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Abstract: SCADA systems are used to effectively monitor and con-
trol critical industrial infrastructure . Due to Industry 4.0 , SCADA
systems have evolved towards linked architectures, which has enhanced
operational efficiency but also made them more vulnerable to cyberat-
tacks. SCADA systems, which were once intended to be dependable,
are now at risk from malware, DoS attacks, illegal access,and various
types of threats endangering both safety and service continuity. In this
context, artificial intelligence enables real-time detection of anomalies
and cyberattacks especially by ML and deep DL based IDS. This paper
offers a thorough analysis of current AI strategies for SCADA security,
emphasising important techniques, difficulties, and results .
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1. Introduction

Control and data acquisition systems
(SCADA) are essential components of indus-
trial infrastructures, enabling centralized su-
pervision, real-time data collection and re-
mote control in sectors such as energy, water,
transport and manufacturing[1]. A standard
SCADA architecture consists of Programmable
Logic Controllers (PLC), Remote Terminal
Units (RTU), Master Terminal Units (MTU)
and Human-Machine Interfaces (HMI), These
systems rely on both wired and wireless com-
munication networks to exchange information
across geographically distributed areas, to-
gether they ensure seamless monitoring and
control of distributed processes assets.[2].

The integration of SCADA into larger digi-
tal infrastructures, particularly under the dom-
inance of Industry 4.0, has allowed systems
to move from isolated and proprietary instal-
lations to highly connected and interoperable
architectures. This transformation is mainly
driven by the convergence of Information Tech-
nology (IT) and Operational Technology (OT),
as well as the adoption of Industrial Internet of
Things (IIoT) concepts that improve data visi-
bility, predictive maintenance and remote diag-
nostics [3].

However, this increased connectivity has
created significant cybersecurity challenges.
SCADA systems, initially designed for avail-
ability and reliability,[4] are now facing a wider
variety of cyber threats, such as denial-of-
service (DoS) attacks, malware, SQL injection,
phishing and unauthorized access [5]. These
threats are likely to disrupt essential services,
damage critical assets and compromise the
safety of industrial operations. [6]Key events
such as Stuxnet and power grid attacks have il-
lustrated the devastating effect of cyber-attacks
on ICS environments [7].

To address these evolving risks, researchers
are increasingly turning to Artificial Intelli-
gence (AI) to enhance the security of SCADA.

AI-based intrusion detection systems (IDS) of-
fer promising opportunities to detect and clas-
sify cyber threats in real time, including in
complex and dynamic environments [8]. These
methods examine network traffic patterns and
system behavior to identify anomalies that sig-
nal malicious activity.[9]

To provide a comprehensive overview of cur-
rent developments in the field, we conducted
a systematic literature review based on recent
research aimed at securing SCADA systems us-
ing AI approaches .We also developed and eval-
uated an AI-based IDS model using nine algo-
rithms : : Adaptive Boosting (AdaBoost), Ex-
treme Gradient Boosting (XGBoost), Gradient
Boosting (GBoost), Long Short-Term Mem-
ory (LSTM), Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN),
Random Forest (RF), Decision Tree (DT), and
k-Nearest Neighbor (KNN). This experimental
study offers useful information on how differ-
ent methods work in comparison when used for
SCADA cybersecurity.

The paper is structured as follows: Section
2 discusses SCADA systems and cybersecurity.
Section 3 reviews related research in the field.
Section 4 describes the experimental study and
results . Finally, the conclusion summarizes key
findings.

2. SCADA Systems and
Cybersecurity

This section contains an overview of SCADA
systems where detailing SCADA components ,
their evolution with time , and the potential
possible threats .

2.1. SCADA architecture

A typical architecture of a modern SCADA sys-
tem (see Figure 1) is generally consists of three
main functional segments: the centralized con-
trol segment , the field equipment segment and
the communication network segment [10].
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At the heart of the architecture is the Mas-

ter Terminal Unit (MTU), .This unit acts as
the core of the system, coordinating all func-
tions of control, processing, data visualization
and sending instructions to monitored areas.
The MTU exchanges data with Remote Ter-
minal Units (RTUs) and Programmable Logic
Controllers (PLCs), which are responsible for
collecting data, to interact with the actuators
and to ensure the execution of the commands
locally.

RTUs receive real-time information from var-
ious field equipment, such as sensors, switches,
intelligent electronic devices (IEDs), or actu-
ators, which they rearrange before transmit-
ting to the MTU for processing and archiv-
ing.Conversely, the MTU generates control
commands that are relayed by the RTUs to the
relevant devices for execution [4]. The human-
machine interface (HMI) allows operators to in-
teract with the SCADA system through intu-
itive graphical representations, thus facilitating
the supervision of operations and the manage-
ment of alarms. resilience.

Figure 1: The architectural overview of a SCADA system

2.2. SCADA evolution through
generations

Over the last few decades, SCADA sys-
tems have undergone a significant architectural
change, moving from isolated and centralized
to integrated, interconnected platforms . This
progression can be defined in four distinct gen-
erations:

The first generation, launched in the 1960s
and 1970s, consisted of monolithic SCADA sys-
tems that were completely independent and
based on proprietary hardware and software.
[11].

The second generation, enabled by the ad-
vancement of microprocessors and Local Area
Networks (LANs). It was now possible for
parts like RTUs, PLCs, and HMIs to be dis-
persed throughout locations while still main-
taining connectivity. [12].

Using Wide Area Networks (WANs) and IP-
based protocols like Modbus TCP and DNP3,
the third generation adopted networked archi-
tectures . These systems improved interoper-
ability and allowed for remote monitoring from
several locations. However, the increased con-
nectivity also introduced significant cybersecu-
rity risks.[13].
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IoT-enabled SCADA systems are repre-

sented by the fourth generation, which began
in the 2010s and continues to this day. These
platforms enable real-time analytics and wise
decision-making by combining cloud comput-
ing, edge processing, smart sensors, and AI

algorithms. [13]They provide scalability and
integration with ERP and MES systems, but
because of their increased interconnectedness,
they also present difficult cybersecurity issues
[12].

Figure 2: SCADA system evolution

Table 1: Summary of SCADA System Generations

SCADA Genera-
tion

Architecture & Com-
munication

Scalable Reliable Security Model Key Technologies /
Features

Monolithic (1st
Gen)
1960s–1970s Standalone, proprietary,

no networking
Not scal-
able

Low Air-gapped, physical iso-
lation

Mainframes, proprietary
I/O

Distributed (2nd
Gen)
1970s–1980s LAN-connected nodes

(PLCs, RTUs)
Moderate Moderate Security through obscu-

rity
LANs, microprocessors,
modular design

Networked (3rd
Gen)
1990s–2000s WAN-based, IP communi-

cation, centralized control
High High (with

backups)
Basic cybersecurity
(firewalls, open proto-
cols)

Modbus TCP, DNP3,
OPC, centralized data
systems

IoT-enabled (4th
Gen)
2010s–Present Cloud-integrated, edge

computing, IoT protocols
Very high Very high TLS/SSL, access con-

trol, anomaly detection
Cloud/edge comput-
ing, AI, mobile access,
ERP/MES integration
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2.3. Cybersecurity and Threats

in SCADA Systems

SCADA systems are vulnerable to different
cyber attacks, depending on the targeted seg-
ments. MTU and RTU are the main targets of
internal attacks, which exploit organizational
flaws such as unsecured physical access, the use
of weak passwords or the uncontrolled distri-
bution of access privileges[8].These attacks in-
clude , SQL injection, , password attacks and
malware such as viruses and ransomware.

As for communication segments, they are
more often the target of external attacks us-
ing open protocols. Passive attacks such as re-
connaissance, phishing , traffic analysis , de-
nial of service (DOS) [6] attacks that compro-
mise availability, as well as attacks to modify
or falsify such as replay and man in the mid-
dle, threatening the integrity and authenticity
of the system . Thus, for effective protection,
it is necessary to adopt a separate and tai-
lored strategy for each segment of the SCADA
architecture.[14]

Type of Attack Description
Denial of Service (DoS) Disrupts the availability of SCADA by overwhelming them with traffic.

Phishing Social engineering attacks to access to sensitive information.
SQL Injection Inserting malicious SQL queries to manipulate SCADA database .

Man-in-the-Middle (MiTM) Intercepting communication between SCADA components to gain access.
Reconnaissance Collecting data about SCADA before launching an attack.

