
Department of Electrical Engineering and Industrial Computing

Final Year Project for the Engineering Degree

- Field -
Telecommunications

- Specialty -
Telecommunications and Networking Systems

- Subject -

A Data-Driven Framework for AI-Powered
LTE Network Performance Optimization

Realized by:
ALAOUCHICHE Abderrahmane Yaakoub

KESSOUM Mohamed Walid

Members of the Jury:

Name Establishment Grade Quality
Mr. Islem BOUCHACHI ENSTA MCA President
Mrs. Souhila BOUTARFA ENSTA MCB Examiner
Mrs. Imane CHIALI ENSTA MCB Examiner
Mrs. Kheira LAKHDARI ENSTA MAB Supervisor
Mr. Abdelkader BELAHCENE ENSTA MCA Co-Supervisor
Mr. Sifeddine ALREME OTA (djezzy) TBM External Co-Supervisor

Algiers, 25/06/2025

2024–2025

Dedication

ALAOUCHICHE Abderrahmane Yaakoub
To my parents, grandparents, siblings and close ones for their

constant support.
To my mother especially — your strength and sacrifices have been
my greatest motivation. This achievement is as much yours as it is

mine.

KESSOUM Mohamed Walid
To my parents, siblings, family, and close ones — for their

invaluable support and constant encouragement throughout my
academic journey. This accomplishment is a testament to their

unwavering belief in me.

Acknowledgements

We would like to sincerely thank our academic supervisors, Dr. LAKHDARI Khiera
and Dr. BELAHCENE Abdelkader, Assistant Professors in the GEII department at
ENSTA, for their support and guidance during this project.

We also express our appreciation to Mr. ALREME Sifeddine, Traffic and Budget
Manager at Djezzy, for his role as our industrial supervisor

We extend our gratitude to the members of the jury for their time, valuable com-
ments, and thoughtful evaluation of our thesis.

Finally, we acknowledge the teaching staff at the National Higher School of Advanced
Technologies, as well as the professional instructors involved in our training, whose
expertise contributed to our academic development.

�
�	
jÊÖÏ @

�
éºJ.

�
� É

�
JÓ 	áK
XPñÖÏ @

�
èXYª

�
JÓ

�
HA

J�
K. ú

	
¯

�
é
�
JK
Ym

Ì'@ LTE �
HA¾J.

�
�

	á�
�m�
�
' É¾

�
�
�
�

©
�
¯ñ
�
JË @ð

ñJ.

	
�
�
JË @

�
H@PY

�
¯ l .

×X úÎ« ¨ðQå
�
�ÖÏ @ @

	
Yë 	Q»QK
 .

�
èQ�
J.»

�
HAK
Ym

�
�
' Djezzy

. ú

«A
	
J¢�B@ ZA¿

	
YË@

�
HAJ

	
J
�
®
�
K Ð@Y

	
j
�
J�AK. KPI �

éJ
��

KQË @ Z @X

B@

�
H@Qå

�
�

ñÖÏ

�
èP@X@

Ñ«YK
 ø

XAªK.

@ h.

	
XñÖ

	
ß ©Ó ©�ñ

�
JÊË ÉK. A

�
¯

�
HA

	
KAJ
K. ¨Xñ

�
J�Ó QK
ñ¢

�
� Õç

�
'

.
�
é
	
J�

�
JÓ ETL �

HAJ
ÊÔ
« ÈC

	
g 	áÓ Z@X

B@

�
H@Qå

�
�

ñÖÏ

�
éËAª

	
¯

, Prophet ð LSTM ½Ë
	
X ú

	
¯ AÖß. ,

�
éÓY

�
®
�
JÓ ú

«A
	
J¢�@ ZA¿

	
X h.

	
XAÖ

	
ß

�
�J
J.¢

�
� Õç

�
'

.
�
éºJ.

�
�Ë@ Z @X

@ ��
K
A

�
®Öß. ú

�
¯AJ.
�
��B@

ñJ.

	
�
�
JË @ 	áÓ 	á

�
ºÖß
 AÜØ ,

�
éJ

	
JÓ 	QË @ É�C�ËAK.

ñJ.

	
�
�
JÊË

. P@Q
�
®Ë @

	
XA
	
m�
�
' @ð ¡J
¢

	
j
�
JË @ 	QK

	Qª
�
JË

�
é��

	
m× I. K
ð

�
éj

	
®� Q�.«

�
HAª

�
¯ñ
�
JË @ è

	
Yë

	
�Qª

��
K

�
HAJ
ÊÒªK.

ñJ.

	
�
�
JË @ ú

	
¯

�
A
	
J�m�

�
' �

éJ

�
®J

�
®k

�
HA

	
KAJ
K. Ð @Y

	
j
�
J�AK.

�
HAÒJ
J

�
®
�
JË @

�
HQê

	
£

@

ú

	
¯

�
HA

	
KAJ
J. Ë @ úÎ«

�
èYÒ

�
JªÓ LTE �

HA¾J.
�
�

�
èP@X@

ñm�

	
' �

èñ¢
	
k É

�
JÖß
 AÜØ ,

�
éºJ.

�
�Ë@

.
�
èY

�
®ªÓ 	áK
XPñÖÏ @

�
èXYª

�
JÓ

�
HA

J�
K.

,

ñJ.

	
�
�
K , ú

Í
�
@ ÕÎª

�
K , ETL , DWH ,

�
éºJ.

�
�Ë@

	á�
�m�
�
' , LTE :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

.
	á�
ª

KAJ. Ë @

�
èXYª

�
JÓ

�
éºJ.

�
� , LSTM , Prophet

Abstract

Optimizing modern LTE networks in multi-vendor environments such as
Djezzy’s presents significant challenges. This project focuses on integrating
AI-driven KPI forecasting and prediction capabilities.

A scalable data warehouse with a dimensional model supports efficient
KPI data management through robust ETL processes.

Advanced AI models, including LSTM and Prophet, were implemented
for time series forecasting to enable proactive prediction of network perfor-
mance metrics. These predictions are delivered via a dedicated web page
to enhance network planning and decision-making.

Evaluation on real-world data demonstrates improved foresight for net-
work operations, marking a step forward toward data-driven LTE man-
agement in complex multi-vendor contexts.

Keywords: LTE, Network Optimization, Data Warehouse, ETL, AI,
ML, Prophet, LSTM, Forecasting, Multi-Vendor Networks.

Résumé

L’optimisation des réseaux LTE modernes dans des environnements multi-
fournisseurs tels que celui de Djezzy présente des défis importants. Ce
projet se concentre sur l’intégration de capacités de prévision et de pré-
diction des indicateurs clés de performance (KPI) basées sur l’intelligence
artificielle.

Un entrepôt de données évolutif avec un modèle dimensionnel permet
une gestion efficace des KPI grâce à des processus ETL robustes.

Des modèles avancés d’IA, notamment LSTM et Prophet, ont été util-
isés pour la prévision de séries temporelles afin de permettre une prédiction
proactive des métriques de performance réseau. Ces prédictions sont ac-
cessibles via une page web dédiée pour améliorer la planification et la prise
de décision.

L’évaluation sur des données réelles montre une meilleure anticipation
des opérations réseau, marquant une avancée vers une gestion LTE pilotée
par les données dans des contextes multi-fournisseurs complexes.

Mots-clés : LTE, Optimisation Réseau, Entrepôt de Données, ETL, IA,
ML, Prophet, LSTM, Prévision, Visualisation, Réseaux Multi-Fournisseurs.

Contents

List of Figures 2

List of Tables 3

Acronyms 4

List of Symbols 7

Introduction 9

1 Theoretical Background and State of the Art 11
1.1 Overview of Mobile Networks . 11

1.1.1 Brief Introduction to Mobile Network Generations (2G, 3G, 4G) 11
1.1.2 Schema of Mobile Network Generations 12

1.2 Introduction to LTE . 12
1.2.1 LTE as the Foundation for 5G and Beyond 13

1.3 LTE Architecture and Components . 13
1.3.1 Overview of LTE Architecture . 13
1.3.2 Interaction Between UE, E-UTRAN, and EPC 14
1.3.3 User Equipment (UE) . 14
1.3.4 E-UTRAN: The Radio Access Network 15
1.3.5 EPC: The Core Network . 15

1.4 Key Performance Indicators (KPIs) and Optimization in LTE 17
1.4.1 Defining Key Performance Indicators (KPIs) 17
1.4.2 KPI Analysis Process . 18
1.4.3 Data-Driven Methods for Network Optimization 20

1.5 State of the Art: Existing Work on LTE Optimization using AI 20
1.5.1 Comparative Table of Studies . 20
1.5.2 Synthesis of Limitations and Challenges 23

2 Methodology 25
2.1 Problem Statement . 25

2.1.1 Problem Overview . 25
2.2 Insights from the State of the Art . 26

2.2.1 Trends in Research: Focus on Prediction Rather than Optimization . . . 26
2.2.2 Multi-KPI Trade-offs: A Complex Balancing Problem 26

2.3 Proposed Solution . 26
2.3.1 Shifting from Direct Optimization to Predictive Analytics for Decision

Support . 26
2.3.2 Choice of AI Models: LSTM and Prophet Models 26
2.3.3 Role of Prediction in Network optimisation 27

Contents

2.4 Tools and Technologies Used in Our Solution . 27
2.4.1 Data Warehousing and ETL for Telecom Analytics 27
2.4.2 Full-Stack Web Application Development for Data Products 28

3 Design and Implementation of the Data Management Subsystem 30
3.1 Overall System Architecture . 30

3.1.1 Project File Structure for Data Management 32
3.2 Data Warehouse Design and Rationale . 34

3.2.1 Dimensional Modeling Approach . 34
3.2.2 Detailed Schema . 34
3.2.3 Data Granularity and Aggregation Strategy 38
3.2.4 Indexing, Materialized Views, and Performance Considerations 39

3.3 ETL Pipeline Implementation . 42
3.3.1 Data Extraction and Staging . 42
3.3.2 Transformation Logic: KPI Calculation, Data Cleansing 44
3.3.3 Loading Data into the DWH (Dimension and Fact Tables) 48
3.3.4 Automated Aggregation Scripts (Daily, Geo, Busy Hour) 48
3.3.5 Data Archiving and Maintenance Procedures 50

3.4 Data Quality Assurance within the Pipeline . 51

4 AI-Based KPI Forecasting 52
4.1 Introduction to AI-Based Forecasting for LTE Network Optimization 52
4.2 Theoretical Foundations of Forecasting Models 53

4.2.1 Long Short-Term Memory (LSTM) Networks 53
4.2.2 The Prophet Model . 54

4.3 Data Foundation and Exploratory Analysis for Forecasting 56
4.3.1 Data Sourcing, Scope, and Initial Preprocessing 56
4.3.2 Exploratory Data Analysis (EDA) of Training Data 57
4.3.3 Translating EDA Insights into Model Architecture 66

4.4 Forecasting Model Development: An Iterative Journey 66
4.4.1 Baseline Model Implementation and Initial Performance Benchmarks . . 66
4.4.2 Initial Challenges with Advanced Models and Evaluation

Pipeline Verification . 67
4.4.3 The Prophet Model as an Advanced Baseline 68
4.4.4 LSTM Model: Architectural Evolution and Optimization 69

4.5 Flask Backend for AI Service and Visualization 71
4.5.1 Main Backend Parts and Integration (app/ai_insights/ folder) 71
4.5.2 AI Visualization . 72

5 Experimental Setup, Model Evaluation, and Results 74
5.1 Experimental Setup . 74

5.1.1 Justification for Single-Cell Deep-Dive Methodology 74
5.1.2 Dataset and Partitioning for Evaluation 74
5.1.3 Evaluation Metrics for Forecasting Performance 75
5.1.4 Baseline Models for Comparison . 76

5.2 Forecasting Performance Evaluation and Results 76
5.2.1 Quantitative Performance Metrics: Comparative Analysis 76
5.2.2 Visual Evaluation of Forecasts and Residuals 78

5.3 Qualitative Evaluation of the Forecasting Interface 85
5.3.1 Usability of Forecast Configuration . 85
5.3.2 Effectiveness of Forecast Visualizations 86

Contents

6 Discussion of Results and Optimization Implications 89
6.1 Implications for LTE Network Optimization . 89

6.1.1 Enhanced Proactive Resource Management 89
6.1.2 Improved Operational Efficiency . 90
6.1.3 Data-Driven Input for Higher-Level Optimization Algorithms 90

6.2 Challenges Encountered During System Development 90
6.3 Limitations of the Current Forecasting System 91

Conclusion and Future Work 92
Summary of Key Contributions and Achievements . 92
Achievement of Project Objectives . 93
Overall Conclusion . 94
Recommendations for Future Work and System Evolution 94

Appendices 96

A System Orchestration and Environment Setup 97
A.1 Workflow Orchestration with Apache Airflow . 97
A.2 Reproducible Development Environment with Docker Compose 98

B Metadata and Configuration Files 104
B.1 ETL and Data Warehouse Configuration . 104

B.1.1 KPI and Counter Definitions . 104
B.1.2 Source Data Mapping Configuration . 104

B.2 AI Forecasting Module Configuration . 105

C Supplementary Exploratory Data Analysis (EDA) Plots 108
C.1 EDA for LTE_Traffic_Volume_DL . 108
C.2 EDA for DL_PRB_usage . 111

List of Figures

1.1 Schema of Mobile Network Generations . 12
1.2 Mobile Network Connections Distribution by 2025: 4G Leading at 63% [1]. . . . 13
1.3 The LTE EPS Architecture.[2] . 14
1.4 E-UTRAN Architecture.[2] . 15
1.5 EPC Architecture.[2] . 16
1.6 Categorization of LTE KPIs. 17
1.7 KPI analysis and tuning workflow. [3] . 19

2.1 Djezzy Telecommunications Company . 25

3.1 High-Level System Architecture illustrating Data Flow. 30
3.2 Directory structure of the Database/ component 32
3.3 Data Warehouse Entity Relationship Diagram 35
3.4 DWH Tables in pgAdmin and DimCell Query Example 36
3.5 Querying CounterDefinition Table via PSQL CLI. 37
3.6 Querying from KpiFormula table. 37
3.7 Querying FactKPI Table using SQLTools in VS Code. 38
3.8 View of PL/pgSQL Code for populate_agg_kpi_hourly() in pgAdmin. 39
3.9 Fact Table Row Counts Indicating DWH Data Scale. 40
3.10 Sample Data from mv_cell_geo Materialized View. 41
3.11 Apache Airflow Gantt chart . 41
3.12 Raw data from Hewaei and Nokia. 42
3.13 Excerpt from Loader.py execution log for processing ZTE Raw counters 43
3.14 Processed and Standardized Vendor Data Files ready for Staging. 44
3.15 Raw Data in Staging_RawCounter (Long Format). 44
3.16 DB State Post-ETL : Staging_RawCounter Empty, FactRawCounter Populated. 45
3.17 ETL.py execution log, as retrieved from the Airflow UI. 46
3.18 Summary from ETL.py execution log . 46
3.19 KPI Formula Transformation: kpi_formula.csv from map.csv. 47
3.20 The final KPIFormula table in pgAdmin with SQL-ready expressions. 47
3.21 Graph view of the Apache Airflow DAG . 49
3.22 Execution snapshot of the DAG’s ’fact’ task group. 50

4.1 Overall LSTM Cell Architecture . 53
4.2 Hourly Time Series of LTE_Thro_DL for Cell 4O13X018_1 58
4.3 Distribution of Hourly LTE_Thro_DL . 58
4.4 Box Plot of Hourly LTE_Thro_DL . 59
4.5 Additive Seasonal Decomposition of LTE_Thro_DL 59
4.6 ACF and PACF Plots for LTE_Thro_DL . 60
4.7 Rolling Mean Std Dev: LTE_Thro_DL (Window=24h). 61
4.8 LTE_Thro_DL by Hour of Day (Training Data). 61

1

List of Figures 2

4.9 LTE_Thro_DL by Day of Week (Training Data). 62
4.10 Hourly Time Series of LTE_Traffic_Volume_DL, showcasing its strong daily sea-

sonality. 62
4.11 Hourly Time Series of DL_PRB_usage, mirroring the cyclical nature of traffic

volume. 63
4.12 Correlation Heatmap of KPIs and Selected Time Features (Training Data). . . . 64
4.13 Pair Plots of KPIs and Selected Time Features (Training Data). 65
4.14 Prophet Forecast for LTE_Thro_DL on Hold-Out Test Set (Cell 4O13X018_1). . . 68
4.15 Project structure showing the AI module folder and its Blueprint registration. . 71
4.16 the web interface . 72

5.1 LSTM Forecast vs. Actual for LTE_Traffic_Volume_DL (Test Set). 78
5.2 Optimized LSTM Forecast for LTE_Traffic_Volume_DL (Test Set) after model

refinement. 78
5.3 LSTM Forecast vs. Actual for DL_PRB_usage (Test Set). 79
5.4 LSTM Forecast vs. Actual for LTE_Thro_DL (Test Set). 79
5.5 Optimized LSTM Forecast for LTE_Thro_DL (Test Set) after final tuning. 80
5.6 Prophet Forecast vs. Actual for LTE_Thro_DL (Test Set). 80
5.7 Residuals over Time. 81
5.8 Distribution of Residuals. 81
5.9 ACF and PACF of Residuals. 82
5.10 Actual vs. Predicted Scatter Plot. 82
5.11 Residuals over Time. 83
5.12 Distribution of Residuals. 83
5.13 ACF and PACF of Residuals. 83
5.14 Actual vs. Predicted Scatter Plot. 84
5.15 Forecast form and chart output. 85
5.16 Web Application: 72-Period Forecast with Confidence Intervals. 86
5.17 24-period forecast chart. 87
5.18 Data overview: actual vs. forecasted values and CSV download buttons. 87

