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Abstract: Predictive maintenance and remote monitoring have become essential
components in modern industrial environments, particularly for electrical systems,
which are critical to ensuring operational continuity, safety, and productivity. Tra-
ditional maintenance strategies, based on reactive or time-based interventions, of-
ten lead to unexpected failures, increased costs, and inefficient use of resources.
This research addresses these limitations by proposing an intelligent maintenance
system that integrates Machine Learning (ML) and Internet of Things (IoT) tech-
nologies to predict failures and enable real-time monitoring of industrial electrical
equipment. The methodology involves collecting real-time data from electrical
systems using smart sensors, transmitting it through an IoT infrastructure, and
applying ML algorithms to analyze equipment behavior, detect anomalies, and
forecast potential failures. The system is tested under simulated industrial con-
ditions to assess its accuracy, responsiveness, and usability. A case study on a
DC motor equipped with sensors (temperature, humidity, current, and vibration)
and connected to an ESP8266 microcontroller demonstrates the system’s effective-
ness, with data transmitted via MQTT to a cloud platform and processed using
the Random Forest algorithm, achieving 90% accuracy in fault classification. The
results show significant improvements in fault detection, maintenance scheduling,
and system reliability, contributing to the development of intelligent maintenance
frameworks and supporting the digital transformation of industrial practices in
alignment with Industry 4.0 objectives.
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cal Systems; Remote Monitoring; Anomaly Detection; Smart Sensors; Condition-Based Maintenance;
Industry 4.0; Data-Driven Maintenance

Contents

Introduction

© WO Uk W=

Conclusions

Initial Analysis and Requirements Gathering
Data Preparation and Preprocessing

ML Model Development

IoT Integration for Remote Monitoring
Full-Scale Implementation

Monitoring and Optimization

Case Study: Remote Motor Condition Monitoring Using IoT and Machine Learning 10

O O Nk wWwihN

12



1. Introduction

In industrial environments, electrical systems repre-
sent the backbone of production processes, ensuring
the functioning of machinery, lighting, automation sys-
tems, and safety mechanisms. The maintenance of
these systems is therefore critical to avoid costly pro-
duction downtimes and ensure the safety and reliabil-
ity of operations. However, traditional maintenance
strategies, often reactive intervening only after a fail-
ure has occurred or preventive based on fixed schedules
regardless of actual equipment condition are proving
increasingly inadequate in modern industrial contexts.
These approaches can result in unexpected equipment
breakdowns, excessive and unnecessary maintenance
actions, inefficient use of resources, and an overall lack
of responsiveness to real-time operating conditions.
Such limitations are particularly problematic in com-
plex and high-demand industrial environments, where
electrical failures can cascade into serious operational
disruptions. The emergence of new digital technolo-
gies has opened promising paths for overcoming these
challenges. In particular, the convergence of Machine
Learning (ML) and the Internet of Things (IoT) is re-
defining the field of industrial maintenance by enabling
a shift toward predictive and condition-based mainte-
nance models. ML algorithms are capable of processing
and learning from vast volumes of sensor data collected
from electrical equipment, identifying subtle patterns
or anomalies that may indicate early signs of failure.
At the same time, IoT provides the technological in-
frastructure for real-time data collection, remote mon-
itoring, and system connectivity, allowing maintenance
teams to have continuous visibility into equipment per-
formance. Together, ML and IoT form the foundation
of intelligent maintenance systems that not only pre-
dict failures before they occur, but also optimize the
timing and scope of maintenance interventions. his
research is particularly significant in the current in-
dustrial era, where operational efficiency, reliability,
and safety are more critical than ever. By moving
from reactive to predictive strategies, companies can
reduce maintenance-related costs, extend equipment
lifespan, minimize downtime, and prevent catastrophic
failures that might compromise entire production lines.
The integration of ML and IoT technologies into elec-
trical system maintenance also promotes data-driven
decision-making, enabling more accurate diagnostics,
real-time alerts, and dynamic maintenance planning
based on actual usage and condition rather than arbi-
trary schedules. The primary objective of this article is
to propose a comprehensive framework for implement-
ing Machine Learning and IoT in the predictive main-
tenance and remote monitoring of industrial electri-
cal systems. This involves designing a system capable
of collecting and transmitting real-time data through
smart sensors, processing this data using advanced ML
models to detect faults and predict failures, and provid-
ing remote access to this information via user-friendly
platforms. The proposed solution aims to demonstrate

how such an integrated system can enhance mainte-
nance operations, increase electrical system reliability,
and support the broader goals of Industry 4.0 and in-
telligent manufacturing. This study adopts a system-
atic methodology to develop and validate an intelligent
predictive maintenance system for industrial electrical
systems, integrating Machine Learning (ML) and Inter-
net of Things (IoT) technologies. The process begins
with requirements gathering, where industrial main-
tenance challenges and system specifications are ana-
lyzed to define functional needs ( real-time fault detec-
tion) and non-functional criteria ( scalability, data se-
curity). Next, data preparation involves collecting sen-
sor data (current, voltage, temperature, vibration) via
ToT devices, followed by cleaning, noise reduction, and
feature engineering to enhance model accuracy. For
ML model development, four algorithms Random For-
est (RF), Long Short-Term Memory (LSTM), Support
Vector Machine (SVM), and XGBoost are trained and
evaluated using metrics like precision, recall, and com-
putational efficiency. The IoT integration phase de-
signs a layered architecture (perception, network, mid-
dleware, application) to enable real-time data trans-
mission, cloud storage, and remote monitoring via pro-
tocols like MQTT. Implementation proceeds through
a pilot deployment, where the system’s performance
is tested in real-world conditions, followed by full-
scale rollout with integration into industrial platforms (
SCADA, CMMS). Finally, a case study on motor condi-
tion monitoring validates the framework, demonstrat-
ing 90This structured approach ensures a robust, scal-
able, and data-driven maintenance system that transi-
tions industries from reactive to predictive strategies.

