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Abstract

It’s a presentation of the design and implementation of a Hardware-in-the-Loop (HIL) bench
dedicated to testing a motorcycle dashboard. This project aims to simulate various motorcycle
conditions by generating realistic analog and digital signals to verify the proper functioning of
the dashboard in a controlled environment using the actual tools of Vector Informatik that are
made for automotive test and validation. The bench consists of a microcontroller-based system
(ESP32 and Arduino Nano), DAC modules, relays, and signal conditioning circuits, all
coordinated together by custom firmware. This work highlights the challenges of embedded
systems integration, real-time signal emulation and the importance of verification tools in the
development lifecycle of automotive-grade electronics.

Keywords: Hardware In the Loop (HIL), motorcycle dashboard, test bench, CAN
communication, test and validation

Resumé

Il s'agit d'une présentation de la conception et de la mise en ceuvre d'un banc Hardware-in-the-
Loop (HIL) dédi¢ au test d'un tableau de bord de moto. Ce projet vise a simuler diverses
conditions de conduite d'une moto en générant des signaux analogiques et numériques réalistes
afin de vérifier le bon fonctionnement du tableau de bord dans un environnement controlé, a
l'aide des outils professionnels, congus pour les tests et la validation automobiles. Le banc est
composé d'un systeme a base de microcontréleurs (ESP32 et Arduino Nano), de modules DAC,
de relais et de circuits de conditionnement de signaux, le tout coordonné par des firmwares
personnalisés. Ce travail met en évidence les défis de 1'intégration de systémes embarqués, de
'émulation de signaux en temps réel et, bien sir, 1'importance des outils de vérification dans le
cycle de développement de 1'¢lectronique automobile.

Mots-clés: Hardware In the Loop (HIL), tableau de bord moto, banc d'essai, communication
CAN, test et validation.
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General Introduction

In the automotive industry, the continuous evolution of embedded systems and the increasing
complexity of Electronic Control Units (ECUs) necessitated robust methods for validation and
testing. Traditional methods that rely solely on real-world testing are often time-consuming,
expensive and may pose safety concerns which is particularly important when it comes to
automotives... especially during early development phases. This also critical in the context of
two-wheeled vehicles like motorcycles, where testing conditions can be even more variable and
constrained.

Problematic:

How can we validate and test the behaviour of a modern motorcycle dashboard
effectively without direct access to the real vehicle, while ensuring high reliability,
safety and cost-efficiency during development?

To address this challenge, this thesis proposes the development and implementation of a
Hardware-in-the-Loop (HIL) simulation bench specifically designed for a motorcycle
dashboard. By mimicking real sensor signals and CAN bus communication using
microcontrollers: the ESP32 and Arduino Nano, the objective is to enable full testing of
dashboard functionalities so it can eventually get approved for manufacturing without requiring
the physical motorcycle itself.

Finally, to provide a clear understanding of the project, this document is organized into three
chapters. The first chapter outlines the general context, defines key concepts such as Hardware-
in-the-Loop (HIL), and presents related works. The second chapter introduces the tools and
technologies employed, including microcontrollers, communication protocols, and testing
software. The third chapter describes the design and implementation of the HIL bench, covering
system architecture, signal simulation, and test strategy. Finally, the report concludes with a
general conclusion that summarizes the outcomes, addresses encountered challenges, and
proposes future improvements and perspectives.
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Chapter 1: Context and State of the Art

1.1 Introduction

This chapter lays the foundational understandings of the project by introducing its context,
objectives and the concept of Hardware-in-the-Loop (HIL), we also provide insights into the
architecture of the motorcycle dashboards and have a general view on the dashboard provided
by Fibonova and the role of embedded systems in modern vehicles and to ensure our work is
well-positioned, we included similar existing projects that we got the inspiration from to make
our own prototype.

Fibonova is a startup based in Algeria, founded in 2023 by a team of engineers passionate about
electronics and embedded systems. The company has a core team of four engineers and three
co-founders.

Fibonova focuses on prototyping and developing embedded systems, particularly in the
automotive and IoT domains. One of its notable prototypes includes a motorcycle digital
dashboard designed to interpret sensor inputs and display real-time vehicle data.

1.2 General Context of the Project

Embedded systems play a crucial role in modern vehicles, enabling complex functionalities like
real-time data acquisition, communication between components and intelligent decision-
making. As motorcycles in particular become more advanced, the integration of electronic
dashboards has become a standard replacing traditional analog meters with digital displays that
provide enhanced information and interactivity to the rider.

However, testing such embedded systems poses several challenges. It is often impractical,
costly, or unsafe to test real dashboards directly on a motorcycle during development. To
address this, engineers rely on Hardware-in-the-Loop (HIL) simulation, a method that replicates
the real-world environment by generating the same electrical signals that a dashboard would
receive from an actual motorcycle.

This project was developed within this context of building a custom HIL test bench using low-
cost components specifically designed to simulate a motorcycle's behaviour for testing a digital
dashboard. The goal was to provide a reliable, reproducible, and safe environment for validating
dashboard functionalities without relying on physical vehicle components.

This work was carried out as part of our final-year internship, a startup working on embedded
solutions for the automotive sector.

1.3 Objectives of the HIL Bench

The primary objective of this project was to design and implement a Hardware-in-the-Loop
(HIL) bench that could simulate the different signals typically received by a motorcycle
dashboard. The purpose of this bench is to test and validate the functionality of the dashboard
independently from the motorcycle.
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Specifically, the HIL bench was designed to:

- Generate digital pulse signals that simulate wheel speed using a Hall-effect sensor model.
- Produce analog signals using DACs to replicate parameters such as fuel level and outdoor
temperature.

- Transmit CAN messages to simulate real-time vehicle data such as RPM, battery voltage, and
warning indicators.

- Create a safe and controlled testing environment where engineers can trigger specific
spontaneous scenarios and observe the dashboard's response in real time.

- Reduce development time by providing a repeatable and adjustable signal source without
needing physical movement or a live vehicle.

In summary, the bench acts as a substitute for the motorcycle, enabling efficient testing,
validation, and demonstration of the dashboard under various conditions.

1.4 The concept of a HIL Bench

A Hardware-in-the-Loop (HIL) bench is a testing platform used to simulate real-world inputs
for embedded systems, allowing developers to validate the behaviour of a system without
needing the entire physical environment.

Key components of a HIL system include:

e Signal Generators for producing Analog, digital signals.

e Processing Unit which is typically a microcontroller or an embedded system (ESP32
and Arduino nano in this project).

e Test Management Software to control scenarios and monitor outputs (CANoe).

e Real Device Under Test (DUT): In this case, the actual motorcycle dashboard we
worked with.

HIL testing is widely used in automotive, aerospace and industrial sectors due to its ability to
reduce costs, accelerate development and enhance safety by eliminating the need for early
physical prototypes or dangerous test scenarios.
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1.5 Overview of Motorcycle Dashboards

Automotive Dashboards and motorcycles dashboards specifically have changed significantly
over the two last decades from analog gauges to advanced digital displays as it is shown in the
Fig.1.1. These dashboards, which are considered the primary interface for the rider, provide
him with real-time data of his overall vehicle state and conditions such as speed, engine RPM,
fuel level, temperature, and warning indicators (left and right indicators, headlights and RGB
lights).

Traditionally, motorcycles used analog dials for speed and RPM, combined with small LED
indicator lights for functions like turn signals, oil pressure, and high beam. However, with the
integration of microcontrollers and sensors, modern motorcycles increasingly adopt digital
dashboards or TFT (Thin Film Transistor) displays, which offer greater flexibility, better
visibility, and additional features like phone dialing for example through bluetooth
connectivity. The internal layout of a digital dashboard is almost the same on every model
which is shown in the diagram below in Fig.1.2.

Advanced dashboards now include:
o Digital speedometers
o Fuel level and engine temperature displays
e CAN-based communication with the ECU (Engine Control Unit)
e GPS integration and turn-by-turn navigation
e Connectivity with smartphones for calls, music, and diagnostics

o Diagnostic warning systems and service reminders

Fig 1.1 Traditional analog dashboards and modern digital dashboards.
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= On the upper photo we have a view of a classic analog dashboard (with mechanical
speedometer).

*  On the lower photo we have a view of a modern digital dashboard (TFT screen or LCD
with multiple data fields).

Sensors
hall effect sensor,
thermistance, fuel level
sensor

Microcontroller (like

display cluster (a digital
screen maybe touchable)

Fig.1.2. The internal functional layout of a digital dashboard.
As you can see in the diagram above, we can identify:

= Inputs (first case): Hall-effect sensors (speed), thermistors (temperature), CAN bus
(ECU data).

* Processing (middle case): Microcontroller (ESP32, STM32, etc.).

=  Qutputs (last case): LCD/TFT screen showing processed data.

The change toward digital dashboards also enables the integration of custom firmware, which
allows manufacturers to develop new dashboards that can be updated or personalized via their
software. This opens the door for companies to design modular, software-driven displays made
for specific requests by the customers.

In our project, we worked with a digital dashboard prototype, designed to read various types of
input signals (digital, analog, and CAN) and then display them on a user-friendly screen.
Dashboards like these require a reliable testing environment to validate its behaviour before
deploying it on an actual motorcycle and then be labelled as approved for manufacturing which
is the primary motivation for building our Hardware-in-the-Loop (HIL) bench.
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1.6 Embedded Systems Overview

An embedded system is a dedicated computing system designed to perform a specific function,
often within a larger system. Unlike general-purpose computers, embedded systems are made
for real-time tasks, constrained environments, and direct interaction with a hardware.

In the context of motorcycles, embedded systems are integrated into critical systems like:

e The Engine Control Unit (ECU).

e Anti-lock Braking Systems (ABS).
o Lighting and signaling systems.

o Digital dashboards.

These systems typically include:

e A microcontroller or microprocessor (like the ESP32 used in our dashboard and our HIL
bench).

e Memory components (Flash, RAM).

e Communication Interfaces: enable the exchange of data like (GPIO, ADC, PWM,
UART, SPI, 12C, CAN).

e Sensors.

e Embedded software or firmware programmed to respond to inputs in real time manner.

The motorcycle dashboard developed and used in this project is itself a complete embedded
system, responsible for:

o Reading input signals (speed pulses, fuel levels, engine temperature, lights and direction
indicators).

e Processing data and translating raw sensor values (in voltages) into human-readable
output.

e Managing and updating the display in real time.

e Handling interrupts, multitasking (with FreeRTOS), and communication protocols.

Also we can add that modern embedded systems are often characterized by:

e Low power consumption.

o Real-time performance.

o High reliability and fault tolerance.
e Compact size.

o cost-efficiency.

In the dashboard, it must perform accurately even when subjected to simulated inputs, just like
it would on an actual motorcycle. That’s why it was necessary to build another embedded
system called Hardware-in-the-Loop (HIL) test bench__ to detect any faulty inefficient results
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and eventually be able to validate the behavior of this embedded system under realistic, and
controlled conditions.

Furthermore, embedded systems development requires a careful coordination of hardware and
software design which involves:

e Selecting suitable fast microcontrollers.

e Designing the circuit (power supply, connectors, protections).

e Writing and debugging real-time embedded code.

e Integrating communication protocols such as CAN, which is widely used in
automotive systems due to its robustness and fault tolerance and rapid response rate.

In this project, the ESP32 serves as the heart of our test bench, compiling and running the logic
that simulates inputs, receives CAN frames, and drives the display.

our HIL device emphasizes the importance of real-time signal handling, communication
protocol support (such as in this case CAN) and a good embedded software architecture.

1.7 Similar Works and Safety Protocol

Hardware-in-the-Loop (HIL) testing is a necessary methodology in the validation of embedded
systems, especially within the automotive sector. HIL test benches enable engineers to simulate
real-world conditions by replacing actual hardware components with virtual models, which
allows for the comprehensive testing of embedded controllers and dashboards without the need
for a complete physical prototype [1]. This approach is widely adopted in the automotive
industry for its ability to accelerate and organize development cycles, reduce costs and ensure
system reliability and functional safety, particularly in terms of the safety protocol ISO 26262

[2] [3]-

Commercial HIL benches, like those provided by Vector and STEP Lab, offer modular and
high effective platforms capable of simulating complex vehicle behaviours and integrating
multiple communication protocols especially the one used widely in automotives which is CAN
[4] [5]. These systems are highly flexible, supporting the expansion of I/O interfaces and the
automation of test scenarios, which is essential for the validation of advanced features in
modern vehicles. For example, Link Engineering’s HIL system can recreate dynamic vehicle
environments, allowing for the real-time testing of brake systems and advanced driver-assist
systems (ADAS) by integrating both physical hardware and simulated vehicle dynamics [6].

