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Abstract: This study introduces a predictive maintenance framework that com-
bines Internet of Things (IoT) sensor data with advanced machine learning (ML)
techniques to improve the reliability and efficiency of industrial electrical systems.
The proposed system analyzes real-time measurements such as temperature, vi-
bration, current, and voltage to detect anomalies and predict equipment failures
before they occur. It integrates essential processes including data cleaning, nor-
malization, feature extraction, and model optimization to ensure accurate and
timely predictions.Several ML models, including Random Forest, Support Vector
Machines (SVM), and Artificial Neural Networks (ANNs), were evaluated for their
performance. A real-world case study involving three industrial motors was con-
ducted using over 10,000 time-series sensor records, 500 maintenance logs, and 100
documented failure cases.The results demonstrate a 35% reduction in unplanned
downtime, a 25% increase in resource efficiency, and a 20% extension of equipment
lifespan. These findings validate the effectiveness of the proposed approach in sup-
porting proactive maintenance decisions in industrial environments.
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1. Introduction

The rapid advancement of Industry 4.0 technologies
has significantly transformed industrial maintenance
strategies, particularly through the integration of Ma-
chine Learning (ML) and Internet of Things (IoT)-
based predictive analytics. Traditional approaches
such as Reactive Maintenance (RM) and Preventive
Maintenance (PM) often lead to unexpected equip-
ment failures, high maintenance costs, and inefficient
downtime management. In contrast, Predictive Main-
tenance (PdM) uses real-time data from IoT sensors
and Al-driven algorithms to anticipate failures before
they occur, thereby improving system reliability and
operational efficiency [1].

IoT-enabled industrial systems continuously generate
large volumes of sensor data—such as vibration, tem-
perature, current, and pressure—which offer valuable
insights into equipment health. ML algorithms like
Random Forest, Support Vector Machines (SVM), and
Artificial Neural Networks (ANNs) are used to analyze
these data, detect failure patterns, classify anomalies,
and estimate Remaining Useful Life (RUL). The syn-
ergy between loT-based data acquisition and ML-based
analytics provides a scalable, real-time, and proactive
maintenance solution.

Despite its clear benefits, integrating ML and IoT in
predictive maintenance presents several technical chal-
lenges, including data heterogeneity, real-time process-
ing constraints, cybersecurity concerns, and model in-
terpretability. Selecting the most appropriate ML ap-
proach requires careful consideration of data complex-
ity, computational resources, and reliability in indus-
trial contexts [2].

This paper proposes a complete predictive maintenance
framework tailored to industrial electrical systems. It
explores key components such as data preprocessing,
feature engineering, and model training strategies to
enhance prediction accuracy. A real-world case study
is presented to validate the proposed system, demon-
strating significant improvements in equipment uptime
and maintenance cost reduction.

2. Objectives of the Study

The primary goal of this study is to explore and val-
idate the integration of machine learning techniques
with Industrial Internet of Things (IIoT) systems to
enhance predictive maintenance strategies for indus-
trial electrical equipment. Specifically, the study aims
to:

1. Design and implement a predictive maintenance
architecture that combines real-time data acquisition
from IoT sensors with advanced machine learning mod-
els.

2. Identify and apply suitable ML algorithms ( Ran-
dom Forest, SVM, Neural Networks) for anomaly de-
tection and Remaining Useful Life (RUL) prediction in
electrical industrial systems.

3. Evaluate the performance of the predictive system
using key metrics such as accuracy, precision, recall,
and Fl-score across various experimental configura-
tions.

4. Demonstrate the effectiveness of the system through
a case study on electric motor monitoring, highlight-
ing improvements in equipment reliability, downtime
reduction, and resource optimization.

5. Assess operational challenges and scalability, in-
cluding data quality, model interpretability, and de-
ployment in real-world industrial environments.

6. Provide strategic recommendations for industrial
adoption of ML-based predictive maintenance, incor-
porating future perspectives such as Edge Al, explain-
able models, and adaptive retraining.

3. Structure of the paper

This research article is organized into eight sections.
It begins with an introduction to predictive mainte-
nance in industrial IoT-based electrical systems, ex-
plaining the motivation and objectives. The second
section presents a review of maintenance strategies and
the role of IoT and machine learning. Section three
focuses on data collection and preprocessing. Sec-
tion four describes the development of machine learn-
ing models. The fifth section introduces the real-time
monitoring system architecture. Section six explains
testing and validation procedures. The seventh section
covers full-scale deployment strategies. Finally, section
eight presents continuous monitoring and optimization
techniques, followed by a conclusion that highlights key
findings and future directions.