2. Initial Analysis and Require-

ments Gathering

The implementation of predictive maintenance and re-
mote monitoring in industrial electrical systems re-
quires a thorough understanding of the current main-
tenance landscape and the operational requirements
of the target environment. Traditional maintenance
strategies in many industrial settings are predomi-
nantly reactive or based on scheduled interventions,
which often result in unexpected equipment failures,
increased downtime, and higher maintenance costs [1].
These approaches fail to leverage real-time operational
data, leading to inefficient decision-making and sub-
optimal asset utilization. The growing complexity of
electrical systems and the need for higher reliability
have highlighted the inadequacies of such conventional
methods [2]. Consequently, the integration of intelli-
gent technologies such as Machine Learning (ML) and
the Internet of Things (IoT) has become increasingly
essential. ML provides tools to analyze equipment be-
havior through historical and real-time data, enabling
early fault detection and condition-based interventions
[3]. At the same time, IoT ensures seamless data acqui-
sition and communication from remote or distributed



systems, thus enhancing visibility and responsiveness.
To meet these challenges, the system must address sev-
eral functional requirements, including the ability to
collect real-time data from key electrical components,
identify anomalies using ML models, and alert main-
tenance personnel before failure occurs. Additionally,
non-functional requirements such as system reliability,
data security, scalability, and low-latency performance
are critical for industrial adoption. The proposed sys-
tem will rely on sensors capable of measuring electri-
cal parameters (voltage, current, temperature), which
will be connected via IoT modules such as GSM or
Wi-Fi for remote transmission. The collected data
must be sufficient in volume and quality to train super-
vised ML algorithms capable of distinguishing normal
from faulty behavior. Furthermore, the involvement
of key stakeholders maintenance engineers, operators,
and management is essential to ensure that the system
aligns with operational workflows and addresses real-
world maintenance challenges. This initial analysis and
requirements gathering phase is crucial for the success-
ful design and deployment of a predictive maintenance
solution tailored to the specific needs of industrial elec-
trical systems.

3. Data Preparation and Pre-

processing

The world is currently undergoing a fast-paced fourth
industrial revolution, driven by rapid technological ad-
vancements. Digital systems are now present across
all sectors, including healthcare, education, manufac-
turing, entertainment, and telecommunications, all of
which generate vast amounts of data. These systems
have become major sources of big data, enabling the
extraction and analysis of insights to uncover new pat-
terns and knowledge. Such information is crucial for
developing intelligent applications tailored to these do-
mains.
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Figure 1: Components and data flow within the pre-
processing module

3.1. Types of Sensors and Variables

Measured

In the Industry 4.0 context, the adoption of diverse sen-
sors has grown significantly due to advances in data
handling technologies [4]. Industrial settings, given
their machinery diversity and sector-specific needs, re-
quire a wide variety of sensors to monitor processes and
components effectively. While many machines include
built-in sensors, additional sensors are often used to
complete data acquisition systems.

According to [5], machine condition monitoring in-
volves tracking parameters like temperature, vibration,
noise, acoustic emissions, and oil pressure, among oth-
ers. Vibration analysis is notably widespread [6][7][8],
since vibration patterns evolve with fault develop-
ment. Techniques for vibration monitoring include
proximity probes, velocity transducers, accelerometers
(most common), dual probes, and laser vibrometers [9].
Acoustic analysis using microphones is also employed,
though it can be limited in noisy environments [10].

Monitoring electrical current is a cost-effective method
for motors and generators [6][11], often complemented
by torque, speed, and especially temperature measure-
ments crucial for diagnosing abnormal operation [12].
Thermography is frequently used to track surface tem-
perature through infrared imaging [13], useful in tool
wear detection [14], while thermocouples offer afford-
able point measurements.

Acoustic Emission (AE) techniques detect stress waves
from localized faults like cracks or leaks [15][16][17],
especially in large machinery. Similarly, ultrasound is
used to inspect materials for surface and internal de-
fects [18], while eddy current testing evaluates conduc-
tive material integrity [19]. Radiographic inspection
identifies internal flaws in cast or welded components
[20], whereas liquid penetrant testing detects surface
anomalies.

Lubricant analysis assesses oil composition and con-
tamination using ferrography, spectrometry, and chro-
matography. Ferrography detects wear via iron parti-
cles [21]; spectrometry identifies metal and non-metal
particles for early fault detection [22]; chromatography
evaluates oil property changes like viscosity and water
content [9].