The academic research so far has also demonstrated the versatility of HIL test benches. Viennet
et al. (2024) developed a HIL test bench for e-bike ABS validation, which highlights the
importance of test simulation (such as rider mass and tire grip) to the specific application, which
closely aligns with the needs of our motorcycle dashboard testing [7]. These studies emphasize
that the level of model complexity must be balanced to avoid overloading the simulator while
still achieving accurate system test and validation.
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Compared to these established systems, our HIL test bench developed for the motorcycle
dashboard project focuses on simulating key motorcycle sensor signals such as speed, fuel level,
temperature and indicator lights. While commercial and high-end HIL benches take years to
come to light and often target four-wheeler automotive platforms and utilize expensive
proprietary hardware, our version in the other hand prioritizes cost-effective components and
is also specifically adapted for two-wheeler applications (but can also be adapted for four-
wheeled with further work) [2] [7]. makes our test bench particularly valuable for automotive
startups and small manufacturers seeking affordable, flexible and rapid validation tools.
Furthermore, our design supports modular signal expansion and real-time closed-loop testing,
which shows loyalty to the core principles of HIL methodology while addressing the unique
requirements of motorcycle dashboard systems [1] [3] [8].

1.7.1 The ISO 26262 protocol

We talked earlier about the ISO 26262 protocol but we didn’t really explain what it really
is and why 1is it so important in automotive test and validation so ISO 26262 is an
international standard governing the functional safety of electrical and electronic (E/E)
systems in road vehicles (excluding mopeds). It provides a risk-based framework to mitigate
hazards caused by E/E system failures, ensuring safety across a vehicle’s lifecycle. The Key
Components of ISO 26262 are:

a). Safety Lifecycle

The standard defines three phases for safety-critical system development:

Phase Activities Output

- Item definition (system boundaries)
- Hazard and Risk Assessment
(HARA)

Concept Phase - Safety goal definition Safety goals, ASIL classification

- System/hardware/software design
- Safety requirement decomposition

Product Development | - Verification/validation Safety case, validated system

- Manufacturing controls
Production & - Field monitoring Safety reports, incident
Operation - Decommissioning management

Tab.1.1. The different phases of the safety lifecycle

Source: our own work starting from the link : “The lifecycle ensures safety is embedded from
concept to decommissioning, with rigorous documentation and traceability [9] [10].
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b). Automotive Safety Integrity Level (ASIL)
ASIL classifies risks based on three factors:

o Severity (S0-S3): Injury severity (e.g., S3 = life-threatening).
o Exposure (E0—E4): Likelihood of operational scenarios (e.g., E4 = frequent).
e Controllability (C0—C3): Driver’s ability to avoid harm (e.g., C3 = difficult).

ASIL ratings (A—D) dictate safety measures:

o ASIL D: Highest integrity (like braking systems). Requires redundant architectures,
formal methods, and fault injection [11] [12].

e ASIL C/B: Moderate (like power steering, BMS).

e ASIL A/QM: Low risk (like infotainment).

Our motorcycle dashboard’s speed sensor might be ASIL B (moderate severity, rare
exposure, controllable) [11][13].

¢). Hazard and Risk Assessment (HARA)
HARA identifies hazards and defines safety goals:

e Item Definition: Describe system functions and boundaries (e.g., dashboard ECU).
e Hazard Identification: Brainstorm failure modes (incorrect speed display).
e Risk Classification: Assign ASIL using severity, exposure, controllability.
e Safety Goals: Top-level requirements (e.g “Speed signal deviation < 5%”) [9] [14].

d). V-Model Development Process

ISO 26262 mandates a V-Model as you can see in Fig.1.3 which we widely adopted in
automotive industries:

Customer
testing VIL
System testing VIL
Component
Unit testing SIL

Customer
specification
System
requirements
Component
requirements
Software
requirements

Fig.1.3. Diagram of the V cycle
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o Left Side: Decomposing safety goals into technical requirements.
o Right Side: Validating each level (unit, integration, system) [10] [11].

Note: For ASIL D, semi-formal modelling (Simulink®) and simulation are required [12]
[14].

e). Functional Safety Management

o Safety Plan: Outlines roles, milestones, and confirmation measures (e.g., audits) [13]
[15].

e Development Interface Agreement (DIA): Defines responsibilities between suppliers
and OEMs 14].

o Fault Injection: Simulates hardware/software failures (e.g., sensor disconnection) to
validate robustness [10] [13].

1.7.2. Alignment of the HIL bench with ISO 26262

Furthermore, our motorcycle dashboard HIL bench aligns as well with ISO 26262
principles:

e Validation: Simulates sensor signals (speed, fuel) to validate dashboard responses,
mirroring ISO 26262’s verification requirements [13] [16].

e Fault Testing: By injecting edge-case signals (out-of-range temperatures and power
supply exaggerated levels) we addressed ASIL B/C-level safety goals [10].

¢ Documentation: Documenting the test cases and results ensures compliance with the
standard’s lifecycle phases [14] [15].

1.8. Conclusion

In summary, this chapter established the foundational context of the project by highlighting
the growing complexity of embedded systems in motorcycles and the need for robust testing
methodologies such as Hardware-in-the-Loop (HIL). It introduced the main challenges in
validating modern dashboards, presented the objectives of the proposed HIL bench, and
reviewed relevant literature and standards like ISO 26262 that guided our approach. These
insights justify the adoption of a custom HIL solution tailored to the needs of the dashboard.
The next chapter builds upon this foundation by presenting the tools and technologies
selected to implement the bench, including the microcontrollers, signal generation
components, and testing platforms used throughout the project.

10
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Chapter 2: Tools and Technologies Used

2.1 Introduction

In this chapter, we explore the main tools and technologies employed in developing the HIL
test bench. Each component, whether hardware or software plays a very critical role in ensuring
the accurate simulation and validation of dashboard signals. This includes microcontrollers,
communication protocols, DAC modules, and professional automotive testing tools.

2.2 System Under Test General Description

To understand how our HIL bench work we first need to have a general view on our SUT
(System Under Test] which in our case is the motorcycle dashboard. This latter serves as a
compact embedded system designed to display critical information to the rider, the prototype is
entirely signal-driven and uses direct analog and digital inputs for operation.

The hardware architecture includes:

o ESP32-S3 Microcontroller: is the central processing unit of the dashboard. It reads all
incoming signals and controls the display logic. the ESP32-S3 offers advantages like
built-in Wi-Fi and Bluetooth (reserved for future expansion), and dual-core processing
power.

e TFT Display Screen: The dashboard includes a color screen for visualizing speed,
indicators, fuel level, temperature, and other parameters. The display is managed
directly by the ESP32-S3 card using SPI or another parallel interface.

e Voltage Dividers: Since the signals originating from the motorcycle are typically at
12V, voltage divider circuits are used to step them down to safe levels (usually 3.3V)
compatible with the ESP32°s GPIOs.

e Demultiplexer Circuit: Used to route multiple incoming signals to the limited number
of GPIO pins present in the card which allows for efficient use of the ESP32's available
I/O and adds more inputs than the microcontroller natively provides.

e Direct Analog and Digital Inputs: The card reads sensor data (like fuel level or
outdoor temperature) using the ESP32’s ADC pins, while pulse-based inputs (like speed
from a Hall effect sensor) are handled using interrupt-capable digital pins.

For testing and development of this dashboard, a Hardware-in-the-Loop (HIL) bench was
designed by us to simulate these inputs replicating a real motorcycle environment through a
software/hardware-controlled signal generation. Below in Fig.2.1 we can see the main general
diagram of the System Under Test.
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Fig.2.1. Diagram of the System Under Test

2.3 Presentation of ESP32

The ESP32 is a low-cost, low-power microcontroller series developed by Espressif Systems, it
is widely adopted in both academic and industrial embedded systems projects. It has gained a
lot of popularity due to its high performance with a processing speed up to 240Mz, rich
peripheral set and integrated wireless capabilities, which makes it ideal for Internet of Things
(IoT), real-time systems and also embedded applications like the ones implemented here in this
project.

2.3.1 Core Architecture

The ESP32 is based on a dual-core Tensilica Xtensa LX6 or LX7 processor (depending on the
model) capable of running up to 240 MHz with support for:

e Real-Time Operating Systems (RTOS).
o Floating point operations.

e Multitasking.

e On-chip memory (RAM and Flash).

e Power-saving modes.

2.3.2 Connectivity Features
A big advantage of the ESP32 family is its integrated wireless communication modules:

e Wi-Fi 802.11 b/g/n.
e Bluetooth 4.2 /5.0 (Classic and BLE).

13



Chapter 2: Tools and Technologies Used

These allow the ESP32 to interface with remote services, mobile apps, or cloud platforms
which makes it ideal for smart systems.

2.3.3 Peripheral Interfaces

The ESP32 includes a wide array of peripherals and interfaces as shown below Tab.2.1:

Interface Description

GPIO 33 general-purpose 1/O pins

ADC Up to 18 channels of 12-bit ADC

DAC 2 x 8-bit integrated DAC outputs

SPI/12C/128S SPI, 12C and I2S interfaces for communication
UART Up to 3 UART interfaces

PWM Pulse Width Modulation on any GPIO

Tab.2.1. Key specs of ESP32

In this project, two ESP32 boards are used: one in the motorcycle dashboard and another in
the Hardware-in-the-Loop (HIL) bench, each fulfilling different roles.

2.3.4 Development E-ecosystem
The ESP32 benefits from a robust open-source community and tooling:
e Arduino IDE and PlatformIO for simple C++-based development.
o Espressif IoT Development Framework (ESP-IDF) for advanced development.

e Compatible with many third-party libraries like FreeRTOS, LovyanGFX and
LittlevGL (LVGL).

2.3.5 Usage in The Project

The usage of this microcontroller can be summarized in:

Acquires signals (voltage levels, indicators), processes logic, and

Dashboard renders real-time data on a touchscreen.
Simulates motorcycle behavior by generating
HIL .. . ]
Bench digital, analog and receive CAN signals to
validate dashboard functionality.
2.3.6 Advantages

ESP32 has many advantages, we can highlight the following:

14
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e All-in-one solution: CPU, RAM, wireless, and peripherals on one chip.

o Cost-effective for both prototyping and production.

o Excellent documentation and community support.

o Flexible enough to support multitasking through his dual cores, signal processing and
generating user interface rendering simultaneously.

2.4 Arduino Nano Presentation

The Arduino Nano is a compact and breadboard-friendly microcontroller board based on the
ATmega328P microcontroller. It offers the same functionality as the Arduino Uno but in a
much smaller form with lesser pins and a different shape, making it ideal for embedded systems
and space-constrained designs like the one that is used in our motorcycle dashboard HIL bench.

2.4.1 Key Specs
The key specs of the ARDUINO Nano are:

e Microcontroller: ATmega328P.

o Operating Voltage: 5V.

e Input Voltage (recommended): 7-12V.

o Digital I/0 Pins: 14 (6 PWM outputs).

e Analog Input Pins: 8.

e Clock Speed: 16 MHz.

e Flash Memory: 32 KB (2 KB used by bootloader).
e SRAM: 2 KB.

« EEPROM: 1 KB.

o USB Interface: Mini-USB.

2.4.2 Arduino Nano Utility

In our project, the Arduino Nano was selected specifically to manage the power supply level
signal via a dedicated DAC module connected through the I*C interface. Initially, all analog
signals were planned to be generated by a single ESP32 but bandwidth limitations and the
external DAC instability over the I?C bus caused fluctuation in the other signal output. To
overcome this, the analog voltage generation for the power supply level was oftloaded to a
separate controller which is the Arduino Nano thereby ensuring more stable and isolated signal
output to ensure maximu accuracy.

