: The era of predictive
maintenance and the transforma-
tion of CMMS

As we move into the era of Industry 4.0, advanced
technologies are reshaping the field of maintenance
management, driving smarter and more efficient op-
erations. This section of the literature review will
examine the fundamental principles, key concepts, and
pillars underlying Industry 4.0, including the Internet
of Things (IoT), Artificial Intelligence (AI), Big Data,
cloud computing, and advanced robotics. These tech-
nologies are fundamentally changing the way industries
approach maintenance.
Moreover, they are unlocking new possibilities for pre-
dictive maintenance strategies. Understanding these
technologies is essential, as they will serve as the foun-
dation for future discussions on their integration into
modern maintenance management systems.

3.2.1 Industry 4.0 : An Introduction

Industry 4.0, often called the fourth Industrial Revolu-
tion, signifies a profound shift in industrial production,
driven by the rise of internet technologies since the late
1990s and accelerated by global interconnectedness [8].
It introduces an advanced phase of digital transforma-
tion where technologies such as cyber-physical systems
(CPS), the Internet of Things (IoT), Artificial intel-
ligence (AI), big data analytics and cloud computing
converge to create smarter, more connected, and auto-
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mated industrial systems [1, 4, 23, 24].

Unlike earlier industrial revolutions, Industry 4.0 en-
ables real-time interaction between machines, systems,
and humans, allowing for intelligent production pro-
cesses with greater flexibility and efficiency [24, 25].

Originating in Germany as a strategic initiative to
modernize manufacturing Industry 4.0 promotes the
concept of “smart factory”, where machines commu-
nicate, analyze large data sets, and make autonomous
decisions to optimize performance and reduce waste
[25, 26]. It supports predictive maintenance, reduces
downtime, and allows for more personalized produc-
tion to meet evolving market demands [24, 27, 28].

Importantly, industry 4.0 is not solely technology
driven; it also emphasizes human integration. While
automation and AI enhance productivity, human ex-
pertise remains essential for supervision, strategic de-
cisions, and continuous improvement. The goal is to
augment human roles by shifting them toward creative,
value-added tasks, fostering a collaborative environ-
ment between people and technology [24, 25, 27].

3.2.2 Predictive maintenance and the third
generation of CMMS

Predictive Maintenance, referred as “PdM 4.0” or
“Maintenance 4.0”, is a concept developed under the
influence of Industry 4.0, aims at preventing asset fail-
ure by performing servicing shortly before a failure is
expected [12]. By using big data, AI, and continu-
ous real-time asset monitoring, it identifies patterns
and anomalies to predict and prevent failures, thus re-
ducing both planned and unplanned downtimes while
increasing equipment availability and cost efficiency
[8, 12, 13].

In the Maintenance 4.0 era, the integration of these
advanced technologies has led to fully automated data
collection from a wide range of sources, including sen-
sors, operators, from Original Equipment Manufac-
turers (OEMs), and IT systems. Advanced analytical
methods such as fuzzy logic, neural networks, and ma-
chine learning enable predictive and prescriptive main-
tenance strategies, while cloud services ensure scalable,
accessible, and efficient data management [13].

The evolution of CMMS into its third generation in
the 1990s laid the groudwork for theses advancements.
These systems introduced features like EHS modules
(Environmental, Health, and Safety), e-MRO capabil-
ities (e-Maintenance, Repair and Operations), multi-
media support, and ERP integration, reflecting the
early shift toward connected, analytical, and web-based
maintenance tools [15]. This evolution enabled today’s
fully digital and intelligent maintenance practices char-
acteristic of Maintenance 4.0.

3.2.3 Core principles and key concepts of I4.0

Industry 4.0 is centered around automation, digitaliza-
tion, and the integration of advanced technologies to
enhance industrial and manufacturing processes [29].
A foundational step in implementing Industry 4.0 is
establishing reliable data collection and storage sys-
tems, which enable more advanced capabilities like
pattern recognition, predictive analytics, automated
decision-making, and self-optimization [29]. While in-
dividual technologies offer value on their own, their
full potential is unlocked when integrated into a smart
and connected system [30].

The core principals of Industry 4.0 include Interoper-
ability, which ensures seamless interaction and infor-
mation exchange between cyber-physical systems and
humans, Virtualization, which relies on digital twins
to monitor physical processes in real time through
sensor data, Real-time Capability for instant anal-
ysis and decision-making based on latest knowledge
and predictions, Service Orientation through the
integration of IoT and Internet of Services creating a
more connected and efficient system, Modularity for
flexibility and adaptability using modular equipment
and production lines, and Decentralized Control,
allowing autonomous decision-making at different lev-
els [19]. Additional principles like Technical As-
sistance, which supports human operators through
digital tools and intelligent systems that enhance their
performance, Information Transparency that pro-
vides businesses with valuable data insights to improve
decision-making and Interconnection that allows
machines, software systems, and human workers to
communicate easily, ensuring a fully integrated indus-
trial ecosystem [31].

Building on these principles, Industry 4.0 introduces
key concepts that translate these ideas into practical
applications, [30] identifies 24 critical concepts includ-
ing Mass Customization allowing companies to pro-
duce personalized products using smart technologies
Servitization shifts the focus from selling physical
products to offering service-based solutions, Logis-
tics 4.0 uses smart technologies to improve supply
chains, New Product and Service Development,
encouraging innovation through connected and intelli-
gent products, Adaptation to Human Needs im-
proves human-machine interactions using IoT and Big
Data, and Products allow intelligent communication
and interaction with systems. While Sustainability is
promoted through Circular Economy (CE) which
focuses on reducing waste by reusing and recycling ma-
terials, Recycling 4.0 that uses smart technologies to
improve recycling processes, and Remanufacturing,
which restores used products to like-new conditions
using Industry 4.0 innovations.
In addition, concepts like Lean Manufacturing, and
Knowledge Management supports efficiency and
informed decision-making, Systems Science explores
interactions between various Industry 4.0 components.
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Innovation Management ensures the integration of
new ideas and technologies into industrial processes,
while Business Process Reengineering (BPR)
focuses on redesigning operations to improve effi-
ciency. Self-Organization allows businesses to en-
able decentralized and autonomous decision-making.
To strengthen collaboration and connectivity, Col-
laborative Networks (CN) enhance internal and
external communication, while Vertical and Hori-
zontal Integration optimize inter-organizational pro-
cesses [30].Advanced manufacturing techniques such as
Flexible Manufacturing (FM) and Agile Manu-
facturing (AM) enable industries to quickly adapt
to new market demand. One of the most significant
developments in Industry 4.0 is the rise of Smart
Factories, where automation and interconnected sys-
tems drive efficiency, supported by Product Life-
cycle Management (PLM) that provides smooth
management from design to disposal [30]. Digital
Transformation underpins all these changes, reshap-
ing operations and business models. Finally, these
innovations extend beyond industry into Smart City,
enhancing infrastructure and sustainability in urban
environments [30].
Moreover, A recent emerging development within In-
dustry 4.0 is the concept of Biologicalization in
manufacturing, which involves integrating biological
and bio-inspired principles into intelligent and sustain-
able manufacturing systems. While the idea itself is
not entirely new, the rapid progress in digitalization
and Industry 4.0 technologies has accelerated its im-
plementation. This approach aims to create more sus-
tainable, efficient, and adaptive production processes
by incorporating biological principles into industrial
applications. The underlying concept of biologicaliza-
tion is built on existing capabilities and is expected
to be further enhanced by future developments within
Industry 4.0. [32].

By embracing these principals alongside advanced dig-
ital technologies, businesses can fully leverage Industry
4.0 to boost productivity, foster innovation, and adapt
to dynamic industrial landscape.

3.2.4 Pillars of Industry 4.0

While these concepts define the strategic and oper-
ational advancements of Industry 4.0, their realiza-
tion depends on a set of enabling technologies. These
technologies, often referred to as the ‘pillars’ of Indus-
try 4.0, provide the necessary digital infrastructure,
automation capabilities, and intelligent systems that
make these concepts actionable, These nine pillars
(Figure 3) include the Industrial Internet of Things
(IoT), big data and analytics, horizontal and verti-
cal system integration, simulation, cloud computing,
augmented reality (AR), autonomous robots, additive
manufacturing, and cybersecurity with cyber-physical
systems [1, 4, 19, 26, 27, 30].

Figure 3: Pillars of the fourth industrial revolution [33]

These interconnected technologies enable industries to
optimize processes, improve decision-making, and ad-
dress challenges in modern manufacturing.

– Big Data and Analytics:

Big data and analytics are essential in modern in-
dustries, enabling the collection and analysis of large,
diverse, and fast-moving data from various sources like
production systems and customer platforms [27]. This
supports advanced analytics that improve production
quality, reduce energy use, and enhance equipment per-
formance [26]. Built on the three key characteristics of
big data; Volume, Variety, and Velocity; that enable
real-time monitoring, process automation, and efficient
production management [29]. It also aids in predictive
maintenance by identifying patterns and anticipating
equipment failures, helping to minimize downtime and
costs. Moreover, big data enhances business intelli-
gence, improves customer relationships, and promotes
sustainable manufacturing through optimized resource
usage and process improvements [26, 29].

– Autonomous Robots:

Autonomous robots have evolved significantly since In-
dustry 3.0, where they were primarily used to handle
complex tasks [26]. Today, they are becoming smarter,
more flexible, and capable of working safely alongside
humans. These robots can learn from human interac-
tions, collaborate with other robots, and communicate
effectively for better efficiency [27]. Their autonomy
allows them to perform precise tasks, operate in haz-
ardous environments, and improve overall workplace
safety and productivity. As they continue to advance,
autonomous robots are becoming more adaptable, col-
laborative, and essential in modern industries [26].

– Simulation:

Simulation technology has become an essential tool in
modern industries, allowing virtual models to rep-
resent real-world systems and reduce the need for
physical testing [27]. In factories, simulations help
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optimize machine setup, improve product quality, and
strengthen decision-making by reflecting real-time data
from machines, workers, and processes. Simulation has
significantly reduced failures and saved industries sub-
stantial costs [26]. Additionally, 2D and 3D simulations
enable virtual commissioning, cycle time analysis, en-
ergy efficiency assessment, and workplace ergonomics
evaluation, contributing to more reliable and efficient
industrial operations [27].

– System Integration:

System Integration is a key aspect of Industry 4.0,
enabling factories and production systems to become
more connected and automated [27]. This integra-
tion occurs in three main ways: horizontal integration,
where different companies collaborate to optimize the
supply chain; vertical integration, where machines, sys-
tems, and processes within a factory are interconnected
to enhance performance integration [27] involving a
company managing its value chain internally, covering
everything from product design and manufacturing to
sales and marketing [26], and end-to-end integration,
which digitally links the entire product life cycle, from
design to production and customer use [27]. By inte-
grating systems at all levels, industries achieve better
automation, communication, and coordination, leading
to more efficient and optimized production processes
[27].

– The Internet of Things:

The Internet of Things (IoT), also known as the In-
ternet of Everything (IoE), is a global network of con-
nected devices that communicate using standard pro-
tocols, enabling real-time data collection and sharing
[26]. It improves interaction between people, machines,
and sensors across industries [29]. Key components in-
clude the Internet of Services (IoS), Internet of Manu-
facturing Services (IoMs), and Internet of People (IoP),
supported by embedded systems and ICT integration
for efficient operation [27]. IoT is driven by three
core features: context-awareness, omnipresence, and
process optimization. These features enable devices
to interact with their environment, share data, and
automate improvements [27]. Ultimately, IoT plays a
vital role in advancing manufacturing excellence and
supporting the digital transformation of industries [25].

– Cybersecurity and Cyber-Physical Systems
(CPS):

Cybersecurity and Cyber-Physical Systems (CPS) are
vital in Industry 4.0 due to increased connectivity and
the resulting cyber risks [27]. Cybersecurity ensures
the protection of data, systems, and networks from cy-
ber threats through secure communication and access
control [26].
Cyber-Physical Systems (CPS) integrate physical com-
ponents with digital networks, using sensors and smart
technologies to monitor, automate, and make real-time

decisions [27, 32]. Commonly used in manufacturing
and traffic control, CPS enhance efficiency and re-
sponsiveness [27]. They also leverage cloud systems
to create digital representations of physical assets, en-
abling performance tracking, failure prediction, and
process improvement [27].

– Cloud Computing:

Cloud technology is essential in Industry 4.0, enabling
rea-time communication and data sharing across sys-
tems, sites, and stakeholders [27]. In smart factories,
cloud platforms allow efficient data storage, analy-
sis, and access, enhancing decision-making, collabo-
ration, and operational efficiency [26]. Cloud man-
ufacturing builds on this by providing decentralized,
on-demand access to computing resources, software,
and services; boosting flexibility and resource opti-
mization [32]. Supported by cloud computing, IoT,
and service-oriented architecture, this model is backed
by major tech companies like Microsoft, Google, and
Autodesk [26]. Additionally, cloud manufacturing pro-
motes sustainability by reducing waste and improving
resource use, contributing to a more resilient, auto-
mated, and scalable industrial future [25].

– Additive manufacturing:

Additive manufacturing, or 3D printing, is a key Indus-
try 4.0 technology that builds products layer by layer,
enabling complex, lightweight, and customized designs
with minimal waste [25, 32]. It is widely used for
prototyping and producing small parts, especially in
industries like aerospace where weight reduction lowers
fuel consumption [26]. Decentralized 3D printing cuts
shipping and storage costs by producing parts closer
to demand locations [27]. This technology supports
sustainability by reducing waste and enabling closed-
loop recycling, making it both environmentally and
economically beneficial [25]. Consequently, additive
manufacturing is considered essential for product per-
sonalization and adaptation in modern industry [29].

– Augmented Reality:

Augmented Reality (AR) is a key Industry 4.0 technol-
ogy that enhances user interaction with the real world
by overlaying digital content such as images, videos,
and data [34]. It is used in sectors like healthcare and
automative for training, diagnostics, and design [26].
In manufacturing, AR supports quality control, main-
tenance, assembly, and safety by providing real-time
guidance and improving human-machine interaction
[32, 35]. It also enables virtual training and remote
expert assistance [29].

– Blockchain:

Beyond core technologies, Blockchain is emerging as
another vital Industry 4.0 component. It offers secure,
transparent, and taper-proof data sharing, especially
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useful in supply chain management, smart contracts,
and data integrity [25, 36].

– Artificial Intelligence (AI) and Machine
Learning (ML):

Artificial Intelligence (AI) and Machine Learning (ML)
are also crucial, enabling data-driven decision-making,
automation, and process optimization. These tech-
nologies enhance efficiency, reduce errors and costs,
and support sustainable and high-precision manufac-
turing [25]. Building upon the capabilities of AI and
ML as illustrated in Figure 4, Natural Language Pro-
cessing (NLP) and Large Language Models (LLM)
further improve the potential of Industry 4.0 technolo-
gies. NLP allows machines to understand, interpret,
and generate human language, facilitating more in-
tuitive human-machine interactions. LLM, a subset
of NLP, leverages vast amounts of text data to gen-
erate coherent and contextually relevant responses,
enhancing the capabilities of AI-driven systems. The
integration of NLP and LLM in industrial applica-
tions can automate and optimize various processes,
such as report generation, data analysis, and decision-
making, thereby enhancing operational efficiency and
effectiveness[37].

Figure 4: Intersection of Key Technologies in Industry
4.0 [37]

3.2.5 Advantages of Industry 4.0

Industry 4.0 marks a major transformation in manu-
facturing by integrating advanced technologies such as
automation, artificial intelligence (AI), cloud comput-
ing, and the Internet of Things (IoT). It enables smart,
efficient, and cost-effective production, including indi-
vidualized and customized manufacturing, while main-
taining reasonable costs [24, 27].

A key goal of Industry 4.0 is to create a structured and
autonomous production system, where products can
manage their own production processes using smart
technologies [26].

According to [26], Industry 4.0 significantly impacts
four main areas:

• Productivity: Many companies report productiv-
ity increases of 25-30% and the automative in-

dustry expects a 10-20% boost in production ef-
ficiency.

• Revenue Growth: As productivity improves, in-
dustries experience higher revenues.

• Employment: While automation raises concerns
about job losses, studies predict a 5-10% increase
in employment over the next decade, particularly
in fields such as mechatronics, software engineer-
ing, and communication engineering.

• Investment: The adoption of AI and cloud com-
puting has led to increased investment in indus-
trial innovation.

Industry 4.0 also improves competitiveness by integrat-
ing sustainability into production and enhancing sys-
tem efficiency [25]. The horizontal and vertical inte-
gration of technologies helps companies become more
flexible, resilient, and profitable [38].
Another major benefit is the connectivity between
all stakeholders; including machines, raw materials,
and products, supporting sustainability and long-term
growth. Smart factory technologies, such as improved
robotics and machine-to-machine communication, en-
able better decision-making and higher-quality, more
efficient production [38]. As highlighted in [30], Indus-
try 4.0 introduces several essential characteristics:

• Cost Savings: Automation reduces production
costs.

• Data Reliability & Transparency: Real-time data
improves decision-making.

• Autonomous Decision-Making: AI and machine
learning optimize processes.

• Time Savings: Automated workflows reduce pro-
duction and delivery times.

• Improved Quality: Smart technologies enhance
product reliability and minimize defects.

• Higher Productivity: Automated systems handle
repetitive tasks, freeing workers for complex ac-
tivities.

