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Résumé – Ce mémoire présente la conception et la mise en œuvre d’un système automatique de
contrôle de la qualité de peinture appliquée sur des extincteurs. Le dispositif utilise une caméra
Kinect Xbox 360 couplée à un programme développé sous MATLAB pour effectuer l’analyse
d’images. Le cur de la méthode repose sur la segmentation colorimétrique, le suivi de mouvement
par l’algorithme de Lucas-Kanade, l’extraction de la région d’intérêt (ROI), et le calcul de la compo-
sante rouge moyenne. Des seuils de décision permettent ensuite de classer les extincteurs selon leur
qualité de peinture. Les résultats expérimentaux obtenus montrent une bonne précision et valident
la pertinence d’un tel système dans un contexte industriel automatisé.
Mots-clés – Vision industrielle, qualité de peinture, caméra Kinect Xbox 360, MATLAB, traitement
d’image, suivi de mouvement, Lucas-Kanade, segmentation, ROI, inspection automatique.

1 Introduction
La qualité des processus industriels est un défi

crucial pour les industries qui veulent assurer la
fiabilité et la réputation de leurs produits et ré-
duire les coûts de fabrication. Dans ce contexte,
la vision industrielle est un point focal, en parti-
culier pour la détection de qualité de production,
où la vitesse et la précision sont essentielles.[1]

La vision industrielle est une technologie qui
permet aux machines de "voir" en utilisant des
caméras et des algorithmes de traitement d’image
pour analyser automatiquement des objets ou des
scènes. Elle est largement utilisée dans les pro-
cessus industriels pour réaliser des tâches comme
l’inspection qualité, le guidage de robots, la me-
sure ou encore la reconnaissance de formes. Grâce
à sa rapidité, sa précision et sa capacité à fonc-
tionner sans interruption, elle remplace avanta-
geusement le contrôle visuel humain, en garan-
tissant une meilleure répétabilité et en réduisant
les erreurs liées à la fatigue ou à l’interprétation
subjective.[2]

La technique mise en œuvre repose sur
quelques étapes de base a l’aide d’une caméra KI-
NECT XBOX 360 : la détection de la forme de
la bouteille d’extincteur, le suivi de ses contours
à l’aide de Lucas- Kanade, suivie de l’extraction

de la région d’intérêt d’analyser enfin la qualité
de la peinture en calcul de la moyenne de la
couleur rouge (composante R du modèle RGB).
Cette technique permet de déterminer automati-
quement si la surface est bien peinte ou non, en
fonction de l’utilisation de l’environnement de dé-
veloppement MATLAB.[3]

Notre travail présente d’abord le contexte in-
dustriel de la chaîne de peinture, puis esquisse la
méthodologie de traitement d’image appliquée à
l’auto-inspection visuelle matié, avant de discuter
des résultats obtenus et les perspectives d’amélio-
ration du système .

1.1 Contexte industriel
Au sein du secteur industriel, l’ultime contrôle

que constitue la qualité est une opération fon-
damentale pour assurer la conformité et la fia-
bilité des produits à livrer. Cela est particulière-
ment vrai dans certains secteurs très spécifiques
comme celui de l’industrie de peinture, notam-
ment pour l’automobile, l’électroménager ou la fa-
brication d’extincteurs, où l’application correcte
de la peinture conditionne, non seulement l’as-
pect, mais aussi la protection contre la corrosion
et la durée de vie du produit. Une irrégularité sur
la surface ou une zone non peinte entraîne le re-
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fus de la pièce ou un retour client (produit non
conforme), responsable d’une augmentation des
coûts de production et d’une image dégradée de
l’entreprise.[4]

1.2 Problématique du contrôle vi-
suel manuel

Aujourd’hui encore, de nombreuses entre-
prises ont recours à une inspection manuelle du
revêtement de peinture. Cette méthode repose
sur la vigilance et l’expérience de l’opérateur.
Or, elle présente plusieurs limitations : variabilité
des jugements, fatigue visuelle, manque de repro-
ductibilité, et impossibilité d’assurer un contrôle
continu à haute cadence . Ces failles deviennent
d’autant plus critiques à mesure que les lignes de
production sont automatisées et rapides.[5]

Dans ce contexte, l’inspection manuelle ne ré-
pond plus aux exigences de performance des en-
vironnements industriels modernes. Elle engendre
des risques accrus d’erreurs de jugement, de re-
tards dans la détection des défauts et d’augmen-
tation des coûts liés aux reprises ou aux rejets.
C’est pourquoi l’automatisation du contrôle qua-
lité par des systèmes de vision industrielle devient
non seulement une solution efficace, mais aussi
une nécessité pour garantir une production fiable,
rapide et conforme aux standards actuels.

1.3 Intérêt d’une automatisation
par vision

Pour remédier à ces inconvénients, la radica-
lité de l’automatisation par présence de vision ar-
tificielle donne de grands résultats. Par l’utilisa-
tion d’une caméra associée avec un algorithme de
traitement d’image, on parvient facilement à réa-
liser la détection des défauts de peinture tels que
les problèmes de teinte, sur épaisseurs, et coulures
par un contrôle à la fois rapide, objectif et répé-
titif, diminuant la dépendance à l’humain.

Elle trouve tout son intérêt dans cette logique
d’industrie 4.0 confrontée à l’essor de la supervi-
sion intelligente des procédés.[6]

1.4 Objectif du projet
Dans ce contexte, le présent travail vise à

concevoir un système automatique permettant de
contrôler la qualité de la peinture appliquée sur

des extincteurs. Le système repose sur une ca-
méra Xbox 360 Kinect, capable de capturer à la
fois l’image couleur et la profondeur de la scène.
L’analyse des données est assurée par un pro-
gramme développé sous MATLAB, qui détecte
d’abord la forme de l’extincteur, extrait la zone
peinte, puis mesure la moyenne de la composante
rouge (RGB) afin d’évaluer la conformité de la
peinture. Ce système se veut simple, économique
et adaptable, notamment pour les structures in-
dustrielles de petite et moyenne taille

2 Matériel utilisé
Cette section décrit les équipements matériels

et logiciels nécessaires à la mise en uvre du sys-
tème de détection automatique, incluant la ca-
méra, l’environnement de développement, ainsi
que les conditions expérimentales d’acquisition
des données.

2.1 Description de la caméra Ki-
nect Xbox 360

Le capteur Microsoft Kinect est une caméra
de balayage 3D à faible coût, haute résolution et
courte portée développé pour le système de jeu
vidéo Microsoft Xbox 360. Le Kinect, comme in-
diqué à la figure 1.