2.4.3 Role in the HIL Bench
the role of ARDUINO Nano can be summarized in:

e Receives CAN messages via the MCP2515 CAN module.

o Extracts the power supply voltage level from the CAN frame.

e Generates a corresponding analog voltage (0—5V) using a connected DAC module
(MCP4725).

o Ensures signal stability by avoiding I?C interference with the ESP32 signals.

e Runs a dedicated firmware that receives the corresponding CAN message.
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2.5 CAN Bus: Principles and Operation

The Controller Area Network (CAN) bus is well known because it is a robust, efficient and
widely adopted communication protocol used in automotive and industrial systems. Originally
developed by Bosch in the 1980s, CAN was designed to allow microcontrollers and devices to
communicate with each other without the need for a host computer using a multi-master,
message-based protocol.

Although the motorcycle dashboard does not originally use CAN, the HIL (Hardware-in-the-
Loop) bench developed in this project employs the CAN protocol to simulate realistic in-vehicle
communication using the CANOE software. Understanding the working principles of CAN is
therefore essential for interpreting and generating test signals.

2.5.1 Communication Mode

CAN uses a multi-master architecture, meaning multiple devices (nodes) can initiate
communication on the bus. The type of communication here is message-based rather than
address-based like other protocols (12C, SPI...). This allows every node to listen to all messages
and react only to the ones relevant to them, identified by a unique message ID.

2.5.2 Electrical and Physical features
The electrical and physical features of a CAN bus are:

o Bus Type: Differential two-wire system (CAN_H and CAN_L) they need to be both
present for the message to be sent.

e Speed: Common speeds include 125 kbps, 250 kbps and 500 kbps and up to 1 Mbps
max for CAN 2.0 (CAN FD can go even faster).

e Termination: Requires sometimes 120-ohm resistors at both ends of the bus for signal
integrity and to avoid fluctuations.

e Voltage Levels: it uses a differential signal to resist noise in automotive environments.

2.5.3 CAN Frame Structure

A typical CAN 2.0 frame (standard) includes as shown below in Tab.2.2:

Field Description
Start of Frame (SOF) Indicates the beginning of a message
Identifier (11 or 29 bits) Determines message priority and content
Control Field Includes data length
Data Field Actual data (0 to 8 bytes for standard CAN)
CRC Cyclic Redundancy Check for error detection
ACK Acknowledge slot (receiver confirms message)
End of Frame (EOF) Marks the end of the transmission

Tab.2.2. CAN data frame structure
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A Lower ID = higher priority during collisions.

Below in Fig.2.2 is a representation of what a data CAN message may look like

* CAN message >
16
bits
Start of CAM- 1D Transmizsion Control Data Cyelic ALK End of
frame request Redundancy

check Acknowled frame

gement

Fig 2.2: CAN message frame

2.5.4 CAN in the HIL Bench

Although the actual motorcycle dashboard is not based on CAN, the HIL test bench uses a CAN
bus setup to:

e Send predefined frames representing engine RPM, speed, fuel level, or warning lights.
o Verify the dashboard’s behaviour and visual outputs in response to specific values of

the CAN messages.

The CAN messages were generated using a Vector CANoe and sent to the esp32 through a
CAN case and a CAN module connected to the ESP32.

2.5.5 An example CAN message
A typical message to simulate Bike Speed looks like this:
o ID: 0x0CFF0500
e Data: 03 4B 00 00 00 00 00 00 — Interpreted as 833 RPM

o Periodicity: 10 ms (real-time emulation)

This data is visualized on the real dashboard connected to the HIL bench, which provides
feedback about system accuracy and responsiveness.

2.4.6 The main advantages of using a CAN communication protocol in automotives
The main advantages of using a CAN in the automotive industry are:

o Reliability: Real-time error detection with CRC and acknowledgment.

e Scalability: Easily integrates multiple nodes and test cases.

e Noise Immunity: Well-suited for electrically noisy environments (vehicles).

o Non-destructive arbitration: Messages don’t collide; higher priority wins without
interference.
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2.6 DACs and Analog Signals

Digital-to-Analog Converters (DACs) play a crucial role in connecting digital microcontrollers
with Analog hardware components. Many real-world devices like sensors, actuators and even
automotive dashboards either produce or require Analog signals, and since most
microcontrollers including the ESP32, operate using digital logic (0Os and 1s), DACs are really
necessary to transform digital outputs into corresponding voltage levels.

2.6.1 Principle of Operation

A DAC receives a digital value (typically an integer) and converts it into an Analog voltage
that is proportional to that value. For example, an 8-bit DAC (like the one present in the ESP32)
can take values from 0 to 255 and output a voltage between 0 V and a reference voltage provided
by an engineer (e.g., 3.3 V). The output voltage V,,,,; is given by:

D
Vout = o1 X Vref

Where:

e D is the digital input value,
e nisthe DAC resolution (typically 8, 10 or 12 bits),

o Vi £ 1s the reference voltage (which is typically 3.3 Vor 5 V).

2.6.2 Use of DACs in the HIL Bench

In the Hardware-in-the-Loop (HIL) bench developed for this project, DACs are used to simulate
Analog inputs that would normally come from real sensors on a motorcycle. This includes the
signals:

e Fuel level.
e Temperature sensor output.
e Power Supply signal.

To simulate these signals accurately, three DACs must provide stable and noise-free voltage
levels. So in total there were two types of DACs used:

e  MCP4725 External DAC: This is a 12-bit DAC module that communicates with the
Arduino Nano via the 12C protocol (SDA and SCL). It provides high resolution and
stable output for a signal like Power Supply Level, suitable for simulating analog signals

required by the dashboard. As you can see below in Fig.2.3 is an illustration of what a
MCP4725 DAC module may look like.
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Fig.2.3.The MCP4725 DAC Module

e Built-in ESP32 DACs: The ESP32 microcontroller includes two 8-bit DACs on pins
GPIO25 and GPIO26. These were used for less critical signals or because we can say
simplicity was favoured over resolution for temperature signal and fuel tank level
signal.

2.6.3 Signal Filtering and Smoothing

DAC output is usually passed through a low-pass filter (typically an RC circuit) to eliminate
digital noise and to smooth the overall Analog waveform. This is especially important when
the Analog voltage is used as an accurate reference to display logical values in the dashboard.

2.6.4 Calibration and Scaling

To ensure accuracy, each Analog output must be scaled to match the expected voltage range of
the motorcycle dashboard. For instance, if the dashboard expects a fuel signal between 0.5 V
(empty) and 4.5 V (full), the DAC output must be calibrated accordingly. This was achieved
either through software scaling or with voltage dividers and operational amplifiers.

To fully understand how software scaling works which is the main course we followed to output

the right values from our DACs here is a quick example of generating a 1V analog signal
through an ESP32 and an external MCP4725 DAC module as shown in Fig.2.4 below.
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Fig.2.4. An example of a ESP32 connected to MC4725 through an 12C bus

Here is a simple code that generates a 1V through the DAC

void setup() |

Serial.begin(3600);
Serial.println("Hello!");
dac.begin(0x&0) ;

t

void loop() |

dac.=setVoltage (1 * 4036 / 3.3, false);

t

#include <Wire.h>: Includes the I2C communication library. The MCP4725
communicates over 12C.

#include <Adafruit MCP4725.h>: This is the official Adafruit library for the
MCP4725 DAC module.

Adafruit MCP4725 dac: Creates an instance of the DAC.
Line 12: Initializes the MCP4725 DAC using its 12C address (default is 0x60).

Starts communication between the ESP32 and the DAC.
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Line 17: setVoltage (value, persist) : sends a digital value to the DAC,
which then converts it into an analog voltage.

1 * 4096 / 3.3: This line attempts to convert 1V into a digital value for a 12-bit DAC
(range: 0-4095).

So, if we want 1 V out, and the reference voltage is 3.3 V:
;—3 X 4096 ~ 1240 This means the DAC will output a voltage close to 1V.

false as the second argument tells the DAC not to store the value in EEPROM (it will
be gone on power off).

2.7 CANoe Software

CANoe (Controller Area Network Overall Environment) is a comprehensive development and
testing tool by Vector Informatik for validating embedded systems, particularly automotive
ECUs and networks. It supports simulation, analysis, and testing of CAN, LIN, FlexRay,
Ethernet, and other protocols. Below is a breakdown of its core components and functionalities:

2.7.1 DBC File
A DBC file (CAN database) defines the structure of CAN bus communication, including:

e Messages (CAN frames with IDs and data).

o Signals (data fields within messages, e.g., speed, temperature).
e Nodes (ECUs transmitting/receiving messages).

e Encoding rules (scaling, offset, byte order).

The two most important elements in a DBC file are messages and signals.
a) Messages

A message represents a single CAN data frame transmitted on the bus. It is the main
container of an information or multiple informations present in one or more signals.

o Syntax: Each message in CAPL is defined by a line starting with BO .
e Components:
e CAN ID: A unique identifier for the message, written in hexadecimal.
e Message Name: A unique name for the message (1-32 characters).
e Length: it’s the total number of data bytes in the message (DLC).
e Sender: The node (ECU) that transmits the message.
o Example:

BO 123 SPEEDM: 8 Vector XXX

This line defines a message named "SPEEDM" with CAN ID 123, length 8 bytes, sent by the
node "Vector XXX".
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b) Signals

signals are the individual pieces of data contained within a message. Each signal represents
a physical quantity present within a vehicule, such as speed, temperature, or status flags for
example.

o Syntax: each signal is defined by a line starting with SG_ and is always placed under a
message definition.
e Components:
e Signal Name: unique identifier for the signal.
o Bit Start: the starting bit position of the signal within the message byte.
o Bit Length: the number of bits the signal occupies.
e The endianness: Byte order (@1 for little-endian, @0 for big-endian).
e The signedness: Whether the signal is signed (-) or unsigned (+).
e Scaling and Offset: Used to convert the raw value into a physical value (raw *
scale + offset).
e  Minimum/Maximum: the range of the signal.
e Unit: Physical unit ("km/h", "°C").
e Receiver: Node(s) that use this signal.
o Example:

SG_ VehSpd: 39112@0+ (0.05,0) [0]127.96875] 'm/s'
InstrumentCluster

This defines a signal "VehSpd" starting at bit 39, 12 bits long, little-endian, unsigned with a
scale of 0.05, offset 0, min 0, max 127.96875, wunit "m/s" received by
"InstrumentCluster".

CANoe uses DBC files to decode raw CAN data into human-readable signals for simulation,
testing, and analysis.

In addition to defining messages and signals directly in the DBC file, you can also create and

manage them easily using the CANdb++ Editor which is included with Vector CANoe, this
graphical tool allows you to visually add, edit and organize all elements of our CAN database
without manually editing the text files. While the best practices when creating a DBC file
are as follows:

e Naming Conventions: Use descriptive names (Brake Pressure instead of something
like Sig 1).

o Signal Groups: Group related signals ( Light Indicators for turn signals, headlights).

o Validation: Use CANoe’s Database — Validate to check for errors.

2.7.2 CAPL (Communication Access Programming Language)

CAPL is a C-like scripting language for automating tests, simulating ECUs and manipulating
the bus traffic.
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The Key CAPL Features are:
e Event-driven execution: Triggers on bus events (message reception).
o Signal manipulation: Modify signals in real time (inject faulty speed values).
o Test automation: Execute test sequences and generate reports.

2.7.3 ECU Simulation and Testing

CANoe simulates ECUs and network behaviors for validation and there are mainly to types of
Testing Workflows:

e SIL (Software-in-the-Loop): Validate ECU software in a virtual environment.
e HIL (Hardware-in-the-Loop): Test physical ECUs with simulated sensors/actuators.

the motorcycle dashboard ECU can be tested by simulating CAN messages for speed, fuel level
and also fault codes.