• Sustainability & Resource Efficiency: Energy use
is optimized and waste reduced.

• Agility & Flexibility: Businesses can quickly
adapt to market changes.

• Real-Time Inventory Tracking: IoT and RFID
prevent overstocking or shortages.

In summary, Industry 4.0 is revolutionizing manufac-
turing by making it more intelligent, sustainable, and
profitable. It drives economic growth, encourages in-
novation and investment, and creates new job oppor-
tunities in technology-driven sectors.

4. Exploring the Integration of
CMMS within the Pillars of
Industry 4.0: Related Work
and Advances

To gain a deeper understanding of which Industry 4.0
pillars have been explored in previous research and
how they can be integrated with Computerized Main-
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tenance Management Systems (CMMS), this section
presents a selection of case studies and conceptual
frameworks drawn from the existing literature on the
topic. The reviewed articles reveal a frequent use of
certain Industry 4.0 pillars, including Augmented Real-
ity (AR), Simulation, the Industrial Internet of Things
(IIoT), Artificial Intelligence (AI) and Machine Learn-
ing (ML) algorithms, as well as Big Data & Cloud
computing, each applied through various methods and
perspectives proposed by different authors. These pil-
lars are sometimes implemented individually and, in
other cases, combined to create more advanced and in-
tegrated maintenance solutions.
The integration of these pillars into CMMS has served
multiple objectives aimed at enabling advanced main-
tenance strategies, the most prominent objectives
identified in the literature are Maintenance Process
Optimization, Improving Intervention and Decision-
Making, and the Implementation of predictive main-
tenance (PdM) strategies.
In the following sections, the case studies and frame-
works associated with each of these objectives will be
detailed and analyzed to illustrate the practical appli-
cations and benefits of combining Industry 4.0 tech-
nologies with CMMS.

4.1. Maintenance Process Optimiza-
tion

Maintenance process optimization involves automat-
ing and enhancing maintenance activities through the
adoption of advanced Industry 4.0 technologies. Ac-
cording to the literature, this objective is typically
achieved by combining multiple pillars of Industry
4.0, which provide a cohesive framework for improving
system connectivity, data flow, decision-making capa-
bilities, and automated maintenance processes.

The article by [39], presents a method to trans-
form conventional maintenance workflows into intelli-
gent, automated processes within CMMS/EAM envi-
ronments. The authors propose integrating Machine
Learning (ML) and Multi-Criteria Decision Making
(MCDM) methods to reduce the reliance on manual
operations, more specifically, the goal is to automate
the filling out of maintenance order forms and the al-
location of maintenance technicians, with the overall
aim of improving efficiency, reducing delays, and min-
imizing human error in maintenance operations.
Specifically, the article links CMMS to the broader con-
text of Industry 4.0 by introducing a smart workflow
architecture as illustrated in Figure 5. This integra-
tion begins at the physical level with industrial assets
equipped with sensors that monitor various parameters
such as temperature, vibration, and pressure. These
sensors transmit data in real time to industrial con-
trollers using standardized communication protocols
like OPC UA, MQTT, and RESTful HTTP. The col-
lected data is then routed into CMMS/EAM systems,
creating a continuous data pipeline that supports real-

time monitoring and decision-making.

Figure 5: CMMS smart workflow [39]

To automate the workflow, the authors introduce two
complementary frameworks: a serial approach and a
parallel approach.
In the serial approach (Figure 6), MCDM is used to
select the most relevant features from the maintenance
database. These features are then passed to ML algo-
rithms such as Decision Trees, Naive Bayes, and Sup-
port Vector Machines (SVM) to classify and auto-fill
fields in maintenance order forms. This reduces the
need for manual data entry and ensures standardized,
accurate documentation.

Figure 6: Serial approach framework [39]

In the parallel approach (Figure 7), MCDM first evalu-
ates and ranks maintenance personnel based on criteria
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such as skill level, availability, seniority, and absence
records. If the TOPSIS-based ranking yields alterna-
tives with very close scores, ML is then used as a sec-
ondary classifier to make a more precise assignment.

Figure 7: Parallel approach framework [39]

A case study conducted in a Brazilian multinational
company that develops and distributes CMMS/EAM
systems worldwide to support theoretical proposal.
The study involved the analysis of over 400,000 main-
tenance orders recorded between 2017 and 2019, com-
prising 113 data fields per record. The implementation
of the proposed smart workflows in this real-world set-
ting demonstrated a measurable improvement in the
efficiency and accuracy of maintenance operations. No-
tably, the auto-filling of forms and automated techni-
cian assignment led to faster execution of maintenance
tasks and reduced delays caused by human interven-
tion.
Moreover, the system was positively evaluated by the
internal development team, composed of five experts
with over four years of experience in maintenance
software. Their feedback, collected through a struc-
tured survey, confirmed that the integration of ML
and MCDM not only streamlined operations but also
enhanced the overall reliability and usability of the
CMMS.

Another study, [40], emphasizes the integration of
the Industrial Internet of Things (IIoT), Augmented
Reality (AR), Artificial Intelligence (AI), and Cloud
Computing into a centralized, cloud-based Computer-
ized Maintenance Management System (CMMS). The
main objective of this integration is to digitalize and
automate maintenance processes, enhance real-time
decision-making, and improve data accessibility across
the maintenance chain.
To illustrate this integration, the study presents a con-
ceptual framework supported by a smart maintenance
testbed. This testbed combines several Industry 4.0
components :

• An IIoT platform for real-time data acquisition
from machines and sensors,

• A cloud-based CMMS for centralized mainte-
nance management and work order generation,

• AR technology for providing interactive mainte-
nance instructions on-site,

• Autonomous Robots to deliver tools and spare
parts to maintenance personnel,

• Standard communication protocols (OPC UA,
Modbus, WebSockets) to ensure interoperability
among all components,

• AI and data analytics tools to interpret mainte-
nance data and trigger appropriate actions.

Within this testbed, an IIoT Gateway connects multi-
ple components to the IIoT platform via WebSockets.
The system comprises two main stations, and the ar-
chitecture of the testbed is shown in Figure 8.

Figure 8: Architecture for the testbed [40]

• Press-station: When 70 parts have been pressed,
the IIoT platform automatically generates a work
order in the cloud-based CMMS. This order is
displayed on the platform’s dashboard, detail-
ing the required maintenance tasks. Simultane-
ously, the Autonomous Robot delivers the nec-
essary tools and spare parts, and a QR code is
displayed, providing digitalized maintenance in-
structions via AR.

• Out-station: A gripper moves along a linear
guide between two points (A and B), with sensors
measuring the travel time. If the measured time
exceeds a predefined threshold, the IIoT plat-
form generates a work order in the cloud-based
CMMS, signaling the need for cleaning, lubrica-
tion, or component replacement. This triggers
the Autonomous Robot to deliver the required
tools and spare parts while displaying a QR code
for AR-based maintenance instructions.

The article shows that cloud-based CMMS enhances
smart maintenance by integrating real-time data, ana-
lytics, and AR to support autonomous strategies.

The research by [41] also contributes by developing a
next-generation platform that incorporates industry
4.0 technologies to overcome the limitations of tradi-
tional CMMS solutions.
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The proposed CMMS is cloud-based that can be ac-
cessed by internet and integrates seamlessly with real-
time sensory data collection, leveraging two key Indus-
try 4.0 pillars: the Industrial Internet of Things (IIoT)
and Big Data & Cloud computing. These technologies
are applied to support Condition Based Maintenance
(CBM), real-time monitoring, and remote interaction.
To this end, a suite of wireless sensors was developed to
monitor critical machine parameters, including vibra-
tion, temperature, gas levels, and power consumption,
ensuring compatibility across various equipment types.
Additionally, a wireless maintenance call button was
introduced to address downtime caused by communica-
tion delays; identified as a major source of inefficiency.
When triggered, the button sends an instant alert to
the responsible personnel, significantly reducing re-
sponse time and increasing equipment availability.
The platform further automates maintenance by link-
ing sensor thresholds directly to maintenance planning.
When a predefined threshold is exceeded, the system
autonomously generates and assigns a maintenance
task to the appropriate staff, eliminating the need for
manual input.
According to the authors, the developed platform in-
corporates key Industry 4.0 technologies by enabling
IoT based connectivity, real time data monitoring, and
automated maintenance task generation. Sensor data
is continuously collected and visualized, allowing for
timely interventions and improved decision-making.
The system automatically assigns recurring mainte-
nance tasks, tracks user performance, and facilitates
digital work order management. It also enhances trace-
ability through QR-coded spare parts and provides cost
monitoring tools to assess operational efficiency. These
features collectively contribute to a smart, data-driven
maintenance environment aligned with the goals of In-
dustry 4.0.