Figure 1 – Caméra Kinect Xbox 360 [7]

présente une variété d’avantages tels qu’il peut
mesurer la profondeur et la couleur à la vitesse
vidéo simultanément dans comparaison avec un
autre type de scanner 3D. Le scanner Kinect est
un concept basé sur un périphérique complémen-
taire de type webcam. Kinect contient trois élé-
ments essentiels qui ensemble pour détecter le
mouvement des utilisateurs et créer l’image phy-
sique des utilisateurs sur l’écran : un RGB (rouge,
vert, bleu) avec un capteur de profondeur (D),
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une caméra VGA (vidéo graphique) et un multi-
réseau microphone . Ces spécifications du Kinect
fournissent un critère vital en tant que grand
scanner pour obtenir la topographie du fantôme.

La Kinect Xbox 360 joue un rôle central dans
notre système de contrôle automatique de la qua-
lité de peinture. Son capteur RGB permet d’ana-
lyser précisément la teinte rouge de la peinture
appliquée, critère essentiel pour juger la qualité
du revêtement. Le capteur de profondeur facilite
la détection et l’isolation de la forme de l’ex-
tincteur, améliorant la précision du traitement
d’image. La caméra VGA, avec une résolution
adaptée, assure un suivi fluide de l’objet en mou-
vement, contribuant ainsi à la fiabilité du système
de détection.

2.2 Brève fiche technique
Le tableau 1 présente une fiche technique sim-

plifiée de la caméra Kinect Xbox 360 utilisée dans
le cadre de ce projet, en mettant en évidence ses
principales caractéristiques matérielles.

Composant Caractéristiques
Capteur RGB Résolution : 640 Œ 480

px à 30 fps.
Utilisé pour l’analyse
des couleurs (teinte
rouge).

Capteur de pro-
fondeur

Résolution : 320 Œ 240
px à 30 fps.
Portée : 0,8 m à 4 m.
Sert à détecter la forme
3D de l’extincteur.

Champ de vision Horizontal : 57ř
Vertical : 43ř

Connexion USB 2.0 (alimentation
externe requise sur PC).

Tableau 1 – Fiche technique simplifiée de la ca-
méra Kinect Xbox 360

2.3 Environnement de développe-
ment : MATLAB

Dans le cadre du développement, retenu pour
la solution de détection automatique de la qualité
de peinture, le choix s’est porté sur l’environne-
ment de développement MATLAB (Matrix Labo-
ratory). MATLAB est un langage de programma-
tion de haut niveau associé à un environnement

intégré, particulièrement adapté pour le traite-
ment d’image, la vision par ordinateur, et l’ana-
lyse de données. De plus, il possède de nombreuses
boîtes à outils (Toolbox), comme la Computer Vi-
sion Toolbox et la Image Processing Toolbox, qui
sont pourtant essentielles au développement du
projet.

En effet, ces bibliothèques permettent la dé-
tection d’objets ainsi que le traitement des cou-
leurs (comme le modèle RGB, le suivi de mou-
vement (comme l’algorithme de Lucas-Kanade,
l’extraction de caractéristiques visuelles, tout en
assurant une visualisation rapide et efficace des
résultats, accélérant ainsi le processus de test et
de validation des algorithmes).

Ainsi, la convivialité de l’interface, les fonc-
tions intégrées particulièrement puissantes et la
documentation riche de MATLAB en font un ou-
til de choix pour le prototypage rapide et les pro-
jets académiques en vision industrielle.[3]

2.4 Conditions de test
Les différentes épreuves du système de

contrôle automatique de la qualité de peinture
ont eu lieu dans des conditions simulant le réel
d’une chaîne de peinture industrielle, sur un banc
d’essai composé des éléments suivants :

— Extincteurs métalliques peints : des
pièces de différentes teintes rouges, cer-
taines volontairement mal peintes (zones
plus claires ou non couvertes) afin d’éta-
blir la capacité de détection du système.

— Caméra Kinect Xbox 360 : placée à en-
viron 1 à 1,2 m des objets, dans la plage
de distance optimale pour l’évaluation de
la profondeur.

— Éclairages : les tests ont été réalisés dans
des conditions d’éclairages stables pour
éviter les reflets directs pouvant altérer les
couleurs capturées par la caméra RGB.

— Support mobile ou fixe les extincteurs
étaient soit fixés, soit déplacés lentement
pour simuler un transite sur un convoyeur.
Le traitement a eu lieu sur un ordinateur
portable équipé de MATLAB R2023b, en
configuration standard.

L’algorithme a été testé en quasi temps réel sur
des séquences vidéo ou des images prises indi-
viduellement par la Kinect. Ces essais ont per-
mis d’évaluer la robustesse du système dans un
contexte semi-contrôlé, en vue d’un futur déploie-
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ment en milieu industriel réel. Les différentes
conditions expérimentales dans lesquelles les tests
ont été réalisés sont résumées dans le tableau 2.
Elles permettent de simuler un environnement
proche de celui d’une chaîne industrielle.

Paramètre Valeur / Condition
Type de caméra Kinect Xbox 360
Hauteur de la
caméra

1,2 m

Position de la
caméra

Fixe, perpendiculaire à
l’objet

Type d’objet Extincteurs industriels
Éclairage am-
biant

Fluorescent blanc, diffus

Contexte de test Objet immobile et en
mouvement

Logiciel utilisé MATLAB R2023a
Type de traite-
ment

Image RGB et profon-
deur

Support de dé-
placement

Plateforme motorisée si-
mulant un convoyeur

Tableau 2 – Résumé des conditions de test

3 Méthodologie
La méthodologie consiste à analyser la com-

posante rouge (R) d’images extraites d’une vidéo
filmée par une caméra Kinect Xbox 360, après ex-
traction de la région d’intérêt correspondant à la
zone peinte de l’extincteur. La moyenne des va-
leurs rouges est calculée et comparée à un seuil,
permettant de détecter automatiquement les dé-
fauts de peinture de manière simple et rapide. [8]

3.1 Détection de la forme de l’ex-
tincteur

La détection de la forme de l’extincteur consti-
tue la première étape clé du traitement d’image.
Elle vise à localiser précisément l’objet à inspecter
dans l’image acquise par la caméra Kinect. Cette
étape repose sur deux sous-procédés : la segmen-
tation couleur suivie d’une extraction des
contours binairese .

3.1.1 Segmentation par couleur (création
du masque binaire)

La technique de traitement d’image appelée
de " segmentation de couleur " permet de regrou-

per les pixels d’une image en des groupes homo-
gènes selon leur couleur à la fin d’isoler des objets
ou des zones d’intérêt en fonction des coordon-
nées chromatiques (telles que RGB ou HSV) du
pixel. En profitant de la disparité de teinte, sa-
turation ou d’intensité lumineuse entre un objet
à détecter et le milieu ambiant, des objets d’une
plan d’image peuvent être identifiés d’après leurs
propriétés chromatiques. Cette méthode de trai-
tement de l’image constitue de l’importance ma-
jeure dans la situation où la teinte d’un objet à
identifier serait dissimillante de celle du fond.