4. Litterature review

4.1. Evolution of Maintenance Strate-

gies in Industrial Systems

Modern industry relies on increasingly sophisticated
equipment, making maintenance a strategic concern to
ensure machine availability, reduce operational costs,
and optimize productivity. Traditionally, industrial
maintenance has been based on three main approaches:

e Corrective Maintenance (Reactive Mainte-
nance - RM): Interventions are performed after a fail-
ure occurs, often leading to high costs and unplanned
downtime [3].

e Preventive Maintenance (PM): Maintenance
tasks are scheduled at regular intervals to avoid fail-
ures. However, this approach can result in over-
maintenance and unnecessary expenses [4].

e Predictive Maintenance (PdM): This strategy
relies on real-time monitoring of machines using IoT
sensors and data analysis to anticipate failures before
they occur. With the rise of Industry 4.0, predictive
maintenance has emerged as the most effective solu-
tion for reducing unexpected downtime and optimizing



maintenance operations. Its success relies on artificial
intelligence (AI) and machine learning (ML), which are
capable of processing large volumes of data to detect
failure patterns and estimate the Remaining Useful Life
(RUL) of equipment [5].

Mai Description

*  Allows components/assembly to run to failure

*  Catastrophic failure which may lead to collateral damage
®  High risk due to higher downtime

High maintenance cost

May lead to damage other sub-assemblics

Reactive
Maintenance

Prevents failure before they occur

Chances of catastrophic failure is less

Lower risk and lower downtime

Less chances of damaging other sub-assemblies
Full asset visibility

Initial cost to benefit is high

Predictive Early detection of wear and tear in components/assembly
Mai * B

Preventive
Maintenance

ncreases asset life cycle
*  Lowest downtime

*  Significant reduction/complete elimination of unscheduled breakdowns

Figure 1: Features of different types of maintenance

4.2. 1IIoT in Predictive Maintenance

The Industrial Internet of Things (IIoT) is a founda-
tional element of Industry 4.0, representing the tran-
sition from traditional manufacturing systems to in-
telligent, connected industrial environments. I1oT en-
ables the integration of machines, sensors, and control
systems into a unified network that supports real-time
data collection, monitoring, and analysis.[6] This con-
nectivity allows companies to improve operational effi-
ciency, reduce equipment downtime, and make faster,
data-driven decisions.[7] Through continuous communi-
cation between devices, IIoT supports automation and
enhances the ability to anticipate problems before they
occur, making it a valuable asset in modern industrial
operations. With the help of IToT, industries have been
able to shift from reactive and preventive maintenance
strategies toward more advanced methods like predic-
tive maintenance (PdM). PdM uses the large volumes
of data generated by IIoT systems to detect early signs
of equipment failure. This makes it possible to plan
maintenance ahead of time, avoid unexpected break-
downs, and optimize resource allocation. [8]

4.3. The Importance of Machine Learn-

ing in Predictive Maintenance

Machine learning (ML) has emerged as a key driver
in the evolution of predictive maintenance strategies.
Unlike conventional methods such as reactive mainte-
nance, which only intervenes after a failure, or preven-
tive maintenance, which may involve unnecessary rou-
tine checks ML provides a more efficient, data-driven
alternative[9]. By analyzing the continuous flow of data
from IloT-enabled systems, ML algorithms can un-
cover hidden patterns and detect early signs of equip-
ment degradation [10]. This enables organizations to
anticipate failures before they occur, schedule mainte-
nance more effectively, reduce downtime, and increase
the operational lifespan of industrial assets.

5. METHODOLOGY

5.1. Data Preparation and Preprocess-

ing

Data preparation and preprocessing are foundational
steps in the development of accurate and robust pre-
dictive maintenance systems. The process begins with
the systematic collection of sensor data from indus-
trial equipment using strategically deployed IoT de-
vices. These sensors continuously record key opera-
tional parameters such as vibration, temperature, pres-
sure, and current. Once acquired, the data is transmit-
ted to centralized cloud-based infrastructures, where it
undergoes a series of quality assurance procedures[11].
The preprocessing phase starts with data cleaning,
which involves identifying and addressing missing val-
ues, outliers, and inconsistencies through interpolation,
imputation, or filtering techniques. Given that sensor
data is often contaminated with noise, noise reduction
becomes essential. This is typically addressed using:

¢ Frequency-domain methods such as Fourier and
wavelet transforms, which decompose signals into fre-
quency components to isolate noise.

