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Abstract 

It’s a presentation of the design and implementation of a Hardware-in-the-Loop (HIL) bench 

dedicated to testing a motorcycle dashboard. This project aims to simulate various motorcycle 

conditions by generating realistic analog and digital signals to verify the proper functioning of 

the dashboard in a controlled environment using the actual tools of Vector Informatik that are 

made for automotive test and validation. The bench consists of a microcontroller-based system 

(ESP32 and Arduino Nano), DAC modules, relays, and signal conditioning circuits, all 

coordinated together by custom firmware. This work highlights the challenges of embedded 

systems integration, real-time signal emulation and the importance of verification tools in the 

development lifecycle of automotive-grade electronics. 

Keywords: Hardware In the Loop (HIL), motorcycle dashboard, test bench, CAN 

communication, test and validation  

Resumé 

Il s'agit d'une présentation de la conception et de la mise en œuvre d'un banc Hardware-in-the-

Loop (HIL) dédié au test d'un tableau de bord de moto. Ce projet vise à simuler diverses 

conditions de conduite d'une moto en générant des signaux analogiques et numériques réalistes 

afin de vérifier le bon fonctionnement du tableau de bord dans un environnement contrôlé, à 

l'aide des outils professionnels, conçus pour les tests et la validation automobiles. Le banc est 

composé d'un système à base de microcontrôleurs (ESP32 et Arduino Nano), de modules DAC, 

de relais et de circuits de conditionnement de signaux, le tout coordonné par des firmwares 

personnalisés. Ce travail met en évidence les défis de l'intégration de systèmes embarqués, de 

l'émulation de signaux en temps réel et, bien sûr, l'importance des outils de vérification dans le 

cycle de développement de l'électronique automobile. 

Mots-clés: Hardware In the Loop (HIL), tableau de bord moto, banc d'essai, communication 

CAN, test et validation. 

 ملخص

لتصميم وتنفيذ منصة مخصصة لاختبار لوحة قيادة دراجة نارية. يهدف هذا المشروع إلى محاكاة ظروف  هذا لمشروع

قيادة مختلفة للدراجة النارية من خلال توليد إشارات تناظرية ورقمية واقعية للتحقق من صحة تشغيل لوحة القيادة في بيئة  

مُتحكم بها، باستخدام أدوات احترافية في مجال السيارات، مُصممة لاختبار السيارات والتحقق من صحتها. تتكون المنصة  

من نظام قائم على وحدات تحكم دقيقة للترحيل ودوائر معالجة الإشارات، جميعها مُنسقة بواسطة برامج ثابتة مُخصصة.  

يُسلط هذا العمل الضوء على تحديات تكامل الأنظمة المُدمجة، ومحاكاة الإشارات في الوقت الفعلي، وبالطبع، أهمية أدوات 

.التحقق في دورة تطوير إلكترونيات السيارات  

ق والتحق ر، الاختبا الأجهزة في الحلقة، لوحة قيادة الدراجة النارية، منصة الاختبار،شبكة .الكلمات المفتاحية
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General Introduction 

In the automotive industry, the continuous evolution of embedded systems and the increasing 

complexity of Electronic Control Units (ECUs) necessitated robust methods for validation and 

testing. Traditional methods that rely solely on real-world testing are often time-consuming, 

expensive and may pose safety concerns which is particularly important when it comes to 

automotives… especially during early development phases. This also critical in the context of 

two-wheeled vehicles like motorcycles, where testing conditions can be even more variable and 

constrained. 

Problematic: 

How can we validate and test the behaviour of a modern motorcycle dashboard 

effectively without direct access to the real vehicle, while ensuring high reliability, 

safety and cost-efficiency during development? 

To address this challenge, this thesis proposes the development and implementation of a 

Hardware-in-the-Loop (HIL) simulation bench specifically designed for a motorcycle 

dashboard. By mimicking real sensor signals and CAN bus communication using 

microcontrollers: the ESP32 and Arduino Nano, the objective is to enable full testing of 

dashboard functionalities so it can eventually get approved for manufacturing without requiring 

the physical motorcycle itself. 

Finally, to provide a clear understanding of the project, this document is organized into three 

chapters. The first chapter outlines the general context, defines key concepts such as Hardware-

in-the-Loop (HIL), and presents related works. The second chapter introduces the tools and 

technologies employed, including microcontrollers, communication protocols, and testing 

software. The third chapter describes the design and implementation of the HIL bench, covering 

system architecture, signal simulation, and test strategy. Finally, the report concludes with a 

general conclusion that summarizes the outcomes, addresses encountered challenges, and 

proposes future improvements and perspectives. 
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1.1 Introduction 

This chapter lays the foundational understandings of the project by introducing its context, 

objectives and the concept of Hardware-in-the-Loop (HIL), we also provide insights into the 

architecture of the motorcycle dashboards and have a general view on the dashboard provided 

by Fibonova and the role of embedded systems in modern vehicles and to ensure our work is 

well-positioned, we included similar existing projects that we got the inspiration from to make 

our own prototype. 

Fibonova is a startup based in Algeria, founded in 2023 by a team of engineers passionate about 

electronics and embedded systems. The company has a core team of four engineers and three 

co-founders. 

Fibonova focuses on prototyping and developing embedded systems, particularly in the 

automotive and IoT domains. One of its notable prototypes includes a motorcycle digital 

dashboard designed to interpret sensor inputs and display real-time vehicle data. 

1.2 General Context of the Project 

Embedded systems play a crucial role in modern vehicles, enabling complex functionalities like 

real-time data acquisition, communication between components and intelligent decision-

making. As motorcycles in particular become more advanced, the integration of electronic 

dashboards has become a standard replacing traditional analog meters with digital displays that 

provide enhanced information and interactivity to the rider. 

However, testing such embedded systems poses several challenges. It is often impractical, 

costly, or unsafe to test real dashboards directly on a motorcycle during development. To 

address this, engineers rely on Hardware-in-the-Loop (HIL) simulation, a method that replicates 

the real-world environment by generating the same electrical signals that a dashboard would 

receive from an actual motorcycle. 

This project was developed within this context of building a custom HIL test bench using low-

cost components specifically designed to simulate a motorcycle's behaviour for testing a digital 

dashboard. The goal was to provide a reliable, reproducible, and safe environment for validating 

dashboard functionalities without relying on physical vehicle components. 

This work was carried out as part of our final-year internship, a startup working on embedded 

solutions for the automotive sector. 

1.3 Objectives of the HIL Bench 

The primary objective of this project was to design and implement a Hardware-in-the-Loop 

(HIL) bench that could simulate the different signals typically received by a motorcycle 

dashboard. The purpose of this bench is to test and validate the functionality of the dashboard 

independently from the motorcycle. 
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Specifically, the HIL bench was designed to: 

 

- Generate digital pulse signals that simulate wheel speed using a Hall-effect sensor model. 

- Produce analog signals using DACs to replicate parameters such as fuel level and outdoor 

temperature. 

- Transmit CAN messages to simulate real-time vehicle data such as RPM, battery voltage, and 

warning indicators. 

- Create a safe and controlled testing environment where engineers can trigger specific 

spontaneous scenarios and observe the dashboard's response in real time. 

- Reduce development time by providing a repeatable and adjustable signal source without 

needing physical movement or a live vehicle. 

In summary, the bench acts as a substitute for the motorcycle, enabling efficient testing, 

validation, and demonstration of the dashboard under various conditions. 

1.4 The concept of a HIL Bench 

A Hardware-in-the-Loop (HIL) bench is a testing platform used to simulate real-world inputs 

for embedded systems, allowing developers to validate the behaviour of a system without 

needing the entire physical environment. 

Key components of a HIL system include: 

• Signal Generators for producing Analog, digital signals. 

• Processing Unit which is typically a microcontroller or an embedded system (ESP32 

and Arduino nano in this project). 

• Test Management Software to control scenarios and monitor outputs (CANoe). 

• Real Device Under Test (DUT): In this case, the actual motorcycle dashboard we 

worked with. 

HIL testing is widely used in automotive, aerospace and industrial sectors due to its ability to 

reduce costs, accelerate development and enhance safety by eliminating the need for early 

physical prototypes or dangerous test scenarios. 
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1.5 Overview of Motorcycle Dashboards 

Automotive Dashboards and motorcycles dashboards specifically have changed significantly 

over the two last decades from analog gauges to advanced digital displays as it is shown in the 

Fig.1.1. These dashboards, which are considered the primary interface for the rider, provide 

him with real-time data of his overall vehicle state and conditions such as speed, engine RPM, 

fuel level, temperature, and warning indicators (left and right indicators, headlights and RGB 

lights). 

Traditionally, motorcycles used analog dials for speed and RPM, combined with small LED 

indicator lights for functions like turn signals, oil pressure, and high beam. However, with the 

integration of microcontrollers and sensors, modern motorcycles increasingly adopt digital 

dashboards or TFT (Thin Film Transistor) displays, which offer greater flexibility, better 

visibility, and additional features like phone dialing for example through bluetooth 

connectivity. The internal layout of a digital dashboard is almost the same on every model 

which is shown in the diagram below in Fig.1.2. 

Advanced dashboards now include: 

• Digital speedometers 

• Fuel level and engine temperature displays 

• CAN-based communication with the ECU (Engine Control Unit) 

• GPS integration and turn-by-turn navigation 

• Connectivity with smartphones for calls, music, and diagnostics 

• Diagnostic warning systems and service reminders 

 

 

Fig 1.1 Traditional analog dashboards and modern digital dashboards. 
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▪ On the upper photo we have a view of a classic analog dashboard (with mechanical 

speedometer). 

▪ On the lower photo we have a view of a modern digital dashboard (TFT screen or LCD 

with multiple data fields). 

 

Fig.1.2.  The internal functional layout of a digital dashboard. 

As you can see in the diagram above, we can identify:  

▪ Inputs (first case): Hall-effect sensors (speed), thermistors (temperature), CAN bus 

(ECU data). 

▪ Processing (middle case): Microcontroller (ESP32, STM32, etc.). 

▪ Outputs (last case): LCD/TFT screen showing processed data. 

The change toward digital dashboards also enables the integration of custom firmware, which 

allows manufacturers to develop new dashboards that can be updated or personalized via their 

software. This opens the door for companies to design modular, software-driven displays made 

for specific requests by the customers. 

In our project, we worked with a digital dashboard prototype, designed to read various types of 

input signals (digital, analog, and CAN) and then display them on a user-friendly screen. 

Dashboards like these require a reliable testing environment to validate its behaviour before 

deploying it on an actual motorcycle and then be labelled as approved for manufacturing which 

is the primary motivation for building our Hardware-in-the-Loop (HIL) bench.  

 

Sensors 
hall effect sensor, 

thermistance, fuel level 
sensor 

Microcontroller (like ESP32 ) 

display cluster (a digital 

screen maybe touchable) 
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1.6 Embedded Systems Overview 

An embedded system is a dedicated computing system designed to perform a specific function, 

often within a larger system. Unlike general-purpose computers, embedded systems are made 

for real-time tasks, constrained environments, and direct interaction with a hardware. 