Password Attacks Attempting to crack passwords to gain unauthorized access to SCADA.
Privilege Escalation Gaining high access levels in SCADA systems to execute commands.

Table 2: Some Types of Attacks Involved in SCADA Systems

3. Related Works

We began our research with an extensive lit-
erature review using eleconic libraries, such
as Google Scholar, ScienceDirect, and IEEE
Xplore where 30 scientific papers and 10 blog
sites were selected.

In the following stage, we evaluated these
sources to determine whether they aligned with
our research goals by looking at their abstracts,
keywords, and introductions. 15 of the most
current and pertinent publications were chosen
based on predetermined inclusion and exclusion
criteria. The following table provides a sum-
mary of the main contributions and limitations
of these works.
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Ref Year Contribution Limitation
[15] 2023

• Creation of an annotated SCADA
dataset integrating various types of
attacks.

• Intended for the evaluation of anomaly
detection techniques.

• Article non peer-reviewed.
• Dataset still not widely used.

[16] 2022
• DNN hybrid model to classify DDoS

attacks in IIoT networks with SDN.
• Highly DDoS/SDN oriented.
• Little generalizable to classic

SCADA

[17] 2023
• Comparison of ML models to classify

DDoS attacks in IIoS.
• Validation on simulated data.
• Absence of actual

experimentation.

[18] 2023
• Study of the impact of adversarial

attacks on AI models applied to ICS.
• exploratory approach.
• Absence of real application.

[19] 2023
• Application of CNN and BiLSTM to

improve detection in SCADA.
• High data requirement.
• Vulnerable to adversarial

attacks.

[20] 2023
• Review of DL approaches: CNN, GAN,

Autoencoders, etc. to secure SCADA.
• No experimental validation.
• Limited scope

[21] 2022
• ICS detection by classical AI methods

(SVM, RF) + statistical analysis.
• Simulated validation only.

[22] 2023
• FNN-LSTM to detect correlated and

uncorrelated attacks in SCADA.
• Lack of robustness to noise.
• Risk of overfitting.

[23] 2020
• DL-based multiclass method

(Omni-SCADA-ID) for SCADA
networks.

• Complex architecture difficult
to implement.

[24] 2024
• Presentation of AI/ML techniques to

strengthen cybersecurity.
• Best practice recommendations (IDS,

SIEM, encryption, etc.).

• No experimental validation.
• Little detailed practical

implementation.
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[25] 2023 of SCADA-cloud

vulnerabilities.Identification of 4 major
sources of risk. Security solutions
adapted to the cloud.

••• Limited to the cloud context.
• No empirical validation.

[26] 2024
• Design of an HIDS for SCADA.
• Detection via USB tagging and process

memory.
• Tests on three typical scenarios.

• Need for field tests.
• Effectiveness on complex

threats not proven.

[27] 2025
• Proposal for a verified DRL framework

to counter cyber-physical attacks on
smart grids.

• Integration of scope analysis to ensure
DRL security.

• Validation limited to
simulations; no tests under
real conditions.

• Complexity of
implementation in existing
industrial environments.

[28] 2024
• Identification of protocol weaknesses

and IT integration challenges.
• Recommendations to enhance the

security of critical systems.

• Mainly theoretical study; lack
of empirical validation.

• Applicability of proposed
solutions to specific
environments not
demonstrated.

[29] 2025
• Importance of corporate visibility and

resilience.
• Strategies to balance digital

transformation and security.

• General approach without
in-depth technical details.

• No experimental validation of
the proposed strategies.

4. Experimental Frame-
work

4.1. Methodology

The experiment conducted in this study is
based on the use of public data sets and the

evaluation of several models of artificial
intelligence for the detection of cyberattacks
in SCADA systems. It is structured around

the following elements:

• Datasets used : Two databases were ex-
ploited: WUSTL-IIOT-2018 [30] and
WUSTL-IIOT-2021 [31]. The first
contains about 1.2 million records, in-
cluding DoS attacks, command injection,
recognition, etc. The second includes
more than 7 million instances, mainly re-
lated to recognition attacks

• Data Preprocessing: The data was
cleaned, normalized with MinMaxScaler
and then split into two sets: 70% for
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training and 30% for testing.