Gonzalez et Woods observe que la technqiue
de segmentation par couleur se base sur l’hypo-
thèse que l’objet d’interest peut s’distinguer du
fond sous le critere chromatique caractéristique à
lui-même. Elle correspond à un style de fonction-
nement commun de système de vision à utiliser
pour suivi, détéction, et analyse de l’object dans
environnement contrôlée.[9]

Algorithme général de segmentation de
couleur :

Le processus typique d’un algorithme de seg-
mentation de couleur suit plusieurs étapes clés :

— Acquisition de l’image couleur : il
s’agit de récupérer une image RGB à par-
tir d’un capteur ou d’une caméra.

— Conversion de l’espace couleur : dans
certains cas, l’image peut être convertie de
l’espace RGB vers un autre espace cou-
leur plus adapté à la perception humaine,
comme HSV, Lab ou YCbCr.

— Extraction des canaux pertinents : les
canaux les plus représentatifs sont sélec-
tionnés selon la teinte recherchée. Dans le
cas de la détection d’un extincteur rouge,
le canal rouge est privilégié.

— Application d’un seuillage : cette étape
permet de segmenter l’image en distin-
guant les pixels d’intérêt (ayant une forte
intensité dans le canal cible) des autres,
générant ainsi une image binaire.

— Filtrage morphologique (optionnel) :
des opérations comme l’érosion, la dilata-
tion ou l’ouverture peuvent être appliquées
afin d’éliminer les bruits et de nettoyer le
masque binaire.

Le résultat final est un masque binaire qui met
en évidence la zone d’intérêt, ici caractérisée par
une couleur rouge dominante. Cette étape est cru-
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ciale pour toute analyse ultérieure de forme ou de
texture.

Dans le cadre de notre projet, la segmentation
par couleur a été utilisée pour isoler automatique-
ment les extincteurs peints en rouge à la sortie de
la chaîne de peinture. L’image capturée par la ca-
méra Xbox 360 est exploitée en mode RGB sans
conversion, car la teinte rouge y est déjà bien dis-
tincte [10].

L’algorithme mis en œuvre suit les étapes sui-
vantes :

— Extraction du canal rouge (R) de
l’image RGB.

— Application d’un seuillage empirique
pour générer une image binaire dans la-
quelle seules les zones fortement colorées
en rouge sont conservées.

Les conditions suivantes ont été utilisées pour
isoler efficacement le rouge :

— R > 0,4 : pour écarter les zones trop
sombres (valeurs RGB normalisées entre 0
et 1).

— R > G + 0,1 et R > B + 0,1 : pour
assurer que le rouge est dominant par rap-
port aux autres composantes.

Les figure 2 et figure 3 illustrent respective-
ment l’image RGB d’entrée et le masque binaire
obtenu après détection de la couleur rouge.

Figure 2 – Image d’entrée en mode RGB

Figure 3 – Masque binaire obtenu après segmen-
tation du rouge

3.1.2 Post-traitement morphologiques

Le post-traitement morphologique représente
un ensemble d’opérations que l’on applique en
traitement d’image binaire dans le but de corri-
ger, d’améliorer ou de simplifier les formes repé-
rées dans sa région d’intérêt après une étape de
segmentation. L’ensemble des techniques mises en
œuvre provient d’un cadre théorique, la morpho-
logie mathématique, qui a été développée pour
analyser la géométrie des objets présents dans des
images binaires .[11]

Les opérations morphologiques permettent
notamment de :

— Supprimer les petits bruits ou petits objets
isolés.

— Boucher les trous présents à l’intérieur des
objets.

— Lisser les contours.
— Séparer ou de reconnecter des parties d’un

même objet.

Algorithmes morphologiques courants

Les opérations de morphologie mathématique
appliquées aux images binaires permettent de mo-
difier les formes des objets présents dans une
image selon des règles simples mais puissantes.
Les principales opérations sont les suivantes :

— Érosion : cette opération rétrécit les ob-
jets en supprimant les pixels situés sur
leurs contours. Elle est utile pour éliminer
le bruit ou séparer des objets proches.

— Dilatation : elle agrandit les objets
en ajoutant des pixels autour de leurs
contours. Elle permet de renforcer la struc-
ture des objets et de combler des petites
discontinuités.

— Ouverture : combinaison d’une érosion
suivie d’une dilatation. Elle permet de sup-
primer les petits objets ou imperfections
tout en préservant la forme générale des
objets principaux.

— Fermeture : combinaison d’une dilata-
tion suivie d’une érosion. Elle permet de
boucher les petits trous ou fentes dans les
objets binaires.

Toutes ces opérations reposent sur l’utilisation
d’un élément structurant souvent une matrice
carrée, un disque ou un autre motif géométrique
qui détermine la manière dont les pixels sont ajou-
tés ou supprimés lors des traitements [12].
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La figure 4 illustre les effets visuels typiques
de ces opérations sur une image binaire.

Figure 4 – Illustration des principales opéra-
tions morphologiques : érosion, dilatation, ouver-
ture et fermeture [12]

Dans cette démarche, les opérations morpho-
logiques ont permis de nettoyer l’image binaire
issue de la segmentation par couleur afin d’ob-
tenir une forme de l’extincteur propre et claire
(sans artefacts) pour extraire les contours et éva-
luer correctement le niveau de qualité de peinture.

Les étapes de post-traitement appliquées dans
MATLAB sont les suivantes :

— Remplissage de trous (imfill) pour
supprimer les petits objets parasites
(taches rouges non pertinentes).

— Fermeture morphologique (imclose)
pour combler les petits trous ou irrégula-
rités dans le sein de l’objet segmenté.

— Suppression des petits objets isolés
(bwareaopen)dont la taille (exprimée en
pixels) est inférieure à un certain seuil afin
de ne conserver que l’objet principal de la
scène d’image : l’extincteur.

Ces opérations ont permis d’obtenir une image
binaire propre et fidèlement conforme à la mor-
phologie réelle de l’objet peint ce qui est bien né-
cessaire pour les phases suivantes de détecteur de
contours et d’études colorimétriques.

3.1.3 Extraction des contours binaires

La détection des contours constitue une étape
essentielle dans le traitement d’images. Elle vise
à localiser les limites d’un objet ou d’une région
dans une image, c’est-à-dire les zones où se pro-
duisent des variations brusques en intensité (ni-
veaux de gris) ou en couleur. Ces contours sont
souvent exploités dans des tâches de reconnais-

sance d’objets, de suivi, de segmentation, de me-
sure ou encore de classification.

Parmi les nombreuses méthodes disponibles,
le détecteur de Canny est l’un des plus réputés
pour sa performance. Selon John Canny, un bon
détecteur de contours doit satisfaire trois critères
fondamentaux :

— Réduction efficace du bruit ;
— Localisation précise des bords ;
— Une seule réponse par contour détecté.
La figure 5 illustre un exemple typique de

détection des contours binaires appliquée à une
image.

Figure 5 – Exemple de détection de contours
sur une image binaire selon la méthode de Canny
[13]

Algorithme général d’extraction de
contours

Différentes techniques permettent d’extraire
les contours d’une image binaire ou en niveaux
de gris, parmi lesquelles les plus connues sont :

- Le détecteur de Sobel, qui est un detec-
teur de dérivée spatiale appliqué au traitement
d’image par convolution, ce qui le rend simple et
rapide.

- Le détecteur de Prewitt qui est une ver-
sion peu pondérée du détecteur de Sobel.

- Le détecteur de Canny qui est une mé-
thode plus complexe basée sur du filtrage gaussien
suivi d’un calcul de gradient puis d’une suppres-
sion non maximales puis d’hystérisis (très précis,
souvent utilisé au sein de l’industrie).

- Méthode des contours de région, qui per-
met d’extraire les contours dans une image bi-
naire en effectuant la détection de transition al-
lant de 0 à 1 à la limite de séparation des objets,
le plus souvent via la fonction bwboundaries ou
edge (MATLAB).[9]

Dans le cadre de notre système de contrôle au-
tomatisé de la qualité de peinture, l’extraction des
contours joue un rôle essentiel pour localiser avec
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précision la zone peinte de l’extincteur et pour
quantifier la couverture.

Après la segmentation par couleur et le net-
toyage morphologique de l’image binaire, l’extinc-
teur apparaît clairement comme un objet blanc
(valeur 1) sur fond noir (valeur 0). L’extraction
des contours est alors utilisée pour détecter les li-
mites précises de cette région binaire, ce qui per-
met :

1. De vérifier la forme globale de l’objet
peint, et ainsi identifier toute déformation
ou irrégularité dans la peinture.

2. D’extraire une région d’intérêt (ROI) sur
l’image d’origine, en se basant sur les co-
ordonnées des contours. Cela permet de li-
miter l’analyse colorimétrique uniquement
à la zone peinte, et d’éviter les biais dus à
l’arrière-plan.

3. D’analyser la régularité des contours, indi-
cateur important d’un dépôt homogène de
la peinture. Des irrégularités peuvent ré-
véler une mauvaise application, une buse
obstruée ou une instabilité du convoyeur.

4. D’aligner les images automatiquement lors
de l’analyse série (plusieurs extincteurs),
car les contours peuvent servir de re-
pères géométriques pour normaliser les po-
sitions.

L’algorithme utilisé pour extraire les contours
dans MATLAB repose sur la fonction bwboun-
daries, laquelle retourne les coordonnées des
pixels situés sur la frontière des objets binaires
détectés. Ces coordonnées sont ensuite exploitées
dans deux objectifs principaux :

— Tracer la silhouette de l’objet (ici, un ex-
tincteur) directement sur l’image d’ori-
gine, ce qui permet une superposition vi-
suelle intuitive ;

— Générer un masque précis délimitant uni-
quement la zone d’intérêt, facilitant ainsi
les analyses ultérieures (forme, couleur,
position, etc.).

La figure 6 illustre le résultat de cette extrac-
tion, où le contour de l’extincteur est mis en évi-
dence en vert sur l’image segmentée.

Figure 6 – Contour extrait de l’extincteur seg-
menté à l’aide de la fonction bwboundaries dans
MATLAB.

Ainsi, l’extraction des contours ne constitue
pas une étape purement visuelle ou esthétique,
mais représente une condition essentielle à la fia-
bilité de l’analyse colorimétrique. Sans une dé-
limitation précise de la région d’intérêt, il serait
difficile de garantir que la teinte mesurée provient
uniquement de la surface peinte de l’extincteur,
et non d’éléments parasites du fond ou d’autres
objets présents dans l’image.

La figure 7 présente un exemple concret issu
d’une séquence réelle, où le contour de l’extinc-
teur a été détecté de manière efficace.

Figure 7 – Exemple réel de détection de
contours de l’extincteur à l’aide de la segmenta-
tion binaire.

3.2 Suivi du mouvement Algo-
rithme Lucas-Kanade

L’algorithme de Lucas-Kanade permet de
suivre le déplacement d’un objet à travers une
séquence d’images en estimant localement le flux
optique. Il est utilisé ici pour assurer le suivi pré-
cis de la région d’intérêt (ROI) représentant l’ex-
tincteur, tout en garantissant la cohérence spa-
tiale des mesures de couleur entre les différentes
images de la vidéo.
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3.2.1 Introduction au suivi de mouvement

Le suivi de mouvement représente un pro-
blème central de la vision par ordinateur, notam-
ment en ce qui concerne le suivi d’objets d’intérêt
d’une image à l’autre dans une séquence vidéo.
Pour notre projet, nous l’appliquons aux extinc-
teurs se déplaçant le long d’une chaîne de pein-
ture automatisée de manière à faire en sorte que
la zone analysée pour la qualité de la peinture
soit bien positionnée pendant tout mouvement de
l’objet avec sa position réelle.

À cet effet, nous avons décidé d’utiliser l’algo-
rithme de Lucas-Kanade, qui est à la fois simple,
rapide et robuste dans des environnements indus-
triels. [14]

3.2.2 Présentation de l’algorithme

1. Objectif du suivi de mouvement Le
suivi de mouvement a pour objectif de dé-
tecter dans une séquence d’images le dé-
placement d’un ou plusieurs objets à la
fois dans le temps. C’est une étape essen-
tielle dans de nombreuses applications : vi-
déosurveillance, robotique, analyse biomé-
dicale, etc. Il s’agit de localiser les objets
dans chaque image et de retrouver leurs
trajets, malgré les changements en posi-
tion, en forme ou en éclairage.

2. Principe du flux optique Le suivi d’un
objet dans une séquence vidéo repose sur
la notion de flux optique (optical flow), qui
décrit la manière dont l’intensité des pixels
change entre deux images consécutives.