To complete this overview, a Real Time Equipment
Monitoring (RTEM) system was developed for indus-
trial oil and gas company, as described in [42], to im-
prove asset management and effectively track asset lo-
cations while gathering data on their operation and
maintenance status. The system utilized GPS, bar-
codes, and RFID tags which are integrated with the
CMMS. RFID, in particular, is wireless, and contact-
less technology that enables automated identification
and data exchange between devices within the system.
It functions through three primary components: the
tag, the reader, and the antenna, allowing the system
to capture and process specific information about a tar-
geted object using radio frequency signals [42].
The data collected from the RFID tags is stored in the
CMMS which is connected to the intranet to ensure
efficient information flow. The primary purpose of the
data stored in the CMMS is to enable management and
personnel to easily monitor the condition of the asset.
The system aims to significantly reduce the time spent
locating assets and increase their utilization by captur-
ing data related to:

• Identification of equipment, parts and products;

• Tracking their time and position throughout the
value chain;

• Record their manufacturing and maintenance
history.

The implementation of the system follows several key
steps. First, all available asset data including loca-
tion, types, serial number and maintenance history,
is gathered from the existing CMMS. Next, the map-
ping and installation phase involves the setup of GPS
devices and the attachment of barcode labels to the
assets. The third step include updating the CMMS to
reflect the newly tagged information. Finally, a BETA
test; an acceptance test performed by the end-user
of a product to validate its functionality, reliability,
and compatibility [33]; is conducted to ensure that
the system meets the user expectations in terms of
functionality, reliability, and alignment with the asset
management strategy.
According to [42], the RTEM model brought substan-
tial automation to the company’s process, covering
everything from maintenance planning to spare parts
management and asset monitoring. Asset related ac-
tivity data is now stored digitally and can be accessed
with ease. Using this system, maintenance staff simply
scan the barcode on an asset’s tag during its mainte-
nance, and fill out a checkbox on a digital form using a
portable device. This information is sent to the cloud
and recorded in a centralized database, automatically
updating the asset’s maintenance history. When the
database is queried, it provides details such as the
asset’s current location, completed tasks, and any out-
standing work. Additionally, technicians can upload
photos to document the asset’s condition. If the sys-
tem detects an asset in an unauthorized area, it can
alert to the asset manager for immediate investigation.

The reviewed studies under the objective of mainte-
nance process optimization demonstrate how the inte-
gration of CMMS with Industry 4.0 technologies en-
ables the transformation of traditional maintenance
systems into intelligent, efficient workflows [39]. By
combining sensor data, communication protocols, AI-
based decision-making, and automation, these systems
improve responsiveness, accuracy, and overall opera-
tional performance. In particular, cloud-based CMMS
platforms serve as central hubs, integrating real-time
IIoT data, advanced analytics, and AR tools [40].
Moreover, the RTEM model discussed in [42] reinforces
these findings by showcasing a fully digitized and auto-
mated maintenance environment, where real-time data
acquisition, centralized tracking, and smart alerts con-
tribute to significant streamlined process and improved
asset management efficiency.

4.2. Improving Intervention and
Decision-Making

The second objective of integrating Industry 4.0 pillars
with a CMMS is to increase the efficiency of mainte-
nance interventions through real-time support for on-
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site operations, aiming to minimize downtime, reduce
delays, and ensure equipment availability, and en-
hance decision-making while leveraging unstructured
historical maintenance data stored in databases. To
achieve this, the most frequently cited technologies
in the literature include Augmented Reality (AR),
often combined with Cyber-Physical Systems (CPS)
and Machine Learning algorithms to provide effective,
context aware maintenance assistance, as well ass Nat-
ural Language Processing (NLP) techniques to extract
valuable insights from unstructured data.

A first example is found in [43] were the authors pro-
posed an architecture for integrating a CMMS with
Augmented Reality (AR), to reduce equipment break-
downs and unexpected delays. The system consists
of three main components: a CMMS, a wearable AR
device (Microsoft Hololens), and an information con-
troller, as illustrated in Figure 9.
To demonstrate the concept, a desktop 3D printer was
used as an example; an emerging technology expected
to revolutionize future manufacturing processes.
The development of the system followed several key
steps. First, the relationship between different data
components were structured to ensure efficient storage
and retrieval, this includes linking each machine to
its failure history, potential causes, and correspond-
ing maintenance instructions based on manuals and
expert knowledge. Next, a Graphical User Inter-
face (GUI) was designed for the AR-CMMS system
to present asset information in formats such as text,
verbal messages, labels, 3D animations, or videos to
guide maintenance tasks. AR targets were attached to
the equipment to define where digital content should
appear in the user’s view. And multiple image targets
allowed for the placement of various virtual elements.
Finally, web-based services were created to enable data
exchange between the AR system and the CMMS web
server.

Figure 9: System architecture [43]

The AR-CMMS system allows users to interact with
maintenance tasks via a graphical interface on the
Hololens. Users can access the AR application’s fea-
tures via the GUI to perform tasks or create work
orders using a wireless keyboard. When the user looks
directly at a marker on the machine, the system de-
tects its ID and retrieves data from the CMMS. In
the event of a breakdown, operators can report the
issue through voice or text. The system then suggests
possible causes, guiding the operator through step-
by-step diagnostics with text and video instructions.

Confirmed non issues are marked green, and once the
problem is resolved, the operator must close the work
order (WO) to update the machine’s history. If the
issue is unknown or unresolved, a Skype call with a
technician can be initiated. If the root cause is found
but cannot be fixed immediately, or if the problem
remains undefined, a WO is created and forward for
further action by maintenance staff.
This system offers several advantages, including the
potential to reduce downtime caused by unexpected
breakdowns. It enables untrained operators to carry
out basic diagnostics and minor repairs, allowing
skilled technicians to focus on more complex issues.
The integration of augmented reality in maintenance
can significantly enhance productivity and reduce over-
all production costs [43].

Similarly, the authors of [44] assert that combin-
ing Augmented Reality (AR) with a Computerized
Maintenance Management System (CMMS) can serve
as a strategic information system for manufacturing
decision-making. This integration aligns with the con-
cept of intelligent factories in the industry 4.0 ecosys-
tem.
The main contribution of [44] lies in the development of
a methodology for creating a next generation informa-
tion system that merges AR-based data visualization
with CMMS functionalities. According to the authors,
CMMS solutions are essential for storing and man-
aging maintenance data from machine registration to
preventive maintenance planning. While many compa-
nies rely on these systems to support their decisions,
[44] point out that the way information is presented
lacks clarity.
To address this limitation, the authors propose inte-
grating AR with CMMS to improve the clarity, usabil-
ity and accessibility of maintenance data. The study
describes a three-phase methodology for developing
and implementing the proposed approach aimed at
improving decision-making in maintenance manage-
ment.

– Phase 1: CMMS Development

The first step is to develop a CMMS for a León-based
company specializing in dyes and paints, aiming to
optimize maintenance operations and failure tracking.
The CMMS included key features such as:

• Catalog management (equipment, tools, techni-
cians, users, etc.).

• Service management (work orders, scheduling).
• Corrective and preventive maintenance tracking.
• Automated reports and data visualization with

export options (Excel, PDF, etc.).
• User permissions and session management.

The system was iteratively tested and refined at each
development stage, with feedback from the company
to ensure alignment with operational needs.

– Phase 2: Augmented Reality (AR) Integration
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After establishing the CMMS, an AR-based visualiza-
tion system was developed to improve maintenance re-
porting. The AR component was built using Unity
and connected to the CMMS database via a web server
where MySQL data was accessed through PHP scripts.
The AR visualization process evolved:

• Developing Unity scripts using UnityEngine;
• Fetching CMMS data via a PHP script that re-

trieved maintenance reports;
• Displaying key metrics in AR using Vuforia, en-

abling users to scan CMMS-related tags and
visualize maintenance trends dynamically.

– Phase 3: System Evaluation

The final phase focused on validating the CMMS-AR
integration through usability, functionality, and per-
formance testing. Both user feedback and technical
performance metrics were analyzed to assess the sys-
tem’s effectiveness.

According to [44], integrating a CMMS with Aug-
mented Reality (AR) enhances decision-making, user
experience, and maintenance efficiency by providing
interactive, real-time data visualization. AR simpli-
fies access to maintenance records, accelerates fault
diagnosis, and improves report accessibility, enabling
technicians to quickly identify issues and implement
corrective actions. The system facilitates dynamic, in-
teractive reporting, reducing reliance on static reports
and manual data entry. Additionally, AR supports
knowledge transfer, training, and standardization of
maintenance procedures, ensuring best practices are
consistently followed.

