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Abstract: SCADA systems are used to-effectively monitor and con-
trol critical industrial infrastructure . Due to Industry 4.0 , SCADA
systems have evolved towards linked architectures, which has enhanced
operational efficiency but also made them more vulnerable to cyberat-
tacks. SCADA systems, which were once intended to be dependable,
are now at risk from malware, DoS attacks, illegal access,and various
types of threats endangering both safety and service continuity. In this
context, artificial intelligence enables real-time detection of anomalies
and cyberattacks especially by ML and deep DL based IDS. This paper
offers a thorough analysis of current Al strategies for SCADA security,
emphasising important techniques, difficulties, and results .
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1. Introduction

Control and data acquisition systems
(SCADA) are essential components of indus-
trial infrastructures, enabling centralized su-
pervision, real-time data collection and re-
mote control in sectors such as energy, water,
transport and manufacturing[l]. A standard
SCADA architecture consists of Programmable
Logic Controllers (PLC), Remote Terminal
Units (RTU), Master Terminal Units (MTU)
and Human-Machine Interfaces (HMI), These
systems rely on both wired and wireless com-
munication networks to exchange information
across geographically distributed areas, to-
gether they ensure seamless monitoring and
control of distributed processes assets.[2].

The integration of SCADA into larger digi-
tal infrastructures, particularly under the dom-
inance of Industry 4.0, has allowed systems
to move from isolated and proprietary instal-
lations to highly connected and interoperable
architectures. This transformation is mainly
driven by the convergence of Information Tech-
nology (IT) and Operational Technology (OT),
as well as the adoption of Industrial Internet of
Things (IToT) concepts that improve data visi-
bility, predictive maintenance and remote diag-
nostics [3].

However, this increased connectivity has
created significant cybersecurity challenges.
SCADA systems, initially designed for avail-
ability and reliability,[4] are now facing a wider
variety of cyber threats, such as denial-of-
service (DoS) attacks, malware, SQL injection,
phishing and unauthorized access [5]. These
threats are likely to disrupt essential services,
damage critical assets ‘and compromise the
safety of industrial operations. [6]Key events
such as Stuxnet and power grid attacks have il-
lustrated the devastating effect of cyber-attacks
on ICS environments [7].

To address these evolving risks, researchers
are increasingly turning to Artificial Intelli-
gence (Al) to enhance the security of SCADA.

Al-based intrusion detection systems (IDS) of-
fer promising opportunities to detect and clas-
sify cyber threats in real time, including in
complex and dynamic environments [8]. These
methods examine network traffic patterns and
system behavior to identify anomalies that sig-
nal malicious activity.[9]

To provide a comprehensive overview of cur-
rent developments in the field, we conducted
a systematic literature review based on recent
research aimed at securing SCADA systems us-
ing AT approaches .We also developed and eval-
uated an Al-based IDS model using nine algo-
rithms : : Adaptive Boosting (AdaBoost), Ex-
treme Gradient Boosting (XGBoost), Gradient
Boosting (GBoost), Long Short-Term Mem-
ory (LSTM), Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN),
Random Forest (RF), Decision Tree (DT), and
k-Nearest Neighbor (KNN). This experimental
study offers useful information on how differ-
ent methods work in comparison when used for
SCADA cybersecurity:

The paper is structured as follows: Section
2 discusses SCADA systems and cybersecurity.
Section 3 reviews related research in the field.
Section 4 describes the experimental study and
results . Finally, the conclusion summarizes key
findings.

2. SCADA Systems and

Cybersecurity

This section contains an overview of SCADA
systems where detailing SCADA components ,
their evolution with time , and the potential
possible threats .

2.1. SCADA architecture

A typical architecture of a modern SCADA sys-
tem (see Figure 1) is generally consists of three
main functional segments: the centralized con-
trol segment , the field equipment segment and
the communication network segment [10].



At the heart of the architecture is the Mas-
ter Terminal Unit (MTU), .This unit acts as
the core of the system, coordinating all func-
tions of control, processing, data visualization
and sending instructions to monitored areas.
The MTU exchanges data with Remote Ter-
minal Units (RTUs) and Programmable Logic
Controllers (PLCs), which are responsible for
collecting data, to interact with the actuators
and to ensure the execution of the commands
locally.

RTUs receive real-time information from var-
ious field equipment, such as sensors, switches,
intelligent electronic devices (IEDs), or actu-
ators, which they rearrange before transmit-
ting to the MTU for processing and archiv-
ing.Conversely, the MTU generates control
commands that are relayed by the RTUs to the
relevant devices for execution [4]. The human-
machine interface (HMI) allows operators to in-
teract with the SCADA system through intu-
itive graphical representations, thus facilitating
the supervision of operations and the manage-
ment of alarms. resilience.

The architectural overview of a SCADA systems
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Figure 1: The architectural overview of a SCADA system

2.2. SCADA evolution through

generations

Over the last few decades, SCADA sys-
tems have undergone a significant architectural
change, moving from isolated and centralized
to integrated, interconnected platforms . This
progression can be defined in four distinct gen-
erations:

The first generation, launched in the 1960s
and 1970s, consisted of monolithic SCADA sys-
tems that were completely independent and

based on proprietary hardware and software.
[11].

The second generation, enabled by the ad-
vancement of microprocessors and Local Area
Networks (LANs). It was now possible for
parts like RTUs, PLCs, and HMIs to be dis-
persed throughout locations while still main-
taining connectivity. [12].

Using Wide Area Networks (WANs) and IP-
based protocols like Modbus TCP and DNP3,
the third generation adopted networked archi-
tectures . These systems improved interoper-
ability and allowed for remote monitoring from
several locations. However, the increased con-
nectivity also introduced significant cybersecu-
rity risks.[13].



IoT-enabled SCADA systems are repre- algorithms. [13]They provide scalability and
sented by the fourth generation, which began integration with ERP and MES systems, but
in the 2010s and continues to this day. These because of their increased interconnectedness,
platforms enable real-time analytics and wise they also present difficult cybersecurity issues
decision-making by combining cloud comput- [12].
ing, edge processing, smart sensors, and Al
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Figure 2: SCADA system evolution

Table 1. Summary of SCADA System Generations

SCADA Genera- [ Architecture & Com-][Scalable Reliable Security Model Key Technologies /

tion munication ‘ Features ‘

Monolithic  (1st

Gen)

1960s-1970s Standalone, proprietary, | Not  scal-|Low Air-gapped, physical iso- | Mainframes, proprietary
no networking able lation 1/0

Distributed (2nd

Gen)

1970s—-1980s LAN-connected nodes | Moderate |Moderate Security through obscu-|LANs, microprocessors,
(PLCs, RTUs) ‘ rity ‘modular design

Networked (3rd

Gen)

1990s—-2000s WAN-based, IP communi- | High High (with|Basic cybersecurity | Modbus TCP, DNP3,
cation, centralized control backups) (firewalls, open proto-|OPC, centralized data

cols) systems

IoT-enabled (4th

Gen)

2010s—Present Cloud-integrated, edge| Very high |Very high TLS/SSL, access con-|Cloud/edge comput-
computing, IoT protocols trol, anomaly detection |ing, AI, mobile access,

ERP/MES integration




2.3. Cybersecurity and Threats

in SCADA Systems

SCADA systems are vulnerable to different
cyber attacks, depending on the targeted seg-
ments. MTU and RTU are the main targets of
internal attacks, which exploit organizational
flaws such as unsecured physical access, the use
of weak passwords or the uncontrolled distri-
bution of access privileges[8].These attacks in-
clude , SQL injection, , password attacks and
malware such as viruses and ransomware.

As for communication segments, they are
more often the target of external attacks us-
ing open protocols. Passive attacks such as re-
connaissance, phishing , traffic analysis , de-
nial of service (DOS) [6] attacks that compro-
mise availability, as well as attacks to modify
or falsify such as replay and man in the mid-
dle, threatening the integrity and authenticity
of the system . Thus, for effective protection,
it is necessary to adopt a separate and tai-
lored strategy for each segment of the SCADA
architecture.[14]

Type of Attack

Description

Denial of Service (DoS) Disrupts the availability of SCADA by overwhelming them with traffic.

Phishing Social engineering attacks to.access to sensitive information.

SQL Injection Inserting malicious SQL queries to manipulate SCADA database .

Man-in-the-Middle (MiTM) Intercepting communication between SCADA components to gain access.

Reconnaissance Collecting data about SCADA before launching an attack.

Password Attacks Attempting to crack passwords to gain unauthorized access to SCADA.

Privilege Escalation Gaining high access levels in SCADA systems to execute commands.

Table 2: Some Types of Attacks Involved in SCADA Systems

In the following stage, we evaluated these
sources to determine whether they aligned with
our research goals by looking at their abstracts,
keywords, and introductions. 15 of the most
current and pertinent publications were chosen
based on predetermined inclusion and exclusion
criteria. The following table provides a sum-
mary of the main contributions and limitations
of these works.

3. Related Werks

We began our research with an extensive lit-
erature review using eleconic libraries, such
as Google Scholar, ScienceDirect, and TEEE
Xplore where 30 scientific papers and 10 blog
sites were selected.



Ref Year Contribution Limitation
[15] 2023 . . .

e Creation of an annotated SCADA e Article non peer-reviewed.
dataset integrating various types of e Dataset still not widely used.
attacks.

Intended for the evaluation of anomaly
detection techniques.
[16] 2022 i i ) .
DNN hybrid model to classify DDoS e Highly DDoS/SDN oriented.
attacks in IIoT networks with SDN. e Little generalizable to classic
SCADA
17 2023
(17 Comparison of ML models to classify e Validation on simulated data.
DDoS attacks in IIoS. e Absence of actual
experimentation.
18 2023
[18] Study of the impact of adversarial e exploratory approach.
attacks on Al models applied to ICS. e Absence of real application.
19 2023
[19] Application of CNN and BiLSTM to e High data requirement.
improve detection in SCADA. e Vulnerable to adversarial
attacks.
20 2023
120 Review of DL approaches: CNN, GAN, e No experimental validation.
Autoencoders, ete. tosecure SCADA. e Limited scope
21 2022
121] ICS detection by classical AT methods e Simulated validation only.
(SVM, RF) + statistical analysis.
22 2023
122 FNN-LSTM to detect correlated and e Lack of robustness to noise.
uncorrelated attacks in SCADA. e Risk of overfitting.
23 2020
23] DL-based multiclass method e Complex architecture difficult
(Omni-SCADA-ID) for SCADA to implement.
networks.
[24] 2024

Presentation of AI/ML techniques to
strengthen cybersecurity.
Best practice recommendations (IDS,
SIEM, encryption, etc.).

e No experimental validation.
e Little detailed practical
implementation.




[25] 2023 of SCADA-cloud _
vulnerabilities.Identification of 4 major lelted.tf) the cl'oud. context.
. . . No empirical validation.
sources of risk. Security solutions
adapted to the cloud.
126] 2024 e Design of an HIDS for SCADA. e Need for field tests.
e Detection via USB tagging and process Effectiveness on complex
memory. threats not proven.
Tests on three typical scenarios.
[27] 2025 Proposal for a verified DRL framework Validation limited to
to counter cyber-physical attacks on simulations; no tests under
smart grids. real conditions.
Integration of scope analysis to ensure Complexity of
DRL security. implementation in existing
industrial environments.
28] 2024 . . .
Identification of protocol weaknesses Mainly theoretical study; lack
and IT integration challenges. of empirical validation.
Recommendations to enhance the Applicability of proposed
security of critical systems. solutions to specific
environments not
demonstrated.
129 2025 Importance of corporate visibility and General approach without
resilience. in-depth technical details.
Strategies to balance digital No experimental validation of
transformation and security. the proposed strategies.
44 EXp erimental Frame- e Datasets used : Two databases were ex-
ploited: WUSTL-IIOT-2018 [30] and
werk WUSTL-IIOT-2021 [31]. The first
contains about 1.2 million records, in-
4.1. Methodology cluding DoS attacks, command injection,

The experiment conducted in this study is
based on the use of public data sets and the

recognition, etc.
more than 7 million instances, mainly re-
lated to recognition attacks

evaluation of several models of artificial
intelligence for the detection of cyberattacks e Data Preprocessing: The data was

in SCADA systems. It is structured around
the following elements:

The second includes

cleaned, normalized with MinMaxScaler
and then split into two sets: 70% for



training and 30% for testing.