A.1 Logical Flowchart of the Airflow DAG . 97

C.1 Hourly Time Series of LTE_Traffic_Volume_DL (Training Data). 108
C.2 Distribution and outlier analysis for hourly LTE_Traffic_Volume_DL. 109
C.3 Additive Seasonal Decomposition of LTE_Traffic_Volume_DL. 109
C.4 ACF and PACF Plots for LTE_Traffic_Volume_DL. 110
C.5 LTE_Traffic_Volume_DL by Hour of Day. 110
C.6 Hourly Time Series of DL_PRB_usage (Training Data). 111
C.7 Distribution and outlier analysis for hourly DL_PRB_usage. 111
C.8 Additive Seasonal Decomposition of DL_PRB_usage. 112
C.9 ACF and PACF Plots for DL_PRB_usage. 112
C.10 DL_PRB_usage by Day of Week. 113

List of Tables

1.1 Consolidated LTE Key Performance Indicators (KPIs) [4] 18
1.2 Comparative Analysis of Studies on ML/DL for Wireless Network Optimization 21

4.1 Descriptive Statistics of Key KPIs and Numerical Features (Training Data, N=697) 57
4.2 Distribution of Boolean Features (Training Data, N=697) 57
4.3 EDA Insights on Modeling Decisions . 66
4.4 Initial Baseline Model Performance on Hold-Out Test Set 67
4.5 Feature Set Engineered for LSTM Forecasting Models 69
4.6 Hyperparameter Search Space for LSTM Optimization 70
4.7 Optimized hyperparameters for each KPI (cell 4O13X018_1) 70

5.1 Final Forecast Metrics on Hold-Out Test Set (Cell 4O13X018_1, Mar 1–30, 2023) 76

B.1 Sample from ‘counter_definitions.csv‘, linking raw counters to standardized IDs. 104
B.2 Sample from ‘kpi_formula.csv‘, defining KPI calculations. 104

3

Acronyms

2G/3G/4G/5G Second/Third/Fourth/Fifth Generation of Mobile Networks

3GPP 3rd Generation Partnership Project

ACF Autocorrelation Function

AI Artificial Intelligence

APN Access Point Name

BSC Base Station Controller

CDMA Code Division Multiple Access

CNN Convolutional Neural Network

CPU Central Processing Unit

CQI Channel Quality Indicator

CSV Comma-Separated Values

DAG Directed Acyclic Graph

DL Downlink

DWH Data Warehouse

EDA Exploratory Data Analysis

EMS Element Management System

eNodeB Evolved NodeB

EPC Evolved Packet Core

EPS Evolved Packet System

E-RAB E-UTRAN Radio Access Bearer

ETL Extract, Transform, Load

E-UTRAN Evolved Universal Terrestrial Radio Access Network

FDD Frequency Division Duplex

GPRS General Packet Radio Service

GRU Gated Recurrent Unit

GSM Global System for Mobile Communications

HSS Home Subscriber Server

4

List of Abbreviations 5

IoT Internet of Things

IP Internet Protocol

KPI Key Performance Indicator

LTE Long-Term Evolution

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MIMO Multiple Input Multiple Output

ML Machine Learning

MME Mobility Management Entity

MT Mobile Termination

MV Materialized View

NN Neural Network

OFDMA Orthogonal Frequency Division Multiple Access

OMC Operation and Maintenance Center

OSS Operations Support System

PACF Partial Autocorrelation Function

PDN Packet Data Network

P-GW Packet Data Network Gateway

PL/pgSQL Procedural Language/PostgreSQL

PRB Physical Resource Block

PS Packet Switched

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

QCI Quality of Service Class Identifier

QoE Quality of Experience

QoS Quality of Service

RNC Radio Network Controller

RNN Recurrent Neural Network

RMSE Root Mean Squared Error

RRC Radio Resource Control

RSRP Reference Signal Received Power

SAE System Architecture Evolution

List of Abbreviations 6

SC-FDMA Single Carrier Frequency Division Multiple Access

S-GW Serving Gateway

SINR Signal-to-Interference-plus-Noise Ratio

SMAPE Symmetric Mean Absolute Percentage Error

SMS Short Message Service

SON Self-Organizing Networks

SQL Structured Query Language

SVR Support Vector Regression

TDD Time Division Duplex

TE Terminal Equipment

UE User Equipment

UICC Universal Integrated Circuit Card

UMTS Universal Mobile Telecommunications System

USIM Universal Subscriber Identity Module

VoIP Voice over Internet Protocol

VoLTE Voice over Long-Term Evolution

W-CDMA Wideband Code Division Multiple Access

XML Extensible Markup Language

List of Symbols

General Mathematical Symbols
σ(·) Sigmoid activation function, σ(z) = (1 + e−z)−1

tanh(·) Hyperbolic tangent activation function
⊙ Element-wise (Hadamard) product
[·, ·] Concatenation of vectors or matrices

LSTM Model Notations
x(t) Input vector at time step t
y(t) Hidden state (output) vector at time step t
c(t) Cell state vector at time step t
f (t) Forget gate activation at time step t
i(t) Input gate activation at time step t
o(t) Output gate activation at time step t
z(t) Candidate cell state vector at time step t
Wf , Wi, Wo, Wz Weight matrices for forget, input, output, and candidate gates
bf , bi, bo, bz Bias vectors for forget, input, output, and candidate gates
nx Dimension of the input vector
nh Dimension of the hidden and cell state vectors

Prophet Model Notations
y(t) Observed time series value at time t
g(t) Trend component of the time series
s(t) Seasonality component of the time series
h(t) Holiday and event component
ϵt Error (noise) term
C(t) Carrying capacity (logistic growth)
k(t) Growth rate (logistic growth)
m(t) Offset parameter (logistic growth)
P Period of the seasonal component (e.g., 7 for weekly)
N Number of Fourier terms used for seasonality
an, bn Fourier coefficients for seasonality

7

List of Abbreviations 8

Evaluation Metrics Notations
N Total number of data points in the evaluation set
yi i-th actual (true) value
ŷi i-th predicted (forecasted) value
ȳ Mean of the actual values
ε Small constant to avoid division by zero (e.g., in SMAPE)

Introduction

The evolution of mobile data services and the escalating user expectations for seamless, high-
speed connectivity place immense pressure on Long-Term Evolution (LTE) network operators.
Optimizing these complex networks is no longer a matter of routine maintenance but a critical
imperative for maintaining competitive advantage, ensuring user satisfaction, and managing
operational expenditure. Industry analyses indicate that even marginal improvements in net-
work performance, such as a 1% increase in call success rate or a 5% enhancement in average
user throughput, can translate into significant revenue protection and reduced customer churn
for operators [5] [6]. Conversely, suboptimal performance, leading to issues like dropped calls,
slow data speeds, or service unavailability, directly impacts Quality of Experience (QoE) and
can lead to subscriber defection in a highly competitive market [7].

The operational context for this research is Djezzy, a prominent telecommunications oper-
ator in Algeria. Like many established global operators, Djezzy’s extensive LTE infrastructure
incorporates equipment from multiple leading vendors (e.g., Huawei, Nokia, ZTE). While this
multi-vendor strategy offers flexibility and avoids vendor lock-in, it concurrently introduces
significant operational complexities. Each vendor’s Element Management System (EMS) often
generates performance data in proprietary formats, with potentially varying counter defini-
tions and granularities. This heterogeneity poses a substantial challenge for creating a unified,
network-wide view of performance, hindering timely and effective optimization efforts. Manu-
ally consolidating, normalizing, and analyzing this disparate data is a time-consuming, error-
prone process that limits the ability to proactively manage network resources and respond to
emerging issues.

Traditional network management approaches, often reactive and reliant on threshold-based
alarming, are increasingly inadequate in the face of such dynamic and data-rich environments.
The sheer volume, velocity, and variety of data generated by modern LTE networks neces-
sitate a paradigm shift towards intelligent, data-driven, and automated solutions. Artificial
Intelligence (AI) offers powerful tools to extract actionable insights from this data, enabling
predictive maintenance, proactive resource allocation, and enhanced anomaly detection. How-
ever, the successful application of AI in this domain is contingent upon a robust data manage-
ment foundation and well-designed analytical models tailored to the specific characteristics of
telecommunication KPIs.

This End-of-Study Project presents the design, implementation, and evaluation of a com-
prehensive full-stack analytics solution tailored to LTE network performance. The primary
objective is to apply contemporary data engineering methods and predictive modeling tech-
niques to transform raw performance data into actionable insights. These insights support
network engineers in anticipating potential issues, optimizing resource allocation, and imple-
menting proactive operational strategies. While many academic studies focus on KPI
prediction, they often stop short of providing an integrated, multi-vendor data
management backbone and an accessible service layer for operational use—a critical
gap this thesis aims to bridge.

The platform is structured around three core components:
• Data Management Subsystem: A foundational layer that includes a scalable data

9

Introduction 10

warehouse (DWH) and a robust ETL pipeline, responsible for integrating, cleaning, nor-
malizing, and structuring raw LTE KPI data to support analytical tasks.

• Predictive Analytics Module: A suite of forecasting models (e.g., LSTM, Prophet)
designed to estimate future network performance and enable proactive decision-making
by providing engineers with the foresight needed for targeted interventions.

• Web-Based Interface: A Flask-powered application providing engineers with an intu-
itive, vendor-agnostic interface to monitor KPIs and access both historical and forecasted
data.

The document is organized to reflect the development lifecycle:

• Chapter 1: Theoretical Background and State of the Art introduces LTE ar-
chitecture, KPI significance, and related data-driven approaches in network performance
management.

• Chapter 2: Methodology details the problem formulation, methodological choices,
and the tools and frameworks employed.

• Chapter 3: Design and Implementation of the Data Management Subsystem
discusses the DWH and ETL architecture, including data modeling and quality assurance
mechanisms.

• Chapter 4: AI-Based KPI Forecasting covers data preparation, model selection,
training, and backend integration.

• Chapter 5: Experimental Setup, Model Evaluation, and Results presents the
evaluation protocol, performance metrics, and benchmarking outcomes.

• Chapter 6: Discussion of Results and Optimization Implications interprets the
findings, highlights operational benefits, addresses limitations, and proposes future im-
provements.

Overall, this work aims to provide a practical framework and a foundational system that not
only demonstrates the feasibility of AI-driven KPI forecasting in a multi-vendor LTE environ-
ment but also offers tangible insights into the model development lifecycle, data management
prerequisites, and the potential for enhancing proactive network operations.

Chapter 1

Theoretical Background and State of
the Art

This chapter introduces LTE networks, covering their evolution, architecture, and performance
indicators (KPIs). It also reviews current research and industry practices, focusing on the use
of Artificial Intelligence for LTE optimization and highlighting existing limitations and trends.

1.1 Overview of Mobile Networks

1.1.1 Brief Introduction to Mobile Network Generations (2G, 3G,
4G)

The evolution of mobile networks has been driven by the need for faster communication, in-
creased capacity, and enhanced security. Each generation has introduced significant technolog-
ical advancements, addressing the limitations of its predecessor.

• 1G (First Generation): Introduced in Japan in 1979 by Nippon Telegraph and Tele-
phone (NTT), 1G relied on analog transmission using FDMA (Frequency Division Mul-
tiple Access). While it enabled basic voice communication, it suffered from low capacity,
poor security, and inefficient spectrum utilization.[8]

• 2G (Second Generation): Launched in Finland in 1991, 2G introduced digital mod-
ulation with GSM (Global System for Mobile Communications). It utilized TDMA and
CDMA technologies, improving call quality and enabling SMS (Short Message Service).
Later advancements, such as GPRS (General Packet Radio Service), provided basic in-
ternet access, marking the early shift toward data-driven networks.[8]

• 3G (Third Generation): The demand for high-speed mobile internet and multimedia
capabilities led to the launch of 3G networks in Japan in 1998, based on W-CDMA
(Wideband Code Division Multiple Access). Supporting speeds up to 2 Mbps, 3G enabled
video calls, mobile browsing, and multimedia streaming. Enhancements like HSPA and
HSPA+ introduced MIMO (Multiple Input Multiple Output) technology, significantly
improving data throughput.[8]

• 4G (Fourth Generation): First deployed in Sweden in 2009, 4G LTE marked a tran-
sition to a fully IP-based network. Utilizing OFDMA (Orthogonal Frequency Division
Multiple Access) and advanced MIMO technology, 4G LTE achieved speeds of up to 100
Mbps for mobile users and 1 Gbps for stationary connections. Operating across the 700

11

Chapter 1. Theoretical Background and State of the Art 12

MHz to 2600 MHz frequency bands, it enabled seamless HD streaming, real-time gaming,
and IoT (Internet of Things) applications.[8]

• Evolutionary Impact: Each generation has played a crucial role in transforming wireless
communication—from basic analog voice calls in 1G to the high-speed, low-latency digital
connectivity of 4G LTE. These advancements have paved the way for the next leap in
wireless technology—5G.

1.1.2 Schema of Mobile Network Generations
The evolution of mobile network generations has significantly transformed communication,
moving from analog voice calls to high-speed data transmission with low latency. The following
diagram illustrates the key features of each generation:

Figure 1.1: Schema of Mobile Network Generations

LTE deployment initially required multi-technology support for mobility and service con-
tinuity, as operators transitioned from legacy 2G and 3G networks [9]. However, with the
introduction of Voice over LTE (VoLTE), LTE is now capable of handling both data and
voice services, reducing the reliance on older networks.

As a result, our primary focus will be on 4G LTE, as previous generations, while essential
for its development, are now considered legacy technologies. With the industry shifting towards
5G and 6G, these older networks need to be phased out to make room for more efficient and
advanced solutions.

1.2 Introduction to LTE
The rise in mobile broadband demand led to the development of Long Term Evolution
(LTE) and System Architecture Evolution (SAE) under 3GPP Release 8. These advance-
ments redefined the radio access and core networks, creating the Evolved Packet System
(EPS).

Chapter 1. Theoretical Background and State of the Art 13

LTE improves upon 3G by reducing latency and increasing efficiency through technologies
like OFDMA and MIMO, achieving peak speeds of 300 Mbps (downlink) and 75 Mbps
(uplink). Later releases, such as Release 9, introduced femtocells and beamforming, setting
the stage for LTE-Advanced and ensuring compatibility with future technologies like 5G [10].

1.2.1 LTE as the Foundation for 5G and Beyond
LTE is not just a standalone technology but a critical infrastructure for the future of mobile
communications. According to the GSMA, LTE users are expected to reach two-thirds of the
global mobile user base by 2025, with a net addition of 3.6 billion users between 2016 and
2025 [1]. This growth underscores LTE’s role as the primary infrastructure in the 5G era,
where technologies like carrier aggregation and Massive MIMO continue to enhance user
experience and network performance.

Figure 1.2: Mobile Network Connections Distribution by 2025: 4G Leading at 63% [1].

LTE’s scalability and flexibility make it an ideal candidate for supporting diverse appli-
cations, from high-speed video streaming to IoT connectivity. Its ability to adapt to varying
bandwidths (from 1.4 MHz to 20 MHz) and support high mobility (up to 350 km/h) ensures
reliable performance across different use cases [11].

1.3 LTE Architecture and Components
With the growing demand for high-speed and reliable mobile networks, understanding LTE ar-
chitecture is crucial for optimizing performance. A well-structured network directly impacts key
performance indicators (KPIs), ensuring efficient resource utilization and seamless connectivity.

1.3.1 Overview of LTE Architecture
The LTE architecture is divided into three main components:

• The User Equipment (UE)

• E-UTRAN (Evolved Universal Terrestrial Radio Access Network)

Chapter 1. Theoretical Background and State of the Art 14

• EPC (Evolved Packet Core)

This separation simplifies network management and improves performance, making LTE a
highly efficient and scalable system [12].

1.3.2 Interaction Between UE, E-UTRAN, and EPC
The User Equipment (UE), Evolved Universal Terrestrial Radio Access Network (E-UTRAN),
and Evolved Packet Core (EPC) communicate through well-defined interfaces:

• Uu Interface: The radio interface connecting the UE to the eNodeB. It handles signaling
between the eNodeB and the MME, as well as data traffic between the UE and the S-GW.

• S1 Interface: Connects the eNodeB to the EPC, facilitating:

– S1-MME: Control signaling between the eNodeB and MME.
– S1-U: Data transmission between the eNodeB and S-GW.

• X2 Interface: Enables communication between eNodeBs, supporting handover proce-
dures and interference management.

• SGi Interface: Connects the P-GW to external Packet Data Networks (PDNs), identified
by Access Point Names (APNs). The P-GW also functions similarly to GGSN and SGSN
in UMTS and GSM.

Figure 1.3: The LTE EPS Architecture.[2]

1.3.3 User Equipment (UE)
The LTE user equipment (UE) shares the same internal architecture as UMTS and GSM,
consisting of:

• Mobile Termination (MT): Manages network communication.

• Terminal Equipment (TE): Handles user data processing.

• Universal Integrated Circuit Card (UICC): Contains the USIM, which stores user
credentials like a 3G SIM.