L’hypothèse principale est que l’inten-
sité d’un pixel reste constante entre
deux images proches dans le temps :

I(x, y, t) = I(x+ u, y + v, t+ 1) (1)

— I(x, y, t) est l’intensité du pixel à la po-
sition (x, y) au temps t,

— u et v sont les composantes du mouve-
ment dans les directions horizontale et
verticale.
En développant cette équation en série

de Taylor, on obtient l’équation du flux op-
tique :

Ix · u+ Iy · v + It = 0 (2)

avec :

— Ix, Iy : dérivées partielles de l’image se-
lon x et y,

— It : dérivée temporelle (variation entre
deux images),

— u, v : vecteurs du mouvement à estimer.
3. Méthode de résolution Ce système est

indéterminé (une équation pour deux in-
connues). Lucas et Kanade[14] ont proposé
de le résoudre localement, dans une petite
fenêtre W fenêtre de ( 3Œ3 ou 5Œ5 )au-
tour du point considéré, en supposant que
tous les pixels de cette fenêtre ont le même
vecteur de mouvement.

On obtient un système surdéter-
miné .

Le système d’équations du flux optique
s’écrit :

Ix(p1)u+ Iy(p1)v = −It(p1)

Ix(p2)u+ Iy(p2)v = −It(p2)
...
Ix(pn)u+ Iy(pn)v = −It(pn)

(3)

Sous forme matricielle :

A

[
u
v

]
= b

où :

A =


Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

... ...
Ix(pn) Iy(pn)

 , b =


−It(p1)
−It(p2)

...
−It(pn)


La solution par moindres carrés donne :[

u
v

]
= (ATA)−1AT b (4)

où A contient les gradients spatiaux et b
contient les dérivées temporelles.[14]

3.2.3 Application au suivi de la forme dé-
tectée

Objectif du suivi

L’objectif dans notre projet est de suivre la
zone de l’extincteur analysée pour la qua-
lité de la peinture tout au long de la séquence
vidéo. Cela permet :

— De gagner du temps de traitement (impor-
tant pour une application temps réel).
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— D’assurer que les mesures de cou-
leur (teinte rouge) soient prises sur la
même surface physique, malgré les petits
déplacements.[15]

Étapes détaillées

1. Prétraitement
— Lecture de la première image de la vi-

déo.
— Conversion en niveaux de gris avec

rgb2gray car l’algorithme Lucas-
Kanade s’applique à l’intensité lumi-
neuse.

2. Détection de l’objet (extincteur
rouge)
— Nous avons utilisé un masque de cou-

leur pour détecter le rouge, en HSV et
RGB.

— Le masque est nettoyé morphologi-
quement (fermeture, remplissage des
trous).

— Une boîte englobante est calculée au-
tour de la plus grande région détectée.

3. Détection des points d’intérêt
— Dans la zone de la boîte englobante,

des points caractéristiques sont détec-
tés à l’aide de detectMinEigenFea-
tures (méthode Shi-Tomasi[16]).

— Ce sont des coins, stables et bien adap-
tés au suivi.

4. Initialisation du tracker
— Le tracker MATLAB

vision.PointTracker(implémentation
optimisée de Lucas-Kanade) est initia-
lisé avec les points détectés.

— L’erreur maximale bidirectionnelle est
fixée à 2 pixels pour garantir un suivi
fiable.

5. Suivi dans la vidéo
— À chaque image, la fonction step met

à jour la position des points.
— On visualise les points valides et on met

à jour le tracker.
— Ce processus se poursuit jusqu’à la fin

de la séquence vidéo.

3.2.4 Résultats attendu

Grâce à ce suivi visuel, plusieurs bénéfices sont
obtenus :

— La position des zones d’analyse de la pein-
ture reste stable et précise au fil du temps,
même lorsque l’extincteur est en mouve-
ment.

— Le système gagne en efficacité, car il n’est
plus nécessaire de recalculer entièrement
la détection de l’objet à chaque trame vi-
déo. Cela réduit la charge de traitement et
améliore la réactivité en quasi temps réel.

La figure 8 illustre un exemple du suivi ef-
fectué à l’aide de l’algorithme de Lucas-Kanade,
où les points caractéristiques de l’extincteur sont
suivis d’une image à l’autre.

Figure 8 – Exemple de suivi des points carac-
téristiques de l’extincteur avec l’algorithme de
Lucas-Kanade.

Les cercles verts montrent leur déplacement
au cours du temps.

3.3 Extraction de la zone d’intérêt
(ROI)

Dans le cadre d’un système de vision artifi-
cielle appliqué au contrôle qualité, il est primor-
dial de délimiter avec précision la zone d’ana-
lyse dans chaque image. Cette zone, appelée ré-
gion d’intérêt (Region of Interest ROI), corres-
pond à la partie de l’image contenant l’informa-
tion pertinente à évaluer, ici la surface peinte de
l’extincteur.[9]

L’objectif principal de cette étape est donc
d’isoler automatiquement la surface peinte sur la-
quelle sera appliquée l’analyse colorimétrique. En
se focalisant uniquement sur la zone utile, on ré-
duit considérablement le bruit visuel, on évite les
erreurs d’interprétation, et on améliore la robus-
tesse de l’évaluation de la teinte, notamment face
aux perturbations liées à l’environnement indus-
triel (fonds variés, ombres, reflets, présence d’ob-
jets métalliques ou de convoyeurs, etc.).

D’un point de vue technique, cette étape fait
le lien entre la détection de la couleur rouge
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(segmentation) et l’analyse colorimétrique pro-
prement dite. Elle permet aussi de préparer le
suivi temporel de l’objet en mouvement dans
la séquence vidéo, en fournissant une localisa-
tion fiable et dynamique de l’extincteur à chaque
image.[17]

En résumé, cette section répond aux objectifs
suivants :

— Détecter et localiser précisément la zone de
l’objet (l’extincteur) qui est effectivement
peinte.

— Extraire cette zone automatiquement sous
forme de ROI exploitable pour une mesure
quantitative.

— Garantir une analyse ciblée sans interfé-
rence de l’environnement extérieur (fond,
autres objets, reflets).

— Préparer les étapes suivantes (analyse de
la teinte).

Dans ce qui suit, nous détaillons l’algorithme uti-
lisé pour localiser cette zone, en s’appuyant sur les
résultats de la segmentation, ainsi que les raisons
qui motivent le choix de cette zone d’analyse.

3.3.1 Isolement de la partie peinte à ana-
lyser

Après avoir détecté la couleur rouge dans
l’image , une image binaire est générée où les
pixels correspondant à la couleur attendue (rouge
vif) sont marqués en blanc. Cette image binaire
(red_mask) contient donc la silhouette approxi-
mative de l’extincteur peint.