Beyond one-dimensional data, smart manufacturing
also leverages multidimensional data, particularly
through vision-based inspection systems [23], includ-
ing 3D vision for assembly quality control [24]. Acous-
tic cameras, integrating microphones to localize noise,
support diagnostics in systems like conveyors [25].

Additional sensor types cater to specific systems: pneu-
matic/hydraulic components benefit from pressure,
flow, and position monitoring; cyclic load machines use
load cells or strain gauges to measure stress and ensure
structural integrity.



3.2. Data Preparation and Preprocess-

ing

Data preparation and preprocessing are critical founda-
tions for building accurate and reliable predictive main-
tenance systems. The process begins with the system-
atic acquisition of sensor data collected from industrial
equipment via strategically placed IoT devices. These
sensors continuously monitor key operational metrics
such as vibration, temperature, pressure, and current.
The collected data is then transmitted to centralized,
cloud-based platforms, where it undergoes a series of
quality control checks.

The preprocessing phase starts with data cleaning,
aimed at detecting and correcting issues such as miss-
ing values, outliers, and inconsistencies. Techniques
like interpolation, statistical imputation, and filtering
are applied. Since raw sensor signals are often affected
by noise, denoising is a crucial step, addressed using:

e Frequency-domain techniques (Fourier and
wavelet transforms), which break down signals
into their spectral components to isolate and
suppress noise;

e Time-domain approaches (moving average fil-
ters), which smooth out short-term fluctuations
based on surrounding values.

After denoising, normalization is performed to align
feature scales across the dataset. The most common
methods include:

e Min-Max normalization, which scales values to a
fixed range (typically [0, 1]);

e 7-score normalization, which standardizes data
by centering it around the mean and adjust-
ing for standard deviation especially useful in
dynamic environments, though less effective for
non-stationary time series.

Simultaneously, feature engineering is applied to enrich
the dataset. This involves generating new attributes
such as moving averages, derivatives, or frequency-
domain features that help reveal patterns associated
with early signs of equipment failure. In addition, data
from multiple sensors is synchronized and integrated
using identifiers such as machine IDs and timestamps,
and stored in data lakes to accommodate diverse for-
mats and sources.

Through this comprehensive preprocessing pipeline
covering data cleaning, noise reduction, normaliza-
tion, feature engineering, and data integration a high-
quality, consistent, and enriched dataset is produced.
This refined dataset provides a robust foundation for
training and deploying machine learning models in pre-
dictive maintenance applications.[26][27]

4. ML Model Development

The evolution of computational tools and frameworks
has provided effective solutions to everyday prob-
lems. Among these advancements, machine learning
has emerged as a prominent computational approach

that uses algorithms and statistical models to perform
tasks without explicit programming. Instead, it lever-
ages data patterns to draw inferences and support au-
tomated decision-making processes.

Machine learning refers to the use of computer algo-
rithms that enable systems to learn and improve from
data automatically, allowing them to predict or clas-
sify the nature of this data through pattern recogni-
tion [28]. Tt is generally considered a subfield of artifi-
cial intelligence (AI) that enables systems to make au-
tonomous decisions without external intervention, by
uncovering meaningful hidden patterns within complex
datasets.

The machine learning approach varies depending on
the nature of the input and output data, as well
as the specific problem being addressed. It operates
through embedded instructions and minimal program-
mer supervision to carry out tasks based on data-
driven decision-making [28]. Machine learning tech-
niques are typically classified into supervised learning,
semi-supervised learning, unsupervised learning, and
reinforcement learning, although hybrid and alterna-
tive methods also exist [29].

4.1. Machine Learning Techniques

Machine learning techniques are primarily categorized
into four main types: supervised learning, unsuper-
vised learning, semi-supervised learning, and reinforce-
ment learning [28]. Each of these approaches is applied
based on their suitability for addressing specific real-
world problems, and their use varies depending on the
nature of the task and the available data.
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4.1.1 Supervised Learning

In supervised learning, a category of machine learn-
ing, algorithms operate by developing a mathemati-
cal model based on input-output data pairs [30]. This
process involves translating the problem into a math-
ematical formulation where the input data (data fed



into the system) is associated with corresponding ex-
pected outputs (the resulting processed information).
The dataset used is known as training data, consisting
of multiple examples with one or more inputs.

Supervised learning typically employs feature vectors
(array vectors used for feature extraction) and or-
ganizes the training data into a matrix structure.
Through iterative learning, the algorithm adjusts to
improve the accuracy of its predictions or classifica-
tions. Once the algorithm has effectively learned from
the data, it can reliably produce accurate results [31].

4.1.2 Unsupervised Learning

Unsupervised learning algorithms function by analyz-
ing datasets to detect patterns, primarily for group-
ing or clustering purposes. These algorithms identify
similarities within the data and respond according to
the presence or absence of these patterns in new, in-
coming data. Unlike supervised learning, unsupervised
learning does not rely on labeled, classified, or catego-
rized input; instead, it learns directly from unstruc-
tured data without human intervention, making it a
purely data-driven approach [32].

Common tasks in unsupervised learning include
anomaly detection, dimensionality reduction, cluster-
ing, density estimation, feature learning, and the dis-
covery of association rules [33].