2.7.4 CANoe Interface and Modules
CANoe has several essential components that are used of the creation of test cases.
a) Core Interface Components
o Simulation Setup: configure ECUs, networks and I/O channels.
e Trace Window: to monitor raw and decoded bus traffic.
e Graphics Panel: create virtual dashboards for signal visualization .
e Test Module: to design automated test cases using CAPL
b) Hardware Integration
o It only supports Vector interfaces like the can case VN1630 for real-time HIL testing.
e FPGA-based models (like electric motor simulation) which enables high-fidelity
testing.
2.7.5 Advanced Features
CANoe has some advanced features that are highlighted as follows:

a) Fault Injection

o Simulate bus errors, signal outliers or when an ECU disconnects.
e Validates error-handling logic in ECUs.

b) Physical Models

e Prebuilt models (Vehicle Dynamics, Electric Motor) simulate mechanical systems.
o Example: Simulate PWM signals for a motorcycle’s fuel gauge.
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By understanding CANoe’s architecture, we can then contextualize our work within the
industry standards while highlighting its elite innovation.

2.8 Vector VN1630: Professional CAN Interface

The CAN case VN1630 made by VECTOR Informatik is an essential tool to ensure
communication between the HIL bench and the CANoe software. It’s a sophisticated
equipment that has several features and capabilities.

2.8.1 Hardware Specifications

The Vector VN1630 is a professional-grade CAN interface device from the VN1600 family, it
is designed for industrial and automotive testing applications. It features 4 channels specifically
made for flexibility and I/O support which makes it suitable for complex testing
environments. The device connects to a host computer via USB, drawing power directly from
the USB connection, which greatly simplifies setup in laboratory environments.

The VN1630 supports multiple CAN protocols including standard CAN, CAN FD (Flexible
Data-rate), and in newer versions, CAN XL, allowing for communication speeds up to 5 Mbit/s
for CAN FD this makes it suitable for modern automotive applications requiring high-speed
data transfer.

2.8.2 Key Features and Capabilities
The key features of the VN1630 are:

e Multi-Application Support: it allows multiple software applications to access the same
CAN channel simultaneously.

e Synchronized Channels: provides minimal latency times with high timestamp
accuracy (within one device: 1ps).

o Hardware-Based Flash Routine: it enables fast CAN flashing for ECU programming.

o Digital/Analog 1/0:it includes dedicated D-B9 connector (CHS) for digital-analog
input/output tasks.

2.8.3 Software Integration

The VN1630 is designed to work seamlessly with Vector's software suite but these softwares
can never be used for testing without the CAN Case provided by Vector, these softwars are:

e CANoe: For comprehensive network design, simulation, and testing.
e CANalyzer: For bus monitoring and analysis.
e CANape: For ECU calibration and diagnostics.

This integration creates a complete ecosystem for automotive development and testing,
particularly valuable in Hardware-in-the-Loop (HIL) testing environments especially with
CANoe. As you can see below in Fig.2.5 is an illustration of what the VN1630 CAN case may
look like.
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Fig.2.5.The VN1630 CAN Case by Vector Informatik

2.9 MCP2515: Embedded CAN Controller

The MCP2515 is a stand-alone CAN controller manufactured by Microchip Technology that
implements CAN network.

The MCP2515 operates at speeds up to 1 Mbit/s and communicates with microcontrollers via
a high-speed SPI interface (up to 10 MHz). It usually operates on a voltage range of 2.7V to
5.5V with a typical active current consumption of only SmA and standby current of 1 pA in
sleep mode. It’s compatible with both Arduino and ESP32.

2.9.1 Key Features and Capabilities

Despite its lower cost compared to professional solutions, the MCP2515 offers several valuable
features:

e One-Shot Mode: it makes sure message transmission is attempted only once.

e Interrupt Support: it provides a configurable interrupt output pins for event
notification.

e Clock Features: it usually includes a clock out pin with a programmable prescaler
that can serve as a clock source for other devices.

2.9.2 Integration with and ESP32 Arduino and DIY Projects

The MCP2515 is widely used in Arduino-based CAN bus projects due to its affordability and
ease of integratio. Typical Arduino CAN modules combine the MCP2515 controller with a
transceiver (often the TJA1050) on a single board with SPI pins for connection to

microcontrollers.

This configuration allows Arduino boards as well as ESP32 microcontrollers to communicate
with automotive CAN networks or other CAN-enabled device.

2.9.3 System Architecture Implementation

25



Chapter 2: Tools and Technologies Used

In our HIL test bench the communication flow follows a very sophisticated chain that makes a
bridge of professional automotive testing tools with cost-effective embedded systems. The
system architecture of the HIL bench implements a three-stage communication process:
Starting with CANoe that simulates generated CAN messages then:

e the Vector VN1630 interface transmits these messages through the DB9 connector.

e the MCP2515 CAN controller receives and processes the data (as you can see
below in Fig.2.6 is an illustration of what the MCP2515 CAN module may look
like).

e Finally the ESP32 and the Arduino Nano microcontrollers manipulate the received
signals for test simulation.

Fig.2.6 The MCP2515 CAN Module

2.9.5 ESP32 Integration and Data Manipulation

The ESP32 integration in our system is explained as follows:

a) SPI Communication Interface

The MCP2515 communication with the ESP32 microcontroller through the high-speed SPI
interface enables efficient transfer of received CAN messages for further processing. The

typical connection configuration uses the ESP32's hardware SPI pins for optimal performance
and below in Tab.2.3 is the complete pinout of the MCP2515 and ESP32 used in our project:

MCP2515 Pin ESP32 Pin Function

CS GPIOS5 Chip Select

ST GPIO23 SPI MOSI (Master Out, Slave In)
SO GPIO19 SPI MISO (Master In, Slave Out)
SCK GPIO18 SPI Clock
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MCP2515 Pin ESP32 Pin Function

INT GPIO4 Interrupt signal for message reception

Tab.2.3. Pinout of MCP2515 with ESP32
b) Message Processing and Manipulation

Once the ESP32 receives CAN messages from the MCP2515, our firmware can extract and
manipulate the data according to our HIL test requirements. The ESP32's dual-core architecture
provides sufficient processing power to handle the real-time CAN message processing while
simultaneously generating appropriate analog and digital signals for the motorcycle
dashboard. This manipulation capability allows us to simulate various motorcycle operating
conditions, fault scenarios, and edge cases that would be difficult or dangerous to reproduce
with the actual vehicle hardware.

2.9.6 Arduino Nano Integration and Data Manipulation

It’s basically the same with ESP32 but with different pinout as you can see below in Tab.2.4:

MCP2515 Pin Arduino Nano Pin Function

CS D10 Chip Select

SI DI11 SPI MOSI (Master Out, Slave In)

SO D12 SPI MISO (Master In, Slave Out)
SCK D13 SPI Clock

INT D2 Interrupt signal for message reception

Tab.2.4. Pinout of MCP2515 with Arduino Nano

The Arduino Nano’s role in this HIL setup is to act as a dedicated CAN-to-analog converter
for the specific signal of power supply level. therefore, it also needs its second separate CAN
module.

2.10 DB9 Connector: The Physical Interface Standard

The DB9 (D-SUB 9) connector serves as the industry-standard physical interface for CAN bus
communication in professional automotive testing environments. This 9-pin male connector
follows standardized pinout configurations that ensure compatibility across different
manufacturers and testing platforms, the connector's robust design provides a reliable signal
integrity and electromagnetic compatibility which makes it ideal for automotive and industrial
applications where the signal quality is critical.
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2.10.1 Standard DB9 CAN Pinout Configuration

The DB9 connector in the VN1630 follows the CiA 303-1 standard pinout, which is widely

adopted in industrial and automotive testing applications as follows in Tab.2.5:

Pin Number Signal Description
1 NC No Connection
2 CAN L CAN Low differential signal line
3 GND ground
4 NC No Connection
5 SHIELD Optional cable shield connection
6 GND ground
7 CAN H CAN High differential signal line
8 NC No Connection
9 VB+ Optional external power supply (+9V to +30V)

Tab.2.5. Pin mapping of the DB-9 connector

And below in Fig.2.7 is schematic of the entire pin mapping

O Pin 1: Not Connected
Pin 6: CAN Ground I
O Pin 2: CAN L
Pin 7: CAN H

@
O
Pin 8: Not Connected O
O

Pin 3: CAN Ground

O Pin 4: Not Connected
Pin 9: CAN Power |

% Pin 5: CAN Shield

Fig.2.7. A schematic of the Pin Mapping of the DB-9 connector

This pinout configuration can ensure a proper differential signalling between CAN H (pin 7)
and CAN_L (pin 2), which is essential for noise immunity and reliable data transmission over
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extended distances. The dual ground connections (pins 3 and 6) provide enhanced signal
integrity and electromagnetic compatibility.

2.10.2 Vector VN1630 CAN Message Transmission
The VN1630 connects must use the DB9 connector to ensure CAN transmissions successfully.
a) VN1630 Output Methode

The Vector VN1630 interface generates CAN messages from CANoe simulation and
outputs them through its DB9 connectors with professional-grade signal
conditioning. The device supports CAN 2.0B protocol at speeds up to 1 Mbit/s, with
CAN FD capabilities extending to 5 Mbit/s depending on network configuration. The
VN1630's built-in CAN transceiver provides the necessary voltage levels and current
drive capabilities to ensure reliable signal transmission through the DB9 interface. As
you can see below in Fig.2.8 how the DB-9 connects to our CAN case through a 120 Q
resisor to ensure signal stability.

b) Signal Conditioning and Output Characteristics

The VN1630 uses high-speed CAN transceivers that convert the digital CAN protocol
data into differential analog signals suitable for transmission over the physical CAN
bus. These transceivers provide the necessary signal conditioning including voltage
level conversion and protection against electrical faults such as short circuits and
overvoltage conditions. The device maintains precise timing characteristics with
timestamp accuracy within 1us, ensuring deterministic message transmission which is
critical for HIL testing applications.

VN1630A

CAN/LIN Interface

Fig.2.8. A picture of a DB-9 connector connected to VN1630 CAN Case
2.10.4 MCP2515 CAN Controller Integration

The integration of the MCP2515 CAN module in the system is explained as follows:
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a) MCP2515 Message Reception

The MCP2515 CAN controller in our test bench serves as the bridge between the
professional VN1630 interface and ESP32 microcontroller. When connected to the
VN1630's DB9 output, the MCP2515 receives the differential CAN signals. The
MCP2515 implements the complete CAN 2.0B protocol stack handling message
filtering, error detection and CAN Id reading.

b) Hardware Connection Configuration

The physical connection between the VN1630 DB9 output and the MCP2515 module
requires proper signal routing and termination:

e CAN_H (DBY pin 7) connects to the CAN transceiver's CANH input.

e CAN_L (DB9 pin 2) connects to the CAN transceiver's CANL input.

e CAN_GND (DB9 pins 3/6) provides the reference ground for the CAN signals.

e 120Q termination resistor between CAN_H and CAN_L ensures proper signal
integrity and avoids fluctuations.

The MCP2515's message filtering capabilities allow selective reception of specific

CAN IDs relevant to our motorcycle dashboard simulation, which reduces processing
overhead and also improves system efficiency.

2.11 Additional Components

In addition to the technologies we explained in the previous sections we used three other
much less sophisticated basic components but rather essential to ensure the full functioning of
our HIL bench, the 8-relay module, the bike connector and the LM324 amplifier IC.

a) A brief explanation of the 8-Channel Relay Module
An 8-channel relay module as shown in Fig.2.9 allows a microcontroller like the ESP32 to

amplify simple ON and OFF signals (3.3V or 5V indicators or headlights) to a higher
voltage depending on the power supplied to the relay switches.

o]

0
8 Relay Module _

Fig.2.9. An image of the 8 relays module

Each relay on the module is an electromagnetically-operated switch. When the ESP32 sends a
HIGH or LOW signal to one of the relay input pins(each input pin correspond to each relay IN1
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corresponds to D1 and etc..), the corresponding relay opens or closes its contacts allowing 12V
from an external power supply to reach the target device (in this case, dashboard signal lines).

Each relay typically supports Normally Open (NO) and Normally Closed (NC) terminals and
can handle 10A at 12V DC or 220V AC and also has optocouplers for isolating microcontroller
logic from the high-voltage side.

Four out of eight relays are used in this module and they are controlled by pins 33, 27, 32 and
15 of the ESP32. Used to amplify ON/OFF signals (Digital HIGH/LOW) to actual 12V levels.

The signals that control the relay are:

e Right Indicator.
e Left Indicator.
e Headlights.

o Key Contact.