Chapter 1. Theoretical Background and State of the Art 15

1.3.4 E-UTRAN: The Radio Access Network
E-UTRAN is responsible for the radio communication between user equipment (UE) and the
LTE network. Its primary component is the eNodeB (evolved NodeB), which performs the
following functions:

• Radio Resource Management (RRM): Allocates and manages radio resources effi-
ciently.

• Scheduling: Determines how physical resources (e.g., Physical Resource Blocks or PRBs)
are allocated to users.

• Handover Management: Ensures seamless connectivity as users move between cells.

Figure 1.4: E-UTRAN Architecture.[2]

E-UTRAN employs advanced technologies such as OFDMA (Orthogonal Frequency Di-
vision Multiple Access) for the downlink and SC-FDMA (Single Carrier Frequency Division
Multiple Access) for the uplink, enhancing spectral efficiency and minimizing interference [13].
To manage uplink and downlink communication, E-UTRAN supports two duplexing methods:
FDD (Frequency Division Duplex), which uses separate frequency bands for uplink and down-
link—ideal for symmetric traffic like voice calls due to its low latency and interference-free
operation—and TDD (Time Division Duplex), which shares the same frequency band by al-
ternating uplink and downlink in time slots, making it efficient for asymmetric traffic such as
video streaming by dynamically allocating resources. The selection between FDD and TDD
depends on spectrum availability and traffic patterns, ensuring optimal resource utilization and
network performance.

1.3.5 EPC: The Core Network
The Evolved Packet Core (EPC) is the backbone of the LTE network, responsible for data
routing, mobility management, and connectivity to external networks. Its key components
include:

• MME (Mobility Management Entity): Handles signaling, authentication, and mo-
bility management.

• S-GW (Serving Gateway): Routes data packets between eNodeBs and the P-GW.

Chapter 1. Theoretical Background and State of the Art 16

• P-GW (Packet Data Network Gateway): Connects the LTE network to external
networks (e.g., the internet).

• HSS (Home Subscriber Server): Stores subscriber information and supports authen-
tication.

Figure 1.5: EPC Architecture.[2]

The Evolved Packet Core (EPC) relies on multiple interfaces to manage signaling, user
data transfer, and mobility.

• S1-MME and S1-U: Connect the E-UTRAN to the core, handling signaling and data
tunneling.

• S5/S8: Facilitate data transfer between the Serving GW and PDN GW, with S8 sup-
porting inter-PLMN connections.

• S10 and S11: Enable MME relocation and coordination with the Serving GW.

• S6a: Ensures authentication and subscription management between MME and HSS.

• SGi: Links the PDN GW to external packet networks, enabling internet access and IMS
services.

Conclusion
The LTE architecture provides a robust and scalable framework for high-speed mobile commu-
nications, integrating key components such as the UE, E-UTRAN, and EPC to ensure seamless
connectivity and efficient resource management. While this overview highlights the essential
elements of LTE, the full architecture is even more complex, involving numerous interfaces and
advanced technologies that govern mobility, signaling, and data flow.

A deep understanding of LTE is crucial for network optimization, as it directly impacts
key performance indicators (KPIs). Mastering these concepts is essential for the success of our
project, enabling us to analyze and enhance network performance effectively.

Chapter 1. Theoretical Background and State of the Art 17

1.4 Key Performance Indicators (KPIs) and Optimiza-
tion in LTE

Optimizing Long-Term Evolution (LTE) networks is crucial for ensuring efficient performance
that meets predefined standards for service quality, coverage, and capacity. This process in-
volves continuous monitoring and adjustment, guided by Key Performance Indicators (KPIs).
Optimization occurs throughout the network lifecycle, starting with pre-launch optimiza-
tion (focused on coverage and interference using drive tests) and transitioning to post-launch
optimization, which leverages real traffic data and performance counters for fine-tuning [3].

LTE optimization presents unique challenges compared to earlier generations like 2G/3G,
primarily due to its frequency reuse factor of 1 (increasing co-channel interference) and its
reliance on the packet-switched (PS) domain for all services, demanding Quality of Service
(QoS)-aware strategies, especially for real-time applications like Voice over LTE (VoIP) [3].

1.4.1 Defining Key Performance Indicators (KPIs)
KPIs provide quantitative measures of network performance, derived from counters collected
by the Operation and Maintenance Center (OMC). They are essential for monitoring network
health, diagnosing issues, and guiding optimization efforts. The most critical KPIs are catego-
rized as illustrated in Figure 1.6.

Figure 1.6: Categorization of LTE KPIs.

As illustrated in Figure 1.6, LTE KPIs can be broadly classified based on their focus: those
targeting the underlying Radio Network performance (such as resource availability and
connection stability) and those reflecting the end-User Experience (like perceived speed and
latency). This leads to two primary groups: Radio Network KPIs and Service KPIs. The
figure further breaks these down into specific categories. Key examples within these categories,
derived from the figure, are summarized in Table 1.1. Note that specific formulas and target
values for these KPIs depend heavily on the operator’s strategy and vendor implementation.

Chapter 1. Theoretical Background and State of the Art 18

Below are some of the main LTE KPIs along with their formulas and units:

Table 1.1: Consolidated LTE Key Performance Indicators (KPIs) [4]

Category KPI Name Formula Unit

Accessibility RRC Setup Success
Rate (Service)

RRCConnectionSuccessservice
RRCConnectionAttemptservice

× 100 %

E-RAB Setup Success
Rate (VoIP)

VoIPERABSetupSuccess
VoIPERABSetupAttempt × 100 %

Retainability Call Drop Rate
(VoIP)

VoIPERABAbnormalRelease
VoIPERABRelease × 100 %

Mobility Intra-frequency Han-
dover Out Success
Rate

IntraFreqHOOutSuccess
IntraFreqHOOutAttempt × 100 %

Utilization Resource Block Uti-
lization Rate (DL)

DL_RBUsed
DL_RBAvailable × 100 %

Average CPU Load MeanCPUUtility %

Traffic Average User Number AveUserNumber N/A
Radio Bearers RadioBearers_QCI_1_to_9 N/A
DL Traffic Volume DLTrafficVolume_QCI_1_to_9 bits

Service Integrity Cell DL Average
Throughput

CellDLTrafficVolume
Duration×CellDLTransmissionTime kbit/s

Cell DL Maximum
Throughput

MaxDLTrafficVolume
1 ms × 1000 kbit/s

Note: Formulas and counter names are illustrative and may vary depending on vendor implementation and
network design [3].

The systematic calculation and monitoring of these KPIs using standardized formulas are
vital for:

• Performance Benchmarking: Comparing performance across cells, regions, or time
periods.

• Troubleshooting: Pinpointing root causes of degradation (e.g., high Call Drop Rate
often linked to interference or poor handover parameters).

• Automated Optimization: Enabling algorithms, including ML-based ones, to monitor
and adjust network parameters in near real-time. [14]

1.4.2 KPI Analysis Process
Performance monitoring in LTE networks relies on a comprehensive set of counters and indica-
tors collected at different levels:

• Network level (overall performance trends)

Chapter 1. Theoretical Background and State of the Art 19

• MME level (mobility and session management)

• Cell level (individual cell performance)

Reports are generated at varying intervals (busy hour, daily, weekly) to provide:

• High-level overviews for strategic planning.

• Granular insights for troubleshooting specific issues (e.g., call drops in a cluster).

As illustrated in Figure 1.7, the KPI analysis and tuning process follows a structured work-
flow:

Figure 1.7: KPI analysis and tuning workflow. [3]

1. KPI Monitoring: Continuously track key performance indicators such as throughput,
accessibility, retainability (e.g., drop rates), and mobility (e.g., handover success rates).

2. Issue Identification: Detect signs of degradation like low RSRP/SINR (indicating weak
coverage), pilot pollution (caused by overlapping PCI signals), overshooting cells, high
drop rates, or frequent handover failures.

3. Root Cause Analysis: Investigate performance issues using coverage maps, SINR dis-
tributions, interference levels, and parameter settings to determine underlying causes.

4. Tuning Activities: Implement corrective actions, categorized as follows:

• RF Optimization: Modify antenna tilt, azimuth, and transmit power (e.g., RS
Power) to enhance coverage, reduce interference, reinforce cell dominance, and mit-
igate pilot pollution. Key metrics: RSRP and SINR.[15]

• Parameter Optimization: Adjust logical parameters within the eNodeB, such
as handover thresholds (e.g., A3 offset, Time-to-Trigger, hysteresis), power control
settings for PUSCH/PUCCH, and admission control strategies for congestion man-
agement.

• Capacity Optimization: Enhance resource efficiency by optimizing PRB alloca-
tion, activating load balancing across carriers/layers, and applying Inter-Cell Inter-
ference Coordination (ICIC) techniques.

5. Validation: Reassess KPIs after tuning to confirm improvements and ensure no unin-
tended performance regressions.

Chapter 1. Theoretical Background and State of the Art 20

1.4.3 Data-Driven Methods for Network Optimization
Traditional LTE network optimization typically relies on manual configurations and rule-based
adjustments by domain experts. However, with the growing scale and complexity of network
infrastructures, data-driven approaches are increasingly adopted to complement and enhance
these processes. These methods leverage large volumes of performance data—including KPIs,
configuration parameters, and contextual information—to support more intelligent, adaptive,
and efficient network management.

Key contributions of data-driven optimization include:

• Predictive Analytics: Anticipating traffic loads, throughput fluctuations, or potential
KPI degradations to enable proactive resource allocation and congestion avoidance [15].

• Anomaly Detection: Identifying unusual patterns or abrupt changes in performance
metrics that may indicate emerging faults or misconfigurations.

• Automated Decision Support: Recommending optimal parameter settings—such as
handover margins or transmission power levels—based on historical trends and contextual
performance data, contributing to the vision of Self-Organizing Networks (SON).

• Root Cause Analysis: Facilitating diagnostics by linking observed degradations with
likely underlying causes using historical correlations and multivariate analysis.

By shifting from reactive troubleshooting to proactive and predictive strategies, these ap-
proaches contribute to continuous performance improvement and real-time adaptability. This
project integrates such techniques—especially forecasting and interpretability-focused analy-
sis—to support informed optimization decisions within LTE environments.

KPI analysis and optimization form a cyclical process: monitoring → tuning → validation.
While traditional methods (RF/parameter tuning) remain foundational, AI/ML introduces
proactive and adaptive capabilities. The integration of these techniques ensures LTE networks
meet evolving QoS demands efficiently.

1.5 State of the Art: Existing Work on LTE Optimiza-
tion using AI

The application of Machine Learning (ML) and Deep Learning (DL) to enhance wireless net-
work performance, particularly in LTE, has been an active area of research. Studies have
explored various techniques to predict network behavior, optimize resource allocation, and im-
prove Quality of Experience (QoE).

1.5.1 Comparative Table of Studies
The following table summarizes key studies applying ML/DL techniques to wireless network
optimization, with a focus on LTE where applicable. The studies are ordered chronologically
to illustrate the evolution of approaches over time, highlighting the type of problem addressed,
data used, and learning algorithms employed.

Chapter 1. Theoretical Background and State of the Art 21

Table 1.2: Comparative Analysis of Studies on ML/DL for Wireless Network Optimization

Performance Im-
provement / Re-
search Problem

Datatype Input Data
Examples

Learning Ap-
proach

Year Ref

1 Network Perf.
Prediction
(Characteriza-
tion)

Cellular, Synthetic SINR, ICI,
MCS, Tx
Power

NN, Random
NN

2015 [16]

2 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Traffic
(Bytes)/10
min

Hierarchical
Clustering

2015 [17]

3 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real User traffic MWNN 2015 [18]

4 QoE Prediction
(KPI Parame-
ters)

Cellular, Real Mobile net-
work KPIs

NN 2016 [19]

5 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Mobile traffic
volume

Regression
Analysis

2016 [20]

6 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Mobile traffic SVM, MLPWD,
MLP

2016 [21]

7 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Avg traffic
load/hour

LSTM, GSAE,
LSAE

2017 [22]

8 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real CDRs (Milan
Grid)

RNN, 3D CNN 2017 [23]

9 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Traffic vol-
ume snap-
shots/10
min

STN, LSTM, 3D
CNN

2018 [24]

10 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Cellular traf-
fic load/half-
hour

LSTM, GNN 2018 [25]

11 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real CDRs/10 min
interval

DNN, LSTM 2018 [26]

Continued on next page

Chapter 1. Theoretical Background and State of the Art 22

Table 1.2 – continued from previous page
Research Prob-
lem

Datatype Input Data Learning Ap-
proach

Year Ref

12 Network Re-
source Alloca-
tion Prediction
(WSN Parame-
ters)

WSN, Synthetic Lifetime,
Power level,
Distance

NN 2018 [27]

13 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real SMS and Call
volume/10
min

CNN 2018 [28]

14 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Traffic
load/10
min

LSTM 2018 [29]

15 Network Traffic
Prediction ->
Resource Allo-
cation (Feature
Sel.)

Cellular, Real Traffic
logs/10
min

RF 2018 [30]

16 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Traffic
logs/15
min

LSTM 2019 [31]

17 Network Traf-
fic Prediction
-> Resource
Allocation

Cellular, Real Traffic load/5
min

3D CNN 2019 [32]

18 KPI Maximiza-
tion (SINR) via
Mobility Param-
eter Opt.

LTE, Simulation CIO, HOM CatBoost, Ge-
netic Algorithm

2020 [33]

19 DL Throughput
Optimization
via Traffic
Clustering

LTE-A, Real 312 cells, 20
KPIs

Regression, Un-
specified

2020 [34]

20 Traffic Predic-
tion (BS-level)
-> Resource
Allocation

Mobile Networks, Real Traffic de-
mand at
BSs

Transformer,
LSTM

2021 [35]

21 Traffic Predic-
tion (eNodeB-
level) -> Param-
eter Estimation

LTE, Real 6.2M time
series, PRB
util.

LSTM BiLSTM
GRU fusion

2023 [36]

22 LTE Traffic Pre-
diction (Edge
Optimization)

LTE, Public 57 cells,
time/date
features

Bagging, RF,
SVM

2023 [37]

Continued on next page

Chapter 1. Theoretical Background and State of the Art 23

Table 1.2 – continued from previous page
Research Prob-
lem

Datatype Input Data Learning Ap-
proach

Year Ref

23 Multi-KPI
Optimization
(Throughput,
PRB Usage)

LTE, Real Network
KPIs (3
months)

RF, SVR 2023 [38]

24 Short-Term KPI
Forecasting (Ru-
ral Fixed Wire-
less)

Fixed Wireless LTE, Real KPIs + en-
vironmental
data

Seq2Seq, LSTM,
GRU, RF

2023 [39]

Note: WSN = Wireless Sensor Network; CIO = Cell Individual Offset; HOM = Handover Margin;
GA = Genetic Algorithm; SVR = Support Vector Regression; GSAE/LSAE = Autoencoders;
GNN = Graph Neural Network; STN = Spatio-Temporal Network; MWNN = Morlet Wavelet NN

1.5.2 Synthesis of Limitations and Challenges
Analysis of the state-of-the-art reveals several key trends, limitations, and challenges:

1. Dominance of Prediction Tasks: The vast majority of studies (e.g., [17], [22]-[26], [28]-
[32], [35]) focus on predicting network traffic (volume, load) or KPIs (QoE, through-
put). This reflects the fundamental importance of forecasting for network planning and
resource management.

2. Shift Towards Deep Learning: A clear trend exists from earlier reliance on tradi-
tional ML algorithms ([16]-[21], [30], [37]) towards Deep Learning models, particularly
LSTM ([22], [24]-[26], [29], [31], [36], [39], [35]), CNN ([23], [28], [32]), and more recently
Transformers ([35]) and hybrid/fusion models ([36]). This shift is driven by the superior
ability of DL to capture complex spatio-temporal dependencies in network data.

3. Gap Between Prediction and Optimization: As highlighted in the preliminary
SOTA review, while many studies achieve accurate predictions, most stop short of
integrating these predictions into automated optimization frameworks. Opti-
mization decisions are often left to human engineers who interpret the predictions. Only a
few studies ([33], [34], [36], [38]) explicitly attempt to link prediction to parameter tuning
or resource allocation optimization, and these are often specific to certain scenarios or
KPIs.

4. Challenge of Multi-KPI Optimization: Optimizing for a single KPI (e.g., maximizing
throughput) can negatively impact others (e.g., increase interference, degrade handover
stability, or consume more energy). The literature acknowledges this challenge ([38]),
but developing systematic frameworks that balance multiple conflicting KPIs simul-
taneously remains a significant hurdle. The interdependencies create complex trade-off
scenarios that are difficult to model and solve comprehensively.

5. Data and Model Generalizability: Research often relies on specific datasets (real or
simulated) from particular network environments ([23], [34], [36], [38], [39]). The lack
of large-scale, standardized public datasets (unlike in fields like computer vision) makes
direct comparison of model performance difficult. Furthermore, models trained on one
network segment or time period may not generalize well to others without retraining or
adaptation techniques.

Chapter 1. Theoretical Background and State of the Art 24

6. Interpretability for Actionable Insights: While complex models like DL achieve
high accuracy, understanding why they make certain predictions (i.e., identifying the
most influential features/KPIs) is crucial for engineers to trust and act upon the recom-
mendations. Techniques for feature coefficient interpretation or model explainability
are essential but not always the focus.