4.1.3 Semi-Supervised Learning

Semi-supervised learning lies between supervised learn-
ing (which uses labeled data) and unsupervised learn-
ing (which uses unlabeled data). It is considered a
hybrid machine learning approach because it operates
on both labeled and unlabeled datasets, often resulting
in improved prediction accuracy. This technique lever-
ages the strengths of both methods to enhance learning
performance, especially when acquiring labeled data is
costly or time-consuming. Semi-supervised learning is
commonly applied in areas such as text classification,
fraud detection, and machine translation [34].

4.1.4 Reinforcement Learning

Reinforcement learning refers to a machine learning ap-
proach in which software agents or machines make de-
cisions autonomously within an environment to opti-
mize performance. It is widely applied in fields such
as operations research, game theory, information the-
ory, swarm intelligence, and genetic algorithms. This
learning technique is based on a reward-penalty sys-
tem, where the agent learns to take actions that maxi-
mize rewards or minimize risks based on feedback from
the environment.

Reinforcement learning is particularly effective for
tasks that require continuous decision-making, such as
autonomous vehicle navigation, playing games against
human opponents, and robotics. It is increasingly used
in automation, including manufacturing processes and
supply chain logistics [28].

4.2. Algorithms for Predictive Mainte-

nance

For this research, we evaluate four of the most fre-
quently applied predictive maintenance algorithms:

1. Random Forest (RF)

2. Long Short-Term Memory (LSTM)

3. Support Vector Machine (SVM)

4. Extreme Gradient Boosting (XGBoost)
All algorithms are tested based on accuracy, precision,
recall, and computational performance using artificial
data created from IToT sensors.

4.2.1 Random Forest (RF)

Random Forest is a supervised machine learning tech-
nique that constructs multiple decision trees during
training and aggregates their predictions to improve
accuracy. It is widely used in predictive maintenance
for both classification and regression tasks due to its
robustness and ability to model complex, nonlinear re-
lationships often found in IToT sensor data [35].
Working Mechanism:

e Random Forest randomly selects subsets of fea-
tures and data instances to train a diverse en-
semble of decision trees

e FEach tree makes an independent prediction; the
final result is obtained by majority voting (for
classification) or averaging (for regression) [36]

e The model is inherently resistant to overfitting
and performs well with noisy industrial datasets

Advantages:

e Efficient handling of high-dimensional data

e Reduced risk of overfitting compared to individ-
ual decision trees

e Tolerant of missing values and outliers
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Figure 3: Random Forest (RF) Algorithm

4.2.2 Long Short-Term Memory (LSTM)

LSTM is a specialized type of Recurrent Neural Net-
work (RNN) designed to handle sequential and time-
series data. It is particularly effective in IToT-based
predictive maintenance, especially when sensor read-
ings evolve continuously over time [37].

Working Mechanism:



e LSTM networks consist of memory cells that re-
tain information over extended time intervals, ef-
fectively mitigating the vanishing gradient prob-
lem

e Each memory cell contains input, forget, and out-
put gates that regulate the flow of information
through the network

e The model is capable of learning long-term de-
pendencies in time-series data, making it ideal
for identifying progressive faults such as wear and
tear in industrial equipment [38]

Advantages:

e Highly suitable for time-series forecasting in IIoT
environments

e Capable of capturing long-term relationships in
sequential sensor data

e Effectively detects complex patterns in machine
behavior and performance
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Figure 4: Long Short-Term Memory (LSTM) Algo-
rithm

4.2.3 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful classifi-
cation algorithm that identifies the optimal hyperplane
that maximizes the margin between different classes in
a high-dimensional feature space. In predictive mainte-
nance, SVM is often used for binary classification tasks
such as predicting whether a machine is likely to fail
or not [39].

Working Mechanism:

e SVM constructs a decision boundary (hyper-
plane) that maximizes the margin between
classes

e It can handle non-linearly separable data by ap-
plying kernel functions such as linear, polyno-
mial, or radial basis function (RBF) kernels [40]

e The algorithm performs well when sensor data
contains distinct failure signatures or patterns

Advantages:

e Delivers strong performance with relatively small
datasets

e Effectively handles nonlinear
through the use of kernel methods

e Suitable for both binary and multi-class classifi-
cation tasks
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Figure 5: Support Vector Machine (SVM) Algorithm

4.2.4 Extreme Gradient Boosting (XGBoost)

XGBoost is an ensemble learning technique that im-
proves predictive performance by iteratively training
decision trees in a manner that minimizes prediction
errors. It is widely used in IloT systems for tasks like
fault detection and anomaly detection.
Working Mechanism:
e XGBoost constructs multiple weak learners (de-
cision trees) and aggregates their outputs to form
a strong, accurate predictor
e It uses gradient boosting to minimize the loss
function, enhancing the model’s accuracy [41]
e The algorithm is highly efficient in handling
large-scale sensor data
Advantages:
e Exceptionally efficient and scalable, making it
suitable for large IToT datasets
e Delivers high prediction accuracy with minimal
computational overhead
e Handles imbalanced data effectively, making it
ideal for real-world IIoT applications
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Figure 6: Extreme Gradient Boosting (XGBoost) Al-
gorithm

4.3. Importance of Machine Learning

in Predictive Maintenance

Machine Learning (ML) has become a foundational
component of predictive maintenance, enabling the
analysis of large-scale data produced by Industrial In-
ternet of Things (IIoT) systems. Traditional mainte-



nance approaches such as reactive maintenance, which
addresses failures after they occur, and preventive
maintenance, which may involve unnecessary interven-
tions often result in inefficiencies.

In contrast, ML algorithms can detect patterns and
anomalies within operational data, enabling accurate
predictions regarding the timing and location of poten-
tial failures [42]. This predictive capability facilitates
proactive maintenance actions, optimizes maintenance
schedules, and contributes to prolonging the service life
of industrial equipment.

4.4. System Testing and Validation

4.4.1 Model Training

The selected machine learning algorithms are trained
using the predefined training subsets from each
dataset. To enhance model performance and prevent
overfitting, hyperparameter tuning is performed using
cross-validation techniques. This process ensures that
the models are optimally configured and capable of
generalizing beyond the training data.

4.4.2 Model Testing

Once trained, the models are evaluated on a separate
test set comprising unseen data. This stage is critical
to assess the model’s generalization capabilities. Pre-
dictions generated during testing are compared with
the actual outcomes to evaluate accuracy and reliabil-

ity.

4.4.3 FEvaluation Metrics

To ensure a comprehensive assessment of each algo-
rithm’s performance, several evaluation metrics are
employed:

e Accuracy: Represents the proportion of correct
predictions (true positives and true negatives)
relative to the total number of instances. It pro-
vides a general measure of overall model perfor-
mance.

e Precision and Recall:

- Precision measures the proportion of true posi-
tives among all positive predictions

- Recall measures the proportion of true positives
that were correctly identified

e F1 Score: The harmonic mean of precision and
recall. It serves as a balanced metric when there
is a need to trade off between minimizing false
positives and false negatives.

e Area Under the ROC Curve (AUC-ROC):
Evaluates the model’s ability to distinguish be-
tween different classes ( faulty vs. healthy equip-
ment). A higher AUC value indicates superior
performance in classifying data across various
threshold settings.

e Computational Time: Measures the time re-
quired for model training and testing, offering

insights into the algorithm’s computational effi-
ciency.

e Scalability: Assesses how well the algorithm
performs as the dataset size increases, which is
essential for industrial scale applications.

e Robustness to Noise: Evaluates the model’s
ability to maintain accuracy in the presence of
noisy or incomplete data an essential feature for
real-world industrial environments.

By employing this diverse set of metrics, the study de-
livers a detailed comparison of the machine learning
algorithms, highlighting their suitability for predictive
maintenance in Industrial Internet of Things (IIoT)
contexts [43].

5. IoT Integration for Remote
Monitoring
5.1. IoT Architectures and Technolo-

gies

The Internet of Things (IoT) revolves around physi-
cal devices commonly referred to as “things” such as
sensors and actuators that communicate with a cen-
tral system, typically an IoT platform. For instance,
an air quality sensor can report environmental data to
a server, while a ventilation system (as an actuator)
can be remotely activated by user commands. A key
principle of IoT systems is the bidirectional interaction
between users and physical devices: sensors gather and
transmit environmental data, and users (or automated
rules) can trigger actions based on that data. This
architecture enables the development of smart appli-
cations that support tasks such as monitoring, con-
trol, prediction, and automated responses, automati-
cally turning on a fan when air quality falls below a
certain threshold [44].
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5.1.1 Perception Layer

The perception layer, also referred to as the sensing
layer, is responsible for collecting data from the en-
vironment through various sensing devices. It pro-
cesses the data to extract valuable information and
then transmits it to the network layer via network ac-
cess devices like WSN gateways. This layer is made up
of integrated hardware that handles data acquisition
and perception. Common sensing technologies include
RFID, cameras, sensors, and barcodes.

RFID (Radio Frequency Identification) plays a crucial
role in the development of microchips for wireless com-
munication. RFID tags can be active or passive, and
are embedded in objects for automatic identification.
Active RFID tags are self-powered and initiate commu-
nication, while passive tags lack internal power. Pas-
sive tags are commonly used in applications such as
transportation, retail, logistics, road tolls, and smart
bank cards, whereas active RFID tags are used in auto-
motive manufacturing and remote monitoring. These
tags feature a small transceiver that enables both re-
ceiving queries from a reader and transmitting the tag
1D.

Wireless sensors are electronic chips commonly used for
remote sensing applications. They are known for their
low cost, small size, high efficiency, and their ability
to collect, process, and analyze data. When combined
with RFID, wireless sensor networks (WSN) can more
effectively track environmental changes and monitor
the status of objects, including location, temperature,
and movement.