¢ Time-domain methods like moving average
smoothing, which filters each data point based on
neighboring values to reduce random fluctuations[12].
Following denoising, data normalization is applied to
ensure that all features are on a consistent scale. Two
primary techniques are used:

¢ Min-Max normalization, which rescales values
within a defined range, usually [0,1].

e Z-score normalization, which standardizes data
by centering it around the mean and scaling it by the
standard deviation. This technique is particularly ef-
fective in dynamic environments but may struggle with
non-stationary time series [13].

In parallel, feature engineering is employed to enhance
the dataset’s informational richness. This includes de-
riving new variables such as moving averages, rate of
change, or frequency-domain features that capture sub-
tle patterns related to potential equipment faults. Ad-
ditionally, sensor data from multiple sources is syn-
chronized and integrated using machine IDs and times-
tamps, and stored in data lakes to handle heteroge-
neous formats [14].

Together, these preprocessing steps result in a
high-quality, noise-reduced, normalized, and enriched
dataset that serves as a solid foundation for the train-
ing and deployment of machine learning models in pre-
dictive maintenance systems.

5.2. Development of Machine Learning

Models

Machine learning algorithms play a key role in convert-
ing raw IoT data into valuable maintenance insights.

e Supervised learning approaches especially clas-
sification and regression models are commonly used to



predict equipment failures and estimate the remaining
useful life (RUL) of machines. Among the most widely
used algorithms for these tasks are random forests, sup-
port vector machines, and neural networks, have shown
strong capabilities in extracting features and handling
time-series data effectively.

¢ Random Forest: This ensemble learning technique
combines multiple decision trees to improve prediction
accuracy and reduce overfitting. It is particularly ef-
fective for handling large datasets with many features
[15].

Figure 2: Random forest regression algorithm for ma-
chine learning

¢ Support Vector Machines (SVM): SVMs work
by constructing hyperplanes that separate data into
distinct classes. They are especially useful in cases
where the data is not linearly separable, leverag-
ing kernel functions to map input data into higher-
dimensional spaces [16].
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B Datasets (class 2)
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Figure 3: Support vector machine algorithm

e Neural Networks: Inspired by the structure of the

human brain, neural networks consist of layers of inter-
connected nodes (neurons)[17], arranged in layers: an
input layer, one or more hidden layers, and an output
layer. Each neuron processes incoming signals using an
activation function and passes the result to the next
layer. ANN models are capable of learning from data
by adjusting the connection weights through a training
process [18].
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Figure 4: Architecture of artificial neural network

e Gradient Boosting: This sequential ensemble
method builds models step-by-step, where each new
model attempts to correct the errors of the previous
one. It is known for its strong predictive performance,
especially on imbalanced datasets [19].

In unsupervised learning, the model learns from
data without any guidance or predefined labels. It is
trained solely on input features, without access to cor-
responding outputs. The system analyzes the dataset
to discover hidden patterns, groupings, or relationships
within the data. While it can organize data into logical
structures, it does not assign predefined labels to these
groupings. There are two main types of unsupervised
learning techniques:

e Clustering: This method divides data into dis-
tinct groups or clusters based on similarities or pat-
terns, without requiring prior information. It is com-
monly used to uncover natural groupings in complex
datasets.

e Association: A rule-based method that identifies
frequent patterns or correlations between variables in
large datasets. It is often applied in fields such as mar-
ket basket analysis to reveal meaningful associations
between items[20].

¢ K-means Clustering is applied to group similar
data points, allowing for the identification of different
operational states of industrial equipment. This clus-
tering technique is particularly useful for segmenting
large volumes of unlabeled data.

e Principal Component Analysis (PCA) serves
as an effective method for reducing the dimensional-
ity of complex sensor datasets. By transforming the
data into a smaller set of uncorrelated variables, PCA
helps isolate the most relevant features for predicting
potential equipment failures.

Semi-supervised learning lies between supervised
and unsupervised learning. In real-world applications,
datasets often contain a mix of labeled and unlabeled
data. In this approach, unsupervised techniques are
first used to estimate or assign labels to the unlabeled
data. These newly labeled samples are then used along-
side the original labeled data to train a supervised
learning model, improving overall prediction accuracy
[21].

Each of these algorithms has its own advantages and
limitations. Therefore, selecting the most appropriate
model depends on the specific industrial context, the
nature of the equipment, and the characteristics of the
available data.



Machine Learning Approaches
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Figure 5: Machine learning algorithms
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5.3. Real time monitoring system de-

velopment :

The real-time monitoring system is developed through
a structured approach that combines IoT-based sen-
sor networks, secure data transmission, and automated
data validation mechanisms. First, sensors are strate-
gically deployed on key components of industrial elec-
trical systems, selected based on failure criticality and
operational stress zones. These sensors continuously
capture parameters such as vibration, temperature,
current, and pressure. Fach device undergoes a cali-
bration phase to ensure measurement accuracy under
varying load and environmental conditions.

Once configured, the system initiates real-time data
acquisition, where sensor outputs are collected at pre-
defined intervals and transmitted using standard pro-
tocols like MQTT or HTTP. The data is streamed
into a centralized cloud or edge platform that ensures
low-latency access and high availability. Through-
out the process, data quality is continuously mon-
itored: anomalies, missing values, and outliers are
detected and corrected through automatic cleansing
routines[11].

To guarantee reliability and compliance, security
measures including encryption, access control, and
anonymization are applied. This real-time infrastruc-
ture enables predictive models to detect degradation
trends early and trigger timely maintenance interven-
tions minimizing unplanned downtime and ensuring
optimal equipment performance.

5.4. System Testing and Validation

Model Training:

The chosen machine learning algorithms are trained us-
ing the designated training set from each dataset. To
enhance their performance, hyperparameter tuning is
conducted through cross-validation techniques, ensur-
ing that the models are well-optimized and not overfit-
ted to the training data.

Model Testing:

After training, the models are evaluated on the test set,
which consists of previously unseen data. This step is
crucial to assess how well the models generalize to new

inputs. The predictions generated by the models are
then compared with the actual outcomes to measure
their accuracy and reliability.

Evaluation Metrics

To provide a well-rounded evaluation of each algo-
rithm’s performance, several key metrics are used:

1. Accuracy

This metric reflects the proportion of correct predic-
tions made by the model. It is calculated as the num-
ber of true positives and true negatives divided by the
total number of instances. Accuracy offers a general
overview of how well the model performs across all
classes.

2. Precision and Recall

o Precision indicates how many of the predicted pos-
itive cases are actually true positives.

o Recall (also known as sensitivity) measures how
many of the actual positive cases are correctly iden-
tified by the model.

These two metrics are especially important when work-
ing with imbalanced datasets, where failure events are
rare compared to normal operation.

3. F1 Score

The F1 Score is the harmonic mean of precision and
recall, providing a single metric that balances both. It
is particularly useful when there is a trade-off between
minimizing false positives and false negatives.

4. Area Under the ROC Curve (AUC-ROC)
This metric evaluates the model’s ability to distinguish
between different classes such as faulty versus healthy
equipment. A higher AUC value indicates better per-
formance in correctly classifying states, even under
varying threshold settings [9].

5. Computational Time:

The time taken to train and test the model, provid-
ing insights into the computational efficiency of each
algorithm.

6. Scalability:

The ability of the algorithm to handle large datasets,
assessed by analyzing the performance of the models
as the dataset size increases.

7. Robustness to Noise:

The ability of the algorithm to maintain performance
in the presence of noisy or incomplete data, crucial for
real-world industrial applications.

By using these metrics, the study provides a thorough
comparison of the machine learning algorithms, offer-
ing valuable insights into their applicability for predic-
tive maintenance in IToT environments [22].

5.5. Full-Scale Deployment

5.5.1 Deployment Strategy and Objectives

The full-scale deployment phase marks the transition
from a successfully validated prototype to an opera-
tional predictive maintenance system integrated into
the industrial environment. The primary objective is to
implement the machine learning models in a way that



supports real-time fault detection, minimizes down-
time, and enhances decision-making. A progressive
deployment strategy is often adopted, starting with
limited pilot testing before rolling out the system to
the entire production infrastructure. This approach
reduces risks and ensures adaptability to site-specific
constraints.[1]

5.5.2 System Integration with Industrial Plat-
forms

For the system to be operational, the trained ML mod-
els must be embedded into the existing industrial in-
frastructure. This involves integration with tools such
as:

¢ CMMS (Computerized Maintenance Man-
agement Systems) for maintenance scheduling and
asset tracking.

e SCADA (Supervisory Control and Data Ac-
quisition) for real-time supervision of equipment.

o ERP systems for higher-level business process syn-
chronization.

Communication between components is ensured us-
ing standard industrial protocols like MQTT, Modbus,
OPC-UA, or RESTful APIs, enabling seamless trans-
mission of sensor data and predictions between devices,
cloud platforms, and user dashboards.[23]

5.5.3 Visualization and Alert Management In-
terface

A key element of successful deployment is the user in-
terface. A real-time monitoring dashboard is devel-
oped using web technologies ( HTML5, JavaScript,
D3.js or Plotly) to visualize the health status of equip-
ment. Users can monitor variables such as vibration,
temperature, or current through dynamic graphs and
heatmaps.

In addition, a notification system is implemented
using services like Twilio (for SMS) or email APIs,
which immediately alert maintenance teams when an
anomaly or predicted fault is detected. Alerts are con-
figured with thresholds and priorities to avoid false
alarms and alert fatigue.

5.5.4 Pilot Testing and User Acceptance

Before full-scale rollout, a pilot deployment is carried
out in a controlled section of the plant. This test bed
enables the system to be evaluated in real-world con-
ditions on selected equipment. During this phase:

« Environmental variables ( temperature, humid-
ity) are standardized.

¢ Sensor accuracy is verified using calibration tools
( oscilloscopes, multimeters. . . ).

¢ Operators interact with the system to evaluate us-
ability, response time, and alert relevance.

A User Acceptance Test (UAT) is conducted to col-
lect feedback from technicians and engineers. Their
insights are essential to adjust the dashboard design,
model thresholds, or the frequency of alerts.

5.5.5  Scalability and Replication

Once the system has been validated at a local scale,
the next step is to replicate the solution across mul-
tiple machines, production lines, or facilities. This
requires: ¢ Modular architecture that supports new
sensor nodes or equipment types. ¢ Cloud-based in-
frastructure (or Edge AI) that can handle increased
data volume. o Automatic deployment tools (e.g., con-
tainerization via Docker) to facilitate model replication
and updates. This ensures that the predictive mainte-
nance approach is scalable, cost-effective, and sustain-
able across the enterprise.

5.5.6 Deployment Challenges and Mitigation

Common challenges during full-scale deployment in-
clude:

e Data incompatibility between new and legacy
systems.

¢ Resistance to change from operators unfamiliar
with automated predictions.

e Network or latency issues affecting real-time
performance.

To overcome these, training sessions are provided to
maintenance staff, dashboards are simplified for clar-
ity, and fallback mechanisms are built into the system
to ensure fault tolerance [24].

5.6. Monitoring and Optimization

5.6.1 Continuous System Monitoring

After deployment, predictive maintenance systems re-
quire ongoing monitoring and refinement to remain ef-
fective in dynamic industrial environments. The con-
tinuous tracking of key performance indicators (KPIs),
such as Mean Time Between Failures (MTBF), false
alarm rates, and equipment availability, helps ensure
the system maintains high accuracy and reliability [23].

5.6.2 Model Retraining and Data Updates

To adapt to changing operational conditions, machine
learning models are periodically retrained using up-
dated sensor data and newly labeled failure cases. This
retraining may follow a fixed schedule or be triggered
automatically by performance degradation.

5.6.3 Technician Feedback Integration

Feedback from maintenance technicians also plays a
vital role in system improvement. Their observations
help refine alert thresholds, validate model predictions,
and enhance the relevance of system outputs.[11]

5.6.4 Advanced Analytics Integration

Advanced techniques such as anomaly detection and
Remaining Useful Life (RUL) prediction are integrated
to anticipate failures more accurately. These meth-
ods provide early warnings and support maintenance



scheduling, contributing to a shift from reactive to fully
proactive maintenance strategies.

5.6.5 Long-Term System Optimization

Together, these optimization processes ensure the long-
term adaptability, efficiency, and scalability of the pre-
dictive maintenance solution [25].

6. Challenges of Integrating ML

and IoT in Predictive Main-

tenance

In conducting research focused on enhancing predictive
maintenance in manufacturing through the application
of machine learning algorithms and IoT-driven data an-
alytics, several limitations were encountered that may
affect the generalizability and applicability of the find-
ings.

o Data Quality and Availability:

The research heavily relies on historical and real-time
data collected through IoT devices. However, the qual-
ity and consistency of data can be a limiting fac-
tor. Any existing gaps, noise, or inaccuracies in the
data can adversely affect the performance of the ma-
chine learning models. Furthermore, access to compre-
hensive datasets across diverse manufacturing environ-
ments was limited, which might restrict the scope of
the conclusions drawn.

e Cost of Implementation:

The initial cost associated with IoT infrastructure de-
ployment, data storage, and processing can be substan-
tial, which may limit the adoption of these technolo-
gies, particularly in small to medium-sized enterprises.
The cost-benefit analysis of predictive maintenance so-
lutions needs careful consideration to justify the invest-
ment.

¢ Ethical and Privacy Concerns:

The extensive collection of data through IoT devices
raises ethical and privacy concerns, especially regard-
ing the ownership and use of data. Ensuring compli-
ance with data protection regulations such as GDPR is
essential but can complicate data collection and anal-
ysis processes [1].

e Selection of right algorithm

There are tens of widely popular algorithms available
for ML implementation. Though algorithms can work
in any generic conditions, there are specific guidelines
available about which algorithm would work best under
which circumstances. Improper selection of algorithm
can produce garbage output after months of effort —
leading to massive loss of the entire effort and pushing
the target timelines further.

¢ Selection of the right set of data

As they say Garbage in will produce Garbage out,
which is very well suited for the range of data set for
machine learning. The quality, amount, preparation,
and selection of data are critical to the success of a
machine deep learning solution. Data selection may

be impacted by Bias. It is important to avoid selection
bias and select the data which is entirely representative
of the cases [26].

e Scalability :

PDM implementation through large industrial activ-
ities requires evolution solutions that can manage a
large amount of data in real time. Ensuring the ability
to expand without programs to compromise the perfor-
mance or increase the cost of is an important challenge
[9].

e Initial Investment:

The implementation of PdM requires a significant ini-
tial investment in sensors, IToT infrastructure, and ma-
chine learning systems. This can be a barrier, particu-
larly for small and medium-sized enterprises [9].

7. A Case Study on Industrial
Motor Systems : Integration
of IoT and Machine Learning
for Predictive Maintenance

7.1. Study Context

As part of improving industrial maintenance practices,
this case study presents an integrated predictive main-
tenance system using Internet of Things (IoT) tech-
nologies and Machine Learning (ML) algorithms. The
application focuses on industrial motors within a power
plant, where unexpected failures can result in costly
production downtime and compromise system safety.
The objective is to transition from reactive or sched-
uled strategies to a proactive approach, enabling early
fault detection through an intelligent model trained on
sensor data and historical records.

7.2. loT-Based Data Collection

Connected sensors were deployed on three industrial
motors to monitor key parameters in real time, includ-
ing:

e Temperature
o Vibration

e Current

o Voltage

These data are transmitted to a centralized platform
for processing and visualization. Figure 6 illustrates
the complete IoT integration process from monitoring
objective definition to dashboard visualization while
ensuring data security and regulatory compliance.
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Figure 6: Integrating IoT devices for real-time moni-
toring

7.3. Historical Data

The predictive model integrates three types of data:

e 10,000 time-series sensor records

e 500 historical maintenance logs

e 100 documented motor failure cases

This multi-source database provides robust model
training and ensures generalization to real industrial
scenarios.

7.4. Model Development Process

Figure 7 outlines the model development pipeline,
which includes:

o Data preprocessing (cleaning, missing value han-
dling, normalization)

¢ Feature engineering: extraction of physical and sta-
tistical features (RMS, means, frequency)

e Machine Learning algorithm selection: supervised
models for classification and time-series analysis

e Advanced training techniques:

o Self-attention mechanisms to focus on relevant time-
series data

o Adaptive optimization (Adam, SGD)

o Loss function: Mean Squared Logarithmic Error
(MSLE)

¢ Validation using classical metrics (accuracy, preci-
sion, recall, F1-score)

¢ Continuous deployment and monitoring,.