Addressing the Gap: This project takes a foundational step towards bridging the identi-
fied gap between raw prediction and operational optimization. Instead of attempting to build
a fully autonomous optimization engine, which faces the complex multi-KPI trade-off problem
(Limitation 4), our work focuses on creating the critical prerequisites for intelligent network
management. We address the identified gaps by:

1. Delivering High-Fidelity Forecasts: By developing and rigorously tuning advanced
predictive models (LSTM), we provide the high-quality, reliable forecasting data that
is essential for any downstream optimization task. This directly addresses the need for
accurate prediction (Limitation 1) using state-of-the-art methods (Limitation 2).

2. Enabling Proactive, Data-Driven Decisions: The system utilizes these predictive
insights to arm network engineers with the foresight needed to implement proactive opti-
mization strategies, such as preemptive resource allocation, targeted maintenance schedul-
ing, or identifying cells that are trending towards congestion. This focuses on the practical
application of forecasts, moving closer to the prediction-to-optimization link (Limitation
3).

3. Providing a Path to Interpretability: While LSTMs are complex, the system is
designed to facilitate future work on interpretability (Limitation 6). By providing a robust
data foundation and a clear evaluation framework, the next step of applying techniques
like SHAP or LIME to understand model predictions becomes feasible.

This approach provides a pragmatic and powerful contribution: a validated system that
delivers the actionable intelligence required for engineers to optimize networks more effectively,
paving the way for more automated solutions in the future.

Conclusion
This chapter provided an overview of LTE fundamentals and essential KPIs, highlighting the
growing importance of AI in modern network optimization strategies. It emphasized the gap
between predictive insights and their effective application, setting the stage for the solution
proposed in this project. In the next chapter, we will delve into the problem statement and
present the methodology adopted to address these challenges.

Chapter 2

Methodology

This chapter presents the project’s methodological framework. It defines the core challenges in
multi-vendor LTE environments and proposes a predictive analytics solution. It also outlines
the AI model selection and the tech stack used.

2.1 Problem Statement

2.1.1 Problem Overview
In modern telecommunications networks, predicting key performance indicators (KPIs) such
as traffic, throughput, and anomalies—both hourly and daily, and across multiple geographical
levels—is critical for network optimization and proactive decision-making. At the heart of this
challenge lies the need for clean, unified, and timely data.

Our case study is based on Djezzy, a leading telecommunications operator in Algeria.
Djezzy’s infrastructure spans multiple vendors (e.g., Huawei, Nokia, ZTE) and technologies
(2G, 3G, 4G), leading to a fragmented data environment. Each vendor provides proprietary
tools and data formats, which makes it difficult for engineers to access and analyze KPIs effi-
ciently across the network.

To address this, our approach is to design and implement a unified data warehouse that
consolidates and standardizes KPI data from different vendor-specific systems. This warehouse
serves as the foundation for applying AI and Machine Learning models to forecast network
performance metrics, detect anomalies, and support optimization efforts.

Furthermore, we have developed a full-stack web application to visualize the outcomes of
our data-driven predictions, anomaly detection, and other analytics. The application not only
offers intuitive charts and reports but also facilitates real-time interaction with the model out-
puts, enabling engineers and decision-makers to gain insights more effectively.

Figure 2.1: Djezzy Telecommunications Company

25

Chapter 2. Methodology 26

2.2 Insights from the State of the Art

2.2.1 Trends in Research: Focus on Prediction Rather than Opti-
mization

The review of existing literature highlights several critical trends that shaped our methodologi-
cal choices. Initially, our objective was to develop optimization strategies for KPI improvement.
However, the state of the art reveals that most recent efforts in the domain are centered around
prediction tasks, particularly traffic and throughput forecasting, which are crucial for network
planning and proactive decision-making.

Studies overwhelmingly focus on time-series prediction of network performance metrics using
machine learning and deep learning models. This reflects the growing consensus that accurate
prediction is a prerequisite for effective optimization. Moreover, the trend has moved toward
using advanced architectures such as LSTMs, CNNs, and Transformers to capture complex
spatio-temporal patterns.

2.2.2 Multi-KPI Trade-offs: A Complex Balancing Problem
Another important insight from our literature synthesis is the difficulty of optimizing multi-
ple KPIs simultaneously. In real-world telecom environments, improving one KPI—such as
throughput—can lead to the degradation of others like energy efficiency or handover stability.
This interdependence creates complex trade-offs that are hard to formalize in an optimization
framework.

Only a handful of works attempt to handle these trade-offs directly, and most are limited
in scope or applicability. The majority of systems leave decision-making to human engineers,
who must interpret predictions and balance these conflicting metrics manually.

2.3 Proposed Solution

2.3.1 Shifting from Direct Optimization to Predictive Analytics for
Decision Support

Based on these findings, we chose to pivot from a direct optimization objective toward develop-
ing a robust predictive analytics pipeline. Rather than automate decisions, our system aims to
empower network engineers by providing accurate, timely, and interpretable predictions that
can guide optimization choices. This approach aligns with how decisions are made in practice
and avoids the pitfalls of incomplete or oversimplified optimization models.

2.3.2 Choice of AI Models: LSTM and Prophet Models
To implement our predictive solution, we selected a dual-model strategy that emphasizes both
performance and interpretability for time-series forecasting in the context of telecommunications
KPI data. At the core of our approach is a Long Short-Term Memory (LSTM) network, a
deep learning model renowned for its ability to capture non-linear temporal dependencies and
long-range patterns in sequential data [40]. Its internal gating mechanisms make it particularly
effective at modeling the complex daily and weekly seasonalities inherent in KPIs such as traffic
volume and resource utilization.

To provide a robust benchmark beyond simple naive methods, we also selected Facebook’s
Prophet model. Prophet serves as an advanced statistical baseline, representing a strong,

Chapter 2. Methodology 27

modern approach to time-series decomposition [41]. It models time series data as an additive
combination of trend, seasonality (daily, weekly), and holiday effects. Its strengths lie in inter-
pretability, resilience to missing data, and minimal tuning requirements, making it a reliable
comparative framework.

By evaluating our LSTM model against Prophet, we move beyond comparisons with sim-
plistic heuristics. This positioning allows us to demonstrate that the deep learning model not
only captures complex patterns, but also outperforms a sophisticated, production-grade fore-
casting tool. This reinforces both the value and necessity of deep learning in capturing the
nuanced dynamics of telecommunication KPIs.

2.3.3 Role of Prediction in Network optimisation
By forecasting traffic load and throughput at both hourly and daily levels—and across multiple
geographical granularities—our models help engineers:

• Anticipate congestion and proactively reallocate resources.

• Monitor and detect anomalies more effectively.

• Make informed decisions about infrastructure scaling or reconfiguration.

These predictive insights serve as the foundation for further optimization, whether man-
ual or algorithmic, and contribute directly to network stability, performance, and customer
satisfaction.

2.4 Tools and Technologies Used in Our Solution

2.4.1 Data Warehousing and ETL for Telecom Analytics
Principles and Best Practices

Data warehousing involves integrating data from multiple heterogeneous sources into a central-
ized, structured repository optimized for querying and analysis. In telecom, this is particularly
essential due to the diversity of systems and data formats across vendors.

Our ETL (Extract, Transform, Load) pipeline was designed to:

• Automate extraction of raw KPIs from various vendor-specific tools.

• Transform and standardize the data schema for consistency.

• Load the unified data into a central warehouse on a scheduled basis.

This enables a consistent view of network data, suitable for both operational monitoring
and analytical modeling.

Database Technologies and Deployment

We used PostgreSQL as our primary database engine for storing the standardized KPI data,
chosen for its reliability, open-source nature, and strong support for analytical queries.

The database was accessed and managed using:

• pgAdmin: A web-based graphical interface for PostgreSQL database management.

Chapter 2. Methodology 28

• psql shell: The command-line interface for executing SQL scripts and managing database
operations.

• PL/pgSQL: Used to implement stored functions and procedures for database-side data
processing and automation within PostgreSQL.

To containerize and deploy our data warehouse environment, we used Docker Desktop,
which allowed us to ensure a consistent and portable environment across development and
production.

Automation with Apache Airflow

We used Apache Airflow to automate the ETL pipeline and schedule data workflows see B.1
for more details. Airflow enabled us to:

• Define Directed Acyclic Graphs (DAGs) for task execution.

• Monitor the success or failure of each step in the pipeline.

• Schedule regular data ingestion and transformation jobs.

Data Processing and Scripting with Python

Python served as the main scripting language throughout the project. We leveraged its ecosys-
tem of packages to handle data processing, modeling, and integration tasks. Key libraries
included:

• pandas, numpy for data manipulation and preprocessing.

• psycopg2 for database connections.

• scikit-learn, xgboost, etc., for AI/ML model training and prediction.

• matplotlib, seaborn for internal data visualization during development and debugging.

2.4.2 Full-Stack Web Application Development for Data Products
To make our AI/ML models accessible and interpretable, we built a web-based data product
that allows engineers and analysts to interact with predictions and insights in real-time.

Our tech stack includes:

• Flask: A lightweight Python web framework for backend APIs, model serving, and data
access.

• Chart.js: For rendering interactive charts and visualizing KPIs, predictions, and anoma-
lies.

• HTML/CSS/JavaScript: For building a responsive, user-friendly frontend.

The web application allows users to:

• Visualize historical and predicted KPI trends.

• Monitor anomalies flagged by AI models.

• Explore KPI data at various temporal and geographic levels.

Chapter 2. Methodology 29

Conclusion
This chapter introduced a structured approach to addressing LTE network optimization using
AI techniques. It defined the core problem, justified the proposed solution, and outlined the
main tools and technologies involved. Building on this foundation, the following chapters will
focus on the implementation process, covering the system’s design, development, and practical
integration.

Chapter 3

Design and Implementation of the
Data Management Subsystem

This chapter details the design and implementation of the data management subsystem, a
core component of our Key Performance Indicator (KPI) platform. Crucially, this subsystem
not only supports traditional network performance monitoring and reporting but also serves
as the foundational dataset for advanced Artificial Intelligence models designed for
KPI forecasting, prediction, and anomaly detection. The accuracy, reliability, and structure of
the data managed herein are therefore paramount to the success of the predictive capabilities
of the overall system. We will cover the overall architecture with a focus on data flow, the
rationale and specifics of the Data Warehouse (DWH) design tailored to these analytical and
ML requirements, and the implementation of the Extract, Transform, Load (ETL) pipeline
responsible for populating this critical data resource.

3.1 Overall System Architecture
The system architecture is designed to ingest, process, store, and prepare telecommunications
network performance data for analysis and reporting. The data flows through several key
stages, coordinated by a set of automation tools and scripts, as depicted in Figure 3.1.

Figure 3.1: High-Level System Architecture illustrating Data Flow.

30

Chapter 3. Design and Implementation of the Data Management Subsystem 31

The primary components and data flow are as follows:

• Data Sources: Raw performance counter data is collected from various network elements
across multiple mobile technologies and vendors. Each vendor (e.g., Huawei, Nokia,
ZTE) uses its own management systems to store this data, typically in CSV or XML
formats. Our deployment server securely accesses these sources and retrieves the data
periodically, consolidating it into a central landing zone for processing. This setup ensures
compatibility with the diverse architectures and formats used by different vendors.

• Staging Area: Initially, vendor-specific data is transformed into a standardized format
by vendor-specific processing scripts and then loaded into a transient staging table
Staging_RawCounter within the PostgreSQL Data Warehouse. This step is managed by
Python scripts (e.g., Loader.py).

• ETL Processing Core: Python scripts (e.g., ETL.py) further process data from the
staging area.
This involves:

– Data validation and cleansing.
– Enrichment with dimensional keys (e.g., mapping cell IDs, timestamps, vendor and

technology identifiers).
– Loading into the primary hourly fact table FactRawCounter.

• Data Warehouse (DWH): The PostgreSQL-based DWH follows a dimensional mod-
eling approach to organize and store data efficiently.

– Dimension Tables: Capture the contextual attributes of the data, such as net-
work elements, time, geography, vendors, and technologies (e.g., DimCell, DimTime,
DimGeography, DimVendor, DimTechnology).

– Definition Tables: Contain metadata definitions for KPIs, counters, and associ-
ated calculation logic (e.g., KPIDefinition, KPIFormula).

– Fact Tables: Store measurable observations, including both raw counters and
computed KPIs, at different levels of granularity (e.g., FactRawCounter, FactKPI,
FactAggregatedKPI, FactBusyHour).

A detailed description of each of these tables and their relationships will be provided later
in the Data Warehouse Design section.

• Calculation Engine: A suite of SQL scripts and PL/pgSQL functions within Post-
greSQL perform
aggregations (e.g., daily, geographic) and KPI calculations based on the formulas stored
in the definition tables.

• Orchestration: Apache Airflow, running via Docker Compose, manages the entire
pipeline,
scheduling tasks, handling dependencies, and ensuring the ordered execution of data load-
ing, ETL,
and calculation scripts.

Chapter 3. Design and Implementation of the Data Management Subsystem 32

3.1.1 Project File Structure for Data Management
The implementation of the data management subsystem required a modular and maintainable
project architecture. A well-structured organization of scripts, configuration files, and datasets
was established to support robust ETL workflows and ensure scalability. Figure 3.2 presents
the directory layout of the Database/ folder, which encapsulates all components related to data
ingestion, ETL execution, DWH schema creation, and orchestration processes.

Figure 3.2: Directory structure of the Database/ component

Chapter 3. Design and Implementation of the Data Management Subsystem 33

This architecture promotes separation of concerns and improves reusability across the ETL
pipeline. The main directories and files are described below:

• dags/: Contains Apache Airflow DAG definitions (e.g., all_pipeline_vf.py) that or-
chestrate the end-to-end ETL processes.

• Def/: Stores metadata definition files (e.g., counter_definitions.csv, kpi_formula.csv)
alongside Python scripts (e.g., inject_counter.py, inject_formula.py) for loading this
metadata into the data warehouse.

• Dim/: Includes CSV files and ingestion scripts for dimension tables such as dim_cell.csv
and dim_geo.csv, which serve as the foundation for KPI aggregation and analysis.

• Fact/:

– data/: Subdirectories for raw inputs, processed outputs, and logs specific to vendor
data ingestion.

– SQL scripts (e.g., FactKPI.sql, FactAggDaily.sql) for creating and populating
fact tables.

• utils/: Utility scripts supporting tasks such as data extraction (extractor.py) and
source-to-standard mapping (source_mappings.py).

• Root-level scripts and configuration files:

– dbcreation.sql: Defines the database schema.
– Loader.py, ETL.py: Central orchestration and transformation scripts.
– docker-compose.yaml: Specifies the containerized deployment environment see A.1

for more details.

The resulting structure enhances readability, streamlines development workflows, and sup-
ports maintainable scaling of the data pipeline.

Chapter 3. Design and Implementation of the Data Management Subsystem 34

3.2 Data Warehouse Design and Rationale
The DWH is implemented in PostgreSQL and employs a dimensional modeling approach. This
design was chosen not only to optimize for query performance and analytical flexibility for
human users but, critically, to provide a structured, reliable, and easily accessible data
source for training and deploying machine learning models. The schema is engineered
to facilitate feature extraction and to ensure that historical data, essential for model learning,
is accurately captured and maintained.

3.2.1 Dimensional Modeling Approach
The Data Warehouse (DWH) primarily utilizes a Star Schema, which simplifies analytical
queries by connecting central fact tables directly to surrounding dimension tables via foreign
key relationships. This design enables fast and intuitive data access for both reporting and
machine learning tasks.

A minor Snowflake Schema element is introduced in the DimGeography dimension, which
contains a hierarchical structure (e.g., Commune, Wilaya, AllNet) implemented through a
self-referencing foreign key. This balances the need for normalized geographic representation
with query performance. The Entity-Relationship Diagram (ERD) in Figure 3.3 illustrates the
overall schema structure.

This star schema is particularly advantageous for AI applications. It allows for efficient fea-
ture engineering by enabling straightforward joins between the central fact tables (containing
the target KPI values) and the dimension tables, which provide rich contextual features—such
as time of day, cell location, and technology type—critical for training predictive models. The
model also facilitates aggregation, filtering, and slicing operations with minimal query com-
plexity, which is essential during iterative model development.

To further optimize performance, particularly during repeated joins and spatial aggrega-
tions, materialized views were used. For instance, the mv_cell_geo view pre-joins cell and
geography information to accelerate region-based queries, benefiting both reporting and fea-
ture engineering pipelines.

3.2.2 Detailed Schema
The DWH schema, comprehensively defined in the dbcreation.sql script, consists of several
key dimension, definition, and fact tables. This structure is designed to be robust and accessible
for various database management and development tasks. The DWH can be interacted with,
queried, and modified through multiple interfaces, including:

• Direct SQL commands via a command-line interface like PostgreSQL’s ‘psql‘ shell (demon-
strated in Figure 3.5 for querying Definition data).

• Graphical user interfaces such as pgAdmin, which provides a comprehensive suite for
database administration, schema browsing (as seen in Figure 3.4).

• Integrated development environment (IDE) extensions, SQLTools for Visual Studio Code,
which allows for convenient querying and interaction with the database directly within
the development environment (an example of querying FactKPI using SQLTools is shown
in Figure 3.7).

This flexibility in access ensures that developers, administrators, and analysts can efficiently
work with the DWH using their preferred tools.