Cameras are utilized to address logistical challenges
and enhance home security. In addition to use in vehi-

cles for navigation, intelligent cameras can detect and
capture specific moments. For example, cameras in-
stalled along roads help optimize driving by notifying
drivers of available space in a lane. Many smart cam-
eras in IoT systems store only relevant data, which can
be used later for analysis.[45]

5.1.2 Communications Network

To facilitate data exchange between sensors, actua-
tors, the IoT platform, and gateway components, one
or more communication networks must be established.
These networks are required to support the physical,
data link, and network layers in accordance with the
Open Systems Interconnection (OSI) model[46]. The
network layer plays a crucial role in packet forwarding
and routing. Among the most commonly used proto-
cols at this layer are:

e TPv4: Internet Protocol version 4 (IPv4) remains
the most widely used IP version. Introduced in
1983, it utilizes 32-bit addresses, allowing for 232
unique addresses, of which 22* are reserved for use
in private local area networks (LANSs). However,
the limited number of addresses has led to near ex-
haustion of available IPv4 addresses, known as the
IPv4 address exhaustion problem.

e IPv6: To address the limitations of IPv4, Internet
Protocol version 6 (IPv6) was developed. It uses
128-bit addresses, offering a vastly larger address
space compared to IPv4.

e 6LoWPAN: Developed by the Internet Engineer-
ing Task Force (IETF), IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPAN) in-
troduces an adaptation layer that enables IPv6
to function over the low-rate wireless personal
area networks defined by the IEEE 802.15.4
standard[47].

5.1.3 IoT Gateway

IoT devices often utilize a wide range of communica-
tion networks, data link protocols, and data formats,
many of which may not be natively supported by the
IoT platform. To address this interoperability chal-
lenge, a middleware component commonly referred to
as a gateway or edge gateway is introduced between
the IoT devices and the IoT platform. This gateway
acts as an intermediary that standardizes communica-
tion by translating diverse protocols and formats into
a unified network interface, data link layer, and data
format compatible with the platform. In practical de-
ployments, multiple gateways are typically used, with
each one managing communication for a specific group
of IoT devices.[44].

5.1.4 Middleware Layer

This layer operates between the application layer and
the network layer. Its primary role is to abstract
hardware complexities, allowing developers to focus on
building applications without needing to manage low-
level device interactions. Additionally, it ensures inter-



operability, scalability, abstraction, and offers essential
services to users. Key functions of this layer include
user authentication and secure service delivery, cre-
ating a trusted environment for data processing and
communication.[48].

5.1.5 Application Layer

The application layer is responsible for developing a
wide range of applications tailored to meet business
needs. It serves as the interface between end users
and the Internet of Things (IoT), providing customer-
facing services and enabling interaction with IoT sys-
tems. Its primary objective is to deliver high-quality,
intelligent services that fulfill user requirements. This
layer supports key functions such as information stor-
age, data mining, and decision-making across diverse
applications. To enable intelligent IoT solutions, it
integrates with industry standards and leverages ad-
vanced technologies including distributed computing,
intelligent processing of large-scale data, and informa-
tion discovery. The application layer underpins a va-
riety of use cases such as intelligent transportation,
smart logistics, smart cities, environmental monitoring,
e-health, and precision agriculture[49]. Additionally, it
offers global capabilities for managing and deploying
ToT applications. An example of its application is in in-
telligent transportation systems, an emerging technol-
ogy aimed at enhancing road safety, optimizing traffic
flow, improving the driving experience, and minimiz-
ing travel time through advanced route optimization
techniques.

5.2. Internet of Things for Remote

Monitoring Services

Condition monitoring services are essential across a
wide range of industries. This process involves the
acquisition and analysis of data that reflects the op-
erating condition of a machine over time, with the goal
of delivering real-time, actionable insights to minimize
risk and prevent failures[50].

A typical remote monitoring program is designed to
support effective and efficient predictive maintenance
and generally follows four key steps[51]:

e Data Acquisition: This involves collecting rel-
evant data from physical assets and converting it
into digital form suitable for analysis.

e Data Processing: In this step, the digitized
data is transformed into meaningful information
by quantifying the operational conditions of the
equipment.

e Decision-Making: This phase goes beyond
merely identifying machine faults it enables the
detection, diagnosis, and classification of failures.
Based on the analysis, appropriate corrective or
preventive actions can be triggered automatically
to manage machine operations.

¢ Remote Communication: This function al-
lows the transmission of critical information, such

as machine status and alarm conditions, over
a network to support remote diagnostics and
decision-making.

6. Full-Scale Implementation

The full-scale deployment of a predictive maintenance
system represents the transition from a validated pro-
totype to a fully operational solution integrated within
the industrial environment. The primary objective
is to enable real-time anomaly detection, reduce un-
planned downtime, and enhance decision-making pro-
cesses. This implementation follows a progressive
strategy, starting with a limited pilot phase to mit-
igate risks and tailor the system to site-specific con-
straints. The trained machine learning models are inte-
grated into existing industrial platforms such as CMMS
for maintenance management, SCADA for real-time
equipment monitoring, and ERP systems for align-
ing with broader business processes. Data exchange
is facilitated through standard industrial protocols like
MQTT, Modbus, OPC-UA, or RESTful APIs, ensur-
ing seamless communication between sensors, cloud
platforms, and user interfaces. A user-friendly web-
based dashboard, developed using HTML5, JavaScript,
D3.js, or Plotly, visualizes critical operational param-
eters (temperature, vibration, current), while a notifi-
cation system via SMS (Twilio) or email APIs alerts
maintenance teams immediately when a fault is pre-
dicted. Before large-scale rollout, a pilot deployment
in real-world conditions validates sensor accuracy, sys-
tem responsiveness, and alert relevance, followed by
a User Acceptance Test (UAT) to refine thresholds,
alert frequency, and interface design based on techni-
cian feedback. Once approved, the system is replicated
across additional equipment or sites using a modular
architecture, scalable cloud or Edge Al infrastructure,
and automated deployment tools such as Docker. This
approach ensures a scalable, cost-effective, and sustain-
able implementation. However, several challenges may
arise, including data incompatibility, user resistance,
and network latency issues. To address these, train-
ing sessions are provided, interfaces are simplified, and
fallback mechanisms are built in to maintain system
resilience. [52][53]

7.