In the context of motorcycles, embedded systems are integrated into critical systems like: 

• The Engine Control Unit (ECU). 

• Anti-lock Braking Systems (ABS). 

• Lighting and signaling systems. 

• Digital dashboards. 

These systems typically include: 

• A microcontroller or microprocessor (like the ESP32 used in our dashboard and our HIL 

bench). 

• Memory components (Flash, RAM). 

• Communication Interfaces: enable the exchange of data like (GPIO, ADC, PWM, 

UART, SPI, I2C, CAN). 

• Sensors. 

• Embedded software or firmware programmed to respond to inputs in real time manner. 

The motorcycle dashboard developed and used in this project is itself a complete embedded 

system, responsible for: 

• Reading input signals (speed pulses, fuel levels, engine temperature, lights and direction 

indicators). 

• Processing data and translating raw sensor values (in voltages) into human-readable 

output. 

• Managing and updating the display in real time. 

• Handling interrupts, multitasking (with FreeRTOS), and communication protocols. 

Also we can add that modern embedded systems are often characterized by: 

• Low power consumption. 

• Real-time performance. 

• High reliability and fault tolerance. 

• Compact size. 

• cost-efficiency. 

In the dashboard, it must perform accurately even when subjected to simulated inputs, just like 

it would on an actual motorcycle. That’s why it was necessary to build another embedded 

system called Hardware-in-the-Loop (HIL) test bench__ to detect any faulty inefficient results 
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and eventually be able to validate the behavior of this embedded system under realistic, and 

controlled conditions. 

Furthermore, embedded systems development requires a careful coordination of hardware and 

software design which involves: 

• Selecting suitable fast microcontrollers. 

• Designing the circuit (power supply, connectors, protections). 

• Writing and debugging real-time embedded code. 

• Integrating communication protocols such as CAN, which is widely used in 

automotive systems due to its robustness and fault tolerance and rapid response rate. 

In this project, the ESP32 serves as the heart of our test bench, compiling and running the logic 

that simulates inputs, receives CAN frames, and drives the display. 

our HIL device emphasizes the importance of real-time signal handling, communication 

protocol support (such as in this case CAN) and a good embedded software architecture. 

1.7 Similar Works and Safety Protocol 

Hardware-in-the-Loop (HIL) testing is a necessary methodology in the validation of embedded 

systems, especially within the automotive sector. HIL test benches enable engineers to simulate 

real-world conditions by replacing actual hardware components with virtual models, which 

allows for the comprehensive testing of embedded controllers and dashboards without the need 

for a complete physical prototype [1]. This approach is widely adopted in the automotive 

industry for its ability to accelerate and organize development cycles, reduce costs and ensure 

system reliability and functional safety, particularly in terms of the safety protocol ISO 26262 

[2] [3]. 

Commercial HIL benches, like those provided by Vector and STEP Lab, offer modular and 

high effective platforms capable of simulating complex vehicle behaviours and integrating 

multiple communication protocols especially the one used widely in automotives which is CAN 

[4] [5]. These systems are highly flexible, supporting the expansion of I/O interfaces and the 

automation of test scenarios, which is essential for the validation of advanced features in 

modern vehicles. For example, Link Engineering’s HIL system can recreate dynamic vehicle 

environments, allowing for the real-time testing of brake systems and advanced driver-assist 

systems (ADAS) by integrating both physical hardware and simulated vehicle dynamics [6]. 

The academic research so far has also demonstrated the versatility of HIL test benches. Viennet 

et al. (2024) developed a HIL test bench for e-bike ABS validation, which highlights the 

importance of test simulation (such as rider mass and tire grip) to the specific application, which 

closely aligns with the needs of our motorcycle dashboard testing [7]. These studies emphasize 

that the level of model complexity must be balanced to avoid overloading the simulator while 

still achieving accurate system test and validation. 



 Chapter 1: Context and State of the Art 

 

8 
 

Compared to these established systems, our HIL test bench developed for the motorcycle 

dashboard project focuses on simulating key motorcycle sensor signals such as speed, fuel level, 

temperature and indicator lights. While commercial and high-end HIL benches take years to 

come to light and often target four-wheeler automotive platforms and utilize expensive 

proprietary hardware, our version in the other hand prioritizes cost-effective components and 

is also specifically adapted for two-wheeler applications (but can also be adapted for four-

wheeled with further work) [2] [7]. makes our test bench particularly valuable for automotive 

startups and small manufacturers seeking affordable, flexible and rapid validation tools. 

Furthermore, our design supports modular signal expansion and real-time closed-loop testing, 

which shows loyalty to the core principles of HIL methodology while addressing the unique 

requirements of motorcycle dashboard systems [1] [3] [8]. 

1.7.1 The ISO 26262 protocol  

We talked earlier about the ISO 26262 protocol but we didn’t really explain what it really 

is and why is it so important in automotive test and validation so ISO 26262 is an 

international standard governing the functional safety of electrical and electronic (E/E) 

systems in road vehicles (excluding mopeds). It provides a risk-based framework to mitigate 

hazards caused by E/E system failures, ensuring safety across a vehicle’s lifecycle. The Key 

Components of ISO 26262 are: 

  a). Safety Lifecycle 

The standard defines three phases for safety-critical system development: 

Phase Activities Output 

Concept Phase 

- Item definition (system boundaries) 

- Hazard and Risk Assessment 

(HARA) 

- Safety goal definition Safety goals, ASIL classification 

Product Development 

- System/hardware/software design 

- Safety requirement decomposition 

- Verification/validation Safety case, validated system 

Production & 

Operation 

- Manufacturing controls 

- Field monitoring 

- Decommissioning 

Safety reports, incident 

management 

Tab.1.1. The different phases of the safety lifecycle 

Source: our own work starting from the link : “The lifecycle ensures safety is embedded from 

concept to decommissioning, with rigorous documentation and traceability [9] [10]. 
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   b). Automotive Safety Integrity Level (ASIL) 

ASIL classifies risks based on three factors: 

• Severity (S0–S3): Injury severity (e.g., S3 = life-threatening). 

• Exposure (E0–E4): Likelihood of operational scenarios (e.g., E4 = frequent). 

• Controllability (C0–C3): Driver’s ability to avoid harm (e.g., C3 = difficult). 

ASIL ratings (A–D) dictate safety measures: 

• ASIL D: Highest integrity (like braking systems). Requires redundant architectures, 

formal methods, and fault injection [11] [12]. 

• ASIL C/B: Moderate (like power steering, BMS). 

• ASIL A/QM: Low risk (like infotainment). 

   Our motorcycle dashboard’s speed sensor might be ASIL B (moderate severity, rare          

exposure, controllable) [11][13]. 

   c). Hazard and Risk Assessment (HARA) 

HARA identifies hazards and defines safety goals: 

• Item Definition: Describe system functions and boundaries (e.g., dashboard ECU). 

• Hazard Identification: Brainstorm failure modes (incorrect speed display). 

• Risk Classification: Assign ASIL using severity, exposure, controllability. 

• Safety Goals: Top-level requirements (e.g “Speed signal deviation ≤ 5%”) [9] [14]. 

   d). V-Model Development Process 

      ISO 26262 mandates a V-Model as you can see in Fig.1.3 which we widely adopted in 

automotive industries: 

 

Fig.1.3. Diagram of the V cycle 
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• Left Side: Decomposing safety goals into technical requirements. 

• Right Side: Validating each level (unit, integration, system) [10] [11]. 

  Note: For ASIL D, semi-formal modelling (Simulink®) and simulation are required [12] 

[14]. 

 e). Functional Safety Management 

• Safety Plan: Outlines roles, milestones, and confirmation measures (e.g., audits) [13] 

[15]. 

• Development Interface Agreement (DIA): Defines responsibilities between suppliers 

and OEMs 14]. 

• Fault Injection: Simulates hardware/software failures (e.g., sensor disconnection) to 

validate robustness [10] [13]. 

1.7.2. Alignment of the HIL bench with ISO 26262  

Furthermore, our motorcycle dashboard HIL bench aligns as well with ISO 26262 

principles: 

• Validation: Simulates sensor signals (speed, fuel) to validate dashboard responses, 

mirroring ISO 26262’s verification requirements [13] [16]. 

• Fault Testing: By injecting edge-case signals (out-of-range temperatures and power 

supply exaggerated levels) we addressed ASIL B/C-level safety goals [10]. 

• Documentation: Documenting the test cases and results ensures compliance with the 

standard’s lifecycle phases [14] [15]. 

1.8. Conclusion 

In summary, this chapter established the foundational context of the project by highlighting 

the growing complexity of embedded systems in motorcycles and the need for robust testing 

methodologies such as Hardware-in-the-Loop (HIL). It introduced the main challenges in 

validating modern dashboards, presented the objectives of the proposed HIL bench, and 

reviewed relevant literature and standards like ISO 26262 that guided our approach. These 

insights justify the adoption of a custom HIL solution tailored to the needs of the dashboard. 

The next chapter builds upon this foundation by presenting the tools and technologies 

selected to implement the bench, including the microcontrollers, signal generation 

components, and testing platforms used throughout the project. 
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2.1 Introduction 

In this chapter, we explore the main tools and technologies employed in developing the HIL 

test bench. Each component, whether hardware or software plays a very critical role in ensuring 

the accurate simulation and validation of dashboard signals. This includes microcontrollers, 

communication protocols, DAC modules, and professional automotive testing tools. 

2.2 System Under Test General Description 

To understand how our HIL bench work we first need to have a general view on our SUT 

(System Under Test] which in our case is the motorcycle dashboard. This latter serves as a 

compact embedded system designed to display critical information to the rider, the prototype is 

entirely signal-driven and uses direct analog and digital inputs for operation. 

The hardware architecture includes:  

• ESP32-S3 Microcontroller: is the central processing unit of the dashboard. It reads all 

incoming signals and controls the display logic. the ESP32-S3 offers advantages like 

built-in Wi-Fi and Bluetooth (reserved for future expansion), and dual-core processing 

power. 

• TFT Display Screen: The dashboard includes a color screen for visualizing speed, 

indicators, fuel level, temperature, and other parameters. The display is managed 

directly by the ESP32-S3 card using SPI or another parallel interface. 

• Voltage Dividers: Since the signals originating from the motorcycle are typically at 

12V, voltage divider circuits are used to step them down to safe levels (usually 3.3V) 

compatible with the ESP32’s GPIOs. 

• Demultiplexer Circuit: Used to route multiple incoming signals to the limited number 

of GPIO pins present in the card which allows for efficient use of the ESP32's available 

I/O and adds more inputs than the microcontroller natively provides. 

• Direct Analog and Digital Inputs: The card reads sensor data (like fuel level or 

outdoor temperature) using the ESP32’s ADC pins, while pulse-based inputs (like speed 

from a Hall effect sensor) are handled using interrupt-capable digital pins. 