C
hapter

3.
D

esign
and

Im
plem

entation
ofthe

D
ata

M
anagem

ent
Subsystem

35

Figure 3.3: Data Warehouse Entity Relationship Diagram

Chapter 3. Design and Implementation of the Data Management Subsystem 36

Key Dimension Tables:

• DimCell: Stores information about individual network cells/sectors, including their asso-
ciation with vendors, technologies, and geographical locations. Figure 3.4 shows a view
from pgAdmin, demonstrating the successful creation of the DWH tables and a sample
query on the ‘DimCell‘ table, which serves as the master reference for all network cells.

Figure 3.4: DWH Tables in pgAdmin and DimCell Query Example

• DimTime: Provides time-based context at an hourly granularity. It includes derived at-
tributes
like date_pk for efficient date-based joins.

• DimGeography: Manages the geographical hierarchy (Commune, Wilaya, AllNet) using
geo_code and parent_geo_code.

• DimVendor: Lists network equipment vendors (e.g., Huawei, Nokia, ZTE) and an ALL
category for network-wide aggregations.

• DimTechnology: Catalogues network technologies (e.g., 2G, 3G, 4G).

Key Definition Tables:

To create a flexible and maintainable system, we chose to store business logic—specifically
the definitions of counters and KPIs—as data within the DWH itself, rather than hard-coding
them in application logic. This metadata-driven approach allows for dynamic updates without
code changes. The command-line interface ‘psql‘ was used for scripted ingestion and quick
verification of this definitional data. Figure 3.5 shows a query against the ‘CounterDefinition‘
table via ‘psql‘, confirming that the raw counter metadata, which forms the basis of all KPI
calculations, is correctly loaded.

• KPIDefinition: Defines KPIs, their names, descriptions, and applicability to vendors/
technologies.

• CounterDefinition: Contains details of vendor-specific raw counters that form the basis
of KPIs.

Chapter 3. Design and Implementation of the Data Management Subsystem 37

Figure 3.5: Querying CounterDefinition Table via PSQL CLI.

• KPIFormula: Stores the mathematical expressions used to calculate KPIs from raw coun-
ters. Sample data for this table is shown in Figure 3.6.

Figure 3.6: Querying from KpiFormula table.

Key Fact Tables:

Fact tables store the quantitative measurements and are the primary source of data for AI mod-
els. To facilitate a modern development workflow, we utilized IDE integrations like SQLTools
for Visual Studio Code, allowing for seamless interaction with the database during coding and
debugging. Figure 3.7 shows an example of querying the ‘FactKPI‘ table using this tool. This
table represents the culmination of the ETL process at the hourly, per-cell level, providing the
clean, structured time-series data that directly feeds our forecasting models.

• FactRawCounter: The most granular fact table, storing raw counter values at the hourly
level per cell. It includes denormalized tech_id, vendor_id, and kpi_id for performance.

• FactKPI: Stores calculated KPI values at the hourly granularity per cell; This table is a
primary source for historical KPI trend.

Chapter 3. Design and Implementation of the Data Management Subsystem 38

Figure 3.7: Querying FactKPI Table using SQLTools in VS Code.

• FactAggregatedKPI: Contains KPI values aggregated geographically (Commune, Wilaya,
AllNet)
at hourly granularity.

• FactBusyHour: Identifies the busy hour for various aggregation levels (Cell, Commune,
Wilaya, AllNet) per day, based on a maximum specific traffic KPI.

• Daily counterparts such as FactRawCounterDaily, FactKPIDaily, and FactAggregated
KPIDaily
store data aggregated to a daily level.

3.2.3 Data Granularity and Aggregation Strategy
The DWH supports multiple levels of granularity to cater to different analytical needs and,
crucially, to provide suitable inputs for various ML modeling approaches:

• Hourly Granularity: Raw counters (FactRawCounter) and KPIs (FactKPI,
FactAggregatedKPI) are primarily stored at the hourly level. This level of detail is
essential for training time-series models for short-term forecasting, fine-grained anomaly
detection, and precise busy hour identification.

• Daily Granularity: Dedicated tables (FactRawCounterDaily, FactKPIDaily,
FactAggregatedKPIDaily) store data aggregated to the daily level. This not only im-
proves query performance for daily reporting and trend analysis but can also serve as
input for ML models focused on longer-term patterns, or models where daily
resolution is more appropriate or computationally efficient.

The aggregation strategy involves first summing the necessary raw counters (e.g., for daily
totals or geographic roll-ups) and then recalculating the relevant KPIs based on these aggre-
gated counters. This ensures accuracy, as many KPIs are ratios or averages that cannot be

Chapter 3. Design and Implementation of the Data Management Subsystem 39

simply summed from their lower-level values. The logic for these complex aggregations and
recalculations is encapsulated within a suite of PL/pgSQL functions and procedures stored
directly in the database. These database routines perform the heavy lifting of data manip-
ulation needed to derive the aggregated fact tables. Figure 3.8 shows an example of such a
database function, populate_agg_kpi_hourly(), viewed within the pgAdmin interface, illus-
trating how procedural SQL is employed to implement this aggregation logic. These routines
are subsequently invoked by the SQL scripts orchestrated by Airflow.

Figure 3.8: View of PL/pgSQL Code for populate_agg_kpi_hourly() in pgAdmin.

the populate_agg_kpi_hourly() function is an example of the stored procedures used
to implement the DWH’s data aggregation strategy, encapsulating the logic for calculating
aggregated KPIs.

3.2.4 Indexing, Materialized Views, and Performance Considera-
tions

To ensure high performance in the Data Warehouse (DWH)—essential for both interactive
analysis and AI data preparation—several optimization strategies were applied, particularly
given the constraints of a local development environment.

• Indexing:
Indexes on primary and foreign keys facilitate efficient joins between fact and dimension
tables. Additional indexes are created on frequently queried columns such as time_pk,
cell_id, and vendor_id. Composite indexes, like on FactRawCounter(time_pk, cell_id,
vendor_id, counter_id), further improve performance for multi-column query patterns.
These indexing strategies significantly reduce query times and ETL processing overhead.
For instance, tables like FactKPI and FactKPIDaily handle over 336,000 and 220,000
records respectively (see Figure 3.9), while the Airflow DAG all_kpi_pipeline_v2 com-
pletes KPI computations in approximately 21 minutes (see Figure 3.11).

Chapter 3. Design and Implementation of the Data Management Subsystem 40

Figure 3.9: Fact Table Row Counts Indicating DWH Data Scale.

• Denormalization:
To reduce join overhead, key attributes such as tech_id and vendor_id are denormalized
into fact tables. This allows faster filtering and aggregation without the need to repeatedly
access dimension tables like DimCell.

• Materialized Views (MVs):
MVs store precomputed results of frequent or costly queries, improving performance and
reducing real-time computation needs. These are refreshed during the ETL process.
Notable examples include:

– mv_cell_geo: Joins DimCell with DimGeography to enable fast geographic aggre-
gations (see Figure 3.10).

– mv_daily_network_kpi: Computes daily averages of KPIs across the entire network.
– mv_hourly_site_kpi: Aggregates KPIs by site on an hourly basis.

Chapter 3. Design and Implementation of the Data Management Subsystem 41

Figure 3.10: Sample Data from mv_cell_geo Materialized View.

• Aggregation Tables:
Tables such as FactAggregatedKPI, FactKPIDaily, and FactBusyHour store pre-aggregated
metrics, significantly improving query performance by shifting complex computations to
the ETL stage. The Airflow Gantt chart in Figure 3.11 highlights how these optimizations
enable efficient processing at scale.

Figure 3.11: Apache Airflow Gantt chart

The Apache Airflow Gantt chart is showing the execution duration of the all_kpi_pipeline_v2
DAG. The ’fact’ task group, responsible for main KPI computations, completed in approxi-
mately 21 minutes. This efficient processing at scale is a direct result of the DWH optimiza-
tions, including pre-aggregated tables and materialized views, which shift computational load
from query time to the ETL stage.

Chapter 3. Design and Implementation of the Data Management Subsystem 42

3.3 ETL Pipeline Implementation
The ETL pipeline is a multi-stage process responsible for extracting data from source files,
transforming it into a usable format, calculating KPIs, and loading it into the DWH.

3.3.1 Data Extraction and Staging
1. Vendor-Specific Pre-processing: Raw performance counter data originates from var-

ious network elements across multiple mobile technologies and vendors. Key sources
include Radio Network Controllers (RNCs) and Base Station Controllers (BSCs) for 2G,
RNCs and NodeBs for 3G, and eNodeBs for 4G networks. Each vendor (e.g., Huawei,
Nokia, ZTE) operates its own Operations Support System (OSS)/Element Management
System (EMS), often comprising one or more servers (e.g., Huawei may use multiple
servers), which collect and store this raw data. Our deployment server has secure access
to these vendor-specific servers, from which data is periodically retrieved. This data,
typically in vendor-specific CSV or XML formats (as illustrated in Figure 3.12), is con-
solidated in a central landing zone before being processed by our ETL pipeline. This
approach accommodates the diverse data collection architectures of different vendors.

Figure 3.12: Raw data from Hewaei and Nokia.

2. Staging Load (Loader.py):
After initial retrieval from vendor systems, raw data files, which often vary in format and
structure (as seen in Figure 3.12), undergo a pre-processing step. Vendor-specific Python
scripts (e.g., for Huawei, Nokia, ZTE) parse these heterogeneous files and transform them
into a standardized, common format, typically a consistent CSV structure. Examples
of such standardized data files are shown in Figure 3.14.
This standardized data is then loaded into a dedicated transient table within the Post-
greSQL Data Warehouse called Staging_RawCounter. This table serves several critical
purposes in the ETL pipeline:

• Decoupling and Buffering: Acts as a buffer between raw file loading and later

Chapter 3. Design and Implementation of the Data Management Subsystem 43

transformations. This decouples ingestion from processing, so if downstream tasks
fail, data stays in staging for reprocessing without needing re-ingestion.

• Initial Validation and Light Cleansing: Though focused on bulk loading, basic
checks or light cleansing can be applied as data enters Staging_RawCounter. Its
schema uses generic types (e.g., VARCHAR) to handle early-stage inconsistencies.

• Unified Source for Core ETL: Staging_RawCounter serves as the consistent
input for ETL.py, regardless of vendor or file format, simplifying ETL logic with a
standardized (long format) structure.

• Optimized for Bulk Loading: Data is inserted using fast bulk operations (e.g.,
PostgreSQL’s COPY via Loader.py), which are significantly faster than row-wise
inserts. See Figure 3.15 for an example.

• Interim Traceability and Auditing: Records may include metadata (e.g., source
filename, load timestamp), supporting traceability during processing before final
DWH integration.

The Python script Loader.py is responsible for populating the Staging_RawCounter ta-
ble from these standardized data files. It robustly handles file ingestion by performing
checksum verification to prevent duplicates, processing large files in manageable chunks
for memory efficiency, and using fast bulk loading operations (like PostgreSQL’s ‘COPY‘
command) to insert data into the staging table. Upon successful, transactionally-sound
loading, source files are moved to a ’processed’ directory. The detailed operation of
Loader.py, including file handling, chunk processing, and summary statistics, is illus-
trated in its execution logs (see Figure 3.13).

Figure 3.13: Excerpt from Loader.py execution log for processing ZTE Raw counters

Data in Staging_RawCounter (sample shown in Figure 3.15) is temporary. After the core
ETL script (ETL.py) processes it into final fact tables, Staging_RawCounter is typically
cleared.

Chapter 3. Design and Implementation of the Data Management Subsystem 44

Figure 3.14: Processed and Standardized Vendor Data Files ready for Staging.

Figure 3.15: Raw Data in Staging_RawCounter (Long Format).

3.3.2 Transformation Logic: KPI Calculation, Data Cleansing
1. Core ETL (ETL.py):

Once data is available in the Staging_RawCounter table, the core ETL (Extract, Trans-
form, Load) logic is executed, primarily orchestrated by the Python script ETL.py. This
script is responsible for pulling data from the staging area, performing crucial transforma-
tions and enrichments, and finally loading it into the DWH’s primary hourly fact table,
FactRawCounter. The key operations performed by ETL.py include:

• Data Extraction from Staging: ETL.py queries the Staging_RawCounter table
to retrieve batches of raw counter data that are ready for processing. After suc-
cessful processing by ETL.py, the Staging_RawCounter table is typically cleared, as
confirmed by database queries shown in Figure 3.16.

Chapter 3. Design and Implementation of the Data Management Subsystem 45

Figure 3.16: DB State Post-ETL : Staging_RawCounter Empty, FactRawCounter Populated.

After the ETL run Staging_RawCounter is empty (top query), while FactRawCounter
contains processed data from various vendors (subsequent queries).

• Data Validation and Cleansing: This step involves more rigorous checks than
those potentially applied at the staging load. Examples include converting raw
counter values to numeric types, validating timestamps, checking for missing essen-
tial fields, and implementing strategies for handling such records (e.g., logging and
skipping).

• Enrichment with Dimensional Keys (Lookups): This critical transformation
step resolves raw, often string-based identifiers from the staging data into the sur-
rogate primary keys used in the DWH’s dimension tables. This includes:

– Cell ID Resolution: Mapping raw cell identifiers to cell_id from DimCell.
– Time Dimension Key: Converting raw timestamps to time_pk from DimTime.
– Vendor and Technology ID Resolution: Mapping names to vendor_id and

tech_id from respective dimension tables.
– KPI ID Resolution: Determining kpi_id from CounterDefinition based on

counter_id, vendor_id, and tech_id.
The outcome is a dataset where each raw counter record is linked to the precise
dimensional context needed for structured analysis and ML feature engineering.

• Structural Transformation: ETL.py ensures data conforms to the FactRawCounter
schema, selecting and preparing columns for insertion.

• Loading into FactRawCounter: The transformed and enriched data is then loaded
into the FactRawCounter table in batches. Figure 3.16 also illustrates sample data
successfully populated into FactRawCounter for different vendors. Efficient insertion
methods are used, often including an ON CONFLICT clause to handle updates or
prevent duplicates.

The successful execution of these tasks by ETL.py populates FactRawCounter with clean,
validated, and contextually rich data, ready for aggregation and KPI calculation. The
operational logs from the Airflow task executing ETL.py (an example of which is shown
in Figure 3.18) provide crucial insights into this process. For instance, these logs often

Chapter 3. Design and Implementation of the Data Management Subsystem 46

include a summary detailing the number of records processed (e.g., 727,280 in one observed
run), rows affected in FactRawCounter, new cells inserted into DimCell, records skipped
along with reasons (e.g., 44 due to invalid counter names), the overall success rate, and
confirmation of the Staging_RawCounter cleanup (truncation) post-processing.

Figure 3.17: ETL.py execution log, as retrieved from the Airflow UI.

Figure 3.18: Summary from ETL.py execution log

the execution log is detailing records processed (727,280), rows affected in FactRawCounter
(15 in this example run), new cells inserted (2), records skipped (44 due to invalid counter
name), success rate (99.99%), and staging cleanup confirmation.

2. KPI Calculation Engine:
A key strength of the DWH architecture is its dynamic KPI calculation engine, imple-
mented directly in PostgreSQL using PL/pgSQL functions such as evaluate_cell_kpi
_formula and evaluate_agg_kpi_formula. This design abstracts the complex, often
vendor-specific KPI logic away from the Python-based ETL code, significantly improving
flexibility, maintainability, and scalability. The process unfolds in five main stages:

Chapter 3. Design and Implementation of the Data Management Subsystem 47

(a) Formula Definition and Storage:
KPI formulas, which vary across vendors and technologies, are initially sourced from
documentation or internal references and organized into a structured mapping file
(map.csv; see Figure 3.19). These definitions are then standardized and stored in the
KPIFormula table during the ETL "definition injection" step, managed by scripts like
inject_formula.py. Standardization involves formatting the formulas into SQL-
compliant expressions. Figure 3.19 shows both the intermediate kpi_formula.csv
(post-processing of map.csv), while Figure 3.20 illustrates the final result within the
database as visualized in pgAdmin.

Figure 3.19: KPI Formula Transformation: kpi_formula.csv from map.csv.

Figure 3.20: The final KPIFormula table in pgAdmin with SQL-ready expressions.

Chapter 3. Design and Implementation of the Data Management Subsystem 48

(b) Dynamic Formula Retrieval:
When KPI values are computed, the PL/pgSQL functions query the KPIFormula ta-
ble to retrieve the appropriate formula string, based on the current kpi_id, vendor_id,
and tech_id.

(c) Counter Value Preparation:
Required raw counter values are fetched from relevant fact tables (e.g., FactRaw
Counter) and passed to the evaluation function in a structured format, typically
as a JSONB object. This object maps standardized counter names to their numeric
values for a given entity.

(d) Formula Parsing and Execution:
The PL/pgSQL function substitutes the placeholders in the formula with the actual
counter values from the JSONB object. It then evaluates the resulting expression
using dynamic SQL or an internal expression parser.

(e) Error Handling and Result Output:
To ensure robustness, the functions include built-in error handling mechanisms. For
instance, they can detect and manage issues such as division by zero or missing
counters. Instead of terminating the entire batch process, they return predefined
error codes (e.g., -9998.0 for division by zero, -9997.0 for missing counters). On
success, the function returns the calculated KPI value.

This metadata-driven approach enables administrators to introduce or modify KPI logic
by simply updating the KPIFormula table via a revised kpi_formula.csv and re-executing
the injection script—without altering the core PL/pgSQL functions or Python ETL code.
As a result, the system remains highly adaptable to changes in business rules or network
metrics.