Monitoring and Optimization

After deployment, predictive maintenance systems re-
quire continuous monitoring and refinement to ensure
their effectiveness in dynamic industrial settings. Key
performance indicators (KPIs) such as Mean Time Be-
tween Failures (MTBF), false alarm rates, and equip-
ment availability must be consistently tracked to main-
tain system accuracy and reliability. To keep up
with changing operational conditions, machine learning
models are periodically retrained with updated sensor
data and newly labeled failure cases, either on a fixed
schedule or in response to performance degradation.



Feedback from maintenance technicians is also essen-
tial, as their insights help refine alert thresholds, val-
idate model predictions, and improve the relevance of
system outputs. Additionally, advanced analytics such
as anomaly detection and Remaining Useful Life (RUL)
predictions are integrated to offer more precise failure
forecasts, enabling a shift from reactive to proactive
maintenance. Together, these ongoing optimization ef-
forts ensure the long-term adaptability, efficiency, and
scalability of the predictive maintenance system. [52]

8. Case Study: Remote Motor
Condition Monitoring Using
IoT and Machine Learning

8.1. Related Work

The reviewed literature emphasizes the growing role of
advanced technologies such as the Internet of Things
(IoT), machine learning (ML), and data fusion in en-
hancing predictive maintenance and industrial mon-
itoring. Several studies demonstrate how monitor-
ing motor parameters like temperature, vibration, and
current can be used with analytical models to pre-
dict equipment failures effectively. Machine learning
techniques, including supervised learning and ensem-
ble classifiers, are widely adopted to improve the ac-
curacy and robustness of failure predictions, especially
when dealing with real-world, unstructured data. Mul-
tisensor data fusion, as applied through 2D convo-
lutional neural networks (CNNs) and motor current
signature analysis (MCSA), enables more comprehen-
sive and accurate fault diagnosis in complex compo-
nents like gearboxes. IoT plays a crucial role by en-
abling real-time data collection from various industrial
assets, which supports timely maintenance decisions
and reduces unexpected downtimes. Studies also high-
light cost-effective systems for condition monitoring,
such as those used in BLDC motors, where IoT and
ML help detect and diagnose faults efficiently. Fur-
thermore, secure and scalable frameworks are essen-
tial in remote monitoring scenarios, where methods like
attribute-based encryption (ABE) and federated learn-
ing ensure data privacy and flexible access control. In
addition, low-power communication protocols like Lo-
RaWAN and MQTT are compared for optimal data
transmission in resource-constrained environments. Fi-
nally, the research explores the use of prototyping tools
like block-based programming for building IoT appli-
cations and demonstrates how IoT sensor data can be
used for classification tasks in industrial contexts. To-
gether, these studies highlight the effectiveness of com-
bining IoT and machine learning to optimize mainte-
nance strategies, enhance operational reliability, and
ensure data security in smart industrial systems.[54].
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Figure 9: Proposed system for remote monitoring of
the motor using IoT and machine learning

8.2. Methodology

This project develops a prototype for remote motor
condition monitoring using IoT and machine learn-
ing. It uses sensor data and a prediction model
for predictive maintenance. Key components include
an ESP8266 microcontroller, ACS712 current sensor,
DHT11 sensor, DC motor, and a vibration sensor.

Figure 10: Circuit diagram for remote monitoring of
the motor using IoT and machine learning

8.2.1 IoT based data acquisition

The system employs a range of sensors including cur-
rent, voltage, temperature, and humidity connected
to an ESP8266 microcontroller, which transmits the
collected data to a cloud platform using the MQTT
protocol. This setup enables real-time monitoring of
the motor’s operating conditions. Figure 77 illustrates
the circuit diagram for the IoT- and machine learning-
based remote motor monitoring system.

8.2.2 Data Transmission and Storage

Sensor data is wirelessly sent to a central server and
stored in a time-series database via the MQTT server,
allowing for efficient analysis and long-term monitor-
ing.

8.2.3 Machine Learning Model

Data Collection and Storage : Sensor data includ-
ing temperature, humidity, current, and voltage is col-



lected via the ESP8266 microcontroller. The DHT11
sensor records temperature and humidity, while the
ACST712 sensor captures current and voltage readings.
Data Preprocessing : Collected data is cleaned to
eliminate noise and improve prediction accuracy. Key
features influencing motor performance are extracted:

e Temperature: High levels may cause overheat-

ing and efficiency loss.

e Humidity: Can lead to condensation or corro-

sion, impacting electrical performance.

e Voltage: Fluctuations may indicate supply is-

sues or motor malfunctions.

e Current: Deviations often signal overloads,

faults, or mechanical problems.
The target variable motor_status indicates the mo-
tor’s operational condition:

e 0: Normal operation

e 1: Faulty or abnormal condition
The goal is to predict the motor’s operational status
using sensor features: temperature, humidity, voltage,
and current. Each feature has a direct influence on
motor health:

e Temperature: Elevated temperatures may in-
crease the risk of motor failure due to overheat-
ing.

Humidity: Excess moisture can lead to conden-
sation or corrosion, potentially causing electrical
issues.

Voltage: Sudden voltage fluctuations can dis-
rupt motor function and signal power-related
problems.

Current: Irregular current flow may indicate
overloads, faults, or mechanical issues.
Understanding these relationships helps the machine
learning model accurately predict motor status and de-
tect early signs of failure.

Model Training and Prediction : A supervised
machine learning approach is used. Historical, labeled
data is split into training (80

Model Deployment : The trained model is deployed
on a server or cloud platform to process incoming sen-
sor data in real time. It continuously predicts the mo-
tor’s status, helping to detect faults early and enable
predictive maintenance.

8.3. Result Analysis

System Performance Evaluation The system’s perfor-
mance was evaluated using real-time IoT sensor data
for motor condition monitoring. The analysis focused
on parameter distribution, correlation, and machine
learning model effectiveness.

8.3.1 Sensor Data Insights

e Current: Ranged from 1.39 A to 2.75 A,
with stable operation mostly between 1.5-1.6 A.
Spikes reflect transient load increases.

e Voltage: Varied from 298 V to 586 V, showing
typical operating fluctuations.
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e Temperature: Remained stable in a narrow
range of 26.8°C-27.1°C, suggesting a consistent
environment.

e Humidity: Maintained between 60%—62%, also
indicating stable ambient conditions.

Statistical Analysis

e Box Plots (Fig. 11):

Showed low variability in temperature and hu-
midity (tight distribution, minimal outliers).
Voltage and current had higher variability, con-
sistent with electrical fluctuations.

Correlation Matrix (Fig. 12):

Current and voltage showed a strong positive cor-
relation (p ~ 1), reflecting normal electrical be-
havior. Temperature and humidity had a strong
negative correlation (p &~ —0.88), likely due to
environmental factors.

Box Plot of Normalized Data

-]

Figure 11: Box plot of the different feature variables
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Machine Learning Model Performance

e Confusion Matrix (Fig. 13):

Demonstrated the model’s reliability in distin-
guishing between Fuilure and No-Failure condi-
tions.

Classification Metrics (Fig. 14):

. Accuracy: 90%

. Precision: 91.37%

. Recall: 98.14%

. F1-Score: 94.64%

Confusion Matrix

Predicted

Correlation between the different feature

ACTuracy

Figure 13:
variables

Classification Metrics

B4
06 4
-4‘ I I

Peca

F1-5core

Precmon

Figure 14: Correlation between the different feature
variables

These results confirm that the Random Forest classifier
successfully identifies motor anomalies based on real-
time sensor data, enabling early fault detection and
reducing unplanned downtimes.
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8.4. Conclusion and future work

This study developed an IoT-based system for real-
time monitoring and predictive maintenance of DC
motors using machine learning. By collecting sensor
data (temperature, humidity, voltage, and current) and
transmitting it via MQTT to a cloud platform, the
system ensures continuous and efficient performance
tracking. A Random Forest classifier was implemented
to accurately predict motor conditions and detect po-
tential failures. Built around the ESP8266 microcon-
troller, the system demonstrates the practicality of IoT
for industrial applications. Its cloud-based architecture
supports scalability and real-time analytics, while the
user-friendly interface enhances operational safety and
ease of use. The findings highlight the potential of com-
bining IoT and ML for smart maintenance strategies.
Future research could expand this approach to other
types of industrial equipment for broader applicability.

9. Conclusions

The maintenance and monitoring of industrial elec-
trical systems have long relied on reactive or sched-
uled interventions, often resulting in inefficiencies, un-
expected failures, and costly downtimes. This study
demonstrated how the integration of Machine Learn-
ing and Internet of Things technologies can overcome
these limitations by enabling predictive maintenance
and real-time remote monitoring. By designing a sys-
tem that collects operational data through IoT-enabled
sensors and applies ML algorithms to analyze and fore-
cast equipment conditions, we have shown the potential
of this approach to transform industrial maintenance
practices. The proposed framework improves fault de-
tection accuracy, optimizes intervention timing, and
enhances the overall reliability of electrical systems.
The outcomes confirm that data-driven maintenance,
supported by smart technologies, significantly reduces
operational risks and contributes to more sustainable
and cost-effective industrial operations. This work also
aligns with the broader vision of Industry 4.0, where in-
telligent systems and automation drive efficiency and
innovation. Future research may focus on expanding
this framework to other types of industrial equipment,
improving the scalability of the system, and incorpo-
rating explainable AT models to increase transparency
and trust in decision-making processes. Overall, the in-
tegration of ML and IoT represents a promising direc-
tion for the future of industrial maintenance and opens
the door to fully autonomous and intelligent mainte-
nance ecosystems.
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