Pour extraire la région d’intérêt (ROI)
contenant l’extincteur dans la vidéo,Pour extraire
la zone exacte à analyser, nous utilisons la fonc-
tion (’regionprops’) de MATLAB, qui permet
d’obtenir des informations géométriques sur les
régions connectées de l’image binaire. L’attribut
(’BoundingBox’) renvoie les coordonnées d’un
rectangle minimal entourant la région blanche[9].
nous suivons une approche en plusieurs étapes :

1. Détection basée sur la couleur :
— Conversion de l’image en espace colo-

rimétrique HSV (plus robuste aux va-
riations lumineuses que RGB).

— Application d’un masque pour isoler
les pixels rouges (typiques des extinc-
teurs) :

Masque = (H < 0.05 ∨H > 0.95)

∧ S > 0.4 ∧ V > 0.2

— Combinaison avec un masque RGB
pour améliorer la détection .

2. Post-traitement du masque :
— Remplissage des trous (imfill) pour ob-

tenir une région homogène.
— Fermeture morphologique (imclose)

pour lisser les contours.
— Filtrage par taille (bwareafilt) pour

ne conserver que la plus grande zone
connexe.

3. Extraction du contour (Bounding
Box) :
— Calcul de la boîte englobante (region-

props) autour de la région détectée.
— Découpage de l’image originale pour ne

garder que la ROI.
La commande bwareafilt(red_mask, 1) est
utilisée avant cela pour garder uniquement la plus
grande région connectée, en supposant que l’ex-
tincteur est le plus grand objet rouge visible à
l’écran.

Ensuite, l’instruction imcrop(frame1,
bbox) permet de découper automatiquement la
zone à analyser dans l’image originale. Cette ré-
gion est ensuite utilisée pour effectuer des mesures
colorimétriques précises.

Avantages de cette méthode

— Elle est automatique et adaptable : elle
fonctionne même si la position de l’extinc-
teur change dans la scène.

— Elle permet de réduire la complexité de
l’image analysée, en éliminant l’arrière-
plan et les détails inutiles.

— Elle rend les étapes suivantes (analyse de
teinte, suivi) plus rapides et fiables.

3.3.2 Justification du choix de la zone

Le choix de cette boîte englobante centrée
sur la zone rouge (représentant habituellement
le corps cylindrique de l’extincteur) repose sur
plusieurs justifications tant pratiques que tech-
niques :

— Proximité physique : la surface centrale
de l’extincteur est plus représentative de la
qualité de la peinture que les parties mé-
talliques (poignée, socle)

— Évitement des perturbations : étant
donné que l’on ne tient pas compte de
l’arrière-plan (convoyeur, ombres, lumière
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ambiante), on évite une éventuelle erreur
à cause des artefacts visuels.

— Fiabilité de la mesure colorimé-
trique : la mesure de la teinte (valeur
moyenne de rouge dans la zone extraite)
est beaucoup plus fiable appliquée à une
zone homogène.

— Suivi compatible : cette localisation ser-
vira aussi à suivre l’objet au cours des
images suivantes comme l’indique l’algo-
rithme de Lucas-Kanade en définissant la
région de détection initiale des points ca-
ractéristiques.

En somme, ce choix de zone va dans le sens de
la précision, de la rapidité, et de la robustesse du
système d’inspection automatique mis en place
ici.[9]

Résultat attendu

Les figure 9 et figure 10 illustrent respecti-
vement l’image d’entrée avant traitement et la
zone d’intérêt (ROI) extraite, centrée sur la par-
tie peinte de l’extincteur, utilisée pour l’analyse
colorimétrique.

Figure 9 – Image avant l’extraction de la ROI.

Figure 10 – Image aprés l’extraction de la ROI
.

3.4 Analyse de la couleur : Calcul
de la moyenne du rouge

Cette étape vise à quantifier l’intensité
moyenne de la composante rouge dans la zone

d’intérêt (ROI), afin d’évaluer la qualité de la
peinture appliquée sur la surface de l’extincteur.

3.4.1 Conversion RGB

Le modèle colorimétrique RGB (poursuivant
une logique de synthèse additive) est sans doute
l’un des systèmes de représentation des couleurs
les plus usités dans le cadre des systèmes de trai-
tement numérique d’images en nous appuyant sur
le fait qu’un pixel est un triplet (R, G et B). Dans
ce modèle, les valeurs R, G et B qui déterminent
la couleur d’un pixel sont normalisées dans l’in-
tervalle [0,1] (ou [0,255] selon la profondeur) et
correspondent directement à :

R (Red) : composante rouge.
G (Green) : composante verte.
B (Blue) : composante bleue.
Ce modèle est principalement issu des dis-

positifs numériques d’acquisition d’images issus
du numérique qui traduisent l’intensité lumineuse
des couleurs via des filtres rouges, verts et bleus
construites sur la logique de la synthèse additive
de la couleur garantissant que le système RGB est
le format brut correspondant à l’acquisition d’une
image par une caméra.[9]. La figure 11 illustre
la structure de l’espace colorimétrique RGB, où
chaque couleur est représentée comme une com-
binaison des trois composantes de base : rouge,
vert et bleu.

Figure 11 – Espace RGB

Le traitement d’images numériques en mode
RGB permet de quantifier la luminosité d’une
couleur, particulièrement utile dans le cadre du
contrôle qualité sur l’intensité colorimétrique,
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comme il est proposé dans notre projet. Cepen-
dant, la représentation RGB présente deux types
de limites : d’une part le fait qu’elle ne soit
pas perceptuellement uniforme (des distances non
proportionnelles à des différences entre couleurs
comme perçues par l’il humain). D’autre part, les
composants YUV combinant des informations de
teinte, de saturation et de nombre de luminance,
quand on souhaite détecter une couleur donnée
indépendamment de l’éclairement.

D’où l’usage courant d’un second espace de
couleurs tel que l’HSV (Hue, Saturation, Value)
pour isoler la teinte (la couleur perceptible indé-
pendamment de léclairement) dont la détection
se révèle plus robuste au détriment d’une analyse
quantitative fine de l’intensité RGB.

Dans notre système de contrôle qualité de la
peinture des extincteurs, nous avons adopté une
stratégie combinée :

1. Détection initiale de l’objet peint à
l’aide de masques de couleur dans l’espace
HSV (plus tolérant aux variations d’éclai-
rage).

2. Extraction de la zone d’intérêt (ROI)
à partir du masque binaire détecté.

3. Analyse colorimétrique détaillée dans
l’espace RGB, spécifiquement en étudiant
la composante rouge.

Après avoir extrait la zone d’intérêt (ROI) corres-
pondant à la surface visible de l’extincteur, nous
extrayons la composante rouge (R) à l’aide de
l’instruction suivante en MATLAB :

roi_red = roi(:, :,1)/255 ;

Cette opération nous permet de mesurer directe-
ment l’intensité de la peinture rouge dans la zone
ciblée, de façon numérique, ce qui est fondamen-
tal pour une évaluation automatique de la qualité.
En résumé :

— HSV est utilisé pour localiser la couleur
rouge dans l’image,

— RGB est utilisé pour quantifier précisé-
ment l’intensité de cette couleur dans la
région extraite.

Cette double approche optimise à la fois la ro-
bustesse de détection et la précision d’analyse,
conformément aux bonnes pratiques en vision in-
dustrielle

3.4.2 Moyenne de la composante rouge
dans la ROI

Au sein d’une image couleur RGB, chaque
pixel est associé à un triplet [R,G,B] dans lequel
R renseigne sur l’intensité de la couleur rouge. On
appelle zone d’intérêt (ROI) une portion extraite
de l’image, correspondant à une zone d’intérêt à
analyser ici, la surface peinte de l’extincteur.

Le calcul de la moyenne de la composante
rouge consiste au calcul de la moyenne de tous
les pixels de la composante R uniquement, dans
la ROI. Cela permet d’évaluer l’intensité moyenne
de la peinture rouge appliquée sur la surface.[8]
Mathématiquement, cela s’exprime comme :

µR =
1

N

N∑
i=1

Ri

où Ri est l’intensité rouge du ième pixel dans la
ROI, et N est le nombre total de pixels. Dans
notre cas, la moyenne de la composante rouge
est utilisée comme indicateur direct de la qualité
de la peinture. Une peinture bien appliquée pré-
sente une couleur rouge uniforme et intense. Si la
moyenne est faible, cela peut signifier :

— une zone non peinte.
— une teinte insuffisante ou partielle .
— un reflet perturbant la détection.

Dans notre algorithme MATLAB extrait la com-
posante rouge et on calcule la moyenne :

mean_red = mean(roi_red(:)) ;

Cette valeur est ensuite utilisée pour évaluer la
qualité globale et aussi pour générer des histo-
grammes permettant une visualisation de la ré-
partition des intensités rouges dans la zone ana-
lysée. La figure 12 représente une carte de chaleur
des intensités rouges mesurées dans la zone d’in-
térêt, permettant de distinguer visuellement les
régions bien peintes, mal peintes ou non colorées.
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Figure 12 – Une carte de chaleur de l’inten-
sité rouge dans la ROI (zones bien peintes, mal
peintes et non colorées).

3.4.3 Seuils de décision pour juger la qua-
lité

Des valeurs numériques que l’on appelle seuils
de décision, permettent de classifier ou de juger
un phénomène selon un critère mesuré. En trai-
tement d’image, des seuils de décision sont choi-
sis pour revenir à la prise de décisions selon des
propriétés extraites des pixels comme l’intensité
lumineuse ou la couleur.

Ainsi pour l’évaluation de la qualité d’un ob-
jet coloré comme ici un extincteur peint, il est
possible de définir des seuils sur l’intensité lumi-
neuse moyenne de la couleur cible (rouge) que
l’on souhaite obtenir ou des statistiques comme la
variance, l’écart-type ou encore la proportion de
pixels en dessous d’un certain niveau. Ces seuils
de décision peuvent être choisis expérimentale-
ment ou grâce à des méthodes d’optimisation afin
d’être le plus fidèle possible à la perception vi-
suelle humaine ou aux spécifications industrielles.
[9]

Dans notre système de détection , les seuils
ont été définis empiriquement après plusieurs es-
sais sur des vidéos simulées. L’objectif était d’éva-
luer la qualité de la peinture rouge appliquée sur
un extincteur qui se déplace horizontalement.

Nous avons calculé la moyenne de la com-
posante rouge µR. Ensuite, nous avons identifié
deux zones critiques dans l’image :

— Les zones mal teintées : pixels dont l’in-
tensité de rouge est comprise entre un seuil
de défaut (Sd = 0.4) et un seuil de qualité
minimale acceptable (Sq = 0.7).

— Les zones non colorées : pixels dont
l’intensité est inférieure à Sd.

À partir de ces seuils, l’évaluation de la qualité
se fait comme suit :

— Bonne qualité : µR > Sq et moins de 5
% de pixels non colorés.

— Qualité moyenne : proportion de pixels
mal teintés entre 5 % et 20 %.

— Mauvaise qualité : plus de 20 % de pixels
non colorés.

Ces règles permettent une classification visuelle
et statistique simple mais robuste, facilement in-
terprétable par un opérateur ou un automate in-
dustriel. La figure 13 illustre l’histogramme des
niveaux d’intensité de la composante rouge dans
la zone analysée, avec des seuils empiriques indi-
qués pour distinguer les cas conformes (au-dessus
de 0,7) et défectueux (en dessous de 0,4).

Figure 13 – un histogramme montrant la distri-
bution des niveaux d’intensité du rouge, avec des
lignes pour les seuils de qualité (0.7) et de défaut
(0.4).

Justification des seuils

Les valeurs de 0,7 pour le seuil de qualité et
0,4 pour le seuil de défaut ont été choisies en
fonction de la dynamique des intensités obser-
vées sur les extincteurs bien et mal peints. Ces
seuils peuvent être ajustés selon l’environnement
d’éclairage, la caméra utilisée ou les tolérances du
client industriel.

Les figures figure 14, figure 15 et figure 16
montrent différentes interprétations visuelles de
la qualité de la peinture à partir de l’intensité de
la composante rouge dans la zone d’intérêt.
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Figure 14 – Image représentant l’intensité de la
composante rouge dans la zone d’intérêt.

Figure 15 – Les zones mal teintées (intensité
rouge insuffisante mais au-dessus du seuil de dé-
faut).

Figure 16 – Les zones non colorées (intensité
rouge en-dessous du seuil critique).

Nous avons évalué ici la qualité de la peinture
des extincteurs en mesurant sa couleur rouge, en
analysant la composante rouge de l’image. Après
une transformation d’image vers l’espace couleur
RGB puis l’espace couleur HSV, nous avons isolé
la région d’intérêt (ROI) correspondant à l’extinc-
teur. La moyenne de la composante rouge de l’in-
tensité de cette région a été comparée à des seuils

définis, permettant ainsi de qualifier la peinture
comme étant de bonne qualité, moyenne, ou dé-
fectueuse : une méthode simple et rapide pour
envisager un contrôle automatique de la qualité
directement sur la vidéo.

4 Résultats expérimentaux

Cette section présente les résultats obtenus
lors de l’évaluation du système proposé, en illus-
trant sa capacité à détecter automatiquement la
qualité de la peinture appliquée sur les extinc-
teurs.

4.1 Exemples de cas bons et défec-
tueux

Afin de valider l’efficacité de l’algorithme dé-
veloppé, plusieurs vidéos ont été traitées. Les
résultats montrent que le système est capable
de distinguer avec précision les extincteurs bien
peints des extincteurs présentant des défauts.

— Dans les cas bons, la moyenne de la
composante rouge dépasse 0.7, et les
zones non colorées sont inférieures à
5.

— Dans les cas défectueux, deux types
d’anomalies sont détectées : les zones
mal teintées (moyenne entre 0.4 et
0.7) et les zones non colorées (inten-
sité < 0.4).

Afin d’illustrer ces cas, la Figure figure 17
montre un exemple d’extincteur bien peint, tan-
dis que la Figure figure 18 présente un extincteur
dont la peinture est de qualité moyenne ou défec-
tueuse.

Figure 17 – Extincteur avec une qualité de pein-
ture bonne (moyenne de la composante rouge >
0,7).
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Figure 18 – Extincteur présentant une qualité
moyenne ou défectueuse (moyenne de la compo-
sante rouge entre 0,4 et 0,7).

4.2 Images avant/après traite-
ment

Le traitement d’image appliqué permet d’iso-
ler efficacement la zone utile de l’image (l’extinc-
teur), de filtrer les pixels non pertinents et d’ana-
lyser uniquement la surface peinte. Les figures sui-
vantes montrent les images avant et après traite-
ment, incluant la détection de la zone rouge, l’en-
cadrement et l’histogramme.

Comme illustré dans figure 19, figure 20 et fi-
gure 21, la qualité de la peinture varie du très bon
au mauvais.

Figure 19 – Qualité très bonne de la peinture
après traitement.

Figure 20 – Qualité moyenne de la peinture
après traitement.

Figure 21 – Qualité mauvaise de la peinture
après traitement.

4.3 Tableau de résultats
Afin de valider les performances de l’algo-

rithme, plusieurs cas ont été analysés à partir des
vidéos traitées. Chaque cas est évalué en fonction
de la moyenne de la composante rouge, du pour-
centage de zones mal teintées et non colorées.

Les résultats sont résumés dans tableau 3, où
l’on observe une bonne corrélation entre les seuils
définis et la décision finale prise par le système.

Nř moy Rouge Mal T. (%) Non C. (%) Décision
1 0.97 2.3 1.1 Bonne
2 0.55 18.7 3.4 Moyenne
3 0.39 22.1 24.6 Mauvaise

Tableau 3 – Résultats d’évaluation de la qualité
de peinture pour différents cas testés.

4.4 Taux de précision et efficacité
Le taux de précision et l’efficacité du système

sont évalués en comparant les résultats de clas-
sification automatique avec des observations hu-
maines, afin de mesurer la fiabilité et la robustesse
de l’approche proposée. Sur l’ensemble des vidéos
traitées, un total de 15 cas a été analysé :

— 12 cas bien classés (qualité correctement
évaluée par le système)

— 3 cas mal classés (ex. : défauts mal iden-
tifiés ou marge d’erreur humaine)

Calcul du taux de précision :

Taux de précision =
Nombre de cas bien classés

Nombre total de cas

12

15
× 100 = 80%
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5 Discussion
Cette section analyse et interprète les résul-

tats expérimentaux obtenus, en mettant en évi-
dence les points forts du système proposé, ses li-
mites éventuelles, ainsi que les pistes d’amélio-
ration envisageables pour une intégration indus-
trielle optimale.

5.1 Avantages de la méthode
L’approche de détection automatique de la

qualité de peinture présente plusieurs avantages
significatifs par rapport à une inspection manuelle
ou à d’autres techniques industrielles[18] :

Rapidité et automatisation : Grâce à
l’analyse vidéo temps réel, la détection s’effec-
tue automatiquement sans intervention humaine,
ce qui augmente considérablement le débit de
contrôle dans une chaîne de production.

Cohérence et objectivité : Contrairement
à un inspecteur humain, le système basé sur
des critères numériques (intensité rouge moyenne,
seuils calibrés, etc.) est totalement neutre et ré-
pétable.

Coût réduit : L’utilisation d’une caméra
Xbox 360, initialement conçue pour le jeu vidéo,
représente une solution économique, tout en of-
frant une qualité suffisante pour cette application.

Facilité d’intégration : Le traitement en
MATLAB permet une intégration rapide dans des
environnements industriels existants, notamment
avec des chaînes automatisées.

Analyse quantitative : Le système permet
d’extraire des mesures précises (moyenne de la
couleur, pourcentage de défauts, etc.), utiles pour
l’amélioration continue de la qualité.

5.2 Comparaison avec une inspec-
tion humaine

Pour évaluer la pertinence et les avantages du
système proposé, une comparaison a été réalisée
entre l’inspection humaine traditionnelle et la mé-
thode automatique mise en œuvre dans ce projet.

Comme présenté dans tableau 4, notre sys-
tème automatique offre une vitesse de traitement
bien supérieure, une objectivité constante et une
fatigue inexistante par rapport à l’inspection hu-
maine, bien qu’il puisse nécessiter des ajuste-
ments pour la détection de défauts subtils.

Critère Inspection
humaine

Système auto-
matique (notre
méthode)

Vitesse Moyenne à
lente

Élevée, en temps
réel

Objectivité Variable selon
l’opérateur

Totale, basée sur
des seuils fixes

Fatigabilité Oui (erreurs
après longue
période)

Non (fonctionne
24/7 sans fa-
tigue)

Capacité
à détecter
des défauts
visuels
subtils

Élevée (selon
l’expérience)

Moyenne (néces-
site des critères
plus avancés
pour des défauts
fins)

Coût Coût humain
élevé (salaire,
formation)

Faible coût ma-
tériel (caméra)
et logiciel (MAT-
LAB)

Tableau 4 – Comparaison entre l’inspection hu-
maine et la méthode automatique

6 Conclusion
L’intégration d’un système automatique

d’analyse de la qualité de peinture appliquée sur
des extincteurs (dans un processus de peinture
automatisé), a permis de concevoir et réaliser un
système basé sur une caméra Kinect Xbox 360 et
le logiciel MATLAB, dont la méthode est fondée
sur la détection de la teinte rouge, sur le suivi de
mouvement de type Lucas-Kanade, sur le zonage
de la région d’intérêt (ROI) et sur l’analyse de
la composante rouge dans le but d’apprécier la
qualité de l’application de peinture.

Le système, à l’aide de seuils de décisions ap-
propriés, va pouvoir opposer les extincteurs bien
peints, mal peints ou non peints. Les résultats
obtenus montrent de bon taux de réussite et une
visibilité des défauts, réalisant les performances
de l’inspection humaine avec une rapidité et une
objectivité supérieure.

Ce travail montre qu’une telle technique peut
s’integrer à moindre coût dans un processus pro-
ductif.
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