We used relays because the dashboard expects real-world 12V signals, and ESP32 can
only output 3.3V logic which is not enough to simulate the actual bike dashboard conditions so
relays basically act as the bridge between simulation logic and real voltage levels.

b) A brief explanation of the 9-pin Connector

This is a male connector (9-pin) as shown below in Fig.2.10 that groups and routes all the
output signals from our HIL bench to the motorcycle dashboard. It ensures easy plug-in and
plug-out with its female twin during tests. We used one because:

o It makes the system user-friendly.

o It prevents wiring errors.

e Mimics the actual connector used between the dashboard and the motorcycle for
signal interfacing.

Fig.2.10. An image of the male 9 pins bike connector
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Pin Mapping of the bike connector

The signals meant for simulation are carefully assigned to each pin with a specific
number by following a Pin Mapping shared between both the male bike connector and
its female encounter as follows in Tab.2.6 :

Pin Signal Name Description

1 Ground Common reference ground

2 Right Indicator 12V digital ON/OFF signal (via relay)

3 Left Indicator 12V digital ON/OFF signal (via relay)

4 Headlights 12V ON/OFF signal (via relay)

5 Key Contact 12V ON/OFF signal (via relay)

6 Fuel Tank Level 0-12V analog signal (amplified from DAC)

7 ?:rf;’eor; e 0-3.3V analog signal from ESP32 DAC

8 ]SBilgrela?peed 0-10.8V digital pulse (amplified from ESP32)

9 Supply level To indicate the battery level on the screen as well
as power the entire dashboard

Tab.2.6. Pin Mapping of the Bike Connector
2.11.3 A brief explanation of LM324 Operational Amplifier

The LM324 is a quad op-amp IC, it contains four independent operational amplifiers
inside one integrated circuit.

we used one as to:

e To amplify analog signals generated by DACs (ESP32 or MCP4725) to higher
voltage levels, 15V 12V and 10.8V.
e used for:
o Fuel Tank Level — Amplified to 12V
o Bike Speed Pulse — Amplified to ~10.8V
o Power Supply level — Amplified to ~15V

Important Note:

Since LM324 is not rail-to-rail, we had to power it with 16V to ensure it could output a
clean 12V without distortion or clipping.

2.12 Conclusion

By understanding the tools and technologies involved in the development of this HIL bench we
have built a strong technical foundation for our system. Each element was selected based on
compatibility and precision. This chapter provides the technical prerequisites necessary for
understanding the architecture and design choices detailed in Chapter 3.
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Chapter 3: Design of the HIL Bench

3.1 Introduction

This chapter details the design, implementation, and integration of all components within the
HIL bench. It explains the methods used for simulating analog and digital signals, the firmware
structure, and how CAN frames were generated and interpreted using CANoe. Additionally,
the test strategy and mechanical integration are presented.

3.2 System Overview

The Hardware-in-the-Loop HIL bench developed in our project aims to simulate 8 real-time
motorcycle signals that in an actual motorcycle come from different sensors in a controlled,
reproducible environment. The main purpose of this is to test and validate the behavior of the
motorcycle dashboard designed by the team without the need for a physical motorcycle. Below
in Fig.3.1 is a general diagram that illustrates the principle functioning of our HIL bench.

This concept is rather necessary in the automotive manufacturing word as it is adapted by every
car company in the world as we have already seen in chapter 1.

The bench inside-architecture is composed of several connected modules, each of them
responsible for emulating a specific kind of inputs that are typically present in a motorcycle:

» Digital Signals (speed pulses): Generated using the ESP32 to simulate the output of the
Hall-effect proximity sensor used for speed detection.

o Analog Signals (fuel level, outdoor temperature and: Produced via DAC modules
(MCP4725 and the ESP32’s internal DAC) to mimic varying voltage levels coming
from the sensors.

e Power supply level signal : this particular signal was produced using an extra
microcontroller which is the famous ARDUINO NANO.

The bench also adaptes the CAN network for simulation and testing using the hardware and
software provided by Vector company:

e CAN Messages: Sent using the MCP2515 module and coming essentially from the
Vector CAN Case VN1630, these messages are all sent via the CANoe Software.

o Testing Interface: CANoe software is used as the testing interface on the PC, which
allows real-time visualization and manipulation of CAN messages which are later
transferred to analog and digital signals through our HIL bench.

Fig.3.1. The HIL bench principle
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3.3 Signal Simulation

The eight real-time motorcycle signals that we mentioned above are the main variables of our
HIL test bench that need to be carefully replicated to provide a safe testing environment for the
dashboard. These output signals from our HIL bench are finally grouped through a male 9 pins
bike connector which will be then directly inserted to its female twin which is attached to the
dashboard (the System Under Test). These main signals that exist on actual motorcycle and
were then mimicked in the HIL test bench are as follows:

3.3.1. Right & Left Indicators

a) On an actual motorcycle

1.

The rider flips a mechanical switch for left or right turn.
This switch activates a flasher relay, which turns 12V on and off periodically in a
form of a square wave.

3. The indicator bulbs flash accordingly.

4. The dashboard simply detects this 12V blinking signal after reducing it to 5v through
internal voltage dividers, and then displays them on the screen.

b) HIL Mimicking

1. CANoe sends a message (ID 0x111) indicating whether the left/right indicator is on
or off.

2. Our ESP32 toggles a GPIO pin HIGH/LOW at approximately 1Hz.

3. A relay module takes that 3.3V signal and outputs a real 12V blinking signal
periodically.

4. the signal is then plugged into the male bike connector.

* We don’t need to mimic the physical switch or relay but only the resulting 12V
blinking output.

3.3.2. Headlights

a) On an actual motorcycle

1.

Activated by a toggle switch.

2. Sends a constant 12V to the headlights and the dashboard.
b) HIL Mimicking

1. ESP32 receives the ON/OFF state over CAN (ID 0x111).

2. GPIO 27 is set HIGH or LOW.

3. Relay module amplifies that to real 12V.
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3.3.3. Key Contact / Ignition ON
a) On an actual motorcycle

1. When you insert and turn the ignition key, it connects the battery to the rest of the
bike.

2. This sends 12V to the dashboard to indicate power is on, the dashboard reduces it
to 5v before indicating it on the screen.

b) HIL Mimicking

1. ESP32 receives the key contact state via CAN.
2. GPIO 15 controls a relay to output a 12V ignition signal.

3.3.4. Fuel Tank Level
a) On an actual motorcycle

A float inside the fuel tank is connected to a variable resistor (potentiometer).

As fuel level drops, the float moves changing resistance.

This is wired in a voltage divider, outputting a voltage between 0—12V.

The dashboard reads this analog voltage after reducing it again to Sv to estimate how
full the tank is.

W

b) HIL Mimicking

1. CANoe sends fuel level in litters via CAN (ID 0x103).
. ESP32 maps this to a DAC value and outputs it on pin 25 (0-3.3V).
3. A non-reversible amplifier using one of LM324 four op-amps amplifies this voltage
to 0—12V using a calculated gain with the formula:

R¢
Vour =Vin X (1 + R_)
i

So, the final gain is:

So, a gain from 3.3v to 12v is 3.63 therefore we need Ry = 26.3k() and R; = 10k).

Below in Fig.3.2 we can see a schematic of the non-reversible amplifier made using
the open source software KiCad.
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Fig.3.2. A non-reversible amplifier
3.3.5. Outdoor Temperature

a) On an actual motorcycle

1. Uses an NTC thermistor (Negative Temperature Coefficient).
2. As the temperature increases the resistance decreases.
3. Placed in a voltage divider — outputs voltage that drops as temperature rises.
4. The dashboard converts this analog voltage to temperature.
b) HIL Mimicking

1. CANoe sends temperature value via CAN (ID 0x101).
2. ESP32 maps this to voltage and outputs it on DAC pin 26.

e We don’t need amplification because the dashboard expects 3.3V max.

3.3.6. Bike Speed Sensor
a) On an actual motorcycle
Uses a Hall effect sensor mounted on the wheel, this is how a hall effect sensor work:
1. A magnet passes the sensor (which stays in HIGH state) on every rotation therefore
produces a digital LOW pulse.
2. The dashboard counts pulse frequency (how many pulses are there per second) to
determine speed.

b) HIL Mimicking

1. CANoe sends speed in km/h (CAN ID 0x104).
2. ESP32 calculates the frequency f:

f _ speed aqcuired by CANoe (inm/s) v
- circumference of the bike wheel (inm) 1.29
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It then converts this into microsecond delays which toggles GPIO 14 at the right
frequency.

by doing:

10°
fmicro = T

The time in which a single pulse stays in LOW state corresponds exactly to the time
period it takes the actual magnet to completely pass the sensor which is approximately:

22000

LOWtime =
tme speed aqcuired by CANoe (inm/s)

There for the period which is % is equal to the sum of LOWtime and HIGHtime.

e Output 1s amplified with another voltage divider across an LM324 op-amp to
~10.8V to match the sensor levels, using the same formula used above, the
proper gain is:

G ~ 3.27
Which means we will use resistors Ry = 33k and R; = 10k(.

3.3.7 Power Supply Level
a) On an actual motorcycle
1. The battery voltage is monitored by the dashboard.

2. Normally 12V-15V.
3. [Itisusually sensed via a resistive voltage divider or an ADC in the dashboard.

b) HIL Mimicking
1. Arduino Nano receives this value via CAN (ID 0x107).
2. Uses an I?C bus MCP4725 DAC to output 0-5V.
3. It’s then amplified through the LM324 op-amp to 0-15v using a gain of 3.00.
4. That’s interpreted as 0—15V by the dashboard (with internal scaling again).

We have chosen to use another microcontroller for this signal because of:
e The limited number of hardware DACs on the ESP32 (only 2).

e Signal fluctuation and delay when an 12C DAC was used on the ESP32 due to
I2C bus speed bottlenecks.
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3.3.8 Summary

The summary of all the signals here in Tab.3.1:

. Sensor I Generated .
Signal Type Real Output Bench Output (Mimic) By Amplified
ng.h t Switch + Pulsed 12V Relay from GPIO 33 ESP32 Yes
Indicator flasher
Left Indicator Switch + Pulsed 12V Relay from GPIO 32 ESP32 Yes

flasher
Headlights Zgﬁ%}f Constant 12V |Relay from GPIO 27 ESP32 Yes
Key Contact |Key switch Constant 12V |Relay from GPIO 15 ESP32 Yes
Float + DAC + LM324 from
Fuel Level resistor Analog 0-12V GPIO25 ESP32 Yes
Temperature NTC . Analog 0-3.3V |DAC directly on GP1026 |ESP32 No
thermistor
Speed Sensor |Hall effect Pulsed 12V GPIO14 + LM324 ESP32 Yes
Supply Battery 4 1 alog 0-15V | DAC via MCP4725 Arduino s
Voltage voltage Nano
Tab.3.1. Summary of the different signals meant for simulation
3.4 Hardware Design

The Hardware-in-the-Loop (HIL) bench designed in this project aims to test and validate a
motorcycle dashboard under realistic operational conditions by simulating both digital and
analog signals corresponding to real-world sensor inputs. The goal is to ensure the dashboard
reacts accurately to all signals as if it were mounted on an actual motorcycle. This specific
section provides an exhaustive explanation of all the design decisions, components and
interactions.

The complete HIL system architecture includes the following subsystems:

e CAN Communication Bridge using a CAN Case device VN1630.

e A dual Microcontroller System:

o ESP32: Handles real-time signal generation and decoding for most dashboard
signals.
o Arduino Nano: Dedicated to the output for the power supply level signal.

o Digital and Analog Signal Generation for simulating bike speed, fuel level,
temperature and power supply level as well as key contact, left and right indicators and
headlights.

o Signal Amplification using an LM324 Op-Amp.

o 8 Relay Module for ON and OFF digital signals.
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The complete schematic of the HIL test bench using KiCad is shown down below in Fig.3.3
with all the different components used and their interconnections.

Bike Cannectar 8—Relay Module

\\}

- (N

A

-

- =

o

y T Dj MCA4725 DAC|Module
.

ARDUIND NANO

VN1630 CAN Case

MCP2515 CAN Medule

Shits /
Flles HIL hench ieadack

Title:

Si; ] Duta

Ay
K0 EDA BO7T
T

i
o Wi haE

Fig.3.3. The complete schematic of the HIL test bench using KiCad

The CAN Communication Setup is doing via the VN1630 CAN Case injects CAN frames

coming from the CANoe software through two MCP2515 CAN transceivers:

e One connected to ESP32, responsible for:

0 O O O

e One connected to Arduino Nano, solely for the power supply level signal.

Fuel level (analog via DAC).
Outdoor temperature (analog via DAC).
Bike speed (digital pulses).

Indicators and headlights (digital high/low).

3.4.1 Signal Interface with Dashboard

The following signals are connected via a 9-pin male connector as shown in Tab.3.2:
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Pin Signal Source Pin Type Amplification fflonl?zllge
1  Ground - Reference | No ov

2 Fuel Level ESP32 DAC25 |Analog |Yes 0-12Vv

3 Outdoor Temp ESP32 DAC 26 |Analog |No 0-3.3V
4  Bike Speed ESP32 Pin 14 ?;Ag]i\t/?l Yes ~10.81V
5 Power Supply Level | DAC (Nano) Analog |Yes 0-15V

6 Right Indicator ESP32 Pin 33 Digital Yes (Relay) 0/12V

7  Left Indicator ESP32 Pin 32 Digital Yes (Relay) 0/12V

8 Headlights ESP32 Pin 27 Digital Yes (Relay) 0/12V

9 Key Contact ESP32 Pin 15 Digital Yes (Relay) 0/12V

Tab.3.2. Pinout of the bike connector with the simulated signals

3.5 Code walkthrough

This walkthrough begins with the ESP32 firmware, which manages CAN communication,
digital speed pulse generation, indicator blinking logic, temperature and fuel level output via
its internal DACs, and the control of relays for on/off signals like headlights and key contact.
Then, the Arduino Nano code is explained focusing briefly on its role in receiving the power
supply level via CAN and converting it to a stable analog voltage using an external DAC over
12C.

Each part of the code will be explained briefly, clarifying how the real-world signals of a
motorcycle are mimicked in our HIL bench.

3.5.1 ESP32 firmware
The code blocks for the ESP32 firmware are each explained as follows:

a) Included Libraires

#include <SPI.h>

#include <mcp can.h>

#include <Wire.h>

e sSPI.h: For communication with the MCP2515 CAN module over SPI.
e mcp_can.h: Library for interfacing with the MCP2515 CAN controller.

e Wire.h: For [2C communication (not directly used in this ESP32 code, may be
used in future extensions).
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b) Global Constants and Variables

const int pulsePin = 14;

const float Circumference = 1.29;
float speed kmh = 0;

float pulseWidth = 0;

float pulselInterval = 0;

float highTime = 0;

e pulsePin (14): Digital output simulating the Hall Effect speed signal.

e Circumference (1.29 m): Tire circumference to calculate rotation/speed.
e Other variables are used to determine the frequency of pulses representing speed.

¢) Indicator States

bool rightIndicatoron = ftalse;
bool leftIndicatorOon = false;

bool rightBlinkState = false;
bool leftBlinkstate = false;

unsigned long lastBlinkTime = ©;
const unsigned long blinkInterval = 160,

e these control blinking behavior for left and right indicators.

d) Pulse Generator State Variables

unsigned long lastPulseTime = 0;

bool pulseState = falses

e Usedinthe simulatePulse () function to generate a square wave on
pulsePin.

e) CAN Bus Setup

#define CAN CS PIN 5
MCP CAN CAN(CAN_CS PIN);

e Defines CS pin (GPIO 5) to connect with the MCP2515 CAN module.
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f) setup() Function

volid setup() {
Serial .begin(115200) ;
pinMode (pulsePin, OUTPUT) ;
pinMode (27, OUTPUT}; // Headlights
pinMode (15, OUTPUT); // Key Contact
pinMode (33, OUTPUT); // Right Indicator
pinMode (32, OUTPUT}; // Left Indicator

e Initializes serial communication and configures the GPIOs used for digital

outputs.
if (CBN.begin(MCP_RKY; CAN S00EBPS, MCP GSMHZ) == CAN OK} {
Serial.println("CAN Bus initialized successfully!"™);

} else {

Serial.println("CAN Bus initialization failed!"™);
while (1);

}

CEN.SetMOde(MCP_NCRMEL);

e [Initializes the MCP2515 CAN controller to listen to any ID at 500 Kbps using
an 8 MHz oscillator.
e Switches the MCP2515 to normal mode to receive actual traffic.

g) loop() Function

if CAN MSGAVAIL == CBN.checkReceive ()) {
long unsigned int canId;
unsigned char len = 0;

unsigned char buf[8];

CAN.readMsgBuf (&canId, &len, buf);

e Waits for incoming CAN messages.
e Reads the message buffer into buf.

h) ID: 0x103 — Fuel Level

if (canId == 0x103) ¢
float fuellLevelRaw = buf[0];
float liters = fuellLevelRaw * 0.01;

Serial.print ("Fuel level: ");
Serial.print(liters);
Serial.println(™ L");

float fuelRatio = liters / 2.5;
uintd t fuelDACValue = constrain(fuelRatio * 255.0, 0, 255);
dacWrite (25, fuelDAcCValue);
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e Converts fuel level from raw value to liters.
e Normalizes this to a 0-255 DAC value.
e Outputs analog voltage on GPIO 25, which goes to the fuel signal amplifier.

i) ID: 0x104 — Vehicle Speed

1f (canId == 0=xz104) {
speed kmh = buf[0];
Serial .print ("Received speed: ");
serial.print (speed_kmh) ;
Serial.println(™ km/h™};

float speed Mps = speed kmh / 3.6;

if (speed Mps > 0) {
float pulsePerSecond = speed Mps / Circumference;
pulseInterval = 1000000.0 / pulsePerSecond;
lowTime = 22000.0 / speed Mps;

Serial .print ("Target frequency: "};:
Serial .print (pulsePerSecond) ;
Serial.println("™ Hz"};

} else {
pulseInterval = 0;

e Extracts speed and converts to meters per second.

e (alculates how often to send pulses (pulseInterval) and how long to keep
the signal high (highTime).

e These values are used in simulatePulse () to generate a square wave
simulating a Hall sensor.

j) ID: 0x101 — Temperature

if (canId == 0x101) ¢
intlé t rawTemp = (intlé t)buf[0];
if (rawTemp >= 100) rawTemp —-= 128;
float temp c = rawTemp;

Serial.print ("Temperature: ");

Serial.print (temp c);

Serial.println({™ °C™);:

float tempRatio = constrain((temp c + 10.0) / €5.0, 0.0, 1.0);:
uinti t tempValue = tempRatioc * Z255;

dacWrite (26, tempValue) ;

e Decodes temperature from signed 8-bit format.
e Normalizes and sends it to GPIO 26 to simulate temperature sensor output (no
amplification needed).
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k) ID: 0x111 — Digital ON/OFF signals

if (canId == 0x111l) {
uint_t statusByte = buf[0];

rightIndicatorOn = statusByte & 0x01;
leftIndicatorOn = statusByte & 0x0Z;

bool headLights = statusByte & 0x04;

bool keyContact = statusByte & 0x08;
digitalWrite (27, headLights});

digitalWrite (15, keyContact};

Serial.print ("Right Indicator: ™);
Serial.println(rightIndicatorOn ? ™ON" : "OFF");
Serial.print ("Left Indicator: ™};
Serial.println(leftIndicatorOn ? "ON" : "OFF");
Serial.print ("Head Lights: ™};

Serial.println (headLights 2 ™ON™ : "OFF");
Serial.print ("EKey Contact: ™};
Serial.println(keyContact 2 ™ON" : "OFF");

e Reads individual bits to detect corresponding signals in the Digital ON/OFF
message for right/left indicators, headlights, and key contact.

e Outputs high/low values accordingly on GPIOs (which are later amplified to
12V via relays).

1) Blink Logic

unsigned long currentMillis = millis()};
if (currentMillis - lastBlinkTime >= blinkInterval) {
lastBlinkTime = currentMillis;

if (rightIndicatoron) {
rightBlinkState = !rightBlinkState;
digitalWrite (33, rightBlinkState);
} else {
digitalWrite (33, LOW);
rightBlinkState = false;

if (leftIndicatoron) {
leftBlinkState = !leftBlinkState;
digitalWrite (32, leftBlinkState):
} =lse {
digitalWrite (32, LOW);
leftBlinkState = false;
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¢ Flashes indicator outputs on GPIO 33 (right) and 32 (left) every 1 second when
activated to simulate blinking effect.

m) simulatePulse()

vold simulatePulse () {
if (pulseInterwval <= 0) {

digitalwWrite (pulsePin, LOW):;
return;

}

unsigned long now = micros();

if (!pulseState && now - lastPulseTime >= pulseInterval) {
pulseState = trues;
lastPulseTime = how;
digitalWrite (pulsePin, HIGH);

}

if (pulseState && now — lastPulseTime >= highTime) {
prulseState = false;

digitalWrite (pulsePin, LOW) ;

e (Generates a square wave on GPIO 14 simulating a Hall effect speed sensor.
e Alternates between HIGH and LOW based on pulse timing and 1owTime.

3.5.2 ARDUINO Nano firmware
The code blocks for the ARDUINO Nano firmware are each explained as follows:

a) Library Inclusions

#include <SPI.h>

#include <Wire.h>

#include <Adafruit MCP4725.h>
#include <mcp can.h>

e wire.h: Handles I2C communication between the Nano and the MCP4725
DAC.

e Adafruit MCP4725.h: A driver library provided by Adafruit to simplify
controlling the MCP4725 DAC.

® mcp can.hand spI.h: Required for interfacing with the MCP2515 CAN
controller over SPI.
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b) Object Instantiations and Pin Definitions

Adafruit MCP4725 dac;
#define CAN CS_PIN 10
MCP CAN CAN(CAN_CS_PIN);

e dac is the object that communicates with the DAC module.

e sp1_cs_piN: The Chip Select pin for the MCP2515 CAN module. It's usually
connected to D10 on Arduino Nano.

e c¢an_INT pIN: Can be used if you want to use interrupts (optional, not used in

this code).
e MCP CaN: Object that handles CAN communication using MCP2515.

¢) Setup Function

volid setup() {
Wire.begin();
dac.begin (0x60) ;
CAN.begin (MC P_ANY, CAN S00EKBPS, MCP_GMHZ):;
CAN.setMode (MCP_NOEMAL) ;

o Initializes the serial monitor for debugging.
o Initializes the [2C communication (used for the DAC).
e Starts the DAC at address 0x60, which is the default for most MCP4725

modules.
if (CAN.DEgin(MCF_RKE, CRK_EiiKEFS, MCF_?MHE] == CRK_CK] {
Serial.println("CAN initialized successfully.™);
} else |
Serial.println("CAN init failed."):
while (1);

}

CAN.setMode (MCP_NORMAL) ; // Set to normal mode

}

o Initializes the CAN module at 500 kbps speed and 8 MHz oscillator.
o Ifinitialization fails, the Nano enters an infinite loop.
o Sets the MCP2515 to Normal Mode, meaning it will both send and receive

messages.
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d) Main Loop ( Listening for CAN Messages)

volid loopi) {
if (CEN MSGRVEIL == CAEN.checkReceive()) {
long unsigned int canId;
unsigned char len = 0;
unsigned char buf[8];

CAN.readMsgBuf (&acanld, &len, buf);

e Constantly checks if a new CAN message is available.
e Ifso, it reads the message into canld (the identifier) and buf (the data buffer).

e) Handling the Specific Power supply level Message ID (0x105)

if (canid == 0x105) { // ID for power supply level
uinté t voltageRaw = buf([0]; // Example: value from 0 to 150
float voltagel>v = voltageRaw * 0.1; // Simulate 0.0V to 15.0V range

e Only processes messages with a specific ID (e.g., 0x105 = Power Supply
Level).

o Extracts the first byte buf[0] and interprets it as a raw value (e.g., 0-150).

e Multiplies by 0.1 to convert it into a real voltage value (0.0V to 15.0V).

f) Mapping to 0-5V for the DAC

// Map 0-15V to 0-5V output for DAC
float woltage5v = wvoltagelSv * (5.0 / 15.0);
uintlé t dacValue = (uintlé t) ((voltage5v / 5.0) * 4095); // 12-bit DAC

e Since the DAC can only generate a 0—5V analog output, we scale the 15V
value down proportionally.

e We calculate the 12-bit DAC value corresponding to that scaled voltage (0—
4095).

g) Output Voltage via DAC

dac.setVoltage (dacvalue, false);

Serial.print ("Received wvoltage: ");
Serial.print (voltagel5v);
Serial.print("V, DAC output: ");
Serial.println(woltagesv);
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e The calculated DAC value is sent to the MCP4725, generating a precise analog
voltage.

e A debug message is printed showing both the interpreted voltage and its
corresponding DAC output.

3.6 CAN Frame generation

The CAN frames generation were made possible by first creating the DBC file then attaching
it to the CANoe interface followed by adding the environment variables then lastly writing the
CAPL script and wiring it to each environment variable that respectfully corresponds to each
signal concerned by the simulation.

3.6.1. Creating the CAN Database (DBC File)

The DBC (Database CAN) file describes the structure of CAN messages. It includes message
IDs, signal names, data lengths, and bit positions.

The Steps to creating a DBC file are:

1. Open Vector Database Editor (candb++ Editor) from CANoe.
o Create a new DBC file and define Messages:
= 0x103: Fuel Tank Level.
= 0x104: Speed.
= 0x105: Power Supply Level.
*=  0x101: Outdoor Temperature.
= 0x111: Status Flags (this one has 4 different signals, indicator right,
indicator left, headlights, supply key contact).
2. For each message, we define the signals:

» Name (FuellLevel).

» Type: Unsigned / Signed / Float.

= Start Bit, Length, Byte Order.

» Factor and offset (for scaling raw values).
=  Minimum and Maximum.

3. We save the DBC file and import it into our CANoe simulation setup. As you can see
the different signals are all mentioned below in Fig.3.4.
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Fig.3.4. Snippet of the different signals and messages present in our DBC file

3.6.2. Attaching the DBC File in CANoe

—

Open CANoe.
2. Go to Simulation Setup — CAN Configuration.
3. Attach the DBC file to the appropriate CAN channel (can1).

e This allows CAPL scripts and panels to reference signal names directly.
3.6.3. Adding environment Variables in CANoe

Environment variables in CANoe act as global placeholders that allow different parts of the
simulation such as CAPL scripts, panels or measurement setup, to communicate and
synchronize data. They are essential for simulating sensor values and controlling message
behavior during a test scenario. In the context of a Hardware-in-the-Loop (HIL) bench,
environment variables are used to model physical inputs such as speed, fuel level or
temperature. Each signal in a CAN frame is typically linked to a corresponding environment
variable in the CAPL script as it’s explained more in the next section, allowing dynamic
control of message content (signals) based on user input or test logic. This linking ensures
that the simulated signals behave like real-world values providing a realistic and flexible
test environment for ECUs like dashboards.

To add new variables, you can do it through a CAPL script or simply navigate through the
CANoe gui to system variables in the Environment tab, then right click on env and click
add a new variable after that, you can simply enter your variable details which are usually
the same ones you entered for your corresponding signals in the DBC file (it’s better to give
them the same names as your signals to avoid confusion), as shown below in Fig.3.5:
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Fig.3.5. Snippet of the Environment Variables window inside CANoe

3.6.4. Writing CAPL Scripts to Simulate Sensor Signals

CAPL (CAN Access Programming Language) is used to generate dynamic CAN messages

during simulation.

Our CAPL script simulates a motorcycle dashboard using periodic CAN messages. It fetches
environment variable values which are created then link them to each corresponding signal in
our DBC representing various sensor states (like fuel level, speed, indicators, etc.) at regular

intervals. And this is a detailed explanation of the script:

a) General Structure

variables

£
msTimer
message
m=Timer
message
m=Timer
message

TIMER_Ffuw=l Tank lewel;

CAM: :Fuel_tank_lewel A8 Fuel tank_lewel;
TIMER_bike_speed;

CAM: tbike_speed A8 bike_ speed;
TIMER__power_supply ;

CAM: @t power_supply AL power_supply ;s

msTimer TIMER HeadlLights;

message

m=Timer
message
m=Timer
message
m=Timer

message

m=Timer

CAM: tHeadLights A8 Headlights;

TIMER_indicators;

xxxx rrindicators A8 dndicators;
TIMER_power_ supply keyw contact;
TIMER_indicators_display;

xxxx : routdoor_temp A8 outdoor_temp;
TIMER_outdoor_temp;

tpower_supply key conntact A48 power supply key contact;
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All timers and CAN messages are declared here:

o msTimer: A 1 millisecond timer used to trigger events at regular intervals.

o message CAN::x: Refers to a CAN message defined in the DBC file under the

node CaN.

b) On start Block

on start

{
setTimer (TIMER_fuel tank_level,18@);
setTimer (TIMER_bike speed,188);
setTimer ( TIMER_power_supply,18@);

setTimer ( TIMER_indicators,18@8);

setTimer ( TIMER_power_supply_key contact,188@);
setTimer (TIMER_indicators_display,1028);
setTimer (TIMER_outdoor temp,108@);

setTimer (TIMER_HeadlLights,188);

Each timer triggers a corresponding on timer block periodically ( every 100ms or
1000ms).

¢) Individual Timer Logic
e on timer TIMER fuel_tank_level

on timer TIMER_fuel_tank_lewvel
{

if{@sysvar::env::fuel tank_level <= @.5} @sysvar::env::fuel tank_level low=1;
if(@sysvar: env: :fuel tank level > 3.5) @sysvar::env: ifuel tank level low=8;
AA_fuel tank_level.fuel tank level state = ((@sysvar::env::fuel tank_level-8)/@.01);
output (A4_fuel_tank_level);

setTimer (TIMER_fuel tank_level,16@);

Reads the fuel level from the environment variable.
Sets a second env variable fuel tank level low to indicate low fuel
(<50%).

o Converts the float fuel level into an integer for the CAN signal using the
scaling from the DBC:
Signal = (Value - Offset) / Factor.

o Sends the fuel tank level CAN message.

e on timer TIMER bike speed

on timer TIMER_bike_speed
{

AA_bike_speed.bike_speed_state = ((@sysvar::env::bike_speed-28)/1);
output{AA_bike_speed);

setTimer (TIMER_bike_speed,18@);

T
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o Reads bike speed from env variable.
o Sends it as a CAN message.
o No scaling is applied (factor = 1).
e on timer TIMER_outdoor_temp, TIMER_power_supply and
TIMER_HeadLights

on timer |LlMEH_outdoor_temp

{
AA_gutdoor_temp.outdoor_temp state = ((@sysvar::env::outdoor_temp-8)/1);
output{AA_outdoor_temp);
setTimer (TIMER_outdoor temp,1088);

¥
on timer TIMER_power_supply

{

AA_power_supply.power_supply level = ((@=sysvar::env::power_supply_level-8)/8.81);
output{AA_power_supply);

setTimer (TIMER_power_supply,1@@);

I
on timer TIMER_Headlights

{
AA_Headlights.HeadlightsState = ((@sysvar::env::HeadlLights-8)/1);
output{AfA_HeadlLights);
setTimer (TIMER_HeadlLights,18@);
I

o Temperature:
Sends the temperature value directly from environment variable.
o Power Supply:

1. Converts a float power supply voltage to an integer (e.g., 12.34V —
1234 if factor = 0.01).
2. Sends the power supply message.

o HeadLights:

Sends 1 or 0 to represent whether headlights are on or off.

e on timer TIMER _indicators

on timer TIMER_indicators
i
Af_indicators.right = ((@sysvar::env::indicator_right-@)/1});
Af_indicators.left = ((@sysvar::env::indicator_left-@)/1};
output{Ad_indicators);
setTimer (TIMER_indicators,18688);
T

Sends a message with two boolean values representing left and right
indicators.
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e on timer TIMER indicators_display

on timer TIMER_indicators_display

5]
Pt

var:ienv::indicator right==1) @sysvaer::env::indicator right_on_off = !@sysvar::env::indicator_right_on_off;
::indicator_right==8) @sysvar::env::indicator right on_off = &;
@sysvar::ienv::i 3

=L
War:

M@ m m

L
—

o

if(@sysvar:: riindicator_left==8) @sysvar::envi:i
setTimer (TIMER_indicators_display,1G2a);
¥

o When the indicator is activated, it toggles a second variable on/off every 1
second.
o This second variable can be used in a panel to show a blinking light.

e Looping:
All timers reset themselves at the end of their block using:

setTimer (TIMER X, interval);

d) Summary

This CAPL script is responsible for simulating the CAN messages for out test bench
which is meant to test the motorcycle dashboard in a Hardware-in-the-Loop (HIL). It
periodically reads environment variables such as fuel level, speed, power supply,
temperature, and indicator states and encodes them into CAN messages defined in the
database (DBC file). Each timer triggers at a fixed interval to send the corresponding
message onto the CAN bus. Additionally, some logic is included to simulate conditions
like low fuel and blinking indicators, ensuring realistic dashboard responses during
testing.

3.6.5 Creating the Simulation Panel

In CANoe, the simulation panel provides a visual way to control and observe system behavior
during testing. Each widget (slider, switch, LED, etc.) (which are all installed by default in the
panel editor) represents an environment variable linked to its correspondent signal. This link
ensures that changes made through the panel directly affect the CAPL script logic allowing
real-time generation of CAN messages based on user input. It makes testing easier, interactive
and more intuitive.

Creating the panel is done through the panel editor inside CANoe as shown below in Fig.3.6.
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Fig.3.6. Snippet of the Panel Editor inside CANoe.

3.7 Test Cases and Verification

In order to validate the functionality of our HIL (Hardware-in-the-Loop) test bench we defined
a series of test cases corresponding to real-world motorcycle scenarios. Each test case involves
simulating a specific signal via CANoe using environment variables controlled by the panel
and observing the physical response on the actual dashboard. For example, to test the
speedometer, we varied the bike speed environment variable and verified the digital pulse
signal on pin 14 of the ESP32 while also checking that the dashboard needle responded
correctly. Similarly, adjusting the fuel tank level variable produced an analog voltage on DAC
pin 25, amplified to 12V, which the dashboard interpreted as varying fuel levels. Indicator lights
and key contact were tested using binary CAN messages, with visual confirmation of correct
blinking or activation. The signals were measured and verified using a multimeter and
oscilloscope where needed to ensure correctness in voltage levels and frequencies. Through this
rigorous process, we confirmed that the simulated signals successfully mimic real sensor
outputs, verifying the reliability of the HIL system.

3.8 Results and Observations

After the successful integration and testing of the Hardware-in-the-Loop bench, several key
results and observations were recorded. First, all eight output signals were accurately generated
and interpreted by the dashboard, confirming the effectiveness of our simulation approach. Also
the analog voltages for the fuel tank level and power supply level were successfully adjusted
using both the ESP32’s internal DAC and the MCP4725 module controlled by the Arduino
Nano. However, we observed signal fluctuation when both DACs were operated on the ESP32
via I2C, likely due to I12C bus latency or bandwidth limitations. This led us to offload the power
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supply level generation to another dedicated microcontroller, which resolved the issue
completely. Additionally, the LM324 amplifier proved effective in boosting DAC signals to the
required 12V or 10.8V levels, although special care was taken to ensure the input reference
voltage exceeded the expected output to avoid clipping, since the LM324 is not rail-to-rail.
Digital signals such as speed pulses and binary states (indicators, headlights, key contact)
showed accurate behavior and frequency modulation effectively mimicking real-world sensor
data. Additionally the use of CANoe allowed for precise control over signal injection through
a user-friendly simulation panel. Overall, the HIL bench functioned as intended by
demonstrating stable and reproducible performance across all test cases, and confirming the
feasibility of using such a system for dashboard validation and production line testing in the
future.

Below in Fig.3.7 is a snippet that shows the final Simulation Panel on the left besides the trace
window which allows us to trace in real-time the CAN messages sent to our VN1630 CAN
case.
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Fig.3.7. The final Simulation Panel alongside the trace window

3.9 Challenges Encountered

Throughout the development of the HIL bench several challenges emerged that required
thoughtful troubleshooting. One of the main issues was the signal interference caused by 12C
bus congestion when attempting to control multiple DACs from the ESP32. This led to
fluctuations in output voltages, especially when trying to generate three analog signals
simultaneously and to resolve this, we put the power supply simulation to an Arduino Nano
ensuring a smooth, isolated DAC output for that signal.

Another challenge was amplifying DAC outputs to match the real dashboard’s required voltage

levels. The LM324 op-amp, while cost-effective and easy to implement. it is not rail-to-rail,
which caused clipping issues when the supply voltage was too close to the output target. This
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was mitigated by using a higher 16V power supply and carefully choosing gain resistor values
to obtain a clean 12V or 10.8V output.

Additionally, precise CAN message timing and synchronization between CANoe and the
embedded systems required careful tuning of timers and message structures. Debugging CAN
traffic was also occasionally hindered by frame collisions and misread signal values which were
later solved by refining the CAPL script and properly linking environment variables.

3.10 Enclosure Design and Assembly of the HIL Test Bench

To ensure both safety and a professional presentation, all the electronic components of the HIL
test bench were finally installed inside a robust metallic enclosure enclosure as you can see in
Fig.3.8 below, this approach we took provides organized cable management for the system. the
process followed several best practices that we found across the web (all links are found in the
refences chapter) for mounting electronics in metal alimunium project boxes:

i

Fig.3.8. The different components used for the enclosure of the HIL test bench

3.10.1. The choice a metallic enclosure
The choice of a metallic enclosure was picked mainly for:

e Enclosure Selection: A sturdy red aluminum enclosure was chosen for its durability
and ability to dissipate heat efficiently, which is crucial for embedded systems

o Ventilation: The enclosure includes several ventilation holes to prevent overheating of
the internal electronics, as it is recommended for safe operation of embedded projects.

o Planning Cutouts: Before the assembly, all required cutouts were carefully planned
and marked on the enclosure surface for the different connectors, supply cables and also
for the output signals going into the bike connector.

57



Chapter 3: Design of the HIL Bench

3.10.2. Drilling and Cable Management
The drilling techniques used in the making of the enclosure are:
e Custom Drilling: Using a precision drill, we made holes for:
Output signal connectors.
The VN1630 CAN interface DB9 connector.

Power supply cables for both the ESP32 and Arduino Nano.
Separate entries for the 16V and 12V power supplies.

b S

o Cable Protection: All cable entry points were fitted with rubber grommets to prevent
abrasion and reduce the risk of short circuits, following standard safety guidelines.

3.10.3. Mounting and Isolation

Isolation is necessary to avoid any electrical short circuits and it was realized using the
following materials:

o Standoffs and Insulation: All the PCBs (VN1630, MCP2515, ESP32, Arduino Nano)
were fixed using nylon standoffs as you can see in the lower half of Fig.3.8 above,
elevating them above the metal surface. This prevents accidental contact and short
circuits which is definitely a critical step when working with conductive enclosures.

e Screw Fixing: Each board was secured with screws through those standoffs which
mainly ensures mechanical stability even during transport or exhibition use.

3.10.4. Power Supply Integration
Power supply ports were carefully secured as we had to make ports for two power supplies:

e Dual Power Inputs: The enclosure was well drilled to take both 16V and 12V power
supply inputs each with a dedicated entry points and clear labelling to avoid confusion
during the setup and operation.

e Grounding: The metal enclosure was properly grounded to enhance safety and reduce
electromagnetic interference thus biding by industrial standards.

3.10.5. Final Assembly and Testing

Before closing everything, system checks and labelling had to be done to ensure good continuity
and insulation as well a clear organized overall structure:

o System Check: Before sealing the enclosure, all connections were tested for continuity
and insulation. The system was powered up to ensure there were no accidental shorts
and that all signals were correctly routed through their respective connectors.

o Labeling: All external connectors and switches were clearly labeled for ease of use and
troubleshooting during demonstrations or maintenance.
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3.10.6. Summary

The use of a metallic enclosure and careful mechanical design, with adherence to best practices
for the mounting and isolating electronics ensured both the safety and professional appearance
of the HIL test bench, this successful demonstration at this major industry event further attests
to the project’s quality and relevance.

3.11 Conclusion

On this final chapter it is explained that The HIL test bench was successfully designed and
implemented using ESP32 and Arduino Nano microcontrollers, supported by DACs, relays and
CAN interfaces. The generated signals accurately emulate real-world conditions and the setup
was enclosed in a professionally assembled metal casing. This comprehensive design enables
precise and repeatable testing of motorcycle dashboards
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GENERAL CONCLUSION

This project aimed to design, implement, and validate a Hardware-in-the-Loop (HIL) test bench
dedicated to testing a motorcycle dashboard under conditions that closely simulate real-world
operation. The primary goal was to emulate the analog and digital signals that the dashboard
would normally receive on an actual vehicle, allowing for functional validation in a controlled
and repeatable environment.

The adopted methodology began with an analysis of the dashboard's behaviour, identification
of required signals and the selection of appropriate hardware components. A modular system
architecture was then designed and developed to dynamically generate signals based on
incoming CAN messages. Special care was given to signal accuracy, voltage amplification and
also system protection through isolation and proper ground referencing.

Key challenges included the ESP32’s limitation, instability with the [2C bus, and voltage supply
issues needed to achieve realistic analog outputs. These were overcome by introducing a second
microcontroller, using properly configured operational amplifiers, and powering them with a
dedicated 16V supply to prevent signal clipping.

The results demonstrate that a reliable, low-cost HIL test bench can be achieved, offering
accurate simulation of real signals and enabling effective validation of the dashboard. This work
represents a crucial step toward implementing testing and validation practices that align with
automotive industry standards, especially the ISO 26262 standard, which governs functional
safety for road vehicles.

The added value of this project lies not only in its technical achievements but in its contribution
to bringing automotive testing and validation culture into a local context. In this regard, it opens
new possibilities for the future development of a national embedded systems testing and
validation ecosystem which is a necessary foundation if Algeria ever intends to move toward
manufacturing smart vehicles or electronic automotive components.

The integration of professional tools for test and validation was also necessary in this process
to approach automotive-grade quality, traceability, and repeatability in testing processes.

Looking ahead, this project can evolve into a complete HIL system with closed-loop feedback,
integration of Software-in-the-Loop (SIL) environments to simulate virtual ECUs, and the
implementation of automated test case generation. It could also serve as a training platform for
students and engineers, encouraging the growth of a national workforce skilled in embedded
systems and functional validation.

In summary, this project not only allowed the application of advanced technical skills but also
addressed a real-world engineering challenge. It stands as a concrete step toward fostering a
culture of rigorous and high-quality testing, an essential requirement for any serious industrial
ambition in the automotive field.

60



References

References

[1] Groupe 6NAPSE, “HIL Test and Simulation Bench,” 6NAPSE. [Online]. Available:
https://6-napse.com/en/technical-means/hil-test-simulation-bench/ [ Accessed: May 26, 2025].

[2] Allion Labs, “HIL Solution and ISO 26262 Compliance,” Allion Labs. [Online].
Available: https://www.allion.com/test-lab/hardware_in_the loop/ [Accessed: May 27, 2025].

[3] LHP Engineering Solutions, “HIL Testing and Functional Safety,” LHP Engineering
Solutions. [Online]. Available: https://www.lhpes.com/blog/what-is-hil-testing [Accessed:
May 29, 2025].

[4] STEP Lab, “HIL Testing Systems,” STEP Lab. [Online]. Available:
https://step-lab.com/hardware-in-the-loop-systems/ [Accessed: May 30, 2025].

[5] Vector Informatik, “HIL Test Systems,” Vector. [Online]. Available:
https://www.vector.com/se/en/products/products-a-z/hardware/hil-test-systems/ [ Accessed:
Jun. 1, 2025].

[6] Link Engineering, “Dynamic Brake Simulation HIL System,” The Brake Report. [Online].
Available: https://thebrakereport.com/links-new-hil-dynamic-brake-simulation/ [Accessed:
Jun. 2, 2025].

[7] P. Viennet et al., “Development of a Hardware-in-the-Loop Test Bench for E-bike ABS,”
ARODES, 2024. [Online]. Available:

https://arodes.hesso.ch/record/14539/files/Viennet 2024 development hardware-in-the-
loop_test_bench.pdf [Accessed: Jun. 4, 2025].

[8] Test & Measurement World, “SIL vs. HIL in Embedded Systems,” Test & Measurement
World. [Online]. Available: https://www.test-and-measurement-
world.com/articles/embedded-systems/sil-vs-hil-testing-comparison [Accessed: Jun. 5, 2025].

[9] LEADVENT Group, “Safety Lifecycle in ISO 26262,” LEADVENT Group Blog.
[Online]. Available: https://www.leadventgrp.com/blog/safety-lifecycle-in-iso-26262
[Accessed: Jun. 6, 2025].

[10] International Organization for Standardization, ISO 26262-1:2018 — Road vehicles —
Functional safety — Part 1: Vocabulary, ISO Standard. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:1s0:26262:-1:ed-2:v1:en [Accessed: Jun. 7, 2025].

[11] Y. Dubrov, “Key Concepts in ISO 26262,” LinkedIn. [Online].
Available: https://www.linkedin.com/pulse/key-concepts-iso-26262-yakov-dubrov-8n10e/
[Accessed: Jun. 8, 2025].

[12] National Instruments, “What is the ISO 26262 Functional Safety Standard,” NI White
Paper. [Online]. Available: https://www.ni.com/en/solutions/transportation/what-is-the-iso-
26262-functional-safety-standard-.html [Accessed: Jun. 10, 2025].

61


https://6-napse.com/en/technical-means/hil-test-simulation-bench/
https://www.allion.com/test-lab/hardware_in_the_loop/
https://www.lhpes.com/blog/what-is-hil-testing
https://step-lab.com/hardware-in-the-loop-systems/
https://www.vector.com/se/en/products/products-a-z/hardware/hil-test-systems/
https://thebrakereport.com/links-new-hil-dynamic-brake-simulation/
https://arodes.hesso.ch/record/14539/files/Viennet_2024_development_hardware-in-the-loop_test_bench.pdf
https://arodes.hesso.ch/record/14539/files/Viennet_2024_development_hardware-in-the-loop_test_bench.pdf
https://www.test-and-measurement-world.com/articles/embedded-systems/sil-vs-hil-testing-comparison
https://www.test-and-measurement-world.com/articles/embedded-systems/sil-vs-hil-testing-comparison
https://www.leadventgrp.com/blog/safety-lifecycle-in-iso-26262
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.linkedin.com/pulse/key-concepts-iso-26262-yakov-dubrov-8n10e/
https://www.ni.com/en/solutions/transportation/what-is-the-iso-26262-functional-safety-standard-.html
https://www.ni.com/en/solutions/transportation/what-is-the-iso-26262-functional-safety-standard-.html

References

[13] Ansys, “What is ISO 26262,” Ansys. [Online]. Available:
https://www.ansys.com/simulation-topics/what-is-is0-26262 [Accessed: Jun. 11, 2025].

[14] BYHON, “A Brief Introduction to ISO 26262,” BYHON. [Online]. Available:
https://www.byhon.it/a-brief-introduction-to-is0-26262/ [Accessed: Jun. 13, 2025].

[15] EMBITEL, “Functional Safety for Automotive ECU Development,” EMBITEL.
[Online]. Available: https://www.embitel.com/product-engineering-2/iso-26262-functional-
safety [Accessed: Jun. 15, 2025].

[16] M. Kruszynska, “ISO 26262: The Complete Guide,” Spyrosoft Blog. [Online].
Available: https://spyro-soft.com/blog/automotive/is0-26262 [Accessed: Jun. 17, 2025].

62


https://www.ansys.com/simulation-topics/what-is-iso-26262
https://www.byhon.it/a-brief-introduction-to-iso-26262/
https://www.embitel.com/product-engineering-2/iso-26262-functional-safety
https://www.embitel.com/product-engineering-2/iso-26262-functional-safety
https://spyro-soft.com/blog/automotive/iso-26262