Methodology applied : Three groups
of algorithms were tested for detection
of SCADA attacks. Classic models (
DT, kNN, RF) provide quick and inter-
pretable results. Deep Learning models (
CNN, RNN, LSTM) capture complex
patterns in time data. Finally, Boost-
ing models ( AdaBoost, GBoost, XG-
Boost) improve accuracy and robustness
especially on unbalanced data

e Hyperparameter optimization: The
search for the best parameters was
performed via RandomizedSearchCV
with cross-validation (3-fold), in order to
optimize performance , balancing train-
ing efficiency, convergence speed, and
generalization while reducing overfitting.

e Performance Evaluation: In addition
to the accuracy , metrics such as preci-
sion, recall, score F'1, ROC curve and PR
curve were used to better interpret perfor-
mance, especially in the presence of un-
balanced classes.

WUSTL-Dataset 2018
WUSTL-Dataset 2021
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Figure 3: Our Methodology’s Flowchart



4.2. Results and Discussion

Our tests on datasets WUSTL-SCADA-2018
and WUSTL-SCADA-2021 have demonstrated
excellent performance on all evaluated mod-
els. Boosting algorithms, notably XGBoost,
achieved flawless accuracy , while CNN and
LSTM also achieved near-perfect scores with
minimal false positives and false negatives in
the confusion metrics. Traditional models such
as the Random Forest and the Decision Tree
have also retained a high degree of precision.

The results for the 2021 dataset closely mir-
ror those of 2018, as shown in Table 4, which
confirms the models’ robustness and strong
generalization ability for anomaly detection in
SCADA systems. The ROC And PRC evalua-
tion revealed highly good results, for example
in the Deep learning analyses CNN and LSTM
models achieved a perfect AUC of 1.00, while
RNN attained a close 0.99, indicating very low
misclassification rates. The  Precision-Recall
curves further highlighted LSTM’s ability to
maintain perfect precision across all recall lev-
els, and CNN’s balanced performance with con-
sistently high recall.

Dataset Method Train Test Precision R F FPR
Acc Acc
(%)  (R)
AdaBoost 99.98 99.98 0.9991 0.9965 0.9964 0.0864
XGBoost 100 100 1.0000 0.9996 0.9985 0.0252
GBoost 99.99 99.99 1.0000 0.9997 0.9998 0.0678
RF 100 100 0.9999 1.0000 0.9999  0.066
WUSTL-IIOT-2018 DT 100 99.99 0.9999 0.9999 0.9999 0.3333
KNN 100 99.99 0.9989 0.9994 0.9991 0.1430
LSTM 99.95 99.96 0.9942 0.9984 0.9963 0.5833
RNN 99.91 99.92 0.9915 0.9953 0.9934 0.4612
CNN 99.95 99.97 0.9953 0.9989 0.9971 0.5370
AdaBoost 99.95 99.95 0.9953 0.9968 0.9961 0.0342
XGBoost 100 99.99 0.9999 0.9999 0.9998 0.0279
GBoost 99.99 99.99 0.9981 1.0000 0.9990 0.0240
RF 99.99 99.99 0.9999 0.9995 0.9997 0.0192
WUSTL-IIOT-2021 DT 100 99.99 0.9997 0.9996 0.9997 0.3333
KNN 99.99 99.99 0.9997 0.9991 0.9994 0.1429
LSTM 99.99 99.95 0.9992 0.9939 0.9966 0.2303
RNN 99.91 99.91 0.9987 0.9893 0.9940 0.3491
CNN 99.99 99.99 0.9888 0.9987 0.9966 0.3416

Table 4: Performance Results



Tables 5 and 6 present a comparison of our
study’s performance metrics with those found
in recent literature on SCADA anomaly de-
tection. Previous research, such as the ANN
model in [32], reported an accuracy of 98.40%,
while boosting methods and traditional clas-
sifiers mentioned in [35] and [37] typically

achieved accuracies ranging from 79% to 98%.
In contrast, our findings show nearly flaw-
less performance across all models evaluated.
For example, our boosting models—XGBoost
and GBoost—reached accuracies of 100% and
99.99% respectively, with precision, recall, and
Fl-scores close to 100%.