• Methodology applied : Three groups
of algorithms were tested for detection
of SCADA attacks. Classic models (
DT, kNN, RF) provide quick and inter-
pretable results. Deep Learning models (
CNN, RNN, LSTM) capture complex
patterns in time data. Finally, Boost-
ing models ( AdaBoost, GBoost, XG-
Boost) improve accuracy and robustness
especially on unbalanced data

• Hyperparameter optimization: The
search for the best parameters was
performed via RandomizedSearchCV
with cross-validation (3-fold), in order to
optimize performance , balancing train-
ing efficiency, convergence speed, and
generalization while reducing overfitting.

• Performance Evaluation: In addition
to the accuracy , metrics such as preci-
sion, recall, score F1, ROC curve and PR
curve were used to better interpret perfor-
mance, especially in the presence of un-
balanced classes.

Figure 3: Our Methodology’s Flowchart
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4.2. Results and Discussion

Our tests on datasets WUSTL-SCADA-2018
and WUSTL-SCADA-2021 have demonstrated
excellent performance on all evaluated mod-
els. Boosting algorithms, notably XGBoost,
achieved flawless accuracy , while CNN and
LSTM also achieved near-perfect scores with
minimal false positives and false negatives in
the confusion metrics. Traditional models such
as the Random Forest and the Decision Tree
have also retained a high degree of precision.

The results for the 2021 dataset closely mir-
ror those of 2018, as shown in Table 4, which
confirms the models’ robustness and strong
generalization ability for anomaly detection in
SCADA systems. The ROC And PRC evalua-
tion revealed highly good results, for example
in the Deep learning analyses CNN and LSTM
models achieved a perfect AUC of 1.00, while
RNN attained a close 0.99, indicating very low
misclassification rates. The Precision-Recall
curves further highlighted LSTM’s ability to
maintain perfect precision across all recall lev-
els, and CNN’s balanced performance with con-
sistently high recall.

Dataset Method Train
Acc
(%)

Test
Acc
(%)

Precision R F FPR

WUSTL-IIOT-2018

AdaBoost 99.98 99.98 0.9991 0.9965 0.9964 0.0864
XGBoost 100 100 1.0000 0.9996 0.9985 0.0252
GBoost 99.99 99.99 1.0000 0.9997 0.9998 0.0678
RF 100 100 0.9999 1.0000 0.9999 0.066
DT 100 99.99 0.9999 0.9999 0.9999 0.3333
KNN 100 99.99 0.9989 0.9994 0.9991 0.1430
LSTM 99.95 99.96 0.9942 0.9984 0.9963 0.5833
RNN 99.91 99.92 0.9915 0.9953 0.9934 0.4612
CNN 99.95 99.97 0.9953 0.9989 0.9971 0.5370

WUSTL-IIOT-2021

AdaBoost 99.95 99.95 0.9953 0.9968 0.9961 0.0342
XGBoost 100 99.99 0.9999 0.9999 0.9998 0.0279
GBoost 99.99 99.99 0.9981 1.0000 0.9990 0.0240
RF 99.99 99.99 0.9999 0.9995 0.9997 0.0192
DT 100 99.99 0.9997 0.9996 0.9997 0.3333
KNN 99.99 99.99 0.9997 0.9991 0.9994 0.1429
LSTM 99.99 99.95 0.9992 0.9939 0.9966 0.2303
RNN 99.91 99.91 0.9987 0.9893 0.9940 0.3491
CNN 99.99 99.99 0.9888 0.9987 0.9966 0.3416

Table 4: Performance Results
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Tables 5 and 6 present a comparison of our

study’s performance metrics with those found
in recent literature on SCADA anomaly de-
tection. Previous research, such as the ANN
model in [32], reported an accuracy of 98.40%,
while boosting methods and traditional clas-
sifiers mentioned in [35] and [37] typically

achieved accuracies ranging from 79% to 98%.
In contrast, our findings show nearly flaw-
less performance across all models evaluated.
For example, our boosting models—XGBoost
and GBoost—reached accuracies of 100% and
99.99% respectively, with precision, recall, and
F1-scores close to 100%.