Another notable study [45] explores the integration
of NLP with multidimensional classifiers to improve
CMMS metadata prediction. CMMS platforms often
contain unstructured text such as maintenance issue
descriptions written by technicians that is difficult to
analyze due to abbreviations, technical jargon, and in-
complete sentences. The goal of the study is to use
NLP techniques to automatically interpret and catego-
rize these descriptions, helping to identify the failure
type, its cause, and the necessary corrective action.
The study uses maintenance data from a large pharma-
ceutical company, comprising thousands of records over
ten years. Each record includes both structured and
unstructured text. Researchers cleaned and standard-
ized the text, grouped similar terms, and tested various
machine learning models including Random Forests,
SVMs, GRUs, CNNs, and RobBERT (a Dutch lan-
guage model).
They also accounted for relationships between meta-
data components, such as failure types and correspond-
ing corrective actions. Performance was evaluated us-
ing metrics like accuracy, precision, and recall. Neural
network models performed best, especially with longer
text inputs. Challenges included ambiguous text, un-
clear labels, and overly short descriptions.
Key findings show that NLP can:

• Automate Metadata Prediction: Reducing man-
ual effort and human error by automatically gen-
erating structured data from text.

• Correct Mislabeled Entries: Enhancing data
quality by identifying and fixing incorrect labels.

• Model Metadata Dependencies: Improving pre-
diction accuracy by understanding how metadata
elements relate to each other.

In summary, The studies reviewed demonstrate that
the integration of Augmented Reality with CMMS
significantly enhances maintenance efficiency by im-
proving decision-making, streamlining interventions,
and enabling real-time data access, while also facili-
tating faster diagnostics and procedural standardiza-
tion aligning perfectly with Industry 4.0 objectives
[44]. Complementing these benefits, Natural Language
Processing demonstrates transformative potential for
CMMS by automating classification, improving data
accuracy and advanced analysis of unstructured main-
tenance records.

4.3. Driven Predictive Maintenance via
CMMS

The third objective aims to improve maintenance oper-
ations by integrating predictive maintenance strategies
within CMMS through the adoption of Industry 4.0
technologies. This transition from reactive and preven-
tive approaches to a data-driven predictive model im-
proves equipment reliability and minimizes downtime.
Several studies have proposed reference architectures,
conceptual frameworks, and practical implementation
approaches to position CMMS as the central compo-
nent of an intelligent maintenance ecosystem.

A notable contribution is provided by [46], which pro-
poses a reference software architecture for an inte-
grated predictive platform aimed at efficiently utiliz-
ing data from existing industrial systems, particularly
CMMS. This architecture, illustrated in Figure 10,
enables seamless integration with CMMS and related
systems, reducing the time and effort required to ex-
tract critical data for process optimization.

Figure 10: System architecture diagram [46]

The solution incorporates a Smart Data platform op-
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erating within a Fog/Edge Computing environment,
enabling real-time processing and integration of data
from various sources including CMMS, ERP, SCADA,
and IIoT systems. It collects and analyzes key factory
parameters such as vibration, noise, temperature, and
more. By combining this capability with artificial in-
telligence and machine learning algorithms, the system
can manage and interpret a vast range of operational
data.
In the context of predictive maintenance, the system
continuously monitors critical system components by
analyzing maintenance records from CMMS, machine
performance, and sensors data. The aim is to reduce
both corrective and preventive interventions, moving
toward a fully predictive maintenance model. This
involves breaking down incidents, using Failure Tree
Analysis (FTA) to understand root causes, and apply-
ing Failure Mode and Effects Analysis (FMEA) to an-
ticipate the impact of abnormal patterns. Additionally,
the system integrates a learning module based on Deep
Reinforcement Learning, supported by expert input via
Natural Language Processing (NLP), recommend pre-
ventive actions and avert potential failures.
Successful integration with existing industrial informa-
tion systems requires a clear methodology and a degree
of customization tailored to the specific needs of each
industry. As illustrated in Figure 11, the proposed sys-
tem consists of:

• A horizontal platform for information processing,
security policy generation, and integration of ver-
tical solutions;

• A suite of vertical solutions designed for auto-
mated monitoring and enhancement of various
industrial aspects;

• A sensor network to monitor environmental and
operational parameters, linked through commu-
nication gateways;

• User interfaces deployed on mobile devices for
seamless interaction with the platform.

Figure 11: Software technologies and system compo-
nents [46]

This integrated predictive platform offers a smart and
scalable solution for improving maintenance efficiency
and process optimization, enabling real-time insights

and seamless integration with existing industrial sys-
tems like CMMS.

In addition, [47] proposes a conceptual architecture
designed to enhance predictive maintenance (PdM)
by integrating Industry 4.0 technologies with exist-
ing Computerized Maintenance Management Systems
(CMMS). Rather than offering a turn key solution, the
study outlines how a Cyber-Physical System (CPS)
can work in synergy with a CMMS to create a smarter,
more autonomous maintenance environment.
The architecture is built on two interconnected layers:
a physical layer, where machines are equipped with
IoT sensors that collect real-time data (e.g., temper-
ature, vibration, pressure), and a cyber layer, which
stores and analyzes this data using machine learn-
ing and data mining techniques. These analyses help
assess equipment health, predict failures such as the
remaining useful life (RUL) of components, and opti-
mize maintenance planning.
A maintenance process within the CPS framework is
illustrated if Figure 12. In this process, when the cy-
ber layer detects an anomaly or predicts a failure, it
automatically generates a maintenance work order in
the CMMS. This work order triggers the scheduling
process, taking into account technician availability,
spare parts, and tool readiness. During the repair, the
CPS supports technicians with guidance and collects
real-time data, which updates the CMMS and refines
future predictions and inventory management.

Figure 12: Cyber-physical process to perform mainte-
nance [47]

The authors of the article show that a CMMS inte-
grated within a CPS can become a proactive main-
tenance platform. Although they highlight challenges
such as data heterogeneity, latency, and model adapt-
ability, this integration marks a shift from traditional,
reactive practices to intelligent, predictive maintenance
workflows aligned with the goals of Industry 4.0.

Furthermore, another architecture is presented in [22],
aiming to enhance maintenance operations by intercon-
necting the CMMS with advanced diagnostic, prognos-
tic, and decision-making algorithms. This is achieved
through the integration of Industry 4.0 technologies
namely the Internet of Things (IoT), Big Data, Ma-
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chine Learning (ML), and Artificial Intelligence (AI)
within the Norwegian Petroleum Directorate (NPD)
maintenance loop for the Oil & Gas sector.
This integration facilitates real-time data exchange, en-
ables automated decision-making, and improves main-
tenance planning and scheduling by allowing the
CMMS to process and analyze large volumes of data
efficiently. The authors identify three main areas of
improvement in this approach [22]:

• Perception: IoT-enabled smart sensors collect
real-time data and detect early signs of equip-
ment failure;

• Computation: Advanced algorithms analyze data
and predict fault evolution;

• Cognition: Analytics are used to identify abnor-
malities and assess equipment health.

Moreover, the study stresses the necessity of tran-
sitioning from traditional maintenance models to a
more flexible, data-driven system capable of managing
the complexities of Big Data and IoT. Big Data tech-
nologies enhance the CMMS by enabling it to store,
process, and analyze diverse datasets, thus improving
fault detection speed and performance analysis accu-
racy. ML and AI also play a crucial role in predictive
maintenance, allowing the system to learn from his-
torical data, identify patterns, and forecast potential
failures.
In addition to improve predictive capabilities, the pro-
posed architecture facilitates seamless communication
between the CMMS and external systems, ensuring
accurate and automated decision-making. The article
also underscores the importance of a user-friendly and
adaptable system that supports easy reconfiguration
and integration with various services.
By incorporating Industry 4.0 capabilities into existing
maintenance architecture, the proposed system aims to
increase efficiency, enhance decision-making accuracy,
and better align with the evolving demands of modern
industrial environments.