Table 5: Comparison of Model Performance with recent studies for Wustl-1IOT-2021

Reference Model Acc (%) P (%) R (%) F1 (%)
Modified DT 99.99 99.99 00.88 99.93
RF 99.99 99.93 99.88 99.93
[33] AdaBoost 99.98 99.97 99.80 99.88
XGB 99.99 99.99 99.82 99.91
GB 99.99 99.99 99.91 99.95
RF 99.57 99.67 99.57 99.59
[34] CNN 92.74 89.25 99.89 98.71
LSTM 95.76 95.07 95.76 95.64
RF 95.80 95.40 99.70 95.60
[35] kNN 94 94.60 99.50 94.20
MLP 79.20 88.20 97.20 83.20
GRU 99.75 99.76 99.43 99.50
[36] CNN-GRU 98.18 99.10 98.95 98.85
AdaBoost 99.95 99.53 99.68 99.61
XGBoost 100 99.99 99.99 99.98
GBoost 99.99 99.81 100 99.90
LSTM 99.99 99.92 99.39 99.66
This study RNN 99.91 99.87 98.93 99.40
CNN 99.99 98.88 99.87 99.66
RF 99.99 99.99 99.95 99.97
DT 100 99.97 99.96 99.97
KNN 99.99 99.97 99.91 99.94




Table 6: Comparison of Model Performance with recent studies for Wustl-IIOT-2018

Reference Model Acc (%) P (%) R (%) F1 (%)
[32] ANN 98.40 99.57 98.02 98.97
Modified DT 89.00 87.31 86.47 86.47
RF 87.31 87.31 87.31 87.31
[33] AdaBoost 86.47 8647  86.47  86.47
XGB 86.47 86.47 86.47 86.47
GB 87.31 87.31 87.31 87.31
GSFTNN 98.54 98.70 98.42 98.61
137] ResNet 97.70 98.10 97.54 97.89
RNN 94.22 93.64 93.73 94.38
LSTM 95.98 96.30 95.78 96.17
GRU 99.93 99.95 99.94 99.95
[36] CNN-GRU 99.98 99.98 99.98 99.98
Naive Bayes 94.20 94.60 94.20 93.00
[38] SVM 94.20 94.50 94.20 92.60
J48 99.20 99.20 99.20 99.10
AdaBoost 99.98 99.91 99.65 99.64
XGBoost 100 100 99.96 99.85
GBoost 99.99 100 99.97 99.88
LSTM 99.95 99.15 99.53 99.34
This study RNN 99.91 99.15 98.53 99.34
CNN 99.95 98.53 99.89 99.71
RF 100 100 99.99 99.97
DT 100 99.99 99.99 99.99
KNN 99.99 99.89 99.94 99.91

5. Conclusions tems against sophisticated cyberattacks.

Through this study the changing landscape
of ICS was examined , with a highlight on
SCADA systems. We started with determining
the vulnerabilities impacting new SCADA ar-
chitecture and assessed the effectiveness of Al-
based intrusion detection techniques in mitigat-
ing these threats by a structured literature re-
search . Our results demonstrate the increasing
importance of anomaly detection and machine
learning in improving real-time protection sys-

11

The resilience of industrial networks may be
increased by combining security measures with
technology developments. But challenges re-
main, particularly in terms of scalability,Al
model interpretability, and practical implemen-
tation. Future research should focus on hy-
brid approaches combining signature-based and
anomaly-based detection, as well as the integra-
tion of secure-by-design principles in SCADA
system development.
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Appendix

AT : Artificial Intelligence.

ML: Machine learning.

DL: Deep Learning.

PdM: Predictive Maintenance.
GPU: Graphics Processing Unit
IT: Information Technologies.
4IR: Industry 4.0

CPS: Cyber-Physical Systems.
kNN: k-Nearest Number

DT: Decision Tree
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CNN: Convolutional Neural Network.
GB : Gradient Boosting .

RNN: Recurrent Neural Network.
LSTM: Long Short-Term Memory.
XGB : Extreme Gradient Boosting.
IoT: Internet of Things.

HMI: Human-Machine Interface.
RUL: Remaining Useful Life.

MTU : Master Terminal Unit

PLC : Programmable Logic Controller
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