P
o
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e

Figure 7: Selecting and implementing Process machine
learning algorithms

7.5. Experimental Results and Inter-

pretation

The model’s performance was assessed through 10 ex-
perimental scenarios, with results summarized in Fig-
ures 8 to 13. The metrics evaluated were:

e Accuracy: Overall rate of correct predictions
o Precision: Ability to avoid false positives
e Recall: Ability to detect actual failures

e Fl-score: Balance between precision and recall

7.5.1 Impact of Self-Attention Mechanism

The results illustrated in Figures 8 and 9 high-
light the positive impact of incorporating the self-
attention mechanism into the predictive maintenance
model. Across the ten trials, the framework consis-
tently achieved high accuracy, precision, recall, and F1-
score, demonstrating its ability to capture long-range
dependencies and select relevant features from sensor
data. The stable performance across all scenarios con-
firms the model’s robustness and reliability, enabling
it to deliver accurate and consistent failure predictions
for industrial motors.

Accuracy & Precision(%) Vs No. of Trials
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Figure 8: Self-Attention Mechanism Integration (Ac-
curacy & Precision )
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7.5.2 Effect of Optimization Techniques

The results presented in Figures 10 and 11 highlight
the significant role of optimization techniques such as
Gradient Descent, Stochastic Gradient Descent, and
Adam in enhancing the performance of the predictive
maintenance model. Across the ten experimental tri-
als, the model consistently achieved strong accuracy,
precision, recall, and F1-score, indicating that these al-
gorithms contribute to better parameter tuning, faster
convergence, and improved generalization. As a result,
they help ensure greater stability, accuracy, and over-
all efficiency of the predictive framework in industrial
settings.

Accuracy & Precision(%) Vs No. of Trials
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Figure 10: Optimization Techniques (Accuracy & Pre-
cision)
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Figure 11: Optimization Techniques (Recall & F1
Score)

7.5.3 Role of MSLE Loss Function

The results related to the choice of loss function also
provide key insights into its critical role in the perfor-
mance of predictive maintenance models. As shown in
Figures 12 and 13, which demonstrate consistently high
levels of accuracy, precision, recall, and F1-score across
the ten trials, selecting a loss function that aligns with
the characteristics of the data and predictive mainte-
nance goals is essential. The loss function directly in-
fluences the learning process by guiding the model to
minimize prediction errors and produce reliable assess-
ments of the condition of industrial motors. An inap-
propriate choice at this stage can significantly limit the
model’s effectiveness.
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Figure 12: Loss Function Selection (Accuracy & Pre-
cision)
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Figure 13: Loss Function Selection (Recall & F1 Score)

7.6. Operational Impact of the System

This figure highlights the practical benefits obtained
from the implemented predictive maintenance system:
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Figure 14: Contributions of predictive maintenance

frameworks

Figure 14 highlights the key benefits of predictive main-
tenance. It shows that 35% of the improvements are
linked to the reduction of unplanned downtime, fol-
lowed by 25% for optimization of maintenance re-
sources. Other benefits include extended equipment
lifespan (20%) and cost reduction (25%). Lastly, 15%
of the contributions relate to enhanced safety and relia-
bility, emphasizing the effectiveness of predictive main-
tenance in preventing critical equipment failures.[27]

7.7.

Case Study Conclusion

This case study demonstrates that combining IoT sen-
sors, advanced ML models, self-attention mechanisms,
adaptive optimizations, and the MSLE loss function
results in a fully operational and scalable predictive
maintenance system. The system ensures real-time
monitoring, early fault detection, cost reduction, re-
source optimization, and asset life extension highlight-
ing its potential for large-scale deployment in critical
industrial environments.

8.

Conclusion

This research demonstrates the effectiveness of an in-
tegrated approach combining IoT sensors, advanced
data preprocessing techniques, and machine learning
models for the implementation of a predictive main-
tenance system in industrial electrical environments.
By leveraging methods such as neural networks, SVM,
and Random Forest along with the integration of atten-
tion mechanisms and optimization techniques (Adam,
MSLE) ,the proposed system achieves high perfor-
mance in early anomaly detection and reduction of
unplanned downtime. The case study applied to in-
dustrial motors highlights concrete benefits: a 35%
reduction in failures, a 25% improvement in resource
utilization, and an overall enhancement in equipment
reliability. These results validate the robustness and
relevance of the developed architecture for larger-scale
deployments. However, several challenges remain to be
addressed: the quality of the collected data, the secu-
rity of information flows, the interpretability of mod-
els, and infrastructure costs. These limitations open
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up promising avenues for future research, particularly
through the integration of Edge Al, federated learning,
and explainable Al, in order to foster broader indus-
trial adoption of intelligent maintenance technologies.
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