Lastly, [48] outlined a structured, seven-step process
for implementing predictive maintenance algorithms
within the Computerized Maintenance Managements
systems (CMMS) for electrical equipment.
The first step involves conducting an asset inventory
and identifying the critical equipment to be included
in the predictive maintenance strategy. These assets
are prioritized according to their operational signifi-
cance, safety implications, and the potential impact on
production or service delivery in case of failure.
The second step focuses on determining the key pa-
rameters to be monitored for the selected assets and
deploying appropriate sensors, meters, and monitoring
devices to gather these data. Additionally, this step re-
quires the calibration, synchronization, and integration
of data collection systems into the organization’s data
infrastructure. It also includes preprocessing, cleaning,
and transforming the raw data to ensure quality and
consistency.
The third step consist of developing predictive mod-
els to be integrated withing the CMMS. This includes

selecting suitable machine learning algorithms, sta-
tistical methods, and predictive tools based on the
nature of the available data and the specific needs of
the predictive maintenance application. The models
are then trained using historical data, maintenance
records, and failure events. Once the training phase
is complete, the models are validated and evaluated
using holdout datasets, cross-validation methods, or
simulated scenarios to ensure performance accuracy,
reliability, and generalizability.
The next step concerns the integration of the devel-
oped algorithms into the existing CMMS to stream-
line maintenance workflows and enable effective data
exchange. To ensure seamless interaction between
predictive models and the CMMS, interfaces, APIs,
or connectors may be implemented. This integration
ensures that maintenance tasks are prioritized, sched-
uled, and tracked effectively, while also enabling the
system to anticipate equipment failures, estimate Re-
maining Useful Life (RUL), and support data-driven
maintenance decision making.
The final steps consist of the Deployment and imple-
mentation of predictive maintenance solutions, which
involve configuring the necessary infrastructure, train-
ing personal, and integrating insights into daily op-
erations. This is followed by continuous monitoring
and optimization, where performance is evaluated us-
ing KPIs and predictive models are refined based on
feedback and operational data. Lastly, stakeholder
engagement and communication ensure collaboration
across teams, promote awareness at all levels, and
foster a culture of continuous improvement and inno-
vation.
The authors presented five case studies that success-
fully implemented the predictive maintenance process
previously defined. These real-world examples span
various industries and demonstrate how the integration
of predictive maintenance models within Maintenance
Management Systems such as CMMS can yield tangi-
ble benefits. General Electric (GE) Aviation applied
its Prognostic Health Management system to aircraft
engines, enabling real-time monitoring and proactive
maintenance that reduced delays by 35% and mainte-
nance costs by 10%. Schneider Electric leveraged sen-
sor data in its electrical distribution equipment to de-
tect anomalies early, improving reliability and achiev-
ing a fast return on investment (ROI). In mining, Rio
Tinto used predictive analytics to monitor autonomous
haul tracks, resulting in increased equipment availabil-
ity by 10% and lower maintenance expenses by 15%.
Siemens Gamesa implemented predictive maintenance
on its wind turbines, enhancing energy output and
operational efficiency. Lastly, Pacific Gas and Electric
Company (PG&E) integrated predictive strategies into
its electrical grid, using smart data to reduce outage
frequency by 15% and duration by 20% while improv-
ing service quality. These case studies illustrate the
effectiveness of a structured predictive maintenance
approach integrated with CMMS for electrical equip-
ment across diverse operational contexts.
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The integration of predictive maintenance within
CMMS systems, supported by Industry 4.0 technolo-
gies, offers a significant leap forward in the optimiza-
tion of maintenance strategies. The reviewed stud-
ies illustrate a variety of scalable and intelligent ar-
chitectures that enable real time monitoring, failure
prediction, and automated decision-making. Whether
through cyber-physical systems, edge computing plat-
forms, or structured implementation frameworks, these
solutions enhance the ability of CMMS to manage com-
plex datasets, generate accurate forecasts, and trig-
ger timely maintenance actions. This not only im-
proves asset reliability and operational efficiency but
also ensures that maintenance planning aligns with the
broader objectives of digital transformation and smart
manufacturing.

5. Discussion

In this section, we will analyze the contributions of
the articles already presented earlier regarding the in-
tegration of CMMS within the Industry 4.0 pillars.
To provide a concise overview, we will present a table
summarizing the key contributions and limitations of
each article. In addition, we will delve into the most
commonly used technologies across the studies, ex-
ploring the reasons behind their popularity and their
relevance in modern maintenance management. We
will also highlight the common challenges faced in the
implementation of these technologies, as well as discuss
Industry 4.0 technologies that have been underutilized
in the studies and speculate on the reasons for their
limited use. This comprehensive analysis will pro-
vide insights into the current state of CMMS-Industry
4.0 integration and lay the groundwork for proposing
more effective and secure maintenance management
practices.
Based on the studies summarized in the discussion ta-
ble 2, several important patterns emerge regarding the
integration of technologies Computerized Maintenance
Management Systems (CMMS) within Industry 4.0
pillars.

5.1. Technology Combinations Most
Frequently Used and Their Justi-
fication

The most commonly integrated technologies are the In-
ternet of Things (IoT), Artificial Intelligence and Ma-
chine Learning (AI/ML), Big Data analytics, Cloud
Computing, and Augmented Reality (AR). Most of
technologies complement each other to enable real-
time asset monitoring, centralized data management,
and intelligent decision-making support within CMMS
platforms. Specifically, IoT infrastructure collects crit-
ical asset health indicators (e.g., vibration, tempera-
ture), cloud services handle data integration and re-
mote access, and Big Data tools facilitate anomaly de-

tection and predictive analytics. In parallel, integrat-
ing AR technologies with CMMS significantly improves
technician productivity by delivering real-time, contex-
tual maintenance information directly onto equipment
through wearable devices. This hands-free access to
work orders, maintenance histories, and procedural
guidance accelerates interventions and reduces opera-
tional errors. Collectively, these integrations enhance
situational awareness, support condition-based main-
tenance, and minimize manual effort and human error.
Several specific technology combinations are particu-
larly prominent :

• IoT + Big Data + Cloud: This trio auto-
mates asset monitoring and data processing, im-
proving decision-making, and streamlining spare
parts management. The immediate access to
real-time data enables faster response times and
more accurate maintenance planning.

• AI/ML + IoT: he coupling of AI/ML mod-
els with IoT-generated data supports predictive
diagnostics and optimized maintenance schedul-
ing. Machine learning techniques such as decision
trees, SVMs, and neural networks analyze sensor
data and historical records to forecast failures,
moving CMMS towards autonomous, cognitive
maintenance frameworks.

Each of these technology combinations addresses criti-
cal shortcomings of traditional CMMS platforms, par-
ticularly regarding the latency, fragmentation, and
passivity of maintenance data. They transform CMMS
from static record-keeping systems into proactive,
smart maintenance platforms capable of supporting
Industry 4.0-driven operational excellence.
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Table 2: Discussion Table

ArticleYear Used
Tech-
nologies

Contributions Limitations

[44] 2019 AR -Proposes the development of a new
strategic information system that
combines CMMS and AR to enhance
decision-making in smart factories.
-Displays real-time maintenance data
(failures, work orders, preventive
tasks) through augmented reality
(AR).
-Improves technician interaction with
machines by facilitating fault
diagnosis, enabling preventive
detection, enhancing quality control,
and simplifying operator training
through the overlay of instructions and
procedures directly on equipment.
-The case study validates the
usefulness of CMMS in a real company
(Grupo Solder).

-System under development: AR
visualization part was incomplete at
the time of study, requires advanced
skills in Unity, Vuforia, server
communication (PHP/MySQL), and
software development (MVC
architecture).
-Integration process is complex and
still under development.
High dependency on the quality,
completeness, and structure of
maintenance data in the CMMS,
which is still new and lacks a large
volume of historical data.
-Scalability not validated: solution
implemented in a single company; its
adaptation to larger or different
industrial contexts is not
demonstrated.

[42] 2020 IoT
Big data
& Cloud
comput-
ing

-The author developed a RTEM
system integrating RFID tags, GPS
and barcodes with a cloud-based
CMMS to track location and
maintenance history in dynamic
environments like oil and gas
industries.
-It proposes a clear and structured
implementation methodology, detailing
each phase, specific actions, equipment
types, and selection criteria.
-The system was successfully deployed
and validated through a BETA test,
demonstrating practical feasibility.
-The outcomes of the system are easier
access to maintenance activity data
and the automation of maintenance
processes, from maintenance planning
to spare parts management, leading to
improved operational efficiency.

-The study lacks detailed quantitative
analysis to measure the improvements
of the mentioned benefits of the
system’s implementation.
-Cybersecurity concerns related to
cloud-based CMMS and real-time
tracking are not addressed.
-Potential integration challenges with
existing CMMS platforms are not
considered.
-Cost and resource requirements for
implementation are not evaluated.
-The study focuses only on the oil and
gas industries which can limit the
generalization of the proposed system.
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[43] 2020 AR -The study proposed a system
architecture integrating AR with a
CMMS, composed of a wearable AR
device, a CMMS database, and an
information controller.
-Provides a practical implementation
example, including the system setup,
materials used, and the process
followed.
-Shows how the AR integration
enables rapid access to maintenance
data stored in the CMMS by detecting
the equipment tag and automatically
displaying equipment related
information.
-Improves technician assistance during
maintenance by guiding tasks
step-by-step and suggesting root
causes, improving operator autonomy
and productivity.

-The solution was demonstrated via an
example, but broader industrial
validation or large testing is missing.
-The results of the article remain
qualitative, with no detailed
performance evaluation or measurable
KPIs.
-The study does not explore
cybersecurity, which is critical when
exposing CMMS data through
networked wearable devices.
-Although the implementation is
described, the methodological
framework lacks structure, making it
difficult to replicate the system for
other use cases.
-Cost implication and the potential
complexity of deploying AR
technology in industrial environments
are not evaluated.

[46] 2020 IIoT
System
Integra-
tion
Big Data
& Cloud
Comput-
ing

-The authors propose a reference
software architecture that can be
integrated with existing industrial
systems like CMMS to facilitate
critical data extraction for process
optimization.
-They demonstrate how I4.0
technologies enable predictive
maintenance by analyzing CMMS data
through structured techniques such as
FTA and FMEA, combined with AI
and machine learning algorithms.
-The proposed system introduces a
horizontal and vertical integration
model to cover data management,
cybersecurity policies, and industrial
process optimization.

-Lack of practical implementation or
industrial validation, the proposal
remains conceptual without a detailed
real-world case study.
-Adapting the proposed architecture to
specific CMMS and industrial
environments might require significant
customization, which is not discussed.
-Potential challenges when scaling
across industries or integrating with
CMMS are not addressed.
-Cybersecurity focus is outlined but
not deeply explored regarding concrete
measures or protocols.

[47] 2020 ML
IoT
CPS

-Conducted a Systematic Literature
Review (SLR) analyzing 562 papers
and selecting 38 relevant studies.
-The article outlines how a
Cyber-Physical System (CPS) can
work in synergy with a CMMS to
create a smarter, more autonomous
maintenance environment.
-Linked IoT and CPS to predictive
maintenance processes and discussed
integration with CMMS.
-Highlighted the concept of cognitive
maintenance where predictive models
autonomously create maintenance
requests in CMMS.

-The integration of CMMS with
AI/ML is discussed only at a
conceptual level, with no practical
implementation case studies. The
article is purely a systematic review
and does not propose any new
framework or model.
-The absence of practical
implementation leads to a lack of
empirical results, validation, and
detailed operationalization of the
proposed cognitive maintenance
concept.
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[22] 2020 AI
ML
Big data
and
analytics
IoT

-Developed and modeled a complete
intelligent maintenance management
architecture aligned with Industry 4.0
requirements.
-Proposed a new architecture
integrating maintenance program,
reporting, and analyses modules.
-Designed automated diagnosis,
prognosis, and decision support based
on big data and cloud analytics.
-Modeled the integration between
PdM systems and CMMS/ERP
systems to automatically generate
maintenance work orders.
-Applied systems engineering
methodology to extract stakeholder
needs, derive system requirements, and
allocate functional modules.
-Addressed how intelligent
maintenance would support
opportunistic maintenance and full
lifecycle management in the oil and
gas sector.

-Architecture is fully modeled but not
practically implemented or tested, no
field validation yet.
-No real-world performance results or
stress testing of the proposed system.
-Algorithms for diagnosis and
prognosis are conceptually included
but specific AI/ML models are not
detailed.
-Security, data privacy, and
interoperability challenges
acknowledged but no concrete
solutions provided.
-Focused on a single case (compression
system in O and G), so generalization
across industries is limited.
-CMMS integration is discussed, but
full technical details for integration is
not demonstrated.

[39] 2021 ML
MCDM
IIoT

-Introduces a Smart Workflow to
automate two main maintenance steps:
filling in maintenance orders and
allocating maintainers.
Proposes two structured frameworks :

• Serial approach: uses MCDM to
select features, ML to classify
form fields.

• Parallel approach: uses MCDM
to pre-classify maintainers and
ML as a confirmation if needed.

-Development of a pre-processing
description to clean and select relevant
features before ML/MCDM
application.
Provides a real case study in a
multinational company to validate the
framework.
-The specialists’ survey confirms that
automation reduces human errors,
improves workflow, enhances response
times, and enables faster maintenance
planning.

-Expert bias in MCDM weights:
subjective judgments can affect
decisions.
-No strategy for protecting sensitive
maintenance data (confidentiality,
authentication, access control).
-Limited generalization: solution
validated in a single case study; no
proof of effectiveness across different
industries or CMMS platforms.
-No stress tests (e.g., what happens
with bad data, incomplete data,
cyber-attacks, system overload?).
-The survey suffers from a small and
homogeneous sample size (only 5
programmers from the same
department), leading to a risk of
internal bias, lack of diverse user
perspectives (no technicians or
maintenance planners included).
-Although the article describes a
pre-processing strategy to clean and
filter maintenance order data, the
actual implementation details of the
script are not provided. Consequently,
it is unclear whether the resulting
dataset ensures sufficient quality,
which is critical given the system’s
high dependency on data quality; poor
data leads to poor classification and
allocation.
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[41] 2022 IIoT
Big Data
Cloud
comput-
ing

-In this article a CMMS integrated
with industry 4.0 technologies was
developed to enable CBM, remote
interaction, and real-time asset
monitoring.
-The authors provide a comprehensive
description of the materials,
technologies, and the data flow
architecture used in the system.
-The system improves data-driven
decision-making and spare parts
management through real-time data
visualization.
-It automated maintenance task
generation, reduces manual errors, and
eliminates communication delays,
improving overall maintenance
efficiency.

-The article lacks a detailed
implementation methodology, making
it difficult to replicate or adapt the
system in different contexts.
-Validation and testing results of the
platform are not extensively discussed,
limiting the assessment of its
real-world effectiveness.
-Potential challenges in integration
with existing CMMS are not
addressed.

[40] 2023 AI
IoT
AR
SI
Cloud

-Develop and demonstrate a real-world
experimental testbed that combines
IIoT sensors, data analytics, and
CMMS systems to implement smart
maintenance strategies practically.
-Provided a safe environment for
companies to test smart maintenance
technologies without risking
operations.
-Identified integration challenges and
best practices for future smart
maintenance adoption.

-Testbed limited to lab environment —
no full industrial factory validation
yet.
-Focus only on simple sensor types
(vibration, temperature); complex
data types not tested.

[45] 2023 ML
NLP

-The article effectively combines NLP
with multidimensional classifiers to
predict and correct CMMS metadata,
improving maintenance operations.
-It deals with technical and short text
in maintenance logs by using a special
process to clean and prepare the text
for analysis.

-The approach is tailored to the
pharmaceutical industry and may not
be directly applicable to other sectors.
-Some types of failures are rare, which
makes it harder for the models to
predict them correctly.

[48] 2024 AI
ML

-The article proposes a structured
seven-steps process for integrating
predictive maintenance algorithms into
CMMS and provides clear justification
for each step, ensuring a logical and
applicable methodology from asset
prioritization to algorithm deployment.
-The authors demonstrate the
practical application of the
methodology through five real-world
case studies across different industries.
-In addition, quantitative results
(maintenance cost reduction, delay
reduction, and increased equipment
availability) were presented to validate
the effectiveness of the proposed
approach.

-The article focuses only on electrical
equipment, which may limit its
generalization to other types of assets
or industries.
-The development details of the
predictive algorithms (model selection,
training, validation method) are not
explained.
-Integration challenges with existing
CMMS infrastructures are not
discussed.
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5.2. Common challenges and limita-
tions

Despite these promising integrations, the literature
reviewed highlights several recurring challenges and
limitations.

First, a major issue is the limited full-scale implementa-
tion and validation of proposed systems. Many studies
present architectural models or software frameworks
without deploying them in real-world operational set-
tings. When systems are developed, they are often only
tested in laboratory conditions or small-scale experi-
ments, with few examples of real-world testbeds that
allow for experimentation in full-scale factories. Sim-
ilarly, AR prototypes and algorithm integrations are
rarely implemented in industrial environment, mak-
ing it difficult to prove the generalizability of the
approaches across different industries or CMMS plat-
forms. Additionally, common gap is the insufficient
quantitative evaluation of the systems. While many
articles report qualitative benefits such as improved
response time or reduced downtime, they provide few
rigorous metrics such as actual maintenance cost sav-
ings or system reliability improvements. Furthermore,
expert’s surveys are rarely used to evaluate system
efficiency.

Another challenge is the assumption that CMMS inte-
gration with new models can occur seamlessly without
addressing the real-world difficulties of interfacing with
legacy software and systems. Security and privacy
considerations are also largely overlooked, with few
concrete cybersecurity measures or protocols in place,
despite the risks associated with opening CMMS sys-
tems to external networks and wearable devices.

Finally, cost and resource requirements are rarely eval-
uated, with the effort and expense needed to deploy
Industry 4.0 technologies typically acknowledged but
not quantified.

Overall, while the integration of advanced technolo-
gies with CMMS holds great potential, significant gaps
remain in terms of full-scale implementation, rigorous
evaluation, and real-world validation. Future studies
should focus on addressing these challenges, providing
more quantitative data, considering security protocols,
and quantifying the costs and resources required for
successful deployment in industrial environments.
A related concern is that the focus of current research is
often concentrated on a narrow subset of technologies
mainly IoT, AI/ML, and cloud computing while other
equally promising innovations remain underexplored.
This selective attention not only limits the scope of
current advancements but also delays the adoption of
more transformative solutions. Understanding why
these technologies are less present in the literature can
help uncover new opportunities for enhancing CMMS
capabilities.