For testing and development of this dashboard, a Hardware-in-the-Loop (HIL) bench was 

designed by us to simulate these inputs replicating a real motorcycle environment through a 

software/hardware-controlled signal generation. Below in Fig.2.1 we can see the main general 

diagram of the System Under Test. 
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Fig.2.1. Diagram of the System Under Test 

2.3 Presentation of ESP32  

The ESP32 is a low-cost, low-power microcontroller series developed by Espressif Systems, it 

is widely adopted in both academic and industrial embedded systems projects. It has gained a 

lot of popularity due to its high performance with a processing speed up to 240Mz, rich 

peripheral set and integrated wireless capabilities, which makes it ideal for Internet of Things 

(IoT), real-time systems and also embedded applications like the ones implemented here in this 

project. 

 2.3.1 Core Architecture 

The ESP32 is based on a dual-core Tensilica Xtensa LX6 or LX7 processor (depending on the 

model) capable of running up to 240 MHz with support for: 

• Real-Time Operating Systems (RTOS).  

• Floating point operations. 

• Multitasking. 

• On-chip memory (RAM and Flash). 

• Power-saving modes. 

  2.3.2 Connectivity Features 

A big advantage of the ESP32 family is its integrated wireless communication modules: 

• Wi-Fi 802.11 b/g/n. 

• Bluetooth 4.2 / 5.0 (Classic and BLE). 
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These allow the ESP32 to interface with remote services, mobile apps, or cloud platforms 

which makes it ideal for smart systems. 

  2.3.3 Peripheral Interfaces 

The ESP32 includes a wide array of peripherals and interfaces as shown below Tab.2.1: 

Interface Description 

GPIO 33 general-purpose I/O pins 

ADC Up to 18 channels of 12-bit ADC 

DAC 2 × 8-bit integrated DAC outputs 

SPI/I2C/I2S SPI, I2C and I2S interfaces for communication 

UART Up to 3 UART interfaces 

PWM Pulse Width Modulation on any GPIO 

Tab.2.1. Key specs of ESP32 

In this project, two ESP32 boards are used: one in the motorcycle dashboard and another in 

the Hardware-in-the-Loop (HIL) bench, each fulfilling different roles. 

 2.3.4 Development E-ecosystem 

The ESP32 benefits from a robust open-source community and tooling: 

• Arduino IDE and PlatformIO for simple C++-based development. 

• Espressif IoT Development Framework (ESP-IDF) for advanced development. 

• Compatible with many third-party libraries like FreeRTOS, LovyanGFX and 

LittlevGL (LVGL). 

 2.3.5 Usage in The Project 

The usage of  this microcontroller can be summarized in: 

Dashboard 
Acquires signals (voltage levels, indicators), processes logic, and 

renders real-time data on a touchscreen. 

HIL 

Bench 

Simulates motorcycle behavior by generating 

digital, analog and  receive CAN signals to 

validate dashboard functionality. 

 2.3.6 Advantages 

ESP32 has many advantages, we can highlight the following: 
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• All-in-one solution: CPU, RAM, wireless, and peripherals on one chip. 

• Cost-effective for both prototyping and production. 

• Excellent documentation and community support. 

• Flexible enough to support multitasking through his dual cores, signal processing and 

generating user interface rendering simultaneously. 

2.4 Arduino Nano Presentation 

The Arduino Nano is a compact and breadboard-friendly microcontroller board based on the 

ATmega328P microcontroller. It offers the same functionality as the Arduino Uno but in a 

much smaller form with lesser pins and a different shape, making it ideal for embedded systems 

and space-constrained designs like the one that is used in our motorcycle dashboard HIL bench. 

2.4.1 Key Specs 

The key specs of the ARDUINO Nano are: 

• Microcontroller: ATmega328P. 

• Operating Voltage: 5V. 

• Input Voltage (recommended): 7–12V. 

• Digital I/O Pins: 14 (6 PWM outputs). 

• Analog Input Pins: 8. 

• Clock Speed: 16 MHz. 

• Flash Memory: 32 KB (2 KB used by bootloader). 

• SRAM: 2 KB. 

• EEPROM: 1 KB. 

• USB Interface: Mini-USB. 

 2.4.2 Arduino Nano Utility 

In our project, the Arduino Nano was selected specifically to manage the power supply level 

signal via a dedicated DAC module connected through the I²C interface. Initially, all analog 

signals were planned to be generated by a single ESP32 but bandwidth limitations and the 

external DAC instability over the I²C bus caused fluctuation in the other signal output. To 

overcome this, the analog voltage generation for the power supply level was offloaded to a 

separate controller which is the Arduino Nano thereby ensuring more stable and isolated signal 

output to ensure maximu accuracy. 

2.4.3 Role in the HIL Bench 

the role of ARDUINO Nano can be summarized in: 

• Receives CAN messages via the MCP2515 CAN module. 

• Extracts the power supply voltage level from the CAN frame. 

• Generates a corresponding analog voltage (0–5V) using a connected DAC module 

(MCP4725). 

• Ensures signal stability by avoiding I²C interference with the ESP32 signals. 

• Runs a dedicated firmware that receives the corresponding CAN message. 



 Chapter 2: Tools and Technologies Used 

 

16 
 

2.5 CAN Bus: Principles and Operation 

The Controller Area Network (CAN) bus is well known because it is a robust, efficient and 

widely adopted communication protocol used in automotive and industrial systems. Originally 

developed by Bosch in the 1980s, CAN was designed to allow microcontrollers and devices to 

communicate with each other without the need for a host computer using a multi-master, 

message-based protocol. 

Although the motorcycle dashboard does not originally use CAN, the HIL (Hardware-in-the-

Loop) bench developed in this project employs the CAN protocol to simulate realistic in-vehicle 

communication using the CANOE software. Understanding the working principles of CAN is 

therefore essential for interpreting and generating test signals. 

2.5.1 Communication Mode 

CAN uses a multi-master architecture, meaning multiple devices (nodes) can initiate 

communication on the bus. The type of communication here is message-based rather than 

address-based like other protocols (I2C, SPI…). This allows every node to listen to all messages 

and react only to the ones relevant to them, identified by a unique message ID. 

  

2.5.2 Electrical and Physical features 

The electrical and physical features of a CAN bus are: 

• Bus Type: Differential two-wire system (CAN_H and CAN_L) they need to be both 

present for the message to be sent. 

• Speed: Common speeds include 125 kbps, 250 kbps and 500 kbps and up to 1 Mbps  

max for CAN 2.0 (CAN FD can go even faster). 

• Termination: Requires sometimes 120-ohm resistors at both ends of the bus for signal 

integrity and to avoid fluctuations. 

• Voltage Levels: it uses a differential signal to resist noise in automotive environments. 

2.5.3  CAN Frame Structure  

 
A typical CAN 2.0 frame (standard) includes as shown below in Tab.2.2: 

              Field                 Description 

Start of Frame (SOF) Indicates the beginning of a message 

Identifier (11 or 29 bits) Determines message priority and content 

Control Field Includes data length 

Data Field Actual data (0 to 8 bytes for standard CAN) 

CRC Cyclic Redundancy Check for error detection 

ACK Acknowledge slot (receiver confirms message) 

End of Frame (EOF) Marks the end of the transmission 

Tab.2.2. CAN data frame structure 
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A Lower ID = higher priority during collisions. 

Below in Fig.2.2 is a representation of what a data CAN message may look like 

 

Fig 2.2: CAN message frame 

2.5.4 CAN in the HIL Bench  

Although the actual motorcycle dashboard is not based on CAN, the HIL test bench uses a CAN 

bus setup to: 

• Send predefined frames representing engine RPM, speed, fuel level, or warning lights. 

• Verify the dashboard’s behaviour and visual outputs in response to specific values of 

the CAN messages. 

The CAN messages were generated using a Vector CANoe and sent to the esp32 through a 

CAN case and a CAN module connected to the ESP32. 

 2.5.5 An example CAN message  

A typical message to simulate Bike Speed looks like this: 

• ID: 0x0CFF0500 

• Data: 03 4B 00 00 00 00 00 00 → Interpreted as 833 RPM 

• Periodicity: 10 ms (real-time emulation) 

This data is visualized on the real dashboard connected to the HIL bench, which provides 

feedback about system accuracy and responsiveness. 

2.4.6 The main advantages of using a CAN communication protocol in automotives 

The main advantages of using a CAN in the automotive industry are: 

• Reliability: Real-time error detection with CRC and acknowledgment. 

• Scalability: Easily integrates multiple nodes and test cases. 

• Noise Immunity: Well-suited for electrically noisy environments (vehicles). 

• Non-destructive arbitration: Messages don’t collide; higher priority wins without 

interference. 
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2.6 DACs and Analog Signals  

Digital-to-Analog Converters (DACs) play a crucial role in connecting digital microcontrollers 

with Analog hardware components. Many real-world devices like sensors, actuators and even 

automotive dashboards either produce or require Analog signals, and since most 

microcontrollers including the ESP32, operate using digital logic (0s and 1s), DACs are really 

necessary to transform digital outputs into corresponding voltage levels. 

2.6.1 Principle of Operation 

A DAC receives a digital value (typically an integer) and converts it into an Analog voltage 

that is proportional to that value. For example, an 8-bit DAC (like the one present in the ESP32) 

can take values from 0 to 255 and output a voltage between 0 V and a reference voltage provided 

by an engineer (e.g., 3.3 V). The output voltage 𝑉𝑜𝑢𝑡 is given by: 

𝑉𝑜𝑢𝑡 =  
𝐷

2𝑛−1
× 𝑉𝑟𝑒𝑓 

Where: 

• D is the digital input value, 

• n is the DAC resolution (typically 8, 10 or 12 bits), 

• 𝑉𝑟𝑒𝑓 is the reference voltage (which is typically 3.3 V or 5 V). 

2.6.2 Use of DACs in the HIL Bench 

In the Hardware-in-the-Loop (HIL) bench developed for this project, DACs are used to simulate 

Analog inputs that would normally come from real sensors on a motorcycle. This includes the 

signals: 

• Fuel level. 

• Temperature sensor output. 

• Power Supply signal. 

To simulate these signals accurately, three DACs must provide stable and noise-free voltage 

levels. So in total there were two types of DACs used: 

• MCP4725 External DAC: This is a 12-bit DAC module that communicates with the 

Arduino Nano via the I2C protocol (SDA and SCL). It provides high resolution and 

stable output for a signal like Power Supply Level, suitable for simulating analog signals 

required by the dashboard. As you can see below in Fig.2.3 is an illustration of what a 

MCP4725 DAC module may look like. 
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Fig.2.3.The MCP4725 DAC Module 

• Built-in ESP32 DACs: The ESP32 microcontroller includes two 8-bit DACs on pins 

GPIO25 and GPIO26. These were used for less critical signals or because we can say 

simplicity was favoured over resolution for temperature signal and fuel tank level 

signal. 

2.6.3 Signal Filtering and Smoothing 

DAC output is usually passed through a low-pass filter (typically an RC circuit) to eliminate 

digital noise and to smooth the overall Analog waveform. This is especially important when 

the Analog voltage is used as an accurate reference to display logical values in the dashboard. 

2.6.4 Calibration and Scaling 

To ensure accuracy, each Analog output must be scaled to match the expected voltage range of 

the motorcycle dashboard. For instance, if the dashboard expects a fuel signal between 0.5 V 

(empty) and 4.5 V (full), the DAC output must be calibrated accordingly. This was achieved 

either through software scaling or with voltage dividers and operational amplifiers. 

To fully understand how software scaling works which is the main course we followed to output 

the right values from our DACs here is a quick example of generating a 1V analog signal 

through an ESP32 and an external MCP4725 DAC module as shown in  Fig.2.4 below. 
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Fig.2.4. An example of a ESP32 connected to MC4725 through an I2C bus 

Here is a simple code that generates a 1V through the DAC 

 

  #include <Wire.h>: Includes the I2C communication library. The MCP4725 

communicates over I2C. 

 #include <Adafruit_MCP4725.h>: This is the official Adafruit library for the 

MCP4725 DAC module. 

  Adafruit_MCP4725 dac: Creates an instance of the DAC. 

Line 12:  Initializes the MCP4725 DAC using its I2C address (default is 0x60). 

  Starts communication between the ESP32 and the DAC. 

 



 Chapter 2: Tools and Technologies Used 

 

21 
 

Line 17: setVoltage(value, persist): sends a digital value to the DAC, 

which then converts it into an analog voltage. 

 1 * 4096 / 3.3: This line attempts to convert 1V into a digital value for a 12-bit DAC 

(range: 0–4095). 

So, if we want 1 V out, and the reference voltage is 3.3 V: 

1

3.3
× 4096 ≈ 1240  This means the DAC will output a voltage close to 1V. 

false as the second argument tells the DAC not to store the value in EEPROM (it will 

be gone on power off). 

2.7 CANoe Software 

CANoe (Controller Area Network Overall Environment) is a comprehensive development and 

testing tool by Vector Informatik for validating embedded systems, particularly automotive 

ECUs and networks. It supports simulation, analysis, and testing of CAN, LIN, FlexRay, 

Ethernet, and other protocols. Below is a breakdown of its core components and functionalities: 

2.7.1 DBC File 

A DBC file (CAN database) defines the structure of CAN bus communication, including: 

• Messages (CAN frames with IDs and data). 

• Signals (data fields within messages, e.g., speed, temperature). 

• Nodes (ECUs transmitting/receiving messages). 

• Encoding rules (scaling, offset, byte order). 

The two most important elements in a DBC file are messages and signals. 

a) Messages 

A message represents a single CAN data frame transmitted on the bus. It is the main 

container of an information or multiple informations present in one or more signals. 

• Syntax: Each message in CAPL is defined by a line starting with BO_. 

• Components: 

• CAN ID: A unique identifier for the message, written in hexadecimal. 

• Message Name: A unique name for the message (1–32 characters). 

• Length: it’s the total number of data bytes in the message (DLC). 

• Sender: The node (ECU) that transmits the message. 

• Example: 

BO_ 123 SPEEDM: 8 Vector__XXX 

This line defines a message named "SPEEDM" with CAN ID 123, length 8 bytes, sent by the 

node "Vector__XXX". 
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b) Signals 

signals are the individual pieces of data contained within a message. Each signal represents 

a physical quantity present within a vehicule, such as speed, temperature, or status flags for 

example. 

• Syntax: each signal is defined by a line starting with SG_ and is always placed under a 

message definition. 

• Components: 

• Signal Name: unique identifier for the signal. 

• Bit Start: the starting bit position of the signal within the message byte. 

• Bit Length: the number of bits the signal occupies. 

• The endianness: Byte order (@1 for little-endian, @0 for big-endian). 

• The signedness: Whether the signal is signed (-) or unsigned (+). 

• Scaling and Offset: Used to convert the raw value into a physical value (raw * 

scale + offset). 

• Minimum/Maximum: the range of the signal. 

• Unit: Physical unit ("km/h", "°C"). 

• Receiver: Node(s) that use this signal. 

• Example: 

SG_ VehSpd: 39|12@0+ (0.05,0) [0|127.96875] 'm/s' 

InstrumentCluster 

This defines a signal "VehSpd" starting at bit 39, 12 bits long, little-endian, unsigned with a 

scale of 0.05, offset 0, min 0, max 127.96875, unit "m/s" received by 

"InstrumentCluster". 

CANoe uses DBC files to decode raw CAN data into human-readable signals for simulation, 

testing, and analysis. 

 In addition to defining messages and signals directly in the DBC file, you can also create and 

manage them easily using the CANdb++ Editor which is included with Vector CANoe, this 

graphical tool allows you to visually add, edit and organize all elements of our CAN database 

without manually editing the text files. While the best practices when creating a DBC file 

are as follows: 

• Naming Conventions: Use descriptive names (Brake_Pressure instead of something 

like Sig 1). 

• Signal Groups: Group related signals ( Light_Indicators for turn signals, headlights). 

• Validation: Use CANoe’s Database → Validate to check for errors. 

2.7.2 CAPL (Communication Access Programming Language) 

CAPL is a C-like scripting language for automating tests, simulating ECUs and manipulating 

the bus traffic. 
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The Key CAPL Features are: 

• Event-driven execution: Triggers on bus events (message reception). 

• Signal manipulation: Modify signals in real time (inject faulty speed values). 

• Test automation: Execute test sequences and generate reports. 

2.7.3 ECU Simulation and Testing 

CANoe simulates ECUs and network behaviors for validation and there are mainly to types of 

Testing Workflows: 

• SIL (Software-in-the-Loop): Validate ECU software in a virtual environment. 

• HIL (Hardware-in-the-Loop): Test physical ECUs with simulated sensors/actuators. 

the motorcycle dashboard ECU can be tested by simulating CAN messages for speed, fuel level 

and also fault codes. 

2.7.4 CANoe Interface and Modules 

CANoe has several essential components that are used of the creation of test cases. 

a) Core Interface Components 

• Simulation Setup: configure ECUs, networks and I/O channels. 

• Trace Window: to monitor raw and decoded bus traffic. 

• Graphics Panel: create virtual dashboards for signal visualization . 

• Test Module: to design automated test cases using CAPL  

b) Hardware Integration 

• It only supports Vector interfaces like the can case VN1630 for real-time HIL testing. 

• FPGA-based models (like electric motor simulation) which enables high-fidelity 

testing. 

2.7.5 Advanced Features 

CANoe has some advanced features that are highlighted as follows: 

a) Fault Injection 

• Simulate bus errors, signal outliers or when an ECU disconnects. 

• Validates error-handling logic in ECUs. 

b) Physical Models 

• Prebuilt models (Vehicle Dynamics, Electric Motor) simulate mechanical systems. 

• Example: Simulate PWM signals for a motorcycle’s fuel gauge. 
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By understanding CANoe’s architecture, we can then contextualize our work within the 

industry standards while highlighting its elite innovation. 

2.8 Vector VN1630: Professional CAN Interface 

The CAN case VN1630 made by VECTOR Informatik is an essential tool to ensure 

communication between the HIL bench and the CANoe software. It’s a sophisticated 

equipment  that has several features and capabilities. 

2.8.1 Hardware Specifications 

The Vector VN1630 is a professional-grade CAN interface device from the VN1600 family, it 

is designed for industrial and automotive testing applications. It features 4 channels specifically 

made for flexibility and I/O support which makes it suitable for complex testing 

environments. The device connects to a host computer via USB, drawing power directly from 

the USB connection, which greatly simplifies setup in laboratory environments. 

The VN1630 supports multiple CAN protocols including standard CAN, CAN FD (Flexible 

Data-rate), and in newer versions, CAN XL, allowing for communication speeds up to 5 Mbit/s 

for CAN FD this makes it suitable for modern automotive applications requiring high-speed 

data transfer. 

2.8.2 Key Features and Capabilities 

The key features of the VN1630 are: 

• Multi-Application Support: it allows multiple software applications to access the same 

CAN channel simultaneously. 

• Synchronized Channels: provides minimal latency times with high timestamp 

accuracy (within one device: 1μs). 

• Hardware-Based Flash Routine: it enables fast CAN flashing for ECU programming.  

• Digital/Analog I/O:it includes dedicated D-B9 connector (CH5) for digital-analog 

input/output tasks. 

2.8.3 Software Integration 

The VN1630 is designed to work seamlessly with Vector's software suite but these softwares 

can never be used for testing without the CAN Case provided by Vector, these softwars are: 

• CANoe: For comprehensive network design, simulation, and testing. 

• CANalyzer: For bus monitoring and analysis. 

• CANape: For ECU calibration and diagnostics. 

This integration creates a complete ecosystem for automotive development and testing, 

particularly valuable in Hardware-in-the-Loop (HIL) testing environments especially with 

CANoe. As you can see below in Fig.2.5 is an illustration of what the VN1630 CAN case may 

look like. 
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Fig.2.5.The VN1630 CAN Case by Vector Informatik 

2.9 MCP2515: Embedded CAN Controller 

The MCP2515 is a stand-alone CAN controller manufactured by Microchip Technology that 

implements CAN network.  

The MCP2515 operates at speeds up to 1 Mbit/s and communicates with microcontrollers via 

a high-speed SPI interface (up to 10 MHz). It usually operates on a voltage range of 2.7V to 

5.5V with a typical active current consumption of only 5mA and standby current of 1 μA in 

sleep mode. It’s compatible with both Arduino and ESP32. 

2.9.1 Key Features and Capabilities 

Despite its lower cost compared to professional solutions, the MCP2515 offers several valuable 

features: 

• One-Shot Mode: it makes sure message transmission is attempted only once. 

• Interrupt Support: it provides a configurable interrupt output pins for event 

notification. 
• Clock Features: it usually includes a clock out pin with a programmable prescaler 

that can serve as a clock source for other devices. 

2.9.2 Integration with and ESP32 Arduino and DIY Projects 

The MCP2515 is widely used in Arduino-based CAN bus projects due to its affordability and 

ease of integratio. Typical Arduino CAN modules combine the MCP2515 controller with a 

transceiver (often the TJA1050) on a single board with SPI pins for connection to 

microcontrollers. 

This configuration allows Arduino boards as well as ESP32 microcontrollers to communicate 

with automotive CAN networks or other CAN-enabled device. 

2.9.3 System Architecture Implementation 
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In our HIL test bench the communication flow follows a very sophisticated chain that makes a 

bridge of professional automotive testing tools with cost-effective embedded systems. The 

system architecture of the HIL bench implements a three-stage communication process: 

Starting with CANoe that simulates generated CAN messages then: 

• the Vector VN1630 interface transmits these messages through the DB9 connector.  

• the MCP2515 CAN controller receives and processes the data (as you can see 

below in Fig.2.6 is an illustration of what the MCP2515 CAN module may look 

like). 

• Finally the ESP32 and the Arduino Nano microcontrollers manipulate the received 

signals for test simulation. 

 

Fig.2.6 The MCP2515 CAN Module 

2.9.5 ESP32 Integration and Data Manipulation 

The ESP32 integration in our system is explained as follows: 

a) SPI Communication Interface 

The MCP2515 communication with the ESP32 microcontroller through the high-speed SPI 

interface enables efficient transfer of received CAN messages for further processing. The 

typical connection configuration uses the ESP32's hardware SPI pins for optimal performance 

and below in Tab.2.3 is the complete pinout of the MCP2515 and ESP32 used in our project: 

MCP2515 Pin ESP32 Pin Function 

CS GPIO5 Chip Select 

SI GPIO23 SPI MOSI (Master Out, Slave In) 

SO GPIO19 SPI MISO (Master In, Slave Out) 

SCK GPIO18 SPI Clock 
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MCP2515 Pin ESP32 Pin Function 

INT GPIO4 Interrupt signal for message reception 

Tab.2.3. Pinout of MCP2515 with ESP32 

b) Message Processing and Manipulation 

Once the ESP32 receives CAN messages from the MCP2515, our firmware can extract and 

manipulate the data according to our HIL test requirements. The ESP32's dual-core architecture 

provides sufficient processing power to handle the real-time CAN message processing while 

simultaneously generating appropriate analog and digital signals for the motorcycle 

dashboard. This manipulation capability allows us to simulate various motorcycle operating 

conditions, fault scenarios, and edge cases that would be difficult or dangerous to reproduce 

with the actual vehicle hardware. 

2.9.6 Arduino Nano Integration and Data Manipulation 

It’s basically the same with ESP32 but with different pinout as you can see below in Tab.2.4: 

MCP2515 Pin Arduino Nano Pin    Function 

CS D10    Chip Select 

SI D11     SPI MOSI (Master Out, Slave In) 

SO D12     SPI MISO (Master In, Slave Out) 

SCK D13     SPI Clock 

INT D2      Interrupt signal for message reception 

Tab.2.4. Pinout of MCP2515 with Arduino Nano 

The Arduino Nano’s role in this HIL setup is to act as a dedicated CAN-to-analog converter 

for the specific signal of power supply level. therefore, it also needs its second separate CAN 

module.  

2.10 DB9 Connector: The Physical Interface Standard 

The DB9 (D-SUB 9) connector serves as the industry-standard physical interface for CAN bus 

communication in professional automotive testing environments. This 9-pin male connector 

follows standardized pinout configurations that ensure compatibility across different 

manufacturers and testing platforms, the connector's robust design provides a reliable signal 

integrity and electromagnetic compatibility which makes it ideal for automotive and industrial 

applications where the signal quality is critical. 
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2.10.1 Standard DB9 CAN Pinout Configuration 

The DB9 connector in the VN1630 follows the CiA 303-1 standard pinout, which is widely 

adopted in industrial and automotive testing applications as follows in Tab.2.5: 

Pin Number Signal Description 

1 NC No Connection 

2 CAN_L CAN Low differential signal line 

3 GND ground 

4 NC No Connection 

5 SHIELD Optional cable shield connection 

6 GND ground 

7 CAN_H CAN High differential signal line 

8 NC No Connection 

9 VB+ Optional external power supply (+9V to +30V) 

Tab.2.5. Pin mapping of the DB-9 connector 

And below in Fig.2.7 is schematic of the entire pin mapping  

 

Fig.2.7. A schematic of the Pin Mapping of the DB-9 connector 

This pinout configuration can ensure a proper differential signalling between CAN_H (pin 7) 

and CAN_L (pin 2), which is essential for noise immunity and reliable data transmission over 
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extended distances. The dual ground connections (pins 3 and 6) provide enhanced signal 

integrity and electromagnetic compatibility. 

2.10.2 Vector VN1630 CAN Message Transmission 

The VN1630 connects must use the DB9 connector to ensure CAN transmissions successfully.  

  a) VN1630 Output Methode 

The Vector VN1630 interface generates CAN messages from CANoe simulation and 

outputs them through its DB9 connectors with professional-grade signal 

conditioning. The device supports CAN 2.0B protocol at speeds up to 1 Mbit/s, with 

CAN FD capabilities extending to 5 Mbit/s depending on network configuration. The 

VN1630's built-in CAN transceiver provides the necessary voltage levels and current 

drive capabilities to ensure reliable signal transmission through the DB9 interface. As 

you can see below in Fig.2.8 how the DB-9 connects to our CAN case through a 120 Ω 

resisor to ensure signal stability. 

 b)  Signal Conditioning and Output Characteristics 

The VN1630 uses high-speed CAN transceivers that convert the digital CAN protocol 

data into differential analog signals suitable for transmission over the physical CAN 

bus. These transceivers provide the necessary signal conditioning including voltage 

level conversion and protection against electrical faults such as short circuits and 

overvoltage conditions. The device maintains precise timing characteristics with 

timestamp accuracy within 1μs, ensuring deterministic message transmission which is 

critical for HIL testing applications. 

 

 

Fig.2.8. A picture of a DB-9 connector connected to VN1630 CAN Case  

2.10.4 MCP2515 CAN Controller Integration 

The integration of the MCP2515 CAN module in the system is explained as follows: 
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  a) MCP2515 Message Reception 

The MCP2515 CAN controller in our test bench serves as the bridge between the 

professional VN1630 interface and ESP32 microcontroller. When connected to the 

VN1630's DB9 output, the MCP2515 receives the differential CAN signals. The 

MCP2515 implements the complete CAN 2.0B protocol stack handling message 

filtering, error detection and CAN Id reading. 

  b) Hardware Connection Configuration 

The physical connection between the VN1630 DB9 output and the MCP2515 module 

requires proper signal routing and termination: 

• CAN_H (DB9 pin 7) connects to the CAN transceiver's CANH input. 

• CAN_L (DB9 pin 2) connects to the CAN transceiver's CANL input. 

• CAN_GND (DB9 pins 3/6) provides the reference ground for the CAN signals. 

• 120Ω termination resistor between CAN_H and CAN_L ensures proper signal 

integrity and avoids fluctuations. 

The MCP2515's message filtering capabilities allow selective reception of specific 

CAN IDs relevant to our motorcycle dashboard simulation, which reduces processing 

overhead and also improves system efficiency. 

2.11 Additional Components 

In addition to the technologies we explained in the previous sections we used three other 

much less sophisticated basic components but rather essential to ensure the full functioning of 

our HIL bench, the 8-relay module, the bike connector and the LM324 amplifier IC.  

a) A brief explanation of the 8-Channel Relay Module  

An 8-channel relay module as shown in Fig.2.9 allows a microcontroller like the ESP32 to 

amplify simple ON and OFF signals (3.3V or 5V indicators or headlights) to a higher 

voltage depending on the power supplied to the relay switches. 

 

Fig.2.9. An image of the 8 relays module 

Each relay on the module is an electromagnetically-operated switch. When the ESP32 sends a 

HIGH or LOW signal to one of the relay input pins(each input pin correspond to each relay IN1 
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corresponds to D1 and etc..), the corresponding relay opens or closes its contacts allowing 12V 

from an external power supply to reach the target device (in this case, dashboard signal lines). 

Each relay typically supports Normally Open (NO) and Normally Closed (NC) terminals and 

can handle 10A at 12V DC or 220V AC and also has optocouplers for isolating microcontroller 

logic from the high-voltage side. 

Four out of eight relays are used in this module and they are controlled by pins 33, 27, 32 and 

15 of the ESP32. Used to amplify ON/OFF signals (Digital HIGH/LOW) to actual 12V levels. 

The signals that control the relay are: 

• Right Indicator. 

• Left Indicator. 

• Headlights. 

• Key Contact. 

       We used relays because the dashboard expects real-world 12V signals, and ESP32 can 

only output 3.3V logic which is not enough to simulate the actual bike dashboard conditions so 

relays basically act as the bridge between simulation logic and real voltage levels. 

b) A brief explanation of the 9-pin Connector  

This is a male connector (9-pin) as shown below in Fig.2.10 that groups and routes all the 

output signals from our HIL bench to the motorcycle dashboard. It ensures easy plug-in and 

plug-out with its female twin during tests. We used one because: 

• It makes the system user-friendly. 

• It prevents wiring errors. 

• Mimics the actual connector used between the dashboard and the motorcycle for 

signal interfacing. 

 

 

Fig.2.10. An image of the male 9 pins bike connector 
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Pin Mapping of the bike connector 
 

The signals meant for simulation are carefully assigned to each pin with a specific 

number by following a Pin Mapping shared between both the male bike connector and 

its female encounter as follows in Tab.2.6 : 

Pin Signal Name Description 

1 Ground Common reference ground 

2 Right Indicator 12V digital ON/OFF signal (via relay) 

3 Left Indicator 12V digital ON/OFF signal (via relay) 

4 Headlights 12V ON/OFF signal (via relay) 

5 Key Contact 12V ON/OFF signal (via relay) 

6 Fuel Tank Level 0-12V analog signal (amplified from DAC) 

7 
Outdoor 
Temperature 

0–3.3V analog signal from ESP32 DAC 

8 
Bike Speed 

Signal 
0–10.8V digital pulse (amplified from ESP32) 

9 Supply level 
To indicate the battery level on the screen as well 

as power the entire dashboard 

Tab.2.6. Pin Mapping of the Bike Connector 

2.11.3 A brief explanation of LM324 Operational Amplifier 

The LM324 is a quad op-amp IC, it contains four independent operational amplifiers 

inside one integrated circuit. 

        we used one as to: 

• To amplify analog signals generated by DACs (ESP32 or MCP4725) to higher 

voltage levels, 15V 12V and 10.8V. 

• used for: 

o Fuel Tank Level → Amplified to 12V 

o Bike Speed Pulse → Amplified to ~10.8V 

o Power Supply level → Amplified to ~15V 

         Important Note: 

Since LM324 is not rail-to-rail, we had to power it with 16V to ensure it could output a 

clean 12V without distortion or clipping. 

2.12 Conclusion 

By understanding the tools and technologies involved in the development of this HIL bench we 

have built a strong technical foundation for our system. Each element was selected based on 

compatibility and precision. This chapter provides the technical prerequisites necessary for 

understanding the architecture and design choices detailed in Chapter 3. 
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3.1 Introduction 

 This chapter details the design, implementation, and integration of all components within the 

HIL bench. It explains the methods used for simulating analog and digital signals, the firmware 

structure, and how CAN frames were generated and interpreted using CANoe. Additionally, 

the test strategy and mechanical integration are presented. 

3.2 System Overview 

The Hardware-in-the-Loop HIL bench developed in our project aims to simulate 8 real-time 

motorcycle signals that in an actual motorcycle come from different sensors in a controlled, 

reproducible environment. The main purpose of this is to test and validate the behavior of the 

motorcycle dashboard designed by the team without the need for a physical motorcycle. Below 

in Fig.3.1 is a general diagram that illustrates the principle functioning of our HIL bench. 

This concept is rather necessary in the automotive manufacturing word as it is adapted by every 

car company in the world as we have already seen in chapter 1. 

The bench inside-architecture is composed of several connected modules, each of them 

responsible for emulating a specific kind of inputs that are typically present in a motorcycle: 

• Digital Signals (speed pulses): Generated using the ESP32 to simulate the output of the 

Hall-effect proximity sensor used for speed detection. 

• Analog Signals (fuel level, outdoor temperature and: Produced via DAC modules 

(MCP4725 and the ESP32’s internal DAC) to mimic varying voltage levels coming 

from the sensors. 

• Power supply level signal : this particular signal was produced using an extra 

microcontroller which is the famous ARDUINO NANO. 

The bench also adaptes the CAN network for simulation and testing using the hardware and 

software provided by Vector company: 

• CAN Messages: Sent using the MCP2515 module and coming essentially from the 

Vector CAN Case VN1630, these messages are all sent via the CANoe Software. 

• Testing Interface: CANoe software is used as the testing interface on the PC, which 

allows real-time visualization and manipulation of CAN messages which are later 

transferred to analog and digital signals through our HIL bench. 

 

Fig.3.1. The HIL bench principle 
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3.3 Signal Simulation 

The eight real-time motorcycle signals that we mentioned above are the main variables of our 

HIL test bench that need to be carefully replicated to provide a safe testing environment for the 

dashboard. These output signals from our HIL bench are finally grouped through a male 9 pins 

bike connector which will be then directly inserted to its female twin which is attached to the 

dashboard (the System Under Test). These main signals that exist on actual motorcycle and 

were then mimicked in the HIL test bench are as follows: 

3.3.1. Right & Left Indicators 

 a) On an actual motorcycle 

1. The rider flips a mechanical switch for left or right turn. 

2. This switch activates a flasher relay, which turns 12V on and off periodically in a 

form of a square wave. 

3. The indicator bulbs flash accordingly. 

4. The dashboard simply detects this 12V blinking signal after reducing it to 5v through 

internal voltage dividers, and then displays them on the screen. 

 b) HIL Mimicking 

1. CANoe sends a message (ID 0x111) indicating whether the left/right indicator is on 

or off. 

2. Our ESP32 toggles a GPIO pin HIGH/LOW at approximately 1Hz. 

3. A relay module takes that 3.3V signal and outputs a real 12V blinking signal 

periodically. 

4. the signal is then plugged into the male bike connector. 

• We don’t need to mimic the physical switch or relay but only the resulting 12V 

blinking output. 

3.3.2. Headlights 

 a) On an actual motorcycle 

1. Activated by a toggle switch. 

2. Sends a constant 12V to the headlights and the dashboard. 

 b) HIL Mimicking 

1. ESP32 receives the ON/OFF state over CAN (ID 0x111). 

2. GPIO 27 is set HIGH or LOW. 

3. Relay module amplifies that to real 12V. 
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3.3.3. Key Contact / Ignition ON 

a) On an actual motorcycle 

1. When you insert and turn the ignition key, it connects the battery to the rest of the 

bike. 

2. This sends 12V to the dashboard to indicate power is on, the dashboard reduces it 

to 5v before indicating it on the screen. 

b) HIL Mimicking 

1. ESP32 receives the key contact state via CAN. 

2. GPIO 15 controls a relay to output a 12V ignition signal. 

3.3.4. Fuel Tank Level 

 a) On an actual motorcycle 

1. A float inside the fuel tank is connected to a variable resistor (potentiometer). 

2. As fuel level drops, the float moves changing resistance. 

3. This is wired in a voltage divider, outputting a voltage between 0–12V. 

4. The dashboard reads this analog voltage after reducing it again to 5v to estimate how 

full the tank is. 

 b) HIL Mimicking 

1. CANoe sends fuel level in litters via CAN (ID 0x103). 

2. ESP32 maps this to a DAC value and outputs it on pin 25 (0–3.3V). 

3. A non-reversible amplifier using one of LM324 four op-amps amplifies this voltage 

to 0–12V using a calculated gain with the formula: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 × (1 +
𝑅𝑓

𝑅𝑖
) 

      So, the final gain is:  

𝐺 = 1 +
𝑅𝑓

𝑅𝑖
 

So, a gain from 3.3v to 12v is 3.63 therefore we need 𝑅𝑓 = 26.3𝒌Ω and 𝑅𝑖 = 10𝒌Ω. 

Below in Fig.3.2 we can see a schematic of the non-reversible amplifier made using 

the open source software KiCad. 
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Fig.3.2. A non-reversible amplifier 

 3.3.5. Outdoor Temperature 

   a) On an actual motorcycle 

1. Uses an NTC thermistor (Negative Temperature Coefficient). 

2. As the temperature increases the resistance decreases. 

3. Placed in a voltage divider → outputs voltage that drops as temperature rises. 

4. The dashboard converts this analog voltage to temperature. 

    

         b) HIL Mimicking 

1. CANoe sends temperature value via CAN (ID 0x101). 

2. ESP32 maps this to voltage and outputs it on DAC pin 26. 

• We don’t need amplification because the dashboard expects 3.3V max. 

 

3.3.6. Bike Speed Sensor 

          a) On an actual motorcycle 

   Uses a Hall effect sensor mounted on the wheel, this is how a hall effect sensor work:  

1. A magnet passes the sensor (which stays in HIGH state) on every rotation therefore 

produces a digital LOW pulse. 

2. The dashboard counts pulse frequency (how many pulses are there per second) to 

determine speed. 

          b) HIL Mimicking 

1. CANoe sends speed in km/h (CAN ID 0x104). 

2. ESP32 calculates the frequency 𝑓: 

𝑓 =
𝑠𝑝𝑒𝑒𝑑 𝑎𝑞𝑐𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝐶𝐴𝑁𝑜𝑒 (𝑖𝑛 𝑚/𝑠)

𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑘𝑒 𝑤ℎ𝑒𝑒𝑙 (𝑖𝑛 𝑚)
 =  

𝑣

1.29
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It then converts this into microsecond delays which toggles GPIO 14 at the right 

frequency. 

 by doing: 

𝑓𝑚𝑖𝑐𝑟𝑜 =
106

𝑓
 

The time in which a single pulse stays in LOW state corresponds exactly to the time 

period it takes the actual magnet to completely pass the sensor which is approximately:  

𝐿𝑂𝑊𝑡𝑖𝑚𝑒 =
22000

𝑠𝑝𝑒𝑒𝑑 𝑎𝑞𝑐𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝐶𝐴𝑁𝑜𝑒 (𝑖𝑛 𝑚/𝑠)
 

There for the period which is 
1

𝑓
 is equal to the sum of 𝐿𝑂𝑊𝑡𝑖𝑚𝑒 and 𝐻𝐼𝐺𝐻𝑡𝑖𝑚𝑒. 

• Output is amplified with another voltage divider across an LM324 op-amp to 

~10.8V to match the sensor levels, using the same formula used above, the 

proper gain is: 

𝐺 ≈ 3.27 

Which means we will use resistors 𝑅𝑓 = 33𝑘Ω and 𝑅𝑖 = 10𝑘Ω . 

 3.3.7 Power Supply Level 

    a) On an actual motorcycle 

1. The battery voltage is monitored by the dashboard. 

2. Normally 12V–15V. 

3. It is usually sensed via a resistive voltage divider or an ADC in the dashboard. 

    b) HIL Mimicking 

1. Arduino Nano receives this value via CAN (ID 0x107). 

2. Uses an I²C bus MCP4725 DAC to output 0–5V. 

3. It’s then amplified through the LM324 op-amp to 0-15v using a gain of 3.00. 

4. That’s interpreted as 0–15V by the dashboard (with internal scaling again). 

We have chosen to use another microcontroller for this signal because of: 

• The limited number of hardware DACs on the ESP32 (only 2). 

• Signal fluctuation and delay when an I2C DAC was used on the ESP32 due to 

I2C bus speed bottlenecks. 
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  3.3.8 Summary 

The summary of all the signals here in Tab.3.1: 

Signal 
Sensor 

Type 
Real Output Bench Output (Mimic) 

Generated 

By 
Amplified 

Right 

Indicator 

Switch + 

flasher 
Pulsed 12V Relay from GPIO 33 ESP32 Yes 

Left Indicator 
Switch + 

flasher 
Pulsed 12V Relay from GPIO 32 ESP32 Yes 

Headlights 
Toggle 

switch 
Constant 12V Relay from GPIO 27 ESP32 Yes 

Key Contact Key switch Constant 12V Relay from GPIO 15 ESP32 Yes 

Fuel Level 
Float + 

resistor 
Analog 0–12V 

DAC + LM324 from 

GPIO25 
ESP32 Yes 

Temperature 
NTC 

thermistor 
Analog 0–3.3V DAC directly on GPIO26 ESP32 No 

Speed Sensor Hall effect Pulsed 12V GPIO14 + LM324 ESP32 Yes 

Supply 

Voltage 

Battery 

voltage 
Analog 0–15V DAC via MCP4725 

Arduino 

Nano 
Yes 

Tab.3.1. Summary of the different signals meant for simulation 

3.4 Hardware Design 

The Hardware-in-the-Loop (HIL) bench designed in this project aims to test and validate a 

motorcycle dashboard under realistic operational conditions by simulating both digital and 

analog signals corresponding to real-world sensor inputs. The goal is to ensure the dashboard 

reacts accurately to all signals as if it were mounted on an actual motorcycle. This specific 

section provides an exhaustive explanation of all the design decisions, components and 

interactions. 

The complete HIL system architecture includes the following subsystems: 

• CAN Communication Bridge using a CAN Case device VN1630. 

• A dual Microcontroller System: 

o ESP32: Handles real-time signal generation and decoding for most dashboard 

signals. 

o Arduino Nano: Dedicated to the output for the power supply level signal. 

• Digital and Analog Signal Generation for simulating bike speed, fuel level, 

temperature and power supply level as well as key contact, left and right indicators and 

headlights. 

• Signal Amplification using an LM324 Op-Amp. 

• 8 Relay Module for ON and OFF digital signals. 
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The complete schematic of the HIL test bench using KiCad is shown down below in Fig.3.3 

with all the different components used and their interconnections. 

 

Fig.3.3. The complete schematic of the HIL test bench using KiCad 

The CAN Communication Setup is doing via the VN1630 CAN Case injects CAN frames 

coming from the CANoe software through two MCP2515 CAN transceivers: 

• One connected to ESP32, responsible for: 

o Fuel level (analog via DAC). 

o Outdoor temperature (analog via DAC). 

o Bike speed (digital pulses). 

o Indicators and headlights (digital high/low). 

• One connected to Arduino Nano, solely for the power supply level signal.   

3.4.1 Signal Interface with Dashboard 

The following signals are connected via a 9-pin male connector as shown in Tab.3.2: 
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Pin Signal Source Pin Type Amplification 
Final 

Voltage 

1 Ground - Reference No 0V 

2 Fuel Level ESP32 DAC 25 Analog Yes 0–12V 

3 Outdoor Temp ESP32 DAC 26 Analog No 0–3.3V 

4 Bike Speed ESP32 Pin 14 
Digital 

PWM 
Yes ~10.81V 

5 Power Supply Level DAC (Nano) Analog Yes 0–15V 

6 Right Indicator ESP32 Pin 33 Digital Yes (Relay) 0/12V 

7 Left Indicator ESP32 Pin 32 Digital Yes (Relay) 0/12V 

8 Headlights ESP32 Pin 27 Digital Yes (Relay) 0/12V 

9 Key Contact ESP32 Pin 15 Digital Yes (Relay) 0/12V 

Tab.3.2. Pinout of the bike connector with the simulated signals 

3.5 Code walkthrough 

This walkthrough begins with the ESP32 firmware, which manages CAN communication, 

digital speed pulse generation, indicator blinking logic, temperature and fuel level output via 

its internal DACs, and the control of relays for on/off signals like headlights and key contact. 

Then, the Arduino Nano code is explained focusing briefly on its role in receiving the power 

supply level via CAN and converting it to a stable analog voltage using an external DAC over 

I2C. 

Each part of the code will be explained briefly, clarifying how the real-world signals of a 

motorcycle are mimicked in our HIL bench. 

3.5.1 ESP32 firmware 

The code blocks for the ESP32 firmware are each explained as follows: 

a) Included Libraires  

 

• SPI.h: For communication with the MCP2515 CAN module over SPI. 

• mcp_can.h: Library for interfacing with the MCP2515 CAN controller.  

• Wire.h: For I2C communication (not directly used in this ESP32 code, may be 

used in future extensions). 
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b) Global Constants and Variables  

      

• pulsePin (14): Digital output simulating the Hall Effect speed signal. 

• Circumference (1.29 m): Tire circumference to calculate rotation/speed. 

• Other variables are used to determine the frequency of pulses representing speed. 

c)  Indicator States  

                 

• these control blinking behavior for left and right indicators. 

    d)  Pulse Generator State Variables  

      

• Used in the simulatePulse() function to generate a square wave on 
pulsePin. 

    e) CAN Bus Setup 

      

• Defines CS pin (GPIO 5) to connect with the MCP2515 CAN module. 
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f) setup() Function  

 

• Initializes serial communication and configures the GPIOs used for digital 

outputs. 

 

• Initializes the MCP2515 CAN controller to listen to any ID at 500 Kbps using 

an 8 MHz oscillator. 

• Switches the MCP2515 to normal mode to receive actual traffic. 

     g) loop() Function  

        

• Waits for incoming CAN messages. 

• Reads the message buffer into buf. 

          h) ID: 0x103 – Fuel Level  
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• Converts fuel level from raw value to liters. 

• Normalizes this to a 0–255 DAC value. 

• Outputs analog voltage on GPIO 25, which goes to the fuel signal amplifier. 

           i) ID: 0x104 – Vehicle Speed  

        

• Extracts speed and converts to meters per second. 

• Calculates how often to send pulses (pulseInterval) and how long to keep 

the signal high (highTime). 

• These values are used in simulatePulse() to generate a square wave 

simulating a Hall sensor. 

           j) ID: 0x101 – Temperature 

         

• Decodes temperature from signed 8-bit format. 

• Normalizes and sends it to GPIO 26 to simulate temperature sensor output (no 

amplification needed). 
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    k) ID: 0x111 – Digital ON/OFF signals 

       

• Reads individual bits to detect corresponding signals in the Digital ON/OFF 

message for right/left indicators, headlights, and key contact. 

• Outputs high/low values accordingly on GPIOs (which are later amplified to 

12V via relays). 

       l) Blink Logic  
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• Flashes indicator outputs on GPIO 33 (right) and 32 (left) every 1 second when 

activated to simulate blinking effect. 

         m) simulatePulse() 

              

• Generates a square wave on GPIO 14 simulating a Hall effect speed sensor. 

• Alternates between HIGH and LOW based on pulse timing and lowTime. 

3.5.2 ARDUINO Nano firmware 

The code blocks for the ARDUINO Nano firmware are each explained as follows: 

a) Library Inclusions  

 

 
• Wire.h: Handles I2C communication between the Nano and the MCP4725 

DAC. 

• Adafruit_MCP4725.h: A driver library provided by Adafruit to simplify 

controlling the MCP4725 DAC. 

• mcp_can.h and SPI.h: Required for interfacing with the MCP2515 CAN 

controller over SPI. 
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b) Object Instantiations and Pin Definitions 

             

• dac is the object that communicates with the DAC module. 

• SPI_CS_PIN: The Chip Select pin for the MCP2515 CAN module. It's usually 

connected to D10 on Arduino Nano. 

• CAN_INT_PIN: Can be used if you want to use interrupts (optional, not used in 

this code). 

• MCP_CAN: Object that handles CAN communication using MCP2515. 

c) Setup Function 

           

• Initializes the serial monitor for debugging. 

• Initializes the I2C communication (used for the DAC). 

• Starts the DAC at address 0x60, which is the default for most MCP4725 

modules. 

 

          

• Initializes the CAN module at 500 kbps speed and 8 MHz oscillator. 

• If initialization fails, the Nano enters an infinite loop.  

• Sets the MCP2515 to Normal Mode, meaning it will both send and receive 

messages. 
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d) Main Loop ( Listening for CAN Messages) 

           

• Constantly checks if a new CAN message is available. 

• If so, it reads the message into canId (the identifier) and buf (the data buffer). 

e) Handling the Specific Power supply level Message ID (0x105) 

 

• Only processes messages with a specific ID (e.g., 0x105 = Power Supply 

Level). 

• Extracts the first byte buf[0] and interprets it as a raw value (e.g., 0–150). 

• Multiplies by 0.1 to convert it into a real voltage value (0.0V to 15.0V). 

f) Mapping to 0–5V for the DAC 

 

• Since the DAC can only generate a 0–5V analog output, we scale the 15V 

value down proportionally. 

• We calculate the 12-bit DAC value corresponding to that scaled voltage (0–

4095). 

g) Output Voltage via DAC 
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• The calculated DAC value is sent to the MCP4725, generating a precise analog 

voltage. 

• A debug message is printed showing both the interpreted voltage and its 

corresponding DAC output. 

3.6 CAN Frame generation 

The CAN frames generation were made possible by first creating the DBC file then attaching 

it to the CANoe interface followed by adding the environment variables then lastly writing the 

CAPL script and wiring it to each environment variable that respectfully corresponds to each 

signal concerned by the simulation. 

3.6.1. Creating the CAN Database (DBC File) 

The DBC (Database CAN) file describes the structure of CAN messages. It includes message 

IDs, signal names, data lengths, and bit positions. 

The Steps to creating a DBC file are: 

1. Open Vector Database Editor (CANdb++ Editor) from CANoe. 

o Create a new DBC file  and define Messages: 

▪ 0x103: Fuel Tank Level. 

▪ 0x104: Speed. 

▪ 0x105: Power Supply Level. 

▪ 0x101: Outdoor Temperature. 

▪ 0x111: Status Flags (this one has 4 different signals, indicator right, 

indicator left, headlights, supply_key_contact). 

2. For each message, we define the signals: 

▪ Name (FuelLevel). 

▪ Type: Unsigned / Signed / Float. 

▪ Start Bit, Length, Byte Order. 

▪ Factor and offset (for scaling raw values). 

▪ Minimum and Maximum. 

3. We save the DBC file and import it into our CANoe simulation setup. As you can see 

the different signals are all mentioned below in Fig.3.4. 
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Fig.3.4. Snippet of the different signals and messages present in our DBC file 

3.6.2. Attaching the DBC File in CANoe 

1. Open CANoe. 

2. Go to Simulation Setup → CAN Configuration. 

3. Attach the DBC file to the appropriate CAN channel (CAN1). 

• This allows CAPL scripts and panels to reference signal names directly. 

3.6.3. Adding environment Variables in CANoe 

Environment variables in CANoe act as global placeholders that allow different parts of the 

simulation such as CAPL scripts, panels or measurement setup, to communicate and 

synchronize data. They are essential for simulating sensor values and controlling message 

behavior during a test scenario. In the context of a Hardware-in-the-Loop (HIL) bench, 

environment variables are used to model physical inputs such as speed, fuel level or 

temperature. Each signal in a CAN frame is typically linked to a corresponding environment 

variable in the CAPL script as it’s explained more in the next section, allowing dynamic 

control of message content (signals) based on user input or test logic. This linking ensures 

that the simulated signals behave like real-world values providing a realistic and flexible 

test environment for ECUs like dashboards. 

To add new variables, you can do it through a CAPL script or simply navigate through the 

CANoe gui to system variables in the Environment tab, then right click on env and click 

add a new variable after that, you can simply enter your variable details which are usually 

the same ones you entered for your corresponding signals in the DBC file (it’s better to give 

them the same names as your signals to avoid confusion), as shown below in Fig.3.5:  
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Fig.3.5. Snippet of the Environment Variables window inside CANoe 

3.6.4. Writing CAPL Scripts to Simulate Sensor Signals 

CAPL (CAN Access Programming Language) is used to generate dynamic CAN messages 

during simulation. 

Our CAPL script simulates a motorcycle dashboard using periodic CAN messages. It fetches 

environment variable values which are created then link them to each corresponding signal in 

our DBC representing various sensor states (like fuel level, speed, indicators, etc.) at regular 

intervals. And this is a detailed explanation of the script: 

a) General Structure 
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All timers and CAN messages are declared here: 

o msTimer: A 1 millisecond timer used to trigger events at regular intervals. 

o message CAN::X: Refers to a CAN message defined in the DBC file under the 

node CAN. 

     b) On start Block 

 

 

Each timer triggers a corresponding on timer block periodically ( every 100ms or 

1000ms). 

  c) Individual Timer Logic 

• on timer TIMER_fuel_tank_level 

 

o Reads the fuel level from the environment variable. 

o Sets a second env variable fuel_tank_level_low to indicate low fuel 

(<50%). 

o Converts the float fuel level into an integer for the CAN signal using the 

scaling from the DBC: 
Signal = (Value - Offset) / Factor. 

o Sends the fuel_tank_level CAN message. 

 

• on timer TIMER_bike_speed 
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o Reads bike speed from env variable. 

o Sends it as a CAN message. 

o No scaling is applied (factor = 1). 

• on timer TIMER_outdoor_temp, TIMER_power_supply and 

TIMER_HeadLights 

 

o Temperature:  

Sends the temperature value directly from environment variable. 

o Power Supply: 

1. Converts a float power supply voltage to an integer (e.g., 12.34V → 

1234 if factor = 0.01). 

2. Sends the power_supply message. 

o HeadLights: 

Sends 1 or 0 to represent whether headlights are on or off. 

 

• on timer TIMER_indicators 

 

Sends a message with two boolean values representing left and right 

indicators. 
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• on timer TIMER_indicators_display 

 

 

o When the indicator is activated, it toggles a second variable on/off every 1 

second. 

o This second variable can be used in a panel to show a blinking light. 

• Looping: 

          All timers reset themselves at the end of their block using: 

setTimer(TIMER_X, interval); 

  d) Summary  

This CAPL script is responsible for simulating the CAN messages for out test bench 

which is meant to test the motorcycle dashboard in a Hardware-in-the-Loop (HIL). It 

periodically reads environment variables such as fuel level, speed, power supply, 

temperature, and indicator states and encodes them into CAN messages defined in the 

database (DBC file). Each timer triggers at a fixed interval to send the corresponding 

message onto the CAN bus. Additionally, some logic is included to simulate conditions 

like low fuel and blinking indicators, ensuring realistic dashboard responses during 

testing. 

3.6.5 Creating the Simulation Panel 

In CANoe, the simulation panel provides a visual way to control and observe system behavior 

during testing. Each widget (slider, switch, LED, etc.) (which are all installed by default in the 

panel editor) represents an environment variable linked to its correspondent signal. This link 

ensures that changes made through the panel directly affect the CAPL script logic allowing 

real-time generation of CAN messages based on user input. It makes testing easier, interactive 

and more intuitive. 

Creating the panel is done through the panel editor inside CANoe as shown below in Fig.3.6.  
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Fig.3.6. Snippet of the Panel Editor inside CANoe. 

3.7 Test Cases and Verification 

In order to validate the functionality of our HIL (Hardware-in-the-Loop) test bench we defined 

a series of test cases corresponding to real-world motorcycle scenarios. Each test case involves 

simulating a specific signal via CANoe using environment variables controlled by the panel 

and observing the physical response on the actual dashboard. For example, to test the 

speedometer, we varied the bike_speed environment variable and verified the digital pulse 

signal on pin 14 of the ESP32 while also checking that the dashboard needle responded 

correctly. Similarly, adjusting the fuel_tank_level variable produced an analog voltage on DAC 

pin 25, amplified to 12V, which the dashboard interpreted as varying fuel levels. Indicator lights 

and key contact were tested using binary CAN messages, with visual confirmation of correct 

blinking or activation. The signals were measured and verified using a multimeter and 

oscilloscope where needed to ensure correctness in voltage levels and frequencies. Through this 

rigorous process, we confirmed that the simulated signals successfully mimic real sensor 

outputs, verifying the reliability of the HIL system. 

3.8 Results and Observations 

After the successful integration and testing of the Hardware-in-the-Loop bench, several key 

results and observations were recorded. First, all eight output signals were accurately generated 

and interpreted by the dashboard, confirming the effectiveness of our simulation approach. Also 

the analog voltages for the fuel tank level and power supply level were successfully adjusted 

using both the ESP32’s internal DAC and the MCP4725 module controlled by the Arduino 

Nano. However, we observed signal fluctuation when both DACs were operated on the ESP32 

via I2C, likely due to I2C bus latency or bandwidth limitations. This led us to offload the power 
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supply level generation to another dedicated microcontroller, which resolved the issue 

completely. Additionally, the LM324 amplifier proved effective in boosting DAC signals to the 

required 12V or 10.8V levels, although special care was taken to ensure the input reference 

voltage exceeded the expected output to avoid clipping, since the LM324 is not rail-to-rail. 

Digital signals such as speed pulses and binary states (indicators, headlights, key contact) 

showed accurate behavior and frequency modulation effectively mimicking real-world sensor 

data. Additionally the use of CANoe allowed for precise control over signal injection through 

a user-friendly simulation panel. Overall, the HIL bench functioned as intended by 

demonstrating stable and reproducible performance across all test cases, and confirming the 

feasibility of using such a system for dashboard validation and production line testing in the 

future. 

Below in Fig.3.7 is a snippet that shows the final Simulation Panel on the left besides the trace 

window which allows us to trace in real-time the CAN messages sent to our VN1630 CAN 

case. 

 

Fig.3.7. The final Simulation Panel alongside the trace window 

3.9 Challenges Encountered 

Throughout the development of the HIL bench several challenges emerged that required 

thoughtful troubleshooting. One of the main issues was the signal interference caused by I2C 

bus congestion when attempting to control multiple DACs from the ESP32. This led to 

fluctuations in output voltages, especially when trying to generate three analog signals 

simultaneously and to resolve this, we put the power supply simulation to an Arduino Nano 

ensuring a smooth, isolated DAC output for that signal. 

Another challenge was amplifying DAC outputs to match the real dashboard’s required voltage 

levels. The LM324 op-amp, while cost-effective and easy to implement. it is not rail-to-rail, 

which caused clipping issues when the supply voltage was too close to the output target. This 
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was mitigated by using a higher 16V power supply and carefully choosing gain resistor values 

to obtain a clean 12V or 10.8V output. 

Additionally, precise CAN message timing and synchronization between CANoe and the 

embedded systems required careful tuning of timers and message structures. Debugging CAN 

traffic was also occasionally hindered by frame collisions and misread signal values which were 

later solved by refining the CAPL script and properly linking environment variables. 

3.10 Enclosure Design and Assembly of the HIL Test Bench 

To ensure both safety and a professional presentation, all the electronic components of the HIL 

test bench were finally installed inside a robust metallic enclosure enclosure as you can see in 

Fig.3.8 below, this approach we took provides organized cable management for the system. the 

process followed several best practices that we found across the web (all links are found in the 

refences chapter) for mounting electronics in metal alimunium project boxes: 

 

Fig.3.8. The different components used for the enclosure of the HIL test bench 

 

3.10.1. The choice a metallic enclosure 

The choice of a metallic enclosure was picked mainly for: 

• Enclosure Selection: A sturdy red aluminum enclosure was chosen for its durability 

and ability to dissipate heat efficiently, which is crucial for embedded systems  

• Ventilation: The enclosure includes several ventilation holes to prevent overheating of 

the internal electronics, as it is recommended for safe operation of embedded projects. 

• Planning Cutouts: Before the assembly, all required cutouts were carefully planned 

and marked on the enclosure surface for the different connectors, supply cables and also 

for the output signals going into the bike connector. 
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3.10.2. Drilling and Cable Management 

The drilling techniques used in the making of the enclosure are: 

• Custom Drilling: Using a precision drill, we made holes for: 

1. Output signal connectors. 

2. The VN1630 CAN interface DB9 connector. 

3. Power supply cables for both the ESP32 and Arduino Nano. 

4. Separate entries for the 16V and 12V power supplies. 

• Cable Protection: All cable entry points were fitted with rubber grommets to prevent 

abrasion and reduce the risk of short circuits, following standard safety guidelines. 

3.10.3. Mounting and Isolation 

Isolation is necessary to avoid any electrical short circuits and it was realized using the 

following materials: 

• Standoffs and Insulation: All the PCBs (VN1630, MCP2515, ESP32, Arduino Nano) 

were fixed using nylon standoffs as you can see in the lower half of Fig.3.8 above, 

elevating them above the metal surface. This prevents accidental contact and short 

circuits which is definitely a critical step when working with conductive enclosures. 

• Screw Fixing: Each board was secured with screws through those standoffs which 

mainly ensures mechanical stability even during transport or exhibition use. 

3.10.4. Power Supply Integration 

Power supply ports were carefully secured as we had to make ports for two power supplies: 

• Dual Power Inputs: The enclosure was well drilled to take both 16V and 12V power 

supply inputs each with a dedicated entry points and clear labelling to avoid confusion 

during the setup and operation. 

• Grounding: The metal enclosure was properly grounded to enhance safety and reduce 

electromagnetic interference thus biding by industrial standards. 

3.10.5. Final Assembly and Testing 

Before closing everything, system checks and labelling had to be done to ensure good continuity 

and insulation as well a clear organized overall structure: 

• System Check: Before sealing the enclosure, all connections were tested for continuity 

and insulation. The system was powered up to ensure there were no accidental shorts 
and that all signals were correctly routed through their respective connectors. 

• Labeling: All external connectors and switches were clearly labeled for ease of use and 

troubleshooting during demonstrations or maintenance. 
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3.10.6. Summary 

The use of a metallic enclosure and careful mechanical design, with adherence to best practices 

for the mounting and isolating electronics ensured both the safety and professional appearance 

of the HIL test bench, this successful demonstration at this major industry event further attests 

to the project’s quality and relevance. 

3.11 Conclusion 

 On this final chapter it is explained that The HIL test bench was successfully designed and 

implemented using ESP32 and Arduino Nano microcontrollers, supported by DACs, relays and 

CAN interfaces. The generated signals accurately emulate real-world conditions and the setup 

was enclosed in a professionally assembled metal casing. This comprehensive design enables 

precise and repeatable testing of motorcycle dashboards
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GENERAL CONCLUSION 

This project aimed to design, implement, and validate a Hardware-in-the-Loop (HIL) test bench 

dedicated to testing a motorcycle dashboard under conditions that closely simulate real-world 

operation. The primary goal was to emulate the analog and digital signals that the dashboard 

would normally receive on an actual vehicle, allowing for functional validation in a controlled 

and repeatable environment. 

The adopted methodology began with an analysis of the dashboard's behaviour, identification 

of required signals and the selection of appropriate hardware components. A modular system 

architecture was then designed and developed to dynamically generate signals based on 

incoming CAN messages. Special care was given to signal accuracy, voltage amplification and 

also system protection through isolation and proper ground referencing. 

Key challenges included the ESP32’s limitation, instability with the I2C bus, and voltage supply 

issues needed to achieve realistic analog outputs. These were overcome by introducing a second 

microcontroller, using properly configured operational amplifiers, and powering them with a 

dedicated 16V supply to prevent signal clipping. 

The results demonstrate that a reliable, low-cost HIL test bench can be achieved, offering 

accurate simulation of real signals and enabling effective validation of the dashboard. This work 

represents a crucial step toward implementing testing and validation practices that align with 

automotive industry standards, especially the ISO 26262 standard, which governs functional 

safety for road vehicles. 

The added value of this project lies not only in its technical achievements but in its contribution 

to bringing automotive testing and validation culture into a local context. In this regard, it opens 

new possibilities for the future development of a national embedded systems testing and 

validation ecosystem which is a necessary foundation if Algeria ever intends to move toward 

manufacturing smart vehicles or electronic automotive components. 

The integration of professional tools for test and validation was also necessary in this process 

to approach automotive-grade quality, traceability, and repeatability in testing processes. 

Looking ahead, this project can evolve into a complete HIL system with closed-loop feedback, 

integration of Software-in-the-Loop (SIL) environments to simulate virtual ECUs, and the 

implementation of automated test case generation. It could also serve as a training platform for 

students and engineers, encouraging the growth of a national workforce skilled in embedded 

systems and functional validation. 

In summary, this project not only allowed the application of advanced technical skills but also 

addressed a real-world engineering challenge. It stands as a concrete step toward fostering a 

culture of rigorous and high-quality testing, an essential requirement for any serious industrial 

ambition in the automotive field. 
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