Table 5: Comparison of Model Performance with recent studies for Wustl-IIOT-2021

Reference Model Acc (%) P (%) R (%) F1 (%)

[33]

Modified DT 99.99 99.99 00.88 99.93
RF 99.99 99.93 99.88 99.93

AdaBoost 99.98 99.97 99.80 99.88
XGB 99.99 99.99 99.82 99.91
GB 99.99 99.99 99.91 99.95

[34]
RF 99.57 99.67 99.57 99.59

CNN 92.74 89.25 99.89 98.71
LSTM 95.76 95.07 95.76 95.64

[35]
RF 95.80 95.40 99.70 95.60

kNN 94 94.60 99.50 94.20
MLP 79.20 88.20 97.20 83.20

[36]
GRU 99.75 99.76 99.43 99.50

CNN-GRU 98.18 99.10 98.95 98.85

This study

AdaBoost 99.95 99.53 99.68 99.61
XGBoost 100 99.99 99.99 99.98
GBoost 99.99 99.81 100 99.90
LSTM 99.99 99.92 99.39 99.66
RNN 99.91 99.87 98.93 99.40
CNN 99.99 98.88 99.87 99.66
RF 99.99 99.99 99.95 99.97
DT 100 99.97 99.96 99.97

KNN 99.99 99.97 99.91 99.94
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Table 6: Comparison of Model Performance with recent studies for Wustl-IIOT-2018

Reference Model Acc (%) P (%) R (%) F1 (%)
[32] ANN 98.40 99.57 98.02 98.97

[33]

Modified DT 89.00 87.31 86.47 86.47
RF 87.31 87.31 87.31 87.31

AdaBoost 86.47 86.47 86.47 86.47
XGB 86.47 86.47 86.47 86.47
GB 87.31 87.31 87.31 87.31

[37]

GSFTNN 98.54 98.70 98.42 98.61
ResNet 97.70 98.10 97.54 97.89
RNN 94.22 93.64 93.73 94.38

LSTM 95.98 96.30 95.78 96.17

[36]
GRU 99.93 99.95 99.94 99.95

CNN-GRU 99.98 99.98 99.98 99.98

[38]
Naive Bayes 94.20 94.60 94.20 93.00

SVM 94.20 94.50 94.20 92.60
J48 99.20 99.20 99.20 99.10

This study

AdaBoost 99.98 99.91 99.65 99.64
XGBoost 100 100 99.96 99.85
GBoost 99.99 100 99.97 99.88
LSTM 99.95 99.15 99.53 99.34
RNN 99.91 99.15 98.53 99.34
CNN 99.95 98.53 99.89 99.71
RF 100 100 99.99 99.97
DT 100 99.99 99.99 99.99

KNN 99.99 99.89 99.94 99.91

5. Conclusions

Through this study the changing landscape
of ICS was examined , with a highlight on
SCADA systems. We started with determining
the vulnerabilities impacting new SCADA ar-
chitecture and assessed the effectiveness of AI-
based intrusion detection techniques in mitigat-
ing these threats by a structured literature re-
search . Our results demonstrate the increasing
importance of anomaly detection and machine
learning in improving real-time protection sys-

tems against sophisticated cyberattacks.

The resilience of industrial networks may be
increased by combining security measures with
technology developments. But challenges re-
main, particularly in terms of scalability,AI
model interpretability, and practical implemen-
tation. Future research should focus on hy-
brid approaches combining signature-based and
anomaly-based detection, as well as the integra-
tion of secure-by-design principles in SCADA
system development.
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A. Appendix

• AI : Artificial Intelligence.
• ML: Machine learning.
• DL: Deep Learning.
• PdM: Predictive Maintenance.
• GPU: Graphics Processing Unit
• IT: Information Technologies.
• 4IR: Industry 4.0
• CPS: Cyber-Physical Systems.
• kNN: k-Nearest Number
• DT: Decision Tree

• CNN: Convolutional Neural Network.
• GB : Gradient Boosting .
• RNN: Recurrent Neural Network.
• LSTM: Long Short-Term Memory.
• XGB : Extreme Gradient Boosting.
• IoT: Internet of Things.
• HMI: Human-Machine Interface.
• RUL: Remaining Useful Life.
• MTU : Master Terminal Unit
• PLC : Programmable Logic Controller
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