5.3. Less Explored Technologies and
Potential Reasons

Certain Industry 4.0 technologies, such as Digital
Twins and Cybersecurity, appear only infrequently
or are notably absent in the CMMS literature, despite
their significant potential for improving maintenance
management. Digital Twin concepts which are a vir-
tual, real-time dynamic replicas of physical assets are
not represented in the reviewed studies. This absence
may be attributed to several factors: developing accu-
rate digital twins requires high-fidelity asset modeling,
continuous synchronization between the physical and
virtual systems, and substantial computational re-
sources. Moreover, integrating Digital Twins with tra-
ditional CMMS platforms presents considerable chal-
lenges, as many existing systems were not designed to
handle real-time, bi-directional data flows or complex
simulation environments. The significant investment
in terms of both infrastructure and expertise further
explains the limited adoption of Digital Twin technol-
ogy in maintenance management contexts.

Similarly, Among the listed studies, Cybersecurity con-
cerns are rarely addressed in implementation. Only one
work explicitly includes a cybersecurity dimension in
its reference architecture, yet no concrete security so-
lutions are provided. This suggests that authors are
more focused on enabling functionality than on secur-
ing it, or that security is considered out of scope, al-
ternatively, it might be perceived as a separate domain
outside the immediate research objectives of CMMS
enhancement.

Technologies such as Natural Language Processing
(NLP) and Large Language Models (LLM) remain
relatively unexplored in the field of maintenance man-
agement. Although some studies have begun to ad-
dress these technologies, their application has been
limited. For instance, the study by [49] utilized NLP
and Machine Learning (ML) to analyze breakdown
reports using a Computerized Maintenance Manage-
ment System (CMMS) as a database, while another
[50] employed NLP models to automate the classifica-
tion of maintenance requests. However, these studies
have primarily treated CMMS as a mere database and
have only scratched the surface of NLP’s capabilities,
focusing mainly on basic text classification and key-
word extraction. Challenges such as unstructured text,
spelling and grammar mistakes, and the use of slang
have hindered the achievement of high-performance
accuracy. Despite their contributions, these studies
have not fully explored the potential of NLP and LLM
in maintenance management, leaving significant room
for further integration and advancement.

Addressing these underexplored areas is critical to
advancing toward a fully integrated, secure, and intel-
ligent maintenance management system.
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6. Future perspective

Based on the gaps identified in the discussion, future
developments should aim to strengthen CMMS inte-
gration with Industry 4.0 technologies by addressing
current limitations and exploring new technological
and practical opportunities. This section highlights
the main directions for research and industrial appli-
cation.

One of the key technologies to be incorporated within
connected CMMS systems is cybersecurity. As CMMS
platforms become increasingly interconnected, inte-
grating security-by-design principles, adhering to in-
ternational cybersecurity standards, and implementing
real-time threat detection mechanisms will be essen-
tial. Moreover, raising cybersecurity awareness among
maintenance personnel will play a crucial role in en-
hancing overall system resilience and mitigating cyber
risks.

Another major opportunity lies in the integration of
Digital Twins with CMMS. When combined with de-
ployed technologies such as AI, these virtual replicas
of physical assets continuously updated with real-time
sensor data, enable simulation of equipment behavior,
optimization of repair schedules, and virtual testing of
maintenance strategies. AI algorithms can analyze op-
erational data to predict failures and optimize mainte-
nance process, ultimately reducing downtime, lowering
maintenance costs, and improving safety, compliance,
and resource allocation, thus maximizing the overall
effectiveness of maintenance strategies.

Moreover, additive manufacturing or 3D printing inte-
grated with CMMS offers new opportunities for main-
tenance operations, either as a standalone solution
or combined with other Industry 4.0 technologies. It
enables on-demand fabrication of spare parts, signif-
icantly reducing downtime and costs linked to tradi-
tional supply chain. A CMMS could automatically
trigger the 3D printing of a needed component when
predictive models forecast wear or failure. Overall, this
combination improves efficiency, cost-effectiveness, and
operational flexibility, providing a more agile and re-
sponsive maintenance strategy.

Another transformative opportunity is the integration
of Natural Language Processing (NLP) and Large Lan-
guage Models (LLM) within CMMS. These technolo-
gies can revolutionize how maintenance data is pro-
cessed and utilized. By leveraging NLP, maintenance
reports and logs can be automatically analyzed and
categorized, enabling more efficient data retrieval and
decision-making. LLM can further enhance these ca-
pabilities by understanding and generating human-like
text, facilitating more intuitive interactions between
maintenance personnel and CMMS. This integration
can lead to advanced predictive maintenance strate-
gies, where the system not only predicts potential

failures but also suggests optimal maintenance actions
in natural language, making it easier for technicians to
understand and act upon.

In summary, the future of CMMS lies in the deeper
integration of cybersecurity measures, Digital Twin
technology, and Additive Manufacturing. By pursu-
ing these developments, industries can build smarter,
safer, and more efficient maintenance systems that are
fully aligned with the principles of Industry 4.0.

7. Conclusion

This research explored the intersection between Com-
puterized Maintenance Management Systems (CMMS)
and Industry 4.0, aiming to understand how the inte-
gration of emerging technologies is transforming mod-
ern maintenance strategies. Through a systematic
literature review, we traced the historical evolution
of maintenance practices across the four industrial
revolutions; from reactive and preventive methods to
proactive and predictive maintenance. We examined
how CMMS evolved as a digital tool to manage main-
tenance activities efficiently, and how its traditional
limitations such as reliance on manual data entry and
lack of intelligent decision support have prompted the
need for integration with Industry 4.0 technologies.

The study highlighted the key technologies associated
with Industry 4.0 namely the Internet of Things (IoT),
Big Data analytics, Artificial Intelligence (AI), Cloud
Computing, Augmented Reality (AR), and Cyber-
Physical Systems and demonstrated how they drive
transformation in both manufacturing and mainte-
nance management. These technologies enable real-
time data collection, remote monitoring, predictive
analytics, and more informed decision-making, ul-
timately improving equipment availability, reducing
downtime, and optimizing resource allocation.

Through the analysis of various research papers and
case studies, we identified three main objectives driv-
ing this integration: optimizing maintenance processes,
improving on-site interventions and decision-making,
and enabling predictive maintenance strategies. The
reviewed literature showed that smart CMMS plat-
forms, when enhanced with Industry 4.0 capabilities,
can automatically detect potential failures, generate
work orders, assign tasks based on technician avail-
ability, and guide interventions using AR and machine
learning. These advancements not only improve oper-
ational efficiency but also support a shift from reactive
maintenance to more strategic and autonomous sys-
tems.

However, the research also identified several challenges.
Data security, integration complexity, the need for
standardization, and limited access to technical exper-
tise continue to hinder widespread adoption. Moreover,
while some technologies like IoT and AI are frequently
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implemented, others such as Cybersecurity or Digital
twin remain underexplored, indicating areas for future
research and development.

In summary, this study provides a comprehensive
overview of how CMMS is evolving within the frame-
work of Industry 4.0. It underscores the importance
of embracing digital transformation in maintenance
management to meet the demands of modern industry.
For organizations aiming to stay competitive, the inte-
gration of intelligent CMMS platforms with advanced
technologies offers not only operational advantages
but also long-term sustainability and resilience in an
increasingly data-driven industrial landscape.

Furthermore, the insights gained from this research
will serve as a foundational reference for a capstone
project focused on the practical implementation of a
CMMS, coupled with the integration of a chosen In-
dustry 4.0 technology. This future work aims to apply
the concepts discussed in this study to a real-world
context, thereby bridging theory and practice. Specif-
ically, the project will incorporate Natural Language
Processing (NLP) and Large Language Models (LLM)
as the selected Industry 4.0 technology within the
CMMS framework. Unlike previous studies that have
treated CMMS merely as a database, our approach
harnesses the advanced capabilities of NLP and LLM
to transform maintenance management.

This exploration leads us to the practical implemen-
tation of a conversational agent (chatbot) within a
CMMS, an original idea that has not been extensively
explored in existing literature. Fully integrated into
the CMMS, the chatbot will enable advanced function-
alities such as report analysis and generation, provid-
ing real-time insights and automating maintenance re-
ports. This novel approach enhances the efficiency and
effectiveness of maintenance operations, streamlining
processes and offering a more intuitive and responsive
system. It allows maintenance personnel to interact
with the CMMS database more naturally, reducing the
time and effort required for data search and analysis.
This integration represents a significant step forward
in the evolution of CMMS, aligning with Industry 4.0
principles and paving the way for smarter, safer, and
more efficient maintenance systems.
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