3.3.3 Loading Data into the DWH (Dimension and Fact Tables)
• Dimension and Definition Tables:

These tables are populated during the initial setup and updated as needed using dedicated
Python scripts (e.g., inject_cell.py, inject_kpi.py, inject_formula.py) located in
the Dim/ and Def/ directories. The scripts load data from structured CSV files (e.g.,
kpi_definitions.csv) into the corresponding tables. These injection tasks are inte-
grated into the Airflow DAG to ensure that all required metadata is available before
processing begins.

• Fact Tables:

– FactRawCounter: populated by ETL.py after processing data from Staging
_RawCounter.

– Higher-level Fact Tables (FactKPI, FactAggregatedKPI, etc.): filled by SQL scripts
(e.g., FactKPI.sql, FactAgg.sql) orchestrated by Airflow. These scripts read from
upstream fact tables, apply calculations or aggregations, and insert or update results
in the target tables. They leverage ON CONFLICT DO UPDATE and timestamp-based
logic to support idempotent and incremental loading.

3.3.4 Automated Aggregation Scripts (Daily, Geo, Busy Hour)
A suite of SQL scripts, orchestrated as tasks within an Apache Airflow Directed Acyclic Graph
(DAG), automates the aggregation of raw counters and the calculation of KPIs across multiple

Chapter 3. Design and Implementation of the Data Management Subsystem 49

levels of granularity. The main DAG, named all_kpi_pipeline_v2, coordinates the flow from
initial data ingestion to final KPI aggregation, as shown in Figure 3.21. This setup ensures
dependencies are respected and that data is processed in a coherent and scalable manner. The
key aggregation and computation steps include:

• All-Network Raw Counter Aggregation (FactAllNet.sql): The fact_all_net
task merges raw counters from multiple vendors for a given technology and geographic
area, assigning them a synthetic ’ALL’ vendor ID. This enables unified, vendor-agnostic
views within the FactRawCounter table.

• Daily Raw Counter Aggregation (FactDaily.sql): The fact_daily task aggre-
gates hourly records from FactRawCounter to compute daily totals, which are stored in
FactRawCounterDaily.

• Cell-Level KPI Calculation (FactKPI.sql, FactKPIDaily.sql): The fact_kpi and
fact_kpi_daily tasks compute KPIs at the cell level for hourly and daily granularities,
storing the results in FactKPI and FactKPIDaily. Figure 3.22 illustrates a moment during
pipeline execution with fact_kpi actively running.

• Aggregated KPI Calculation (FactAgg.sql, FactAggDaily.sql): The fact_agg
and fact_agg_daily tasks compute aggregated KPIs at geographic levels (Commune,
Wilaya, AllNet) for hourly and daily intervals. Results are stored in FactAggregatedKPI
and FactAggregatedKPIDaily, leveraging the mv_cell_geo materialized view for spatial
mapping.

• Busy Hour Detection (FactBusy.sql): The fact_busy task identifies, for each day,
the hour during which a specific traffic KPI reaches its peak at various aggregation levels
(Cell, Commune, Wilaya, AllNet). The output is recorded in FactBusyHour.

These scripts are optimized for incremental execution, processing only new time intervals
based on the latest data present in their target tables. A successful DAG run indicates that
the entire data pipeline has completed end-to-end processing and that all KPI tables are up to
date.

Figure 3.21: Graph view of the Apache Airflow DAG

Chapter 3. Design and Implementation of the Data Management Subsystem 50

The graph view of the DAG all_kpi_pipeline_v2) showing the end-to-end workflow,
including definition injection, ETL stages, and automated aggregation tasks within the ’fact’
group.

Figure 3.22: Execution snapshot of the DAG’s ’fact’ task group.

The task fact_kpi is currently in progress, as indicated by its green highlight in the work-
flow interface. This means it has successfully met all its dependencies and is now being executed
by the scheduler. Prior to this, upstream tasks such as fact_all_net and fact_daily have
already been completed successfully—they are marked with the status ’success’, confirming
that their outputs are available and valid. Meanwhile, downstream tasks like fact_agg_daily
and fact_busy are in a queued state. This indicates that they are waiting for fact_kpi to
finish, since they depend on its output to proceed. Once fact_kpi completes successfully, these
downstream tasks will be unblocked and picked up by the scheduler for execution in accordance
with the defined DAG dependencies.

3.3.5 Data Archiving and Maintenance Procedures
• Data Archiving:

Although a fully automated archival process is a future enhancement, the system is de-
signed to support the migration of historical data from active fact tables to archive tables
(e.g., an archive version of the KPI fact table) to preserve query performance. This can
be achieved via partitioning strategies or scheduled ETL jobs based on a defined retention
policy (e.g., data older than one year).

• Maintenance Procedures:

– Running table analysis after major data updates to refresh optimizer statistics.
– Refreshing materialized views as part of scheduled maintenance routines.
– Leveraging PostgreSQL’s autovacuum for regular cleanup, with manual VACUUM

when necessary.
– Monitoring disk usage and database logs, with optional utility scripts providing

reusable templates for these tasks.

Chapter 3. Design and Implementation of the Data Management Subsystem 51

3.4 Data Quality Assurance within the Pipeline
Data quality is addressed at several points in the pipeline, although a comprehensive, dedicated
data quality framework remains a potential area for future enhancement.

• File Handling in Loader.py: Files are moved to either a processed or failed directory
based on the success of ingestion into the staging table, enabling traceability and isolation
of problematic inputs. Checksums are also used to prevent reprocessing of already loaded
files.

• Type Conversion and Validation: Both Loader.py and ETL.py handle basic data
type conversions (e.g., string to numeric, string to timestamp). Additionally, ETL.py
verifies foreign key relationships against dimension tables to ensure referential integrity.

• Logging: Extensive logging is implemented in both Loader.py and ETL.py, capturing
key events, exceptions, and validation outcomes. These logs are critical for diagnosing
data-related issues and auditing pipeline behavior.

Future work could involve integrating a dedicated data quality tool (e.g., Great Expecta-
tions) or implementing more sophisticated statistical checks within the Airflow DAG to proac-
tively identify anomalies or inconsistencies in both raw and processed data.

Conclusion
This chapter demonstrated the end-to-end process of collecting, processing, and reliably storing
LTE performance data. The result is a robust and structured data subsystem that ensures
data quality, supports visualization, and provides clean input for downstream AI models. In
the following chapters, we will focus on the design, development, and evaluation of AI-based
forecasting models built upon this data foundation.

Chapter 4

AI-Based KPI Forecasting

4.1 Introduction to AI-Based Forecasting for LTE Net-
work Optimization

The operational efficiency and user satisfaction within Long-Term Evolution (LTE) networks are
inextricably linked to the network’s ability to consistently deliver high-quality service. As mo-
bile data consumption escalates and user expectations for seamless connectivity intensify, tra-
ditional reactive network management approaches become increasingly inadequate [42]. Proac-
tive strategies, underpinned by accurate forecasting of Key Performance Indicators (KPIs), are
therefore essential. The capacity to anticipate future network states—such as traffic load, re-
source utilization, and achievable user throughput—empowers network operators to optimize
resource allocation, preemptively address potential congestion, schedule maintenance effectively,
and ultimately enhance the Quality of Service (QoS) and Quality of Experience (QoE) for their
subscribers [15, 43].

This chapter presents a detailed account of the methodology, development lifecycle, and
optimization techniques employed in creating AI-based forecasting models for critical hourly
LTE KPIs. The project specifically targets the prediction of Downlink User Throughput
(LTE_Thro_DL), Downlink Traffic Volume (LTE_Traffic_Volume_DL), and Downlink PRB Us-
age (DL_PRB_usage). These KPIs were selected due to their direct impact on user experience
and network resource management. The study focuses on data from a representative, active
urban cell (4O13X018_1) within Djezzy’s commercial LTE network, ensuring the real-world
applicability of the findings.

The core modeling approaches investigated are Facebook’s Prophet, a statistical time series
model renowned for its robustness and which served as an advanced baseline in our study, and
Long Short-Term Memory (LSTM) networks, a sophisticated type of Recurrent Neural Net-
work (RNN) designed to capture complex temporal dependencies and long-range patterns often
present in telecommunications data [40, 41]. The development process adopted was explicitly
iterative and data-driven. It commenced with an in-depth Exploratory Data Analysis (EDA)
to thoroughly understand the characteristics and nuances of the KPI data. This was followed
by the establishment of baseline forecasting models to provide a performance benchmark. A
significant portion of the effort was dedicated to the meticulous development and refinement of
the LSTM models, which included strategic feature engineering, a systematic and automated
hyperparameter optimization phase using the Optuna framework [44], and rigorous debugging
of the entire data preprocessing and evaluation pipeline to ensure methodological soundness.

This chapter will elucidate the technical intricacies of each development stage, from initial
data handling to the final optimized model configurations. The objective is to provide a trans-
parent and reproducible account of the engineering efforts involved in building these predictive

52

Chapter 4. AI-Based KPI Forecasting 53

AI modules, which form a crucial component of the broader KPI analytics platform. The
performance evaluation of these final models against the established baselines on a dedicated
hold-out test set is subsequently presented in Chapter 5.

4.2 Theoretical Foundations of Forecasting Models
This section provides a concise theoretical foundation for the two principal forecasting models
employed in this study for LTE KPI prediction: Long Short-Term Memory (LSTM) networks
and the Prophet model. A thorough understanding of these models is essential before delving
into the implementation and evaluation procedures detailed in subsequent chapters.

4.2.1 Long Short-Term Memory (LSTM) Networks
Long Short-Term Memory (LSTM) networks, introduced by Hochreiter and Schmidhuber [40],
constitute a specialized architecture within the broader family of Recurrent Neural Networks
(RNNs). LSTMs were developed to mitigate the vanishing gradient problem that hampers
the learning of long-range temporal dependencies in standard RNNs. This capability renders
LSTMs highly effective for time series forecasting tasks, including the prediction of LTE network
KPIs, which often exhibit long-term temporal correlations.

In contrast to traditional RNNs, which update a single hidden state vector ht through each
time step, LSTMs incorporate a more complex internal architecture that includes a memory
cell Ct and a series of gating mechanisms. This design enables the model to preserve relevant
information over extended sequences while discarding less useful signals.

Figure 4.1: Overall Long Short-Term Memory (LSTM) Cell Architecture.[45].

The flow of information in an LSTM cell is governed by the interaction of three principal
gates, each composed of weight matrices W and bias vectors b. At each time step t, the LSTM
cell receives the current input x(t) ∈ Rnx , the previous hidden state y(t−1) ∈ Rnh , and the
previous cell state c(t−1) ∈ Rnh .

Each gate (forget, input, output) uses the peephole connections to incorporate information
from c(t−1) or c(t), as shown by the blue dashed lines in the diagram.

Chapter 4. AI-Based KPI Forecasting 54

Let’s define:

• Wf , Wi, Wo, Wz ∈ Rnh×(nx+nh+nc) — weight matrices for the forget, input, output gates,
and candidate state, respectively. nc = nh for peephole connections.

• bf , bi, bo, bz ∈ Rnh — bias vectors.

• Forget Gate — Decides what information to discard from the previous memory cell:

f (t) = σ
(
Wf · [y(t−1), x(t), c(t−1)] + bf

)
(4.1)

• Input Gate and Candidate State — Determine what new information to store:

i(t) = σ
(
Wi · [y(t−1), x(t), c(t−1)] + bi

)
(4.2)

z(t) = tanh
(
Wz · [y(t−1), x(t)] + bz

)
(4.3)

The cell state is updated as a combination of the old state and the new candidate infor-
mation:

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ z(t) (4.4)

• Output Gate and Final Output — Decide what part of the cell state to expose to
the output:

o(t) = σ
(
Wo · [y(t−1), x(t), c(t)] + bo

)
(4.5)

y(t) = o(t) ⊙ tanh(c(t)) (4.6)

Here, σ denotes the sigmoid activation function, and tanh is the hyperbolic tangent activa-
tion. The operator ⊙ denotes element-wise multiplication. The inclusion of c(t−1) and c(t) in
the gate computations represents peephole connections, allowing the gates to observe the cell
state directly.

This architecture enables the network to capture both short-term and long-term dependen-
cies within the data. In practical applications, LSTM models may consist of multiple stacked
layers followed by fully connected layers to enhance their representational power. LSTMs have
shown robust performance across various time series forecasting domains, including network
performance monitoring, financial data analysis, and speech recognition [46][40].

4.2.2 The Prophet Model
Prophet is an open-source forecasting framework developed by Facebook Research [41], designed
for modeling time series data characterized by strong seasonality, trend shifts, and irregular
events. Prophet is particularly suitable for practical applications due to its interpretability,
robustness to missing data, and ability to handle outliers.

The model adopts an additive approach to time series decomposition:

y(t) = g(t) + s(t) + h(t) + ϵt (4.7)

where:

• g(t) denotes the trend function modeling non-periodic structural changes,

• s(t) captures periodic seasonal effects,

Chapter 4. AI-Based KPI Forecasting 55

• h(t) accounts for holiday or special event effects,

• ϵt represents the residual noise, assumed to follow a Gaussian distribution.

Trend Modeling: Prophet offers two trend models:

• Piecewise Linear Trend: Suitable for data with abrupt changes in trend.

• Logistic Growth: Appropriate when growth is bounded by a carrying capacity:

g(t) = C(t)
1 + exp(−k(t)(t − m(t))) (4.8)

The model supports automatic or user-specified changepoints where the trend’s rate of change
is modified, accommodating shifts caused by external interventions such as policy changes or
network upgrades.

Seasonality Modeling: Seasonality is modeled using a Fourier series:

s(t) =
N∑

n=1

(
an cos

(2πnt

P

)
+ bn sin

(2πnt

P

))
(4.9)

Here, P denotes the seasonal period (e.g., weekly or yearly), and N controls the number of
Fourier terms used, hence the flexibility of the seasonality curve.

Holiday Effects: Prophet allows the integration of user-defined holidays or special events.
These are treated as binary indicators that add fixed effects to specific time windows, enhancing
the model’s ability to capture short-term anomalies.

Model Estimation and Forecasting: Model fitting is performed using the Stan proba-
bilistic programming framework, enabling Bayesian inference and the generation of uncertainty
intervals. The modular design and intuitive parameters make Prophet particularly appealing
for industry applications requiring fast and interpretable forecasting solutions.

In the context of LTE KPI forecasting, Prophet offers a viable alternative or complement
to neural models such as LSTMs, particularly when the dataset exhibits interpretable trends,
periodicities, and exogenous shocks (e.g., maintenance periods, policy changes, or societal events
such as the COVID-19 pandemic [47]).

Chapter 4. AI-Based KPI Forecasting 56

4.3 Data Foundation and Exploratory Analysis for Fore-
casting

The efficacy of any AI forecasting model is fundamentally dependent on the quality, character-
istics, and comprehensive understanding of the underlying data. This section details the data
sourcing strategy, the preprocessing steps undertaken to prepare the data for modeling, and
the key insights derived from an extensive Exploratory Data Analysis (EDA) of the training
dataset. These insights were pivotal in shaping feature engineering strategies and informing
model selection.

4.3.1 Data Sourcing, Scope, and Initial Preprocessing
• Data Source and Provenance: The primary dataset for this study comprises hourly

aggregated KPI values for cell 4O13X018_1, extracted from our production Data Ware-
house (DWH) of Djezzy’s LTE network. The DWH architecture and ETL processes,
responsible for collecting, normalizing, and storing this data from multi-vendor network
elements, are detailed in Chapter 3. The use of real-world operational data ensures the
practical relevance and applicability of the developed forecasting models.

• Timeframe for Training and Evaluation:

– Training and Optuna Validation Period: A continuous three-month period of hourly
data, specifically from January 29, 2025, 23:00 hours, to April 29, 2025, 23:00 hours,
was allocated for training the forecasting models and for performing hyperparame-
ter optimization with Optuna (which uses an internal chronological validation split).
This duration (approximately 2160 hourly data points per KPI) was deemed suffi-
cient to capture multiple instances of daily and weekly seasonality, essential for time
series modeling [48].

– Hold-Out Test Period: To ensure an unbiased evaluation of the final models general-
ization performance, a subsequent, entirely unseen one-month period, from March 1,
2025, 00:00 hours, to March 30, 2025, 23:00 hours, was strictly reserved as a hold-out
test set. This data was not exposed to the models during any phase of training or
hyperparameter tuning.

• Target KPIs and Granularity: The forecasting efforts focused on the following hourly
KPIs:

1. LTE_Thro_DL: Downlink User Throughput (Mbps) – reflects the data rate experi-
enced by users.

2. LTE_Traffic_Volume_DL: Downlink Traffic Volume (GB) – indicates the total data
load on the cell.

3. DL_PRB_usage: Downlink Physical Resource Block (PRB) Utilization (%) – mea-
sures radio resource consumption.

• Initial Data Cleaning :

– Before any feature engineering or EDA, the raw KPI series extracted from the DWH
underwent an essential cleaning process implemented in a python script.

– Missing Value Imputation: Sporadic missing values, potentially due to transient data
collection issues, were handled using a combination of forward-fill (ffill) followed by

Chapter 4. AI-Based KPI Forecasting 57

backward-fill (bfill) imputation. This method was chosen to preserve the temporal
structure of the data while ensuring a continuous series for model training.

– Outlier Treatment: To mitigate the undue influence of extreme outliers (which could
be measurement errors or highly unusual, non-representative network events) on
model training, particularly for LSTMs, values below the 1st percentile and above the
99th percentile of each KPI’s training distribution were capped at these respective
percentile values. This robust clipping approach helps stabilize the data without
aggressively removing potentially informative extreme behaviors[49].

4.3.2 Exploratory Data Analysis (EDA) of Training Data
Initial EDA involved individual KPI analysis to understand their unique characteristics, laying
groundwork for multivariate modeling by revealing temporal dynamics, statistical properties,
and cyclical patterns. An overall statistical summary was first computed from the N=697 hourly
training samples, which include primary KPIs and engineered temporal/contextual features.

Table 4.1 details descriptive statistics for numerical KPIs (LTE_Thro_DL, LTE_Traffic
_Volume_DL, DL_PRB_usage) and other numerical features, offering insights into their central
tendency, spread, and range. Concurrently, Table 4.2 outlines the distribution of key engineered
boolean features that capture contextual information like peak hours, holidays, and weekends,
crucial for understanding varied operational conditions.

Table 4.1: Descriptive Statistics of Key KPIs and Numerical Features (Training Data, N=697)

Feature Mean Std Dev Min 25% (Q1) 50% (Median) 75% (Q3) Max
LTE_Thro_DL (Mbps) 29.53 15.77 11.83 18.95 24.98 34.86 93.60
LTE_Traffic_Volume_DL (GB) 1.45 1.34 0.02 0.51 0.97 1.93 5.78
DL_PRB_usage (%) 13.11 11.12 1.67 5.00 9.01 17.54 46.99
Other Numerical Features:
day_of_week 3.00 1.97 0.00 1.00 3.00 5.00 6.00
hour_of_week_sin 0.00 0.70 -1.00 -0.68 0.00 0.68 1.00
hour_of_week_cos -0.03 0.72 -1.00 -0.76 -0.07 0.68 1.00
days_until_next_holiday 8.43 5.27 0.00 4.00 8.00 12.00 20.00
days_since_last_holiday 20.51 11.55 1.00 8.00 23.00 30.00 37.00

Table 4.2: Distribution of Boolean Features (Training Data, N=697)

Feature Distribution (Value: Count)
is_business_hours False: 508, True: 189
is_evening_peak False: 581, True: 116
is_off_peak True: 392, False: 305
is_holiday False: 673, True: 24
is_weekend False: 505, True: 192

The event-related features summarized in Tables 4.1 and 4.2 (e.g., is_holiday
_next_holiday) were derived by integrating time-series data with a dedicated DimEvents table
from the Data Warehouse.

This DimEvents dimension was populated via SQL scripts with significant Algerian national,
religious, cultural, and school holiday events for 2024-2025. It stores event names, types, and
timings, enabling nuanced feature engineering. Such features allow LSTM and Prophet models
to learn patterns associated with these periods, improving forecast accuracy.

This global statistical profile, enriched by event context, sets the stage for a more granular
examination of individual KPIs.

Chapter 4. AI-Based KPI Forecasting 58

Univariate Analysis of Target KPIs

Each target KPI—LTE_Thro_DL, LTE_Traffic_Volume_DL, and DL_PRB_usage—underwent
univariate EDA to reveal trends, seasonality, distribution, and temporal dependencies. Time
series plots, histograms, box plots, seasonal decomposition, and ACF/PACF plots guided pre-
processing, feature engineering, and model selection.

LTE_Thro_DL (Downlink Throughput):

• Time Series Visualization:

Figure 4.2: Hourly Time Series of LTE_Thro_DL for Cell 4O13X018_1

Figure 4.2 presents the hourly time series plot of LTE_Thro_DL. The series is characterized
by significant volatility and distinct daily cyclical patterns. Peaks are generally observed
during evening hours (e.g., 19:00-23:00 local time), corresponding to periods of high user
activity, while troughs are evident during early morning off-peak hours (e.g., 02:00-06:00).
No dominant long-term linear trend is visually apparent over this three-month window,
suggesting a degree of overall stationarity around a fluctuating mean level, a common
characteristic for mature cell throughput.

• Distribution Analysis:

Figure 4.3: Distribution of Hourly LTE_Thro_DL

Chapter 4. AI-Based KPI Forecasting 59

The histogram and Kernel Density Estimate (KDE) in Figure 4.3 reveal that the distribu-
tion of hourly throughput values is positively skewed (right-skewed). While the majority
of observations are concentrated in the 15-40 Mbps range, the presence of a long tail
extending towards higher values (up to the clipped maximum of ≈93.6 Mbps) is notable.
The mean (29.53 Mbps) being greater than the median (24.98 Mbps), as detailed in de-
scriptive statistics (Table 4.1), quantitatively confirms this skewness. This characteristic
strongly suggested the utility of a log transformation (specifically log1p) for this KPI
when training LSTM models, aiming to stabilize variance and normalize the distribution.

• Outlier Visualization (Box Plot):

Figure 4.4: Box Plot of Hourly LTE_Thro_DL

Figure 4.4, the box plot for LTE_Thro_DL, further emphasizes the data spread and skew-
ness. It visually highlights data points beyond the upper whisker, indicating periods of
exceptionally high throughput that, even after the 1st/99th percentile clipping, represent
the upper range of performance for this cell.

• Seasonality and Autocorrelation Analysis:

Figure 4.5: Additive Seasonal Decomposition of LTE_Thro_DL

Chapter 4. AI-Based KPI Forecasting 60

Additive seasonal decomposition (Figure 4.5) effectively isolates a strong daily seasonality
(period=24 hours), clearly visible in the seasonal component. The trend component
exhibits medium-term fluctuations rather than a monotonic linear progression, reinforcing
the observation of overall stationarity. The residuals appear largely random, though some
periods show slightly higher variance, suggesting that while daily seasonality is dominant,
other minor cyclical influences or noise might exist.

Figure 4.6: ACF and PACF Plots for LTE_Thro_DL

The Autocorrelation Function (ACF) plot (Figure 4.6, Left) shows a characteristic slow
decay for short lags and very significant spikes at lags corresponding to daily cycles (24,
48, 72 hours, etc.), robustly confirming the presence of strong daily seasonality. Significant
positive autocorrelation is also evident at immediate lags (1-6 hours), indicating short-
term persistence or "momentum" in the throughput values. The Partial Autocorrelation
Function (PACF) plot (Figure 4.6, Right) typically shows significant spikes at the initial
lags (e.g., 1, 2, 3) that cut off, and another significant spike around lag 24. This pattern
suggests that an autoregressive (AR) model component of low order, combined with a
seasonal AR component, would be appropriate if using ARIMA-family models, and for
LSTMs, it directly informed the selection of these specific past values as input features
(lags).

Chapter 4. AI-Based KPI Forecasting 61

• Stationarity Assessment:

Figure 4.7: Rolling Mean Std Dev: LTE_Thro_DL (Window=24h).

The Augmented Dickey-Fuller (ADF) test conducted on the training series for LTE_Thro_DL
yielded a test statistic of -11.47 and a p-value <<< 0.01 (effectively 0.000000). This ex-
tremely low p-value allows for strong rejection of the null hypothesis (that a unit root is
present), confirming that the LTE_Thro_DL series is stationary over the training period.
This is visually corroborated by Figure 4.7, where the 24-hour rolling mean and rolling
standard deviation remain relatively stable over time, without exhibiting clear trends or
drastically changing variance. Stationarity simplifies modeling as it means the statistical
properties of the series do not change over time, making differencing unnecessary before
applying many forecasting techniques.

• Cyclical Hourly and Weekly Profiles:

Figure 4.8: LTE_Thro_DL by Hour of Day (Training Data).

Figure 4.8, a box plot of LTE_Thro_DL aggregated by hour of the day, clearly visual-
izes the diurnal pattern: median throughput is lowest during early morning hours (e.g.,
03:00-06:00), increases steadily during daytime activity, and reaches its peak in the late
evening (typically between 20:00 and 23:00). The interquartile range also varies by hour,
indicating different levels of volatility at different times of the day.

Chapter 4. AI-Based KPI Forecasting 62

Figure 4.9: LTE_Thro_DL by Day of Week (Training Data).

The weekly profile, visualized by box plots per day of the week (Figure 4.9), reveals dis-
cernible variations. For instance, median throughput and its distribution on weekends
(e.g., Friday and Saturday in Algeria) often differ from typical weekdays, potentially ex-
hibiting higher sustained usage during certain parts of the day or shifted peak times. This
observation underscored the importance of including features like day_of_week (cyclically
encoded) and is_weekend in the models.

LTE_Traffic_Volume_DL (Downlink Traffic Volume):

The analysis for LTE_Traffic_Volume_DL revealed a highly predictable, cyclical pattern, very
similar in nature to that of the user throughput. The most illustrative finding is the clear
diurnal pattern, as shown in the time series plot (Figure 4.10). The series exhibits strong daily
seasonality with traffic consistently peaking in the evening and dropping to a minimum in the
early morning.

Figure 4.10: Hourly Time Series of LTE_Traffic_Volume_DL, showcasing its strong daily sea-
sonality.

Chapter 4. AI-Based KPI Forecasting 63

Further analysis confirmed that the series is stationary (ADF p-value ≪ 0.01), has a right-
skewed distribution necessitating a log transform, and shows clear weekly patterns. Due to
the strong similarity in findings with the previous KPI, the complete set of EDA plots for
LTE_Traffic_Volume_DL, including its distribution, seasonal decomposition, and autocorrela-
tion plots, are provided in Appendix C.

DL_PRB_usage (Downlink PRB Utilization):

The Downlink PRB Utilization KPI, as expected, is strongly correlated with traffic volume and
thus exhibits a very similar temporal structure. The time series plot (Figure 4.11) mirrors the
daily cyclical patterns of traffic, increasing during high data demand and decreasing during
low-activity periods.

Figure 4.11: Hourly Time Series of DL_PRB_usage, mirroring the cyclical nature of traffic
volume.

Consistent with the other KPIs, DL_PRB_usage is also stationary and exhibits a positively
skewed distribution. A comprehensive visual analysis, including distribution, outlier, season-
ality, and cyclical profiles, confirms its strong dependence on daily and weekly user behavior
patterns. To maintain conciseness, the full set of detailed EDA plots for this KPI is available
in Appendix C.

Chapter 4. AI-Based KPI Forecasting 64

Bivariate and Multivariate Relationship Analysis

Figure 4.12: Correlation Heatmap of KPIs and Selected Time Features (Training Data).

The correlation matrix (Figure 4.12) computed on the training data (after cleaning, before
transformations specific to LSTMs) provides insights into contemporaneous linear relationships
between the KPIs and selected DimTime features:

• Strong Positive Correlation: LTE_Traffic_Volume_DL and DL_PRB_usage showed
a very strong positive correlation (ρ ≈ 0.95), as expected, since higher traffic volumes
directly drive up the utilization of PRBs.

• Moderate Negative Correlations with Throughput: LTE_Thro_DL exhibited a
moderate negative correlation with DL_PRB_usage (ρ ≈ −0.51) and LTE_Traffic_Volume
_DL (ρ ≈ −0.39). This suggests that as cell load (indicated by PRB usage or total traffic)
increases, the average throughput experienced by users tends to decrease due to increased
resource sharing and potential congestion.

• Time Feature Correlations: Binary DimTime flags like is_weekend generally showed
weak direct linear correlations with the hourly KPI values themselves (e.g., is_weekend
vs. LTE_Thro_DL ρ ≈ 0.05). However, this does not mean they are uninformative; their
impact is more likely reflected in the overall shape of the daily/weekly patterns rather
than a simple linear association with the instantaneous KPI value. The cyclical features
(hour_of_week_sin/cos) are designed to capture these pattern shapes for LSTMs.

Chapter 4. AI-Based KPI Forecasting 65

Figure 4.13: Pair Plots of KPIs and Selected Time Features (Training Data).

The pair plots (Figure 4.13) offer a visual exploration of these relationships and the in-
dividual distributions of the KPIs. For instance, the scatter plot between LTE_Thro_DL and
DL_PRB_usage visually confirms that high throughput values are predominantly observed when
PRB utilization is low to moderate, with a clear tapering off of maximum achievable through-
put as PRB usage increases. The diagonal KDE plots in the pair plot reiterate the skewness
observed in the individual KPI distributions.

Chapter 4. AI-Based KPI Forecasting 66

4.3.3 Translating EDA Insights into Model Architecture
The exploratory data analysis (EDA) phase was not only diagnostic but directly shaped the
design of our forecasting models. The table below summarizes how key EDA findings translated
into concrete modeling decisions:

Table 4.3: EDA Insights on Modeling Decisions

Finding Action Taken

Strong Daily & Weekly
Seasonality

Enabled daily_seasonality and weekly_seasonality in
Prophet. Engineered lag features (24, 48, 168 hours) and
added cyclical DimTime variables for LSTM.

Pronounced Right-Skew in
KPI Distributions

Applied log1p transformation to LTE_Thro_DL and
LTE_Traffic_Volume_DL to stabilize variance and aid
gradient-based learning.

High Volatility in
LTE_Thro_DL vs.
Regularity in
LTE_Traffic_Volume_DL

Adjusted expectations for lower R2 on univariate throughput
models. Informed future work on multivariate modeling.

Significant
Autocorrelation (Short-
and Long-Term)

Included short-term (lags 1–3) and seasonal (24h) lag features
in LSTM model design.

Confirmed Stationarity Avoided differencing thanks to stationary KPIs, simplifying
preprocessing.

Moderate Negative
Correlations Between
KPIs

Identified potential for using exogenous features, especially
between LTE_Thro_DL and load indicators.

This table highlights how the EDA was instrumental in grounding model design choices
in empirical evidence rather than intuition or trial-and-error. It demonstrates a best-practice,
data-centric modeling workflow.

4.4 Forecasting Model Development: An Iterative Jour-
ney

The development of effective forecasting models for the selected LTE KPIs was an iterative
process, characterized by initial benchmarking, rigorous debugging, strategic refinements in
feature engineering and model architecture, and systematic hyperparameter optimization.

4.4.1 Baseline Model Implementation and Initial Performance Bench-
marks

Before developing complex AI models, it is crucial to establish performance baselines using sim-
pler, well-understood forecasting techniques. Three standard baseline models were implemented
and evaluated on the hold-out test set (March 1-30, 2025) for each target KPI:

Chapter 4. AI-Based KPI Forecasting 67

1. Naive Forecast: ŷt+1 = yt.

2. Seasonal Naive Forecast: ŷt+1 = yt+1−S, where S = 24 for daily seasonality.

3. Mean Forecast: ŷt+1 = ȳtrain.

Table 4.4: Initial Baseline Model Performance on Hold-Out Test Set

KPI Baseline Model R2 RMSE MAE MAPE (%) SMAPE (%) Bias
LTE_Thro_DL Naive -0.28 14.66 11.18 42.73 35.04 -0.08

Seasonal Naive -0.31 14.80 11.42 45.88 36.13 +0.54
Mean -0.004 12.93 10.03 40.73 32.52 0.00

LTE_Traffic_Volume_DL Naive -0.06 0.79 0.49 109.58 70.31 -0.03
Seasonal Naive +0.04 0.75 0.52 90.01 75.74 0.00
Mean -0.14 0.82 0.66 196.19 93.72 0.00

DL_PRB_usage Naive -0.10 5.67 4.16 67.94 42.90 -0.19
Seasonal Naive +0.12 4.94 3.61 56.05 38.10 -0.01
Mean -0.15 5.85 4.51 87.78 50.17 +2.14

Analysis of Baselines: As seen in Table 4.4, the Mean Forecast often provided the R2
closest to zero for the highly volatile LTE_Thro_DL, while the Seasonal Naive model showed
some predictive capability (positive R2) for LTE_Traffic_Volume_DL and DL_PRB_usage due
to their strong daily patterns.

4.4.2 Initial Challenges with Advanced Models and Evaluation
Pipeline Verification

Early attempts at training Prophet and initial complex LSTM models yielded highly unsatis-
factory results, with R2 values frequently deeply negative (e.g., -2.0 to -5.0 for LTE_Thro_DL).
This unexpected poor performance prompted a thorough, systematic review of the entire mod-
eling and evaluation pipeline, rather than immediate model changes. The investigation focused
on two critical areas:

1. Evaluation Pipeline Integrity: The most crucial step was verifying the integrity of the
evaluation pipeline. We meticulously debugged the preprocessing of the hold-out test set,
specifically ensuring that the scaling transformations (e.g., MinMaxScaler) applied to the
test data used the parameters that were fitted only on the training data. This prevents data
leakage and is a common but critical source of error in time series modeling. Correcting
this single step was essential for obtaining reliable evaluation metrics.

2. Model Configuration and Initial Complexity: The initial LSTM models were po-
tentially over-parameterized for the given dataset, leading to poor generalization. This
observation motivated the move towards a more systematic and automated hyperparame-
ter optimization approach with Optuna, starting from simpler architectures and building
complexity only as justified by performance improvements.

Resolving these foundational issues, particularly ensuring the correct scaling of test data for
the LSTM models, was a turning point. It dramatically improved the baseline LSTM perfor-
mance (e.g., R2 for an untuned LSTM on LTE_Thro_DL improved from catastrophic negative
values to a more reasonable -0.1 to -0.2), creating a solid foundation upon which hyperparameter
tuning could build.

Chapter 4. AI-Based KPI Forecasting 68

4.4.3 The Prophet Model as an Advanced Baseline
Facebook’s Prophet [41] was chosen as an advanced statistical baseline to provide a challenging
benchmark for our primary LSTM models. Its implementation, handled by the ProphetForecaster
class, leverages Prophet’s ability to robustly model time series with strong seasonalities, making
it a powerful comparison point.

• Initial Configuration and Performance: Prophet was initially configured with default
parameters, enabling daily seasonality and weekly seasonality. Early evaluations
showed poor performance, especially for LTE_Thro_DL and DL_PRB_usage.

• Iterative Refinements and Final Configuration:

1. Changepoint Prior Scale : Increased from 0.05 to 0.10-0.15 for volatile KPIs like
LTE_Thro_DL.

2. Holiday Modeling: Leveraged holidays_from_dimevents: true
setting. The fetch_holidays_for_prophet function queries DimEvents for holi-
days.

3. Log Transformation: apply_log_transform: true for LTE_Traffic_Volume_DL.
4. Regressors: Final configurations did not include external regressors to avoid fore-

casting regressors themselves.

• Evaluated Performance (from Table 5.1 in Chapter 5): Even with refinements,
Prophet generally underperformed. For LTE_Thro_DL, R2 was -4.96; for LTE_Traffic_Volume
_DL, -0.21; for DL_PRB_usage, -1.81.

Figure 4.14: Prophet Forecast for LTE_Thro_DL on Hold-Out Test Set (Cell 4O13X018_1).

Figure 4.14 illustrates Prophet’s difficulty in capturing LTE_Thro_DL’s volatility.

Chapter 4. AI-Based KPI Forecasting 69

4.4.4 LSTM Model: Architectural Evolution and Optimization
LSTMs [40], renowned for their ability to learn long-term dependencies, formed the core of our
forecasting approach. This section details the systematic process used to develop and optimize
the LSTM models, from initial feature engineering through to hyperparameter tuning and final
model selection.

1. Feature Engineering and Preprocessing
The performance of any deep learning model is contingent on the quality of its input
features. Drawing insights from the Exploratory Data Analysis (EDA), we engineered
a comprehensive feature set to provide the model with rich temporal and contextual
information, as detailed in Table 4.5.

Table 4.5: Feature Set Engineered for LSTM Forecasting Models

Category Feature Name Description and Rationale

Target Lags target_lag_1,
target_lag_24, etc.

Past values of the target KPI at various lags (e.g., 1,
24, 48, 168 hours). Captures autoregressive proper-
ties and strong seasonality identified in ACF/PACF
plots.

Cyclical
Time

hour_sin, hour_cos,
dayofweek_sin, etc.

Sine/cosine transformations of time-based features.
This helps the model understand the cyclical nature
of time (e.g., hour 23 is close to hour 0).

Event-
Based

is_holiday,
days_since_holiday

Binary flags and numerical counters derived from
an events table. Allows the model to learn specific
patterns associated with holidays and other special
events.

Rolling
Stats

rolling_mean_24h,
rolling_std_24h

Rolling window statistics (mean, std dev, min,
max) over various periods. Provides the model
with a dynamic sense of the series’ recent trend and
volatility.

The core preprocessing steps were as follows:

• Target Transformation: We applied a log1p transform to the LTE_Thro_DL and
LTE_Traffic_Volume_DL KPIs to stabilize variance and handle potential skewness.

• Scaling: All input features were scaled to a [0, 1] range using a MinMaxScaler fitted
exclusively on the training data to prevent data leakage.

• Sequencing: The time-series data was transformed into input sequences of shape
(time_steps, n_features), the required format for LSTM layers.

2. Systematic Hyperparameter Optimization
We employed the Optuna framework for systematic and automated hyperparameter tun-
ing. The primary objective was to minimize the validation loss (Mean Squared Error),
with the search space defined to explore key architectural and training parameters (Ta-
ble 4.6). Each trial ran for up to 50 epochs, with a MedianPruner terminating unpromising
trials early.

Chapter 4. AI-Based KPI Forecasting 70

Table 4.6: Hyperparameter Search Space for LSTM Optimization

Parameter Type Range / Values Explored
n_lstm_layers Integer {1, 2}
lstm_units Integer (log) [16, 128]
dropout_rate Float [0.1, 0.4]
use_bidirectional Categorical {True, False}
learning_rate Float (log) [1e-4, 5e-3]
batch_size Categorical {32, 64}

The optimization runs revealed that single-layer, bidirectional LSTMs were consistently
favored. The optimal number of time steps and the learning rate varied significantly
across different KPIs, underscoring the need for KPI-specific tuning. The best-performing
hyperparameters for each model are consolidated in Table 4.7.

Table 4.7: Optimized hyperparameters for each KPI (cell 4O13X018_1)

Architecture Training
KPI Time Steps Layers Units Dropout Bidirectional Learning Rate
LTE_Thro_DL 72 1 32 0.40 True ≈0.0049
LTE_Traffic_Volume_DL 48 1 48 0.30 True ≈0.0012
DL_PRB_usage 96 1 48 0.15 True ≈0.00029

3. Final Model Training
Using the optimized hyperparameters from Table 4.7, final models were trained for 75–150
epochs using the Adam optimizer. We incorporated an early stopping mechanism to pre-
vent overfitting and a learning rate scheduler to aid convergence. The final trained model,
its corresponding preprocessors, and performance metadata were saved for evaluation and
deployment.

4. Optimized Model Performance
The performance of the final, tuned LSTM models was evaluated on a hold-out test set.
As detailed in Chapter 5 (Section 5.2, Table 5.1), the systematic optimization process
yielded a significant improvement in forecasting accuracy over baseline approaches.

Chapter 4. AI-Based KPI Forecasting 71

4.5 Flask Backend for AI Service and Visualization
To use the trained forecasting models, we built a backend service inside the main Flask appli-
cation of our "master project" [50]. We used Flask Blueprints to keep the AI features organized
and modular.

4.5.1 Main Backend Parts and Integration (app/ai_insights/ folder)
The AI forecasting functions are located in the app/ai_insights/ folder (shown in the left
panel of Figure 4.15). This folder is registered as a Blueprint in the main app factory (app/__init
__.py, right panel, lines 26-27), which assigns all AI routes a base URL prefix like /ai. This
setup allows the AI module to integrate smoothly into the main Flask application.

Figure 4.15: Project structure showing the AI module folder and its Blueprint registration.

In summary, the app/ai_insights/ module encapsulates AI forecasting logic, while its
registration as a Blueprint ensures modular integration and URL routing within the larger
Flask app.

Key parts of ai_insights include:

• Blueprint Setup (app/ai_insights/__init__.py): Defines the ai_bp Blueprint. It
is imported and registered in the main app factory (app/__init__.py), adding the /ai
prefix to its routes.

• Routes (app/ai_insights/routes.py): Contains web endpoints. The main route,
unified_insights_dashboard (at /ai/insights), handles form display on GET and runs
forecasting on POST.

• Forms (app/ai_insights/forms.py): Uses Flask-WTF to create forms like Forecast
RequestForm where users choose KPIs, entities, forecasting models, etc., with input val-
idation.

Chapter 4. AI-Based KPI Forecasting 72

• AI Logic (app/ai_insights/services.py): Contains main functions like get_kpi_
forecast that:

1. Load the chosen pre-trained model (Prophet or LSTM).
2. Get historical KPI data from the data warehouse.
3. Prepare the data (feature engineering, scaling) as done in training.
4. Generate forecast predictions.
5. Post-process predictions (e.g., inverse scaling) to original KPI units.
6. Format data for frontend charts (e.g., Chart.js).

• Database Access (via app/db.py): Queries to the data warehouse use the main app’s
database module, ensuring consistent data access.

This modular setup via Blueprints makes it easy to maintain and expand the AI service in
the master app.

4.5.2 AI Visualization
The user interface is built with the unified_insights_dashboard.html template:

• It shows the ForecastRequestForm for users to input their forecasting requests.

• The JavaScript file ai_insights_setup.js adds dynamic features like linked dropdowns
and autofill.

• Forecast results display interactively with Chart.js, showing historical data, predictions,
and confidence intervals.

• Additional details like forecast parameters and summary tables help users compare real
and predicted values.

• Figure 4.16 below illustrates this interface (see also Figure 5.18 in details Chapter 5).

Figure 4.16: the web interface

Chapter 4. AI-Based KPI Forecasting 73

This Flask backend combined with an interactive frontend makes the forecasting models
easy for network engineers to use in practice.

Conclusion
In this chapter, we developed AI-driven forecasting models—LSTM and Prophet—to predict
LTE network KPIs. We began by exploring their theoretical foundations, followed by data
preprocessing and exploratory analysis. We then detailed the iterative development and tuning
of both models, and integrated them into the Flask backend to enable real-time forecasting and
visualization. This groundwork provides the technical core of our forecasting capability.

In the next chapter, we transition from development to empirical validation. We will rigor-
ously evaluate the forecasting models using quantitative metrics and user-centered qualitative
criteria to assess their predictive performance and usability.

Chapter 5

Experimental Setup, Model
Evaluation, and Results

This chapter outlines the experimental setup used to evaluate the performance of the developed
Key Performance Indicator (KPI) forecasting models. It details the dataset characteristics, the
evaluation metrics employed, and presents a comprehensive analysis of the results obtained for
Prophet and Long Short-Term Memory (LSTM) models, benchmarked against standard naive
forecasting techniques.

5.1 Experimental Setup

5.1.1 Justification for Single-Cell Deep-Dive Methodology
To validate the end-to-end viability of the proposed framework, a depth-over-breadth ap-
proach was deliberately chosen for the initial evaluation. A single, representative urban cell
(4O13X018_1) was selected to serve as a controlled testbed. This cell was chosen due to its
high traffic volume and consistent data availability, making it an ideal candidate for rigorously
testing the limits of the forecasting models.

This deep-dive methodology allowed for a meticulous and resource-intensive process of Ex-
ploratory Data Analysis, feature engineering, and systematic hyperparameter optimization (via
Optuna). By focusing on a single entity, we could eliminate confounding variables and estab-
lish a robust methodological baseline, proving that the framework can indeed extract predictive
signals from complex, noisy KPI data. The goal of this phase was not to create a universal
model applicable to all cells, but to prove that a high-performing model can be built
within this framework, which is a prerequisite for any future, scaled-up deployment.

5.1.2 Dataset and Partitioning for Evaluation
• Data Source and KPIs: The evaluation utilized hourly KPI data for cell 4O13X018_1

from Djezzy’s LTE network, sourced from the Data Warehouse (DWH) detailed in Chap-
ter 3. The target KPIs for forecasting and evaluation remained LTE_Thro_DL (Downlink
User Throughput, Mbps), LTE_Traffic_Volume_DL (Downlink Traffic Volume, GB), and
DL_PRB_usage (Downlink PRB Utilization, %).

• Training Data Period: As established in Chapter 4 (Section 4.3.1), all models (Prophet
and LSTMs after Optuna tuning) were trained using a continuous three-month period of
historical hourly data, specifically from November 30, 2024, 00:00 hours, to February 28,
2025, 23:00 hours (inclusive).

74

Chapter 5. Experimental Setup, Model Evaluation, and Results 75

• Hold-Out Test Set: A distinct, subsequent one-month period, from March 1, 2025,
00:00 hours, to March 30, 2025, 23:00 hours (inclusive), was strictly held out as the test
set. This data (comprising 720 hourly observations per KPI, i.e., 30 days×24 hours/day)
was not used in any part of the model training, feature engineering selection, or hyper-
parameter tuning processes. This chronological split ensures that the evaluation reflects
the models’ ability to generalize to future, unseen data

• Data Preprocessing Consistency: The test set data underwent the exact same pre-
processing steps (cleaning, log1p transformation where applicable for target variables,
feature engineering for LSTM context, and scaling using scalers fitted only on the training
data) as the training data. This was meticulously handled within the evaluation functions
in our scripts.

5.1.3 Evaluation Metrics for Forecasting Performance
To quantitatively assess and compare the accuracy of the different forecasting models, the
following standard regression and time series evaluation metrics were employed.

1. Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2

2. Mean Absolute Error (MAE):

MAE = 1
N

N∑
i=1

|yi − ŷi|

3. Mean Absolute Percentage Error (MAPE):

MAPE = 100%
N

N∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣
(Undefined if yi = 0.)

4. Symmetric Mean Absolute Percentage Error (SMAPE):

SMAPE = 100%
N

N∑
i=1

|ŷi − yi|
(|yi| + |ŷi|)/2 + ε

(Where ε is a small constant.)

5. R-squared (R2):

R2 = 1 −
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(Where ȳ is the mean of actual values.)

6. Bias (Mean Forecast Error - MFE):

Bias = 1
N

N∑
i=1

(ŷi − yi)

These metrics were computed using the calculate_forecasting_metrics helper func-
tion. For KPIs that underwent log transformation, all predictions were inverse-transformed
(np.expm1()) back to their original scale before these metrics were calculated.

Chapter 5. Experimental Setup, Model Evaluation, and Results 76

5.1.4 Baseline Models for Comparison
The performance of Prophet and optimized LSTM models was benchmarked against:

1. Naive Forecast

2. Seasonal Naive Forecast (S = 24 for hourly data)

3. Mean Forecast (using training data mean)

5.2 Forecasting Performance Evaluation and Results
This section presents the detailed quantitative and qualitative results from the evaluation of
the forecasting models on the one-month hold-out test set. The performance of the primary,
optimized LSTM models is compared against both simple naive methods and the sophisticated
Prophet statistical baseline.

5.2.1 Quantitative Performance Metrics: Comparative Analysis
The comprehensive performance metrics for all evaluated models are consolidated in Table 5.1.

Table 5.1: Final Forecast Metrics on Hold-Out Test Set (Cell 4O13X018_1, Mar 1–30, 2023)

KPI Model Type R2 RMSE MAE MAPE (%) SMAPE (%) Bias Num Points
LTE_Thro_DL LSTM (Optuna) 0.4815 8.95 6.87 28.51 24.13 0.85 720

Prophet (Advanced Baseline) −4.9591 31.55 27.36 88.76 66.49 19.36 720
Baseline_Mean −0.0037 12.93 10.03 40.73 32.52 0.00 720
Baseline_SeasonalNaive −0.3070 14.80 11.42 45.88 36.13 0.54 696

LTE_Traffic_Vol_DL LSTM (Optuna) 0.8533 0.29 0.19 45.15 35.80 −0.02 720
Prophet (Advanced Baseline) −0.2081 0.85 0.66 110.48 109.78 −0.46 720
Baseline_SeasonalNaive 0.0444 0.75 0.52 90.01 75.74 0.00 696

DL_PRB_usage LSTM (Optuna) 0.6571 3.11 2.25 35.67 29.88 −0.15 720
Prophet (Advanced Baseline) −1.8060 12.36 10.25 118.83 77.44 −6.35 720
Baseline_SeasonalNaive 0.1166 4.94 3.61 56.05 38.10 −0.01 696

Note: The Optuna-tuned LSTM model demonstrates a significant performance improvement over both simple
baselines and the advanced Prophet baseline across all KPIs. A negative R2 indicates a model performing

worse than the historical mean.

Detailed Interpretation of Table 5.1:

• Exceptional Performance on Predictable KPIs: For KPIs with strong, regular
seasonal patterns, the tuned LSTM model achieved outstanding results.

– For LTE_Traffic_Volume_DL, the LSTM model yielded an R2 of 0.8533, explaining
over 85% of the variance in the test set. This is a dramatic improvement over
the Seasonal Naive baseline (R2=0.04) and the poorly performing Prophet model
(R2=−0.21). The extremely low RMSE (0.29 GB) and MAE (0.19 GB) confirm its
high precision.

– For DL_PRB_usage, the LSTM model achieved an R2 of 0.6571, far surpassing the
next-best Seasonal Naive baseline (R2=0.1166). This indicates that while PRB usage
is highly seasonal, the LSTM model successfully captured more complex, non-linear
patterns that the simpler baseline missed.

Chapter 5. Experimental Setup, Model Evaluation, and Results 77

• Breakthrough Performance on Volatile KPIs: The most significant finding is the
model’s success in forecasting the highly volatile LTE_Thro_DL. While traditional models
and baselines failed entirely (all having negative R2 values), the Optuna-tuned LSTM
achieved a strong positive R2 of 0.4815. This result demonstrates that with systematic
hyperparameter tuning and appropriate feature engineering, it is possible to extract a
significant predictive signal even from noisy and seemingly stochastic KPIs. This is a key
achievement of this work, moving beyond simple pattern replication to genuine predictive
modeling.

• Dominance Over All Baselines: In every case, the tuned LSTM model not only
produced positive and high R2 values but also delivered the lowest error metrics (RMSE,
MAE). The Prophet model, despite its sophistication, consistently failed to produce mean-
ingful forecasts for this hourly dataset, often performing worse than the simple Mean
baseline. This reinforces our choice to pursue a deep learning approach and highlights
the power of systematic optimization with frameworks like Optuna. The very low bias
values for the LSTM models also indicate that their forecasts are well-calibrated and not
systematically over- or under-predicting.

A particularly noteworthy finding is the consistently poor performance of the Prophet model
across all KPIs, especially when compared to the tuned LSTM. As an advanced statistical model
designed for time series with strong seasonalities, its failure to outperform even simple baselines
in most cases is significant. For instance, its highly negative R-squared value for LTE_Thro_DL
(−4.96) indicates that its underlying model structure is a poor fit for the data.

This suggests that the dynamics of these hourly telecom KPIs are dominated by complex,
non-linear patterns and short-term volatility that cannot be adequately captured by Prophet’s
decomposable (trend + seasonality + holidays) structure. The feature-rich LSTM, by contrast,
was able to learn these more intricate dependencies, especially after systematic tuