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Abstract

Mobile robotics has rapidly advanced by integrating intelligent locomotion mechanisms and Al-
based control. This review outlines the main types of wheeled, legged, hybrid, aerial, and aquatic
mobile bases, and examines classical and modern control techniques like PID, MPC, and learning-
based methods. Real-world applications span industries such as manufacturing, exploration, and
healthcare. The work also highlights ongoing challenges and emerging trends in autonomy, per-

ception, and swarm robotics.

Index Terms— Mobile Robotics, Locomotion Mechanisms, Control Techniques (PID, MPC,
Learning-based), Perception and SLAM, Swarm Robotics.

1 Introduction

Mobile bases form the structural and functional
foundation of autonomous robotic systems, en-
abling them to traverse diverse environments and
perform complex tasks. The design and con-
trol of these bases are central to the mobility
and versatility of robots across land, air, and wa-
ter. Over time, the field has matured to include
a wide range of configurations, including tradi-
tional wheeled platforms, biologically inspired
legged robots, and hybrid designs that merge fea-
tures for enhanced adaptability. Advanced forms,
such as aerial drones and underwater vehicles,
have further extended the operational domains of
mobile robots.

This work presents a comprehensive analy-
sis of mobile bases by first classifying their types
such as differential drive, omnidirectional, and ar-
ticulated structures and discussing their mechani-
cal characteristics and operational benefits [[1]][2].
Thereafter addresses control methodologies rang-
ing from basic feedback mechanisms to advanced
adaptive and learning-based systems [3][4]. Ap-
plications span from industrial automation and
smart logistics to healthcare assistance and haz-
ardous environment exploration [5]. In light of
emerging technologies, the study also reflects on
key research trends aimed at improving control
accuracy, minimizing energy usage, and enhanc-
ing situational awareness. Through this explo-
ration, we emphasize how mobile bases are not
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Figure 1: Timeline of the evolution of mobile robot bases.

just mechanical structures but integral compo-
nents of intelligent, responsive robotic systems.

2 Classification of Mobile

Bases

Mobile bases in robotics can be classified into five
main categories: stationary, land-base (wheeled
and legged), hybrid, aerial, and aquatic systems.
Each type features unique kinematic structures
and locomotion capabilities suited for specific en-
vironments and applications.

2.1 Stationary (Manipulator-Based)
Robots

Stationary robots, typically robotic arms, operate
from a fixed base with an open kinematic chain
ending in a tool equipped end-effector [3]. They
are widely used in industrial automation tasks
such as welding, painting, and assembly.

Advantages: High precision, no balance is-
sues, and the ability to perform repetitive tasks ef-
ficiently [6].

Limitations: Lack mobility and workspace
flexibility [3].

2.2 Land-Based Mobile Robots
a. Wheeled Robots

Differential Drive Wheeled Mobile Robot
(DDWMR): Consist of two independently driven
wheels and a passive caster. Simple and cost-
effective, suitable for indoor environments [[1]].
Omnidirectional Wheeled Mobile Robot
(OWMR): Equipped with omni or mecanum
wheels, allowing movement in any direction.
Ideal for cluttered or narrow spaces [[7].
Ackermann Steering: Mimics car-like turn-
ing with four wheels, enabling smooth curved

paths and high-speed motion [3].

Limitation of wheeled robots: Poor adapt-
ability to rough terrain and complex dynamic
modeling [3].

b. Legged Robots

Bipeds: Mimic human walking, capable of stair
climbing and complex movements [3].
Quadrupeds and Hexapods: Offer greater
stability and terrain adaptability [2].
Limitation: Complex control and balance
maintenance [8].

2.3 Hybrid Mobile Robots

Hybrid systems combine multiple locomotion
types (e.g., wheels and legs) for enhanced versa-
tility across different terrains [2][9].

Limitation: Increased mechanical and algo-
rithmic complexity.

Figure 2: Example of a hybrid mobile robot: a
wheel-legged robot with an articulated arm.

2.4 Aerial and Aquatic Robots

Aerial Robots (Drones): Used in surveillance,
agriculture, and delivery, with advantages in
speed and access to hard-to-reach areas [3].

Future



Aquatic Robots: These include underwater
vehicles (ROVs and AUVs) and surface robots
(e.g., autonomous boats), used for marine data
collection and monitoring [8].

Challenges: Communication, stability, and
energy constraints [[10].

3 Mobile Base Control Tech-
niques

Navigation by autonomous mobile robots in dy-
namic environments is a complex task that re-
quires addressing challenges such as obstacle
avoidance, path planning, and real-time deci-
sion making.To achieve this, a combination of
advanced control techniques and intelligent al-
gorithms is employed.Methods like PID con-
trol, Adaptive Sliding Mode Control (ASMC),
and Model Predictive Control (MPC) ensure
precise motion control, while Deep Learning
enhances adaptability and decision-making ca-
pabilities.  Furthermore, path planning algo-
rithms such as A*, Dijkstra, and RRT (Rapidly-
exploring Random Trees) enable efficient nav-
igation through complex environments. Local-
ization and mapping are facilitated by SLAM
(Simultaneous Localization and Mapping) sys-
tems, along with perception modules using Li-
DAR or stereo cameras, enable robots to local-
ize and map unknown environments. These tech-
nologies form a robust framework that allows au-
tonomous robots to operate effectively in dynamic
and unpredictable settings, making them indis-
pensable for real-world applications.

3.1 Control Strategies
a. Classic Commands (PID controllers)

The performance of mobile robots is heavily de-
pendent on the effective design of the controller,
particularly in stabilization and trajectory track-
ing, which ensures precise movement by follow-
ing a predefined path [11][12]. Among con-
trol techniques, PID controllers are widely used
for position and trajectory tracking, regulating
brushless DC motor speed for smooth motion
[11][12][A3][14]. However, their accuracy limi-
tations have led to improvements such as Fuzzy-

PID controllers and kinematic model-based PID
approaches [12][[15].

PID controllers address non-linearity in tra-
jectory tracking and optimize DC motor speed,
ensuring responsiveness to changing conditions
[14]. While model-based controllers like PID
are effective, non-model-based approaches of-
fer robustness and lower computational complex-
ity [[14]. Differential-drive mobile robots bene-
fit from maneuverability but introduce position-
ing errors due to mechanical inconsistencies, miti-
gated by odometry-based navigation methods and
systematic calibration [[12][[13][]16].

PID controllers play a key role in precise path-
following, with advanced tuning techniques like
the Firefly algorithm enhancing fuzzy (PI+PD)
controller performance [12]. Additionally, they
contribute to the stability of brushless DC mo-
tor operation, ensuring smooth motion in mobile
robots [[13].

b. Advanced Commands
Adaptive Sliding Mode Control

Sliding Mode Control (SMC) helps mobile robots
follow a planned path accurately, even with uncer-
tainties or disturbances. It can be combined with
adaptive control to estimate unknown parameters
like tire wear or sensor errors, ensuring stable per-
formance [L7][[15][L8][[19].

To improve efficiency, SMC can use event-
triggering techniques to reduce the microcon-
troller’s workload, making it useful for remote or
networked control [[17][[L5]. It is also effective for
position control and handling nonlinear systems
like mobile robots [[18][19][[15].

SMC works for various robots, including dif-
ferential drive robots and UAVs [[17][[15] [18]. A
specialized version, ARSMC, enhances UAV sta-
bility in smart cities by compensating for distur-
bances [15]. Chattering, a common issue, can
be reduced using techniques like the tanh func-
tion [19]. Additionally, SMC supports dynamic
tracking and has an adaptive version (ASMC) for
wheeled mobile robots [[19] [[1§].

Reinforcement Learning Controller

A deep learning controller enables a robot to per-
form tasks without requiring a dynamic system
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Figure 3: Classification of Mobile Robot Bases

model by learning an optimal control law through
interactions with the environment. Unlike tra-
ditional methods, it adapts automatically using
a recursive learning process and is often trained
in simulation. Reinforcement learning (RL) fur-
ther enhances control by optimizing performance
without relying on predefined models [20].

Mobile robots navigate while controlling their
position using DRL-based systems, which rely on
state space, action space, and a reward function
[20][21]. These systems use reactive methods for
tasks like obstacle avoidance and determine op-
timal policies through environmental interactions
[22][21]]. DRL navigation includes discrete mo-
tion actions, continuous velocity commands, and
motor speed controls. Rewards, though sparse,
are crucial for training RL agents to achieve ef-
fective navigation [21].

Model-based Predictive Control(MPC)

The predictive method, particularly Model Pre-
dictive Control (MPC), is a key technique for
motion control in mobile robots[23][24]. It
involves three main steps: model prediction,
where a predictive model estimates the robot’s
future states by combining its current state with
feasible control inputs[24] continuous optimiza-
tion, which minimizes a cost function based on
the error between the system output and the
predicted output, adjusting control strategies at
each interval[23][24] and feedback correction,
which enhances robustness by reducing errors
and delays[23]. MPC enables point stabiliza-
tion, trajectory tracking, and real-time obstacle

avoidance, while incorporating system constraints
for improved adaptability[23][24]. By integrat-
ing MPC with machine learning (ML) meth-
ods, it becomes possible to handle uncertain dis-
turbances, enhancing performance in dynamic
environments[24].

3.2 Motion Planning and Navigation
a.Planning Algorithms
Path finding methods: A* and Dijkstra.

The Dijkstra and A* path planning algorithms are
key methods to find the shortest path in a graph,
with diverse applications in navigation and rout-
ing [25][26]. Dijkstra uses a greedy approach to
explore nodes in priority order, making it effec-
tive for small-scale maps [25][26], while A* in-
corporates a heuristic i(x) to prioritize the most
promising nodes, making it faster for large-scale
maps [26]. Both are used in road networks, route
planning, and locating points of interest, but A* is
preferred for its increased efficiency in complex
environments [26].

Rapidly-exploring Random Trees (RRT)

RRT is a probabilistic algorithm designed for
efficient path planning in complex and high-
dimensional spaces [27]. It incrementally builds
a tree by randomly sampling the configuration
space and connecting feasible nodes while avoid-
ing obstacles [28]. Although RRT is not op-
timal, it is valued for its simplicity and speed,
especially in environments where deterministic



methods are computationally costly [27]. Vari-
ants such as Bidirectional RRT and RRT* enhance
performance by improving path quality and con-
vergence toward optimality [27]. RRT is widely
used in robotics for motion planning in dynamic
and unstructured environments, though it faces
limitations with path smoothness, narrow passage
navigation, and dependency on sampling strate-
gies [28][29].

Comparison

Table 1: Comparison of Motion Planning Algo-

rithms
Feature Dijkstra A* RRT
Type Determin- | Heuristic- | Probabil-
istic based istic
Completeness| Yes Yes Probabil-
istic
Optimality Yes Yes No
Computation | High Moderate | Low
Scalability Poor (large | Good High
maps) dime-
nsional
Suitability Static Static Dynamic
maps maps
Path High High Low
Smooth-
ness

b.Localization and Mapping Techniques

Simultaneous Localization

(SLAM)

and Mapping

SLAM (Simultaneous Localization and Map-
ping) enables robots to map unknown environ-
ments while localizing themselves without relying
on GNSS (Global Navigation Satellite System)
[B0][31]. It consists of a front-end, responsible for
feature detection and sensor tracking, as in visual
SLAM [30][31], and a back-end, which estimates
the robot’s position using filtering (e.g., Kalman
and particle filters) or smoothing techniques (e.g.,
Graph SLAM) [30]. Filtering is suited for real-
time applications, while smoothing optimizes the
entire trajectory [30][31].

SLAM is widely used in autonomous naviga-
tion, augmented/virtual reality, and mobile map-
ping [30], ensuring accurate localization in envi-
ronments denied GNSS such as indoor spaces and

urban canyons [30][31]. The methods vary based
on the sensors, with visual SLAM using cameras
and LiDAR SLAM relying on 2D/3D point clouds
[30].

Chalanges: include linearization errors, dy-
namic obstacles, sensor noise, and high computa-
tional demands, especially in environments with
narrow passages [30][31].

GPS vs GNSS: GPS (Global Positioning Sys-
tem) is the American satellite navigation system,
while GNSS (Global Navigation Satellite Sys-
tems) refers to all global systems, including GPS,
Galileo (EU), GLONASS (Russia), and BeiDou
(China).

Front-end: Responsible for detecting fea-
tures and tracking sensor data in real-time.

Back-end: Handles global pose optimiza-
tion and trajectory estimation using methods like
graph optimization or Kalman filters.

c.Perception Systems

Perception is a fundamental component that en-
ables a robot to operate autonomously by using
sensors and algorithms to extract and interpret
data from its environment. It comprises three
main elements: sensor data processing, environ-
mental modeling, and artificial intelligence al-
gorithms. These elements allow the robot to
detect humans, obstacles, terrain recognize ges-
tures, voice commands, environmental changes
and classify locations semantically.  Sensors,
which detect physical changes and convert them
into electrical signals, are categorized as proprio-
ceptive measuring internal parameters such as bat-
tery voltage or motor speed or exteroceptive mea-
suring external environmental features. They are
also classified as active (emitting energy, e.g., Li-
DAR) or passive (detecting natural energy, e.g.,
cameras). The selection of sensors depends on the
robot’s application, operating environment (in-
door or outdoor), and specific tasks. Examples in-
clude biopotential sensors, motion encoders, force
and pressure sensors, and ultrasonic distance sen-
sors. Overall, perception equips robots with the
ability to sense, interpret, and respond to their sur-
roundings, enabling intelligent and effective inter-
action with the environment [32].
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Figure 4: DRL-based navigation system inspired by [33].

4 Mobile Base Applications

4.1 Industrial and Logistics
Handling Robots

Mobile robots are used in manufacturing in-
dustries to automate tasks and improve effi-
ciency.They can transport materials, tools, and
parts within factories, reducing labor costs and
increasing production[34]. Stationary handling
robots, such as robotic arms and industrial robots,
are used for object manipulation, welding, paint-
ing, and assembly[3].

Automated Warehouses

Mobile robots are employed in warehouses to au-
tomate the movement of goods. They assist in or-
der fulfillment, packaging, and shipping, enhanc-
ing speed and accuracy in order processing[34].

Example: Amazon’s Kiva robots automate
shelf transport in warehouses.

4.2 Scientific Exploration
Planetary Exploration

Mobile robots, such as rovers, are utilized for ex-
ploring planets and other celestial bodies. They

collect data on surface conditions, atmosphere,
and geology, contributing to our understanding of
the solar system.

Example: NASA’s Curiosity rover explored
the Martian surface.

Oceanographic

Mobile robots explore oceans and underwater en-
vironments. They gather data on water tem-
perature, salinity, and marine life, advancing
our knowledge of ocean ecosystems[34].The hu-
manoid underwater robot Ocean-one can retrieve
objects with human-like dexterity[3].

4.3 Health and Assistance
Assistance Robots

Mobile robots provide support for elderly or dis-
abled individuals[34].They assist with tasks such
as mobility, shopping, and medication manage-
ment, improving their quality of life[34][3].

Robotic Surgery

Mobile robots aid surgeons in performing medical
procedures. They offer greater precision and dex-
terity than human hands, thereby reducing the risk
of complications[34].



Example: The Pepper robot assists elderly
people in Japan with daily tasks.

4.4 Security and Defense
Surveillance and Reconnaissance

Mobile robots are deployed for monitoring and re-
connaissance in various environments.Equipped
with cameras, sensors, and other technologies,
they collect and transmit environmental data to
human operators[3][34].

Operations in Hazardous Areas

Mobile robots are used in high-risk environments
such as fire scenes, hazardous material sites, and
disaster-stricken areas[3].They assist in tasks like
locating survivors, extinguishing fires, and con-
taining dangerous substances[34].The Atlas robot
is specifically designed for search and rescue
missions in conditions where human survival is
impossible[3]. Example: The PackBot robot is
used by military forces for bomb disposal.

5 Conclusion

Mobile bases have significantly advanced au-
tonomous robotics by improving mobility, adapt-
ability, and functionality across various environ-
ments. This work presented a structured overview
of mobile base types: wheeled, legged, hybrid,
aerial, and aquatic. Highlighting their operational
principles and suitable applications.

Wheeled robots remain efficient for struc-
tured terrains, while legged and hybrid systems
offer greater adaptability to rough environments.
Aerial and aquatic platforms extend robot deploy-
ment into inaccessible domains. Advances in con-
trol from PID to ASMC, MPC, and DRL en-
able more robust and adaptive behavior under un-
certainty. Complementary navigation algorithms
(e.g., A*, RRT) and perception systems (e.g.,
SLAM, LiDAR, vision) enhance autonomy and
environmental awareness.

These technologies have enabled applica-
tions in logistics, exploration, healthcare, and
hazardous environments. Looking ahead, fu-
ture research will likely focus on energy effi-
ciency, swarm coordination, human-robot inter-

action, and bio-inspired designs to further expand
the capabilities of autonomous robotic platforms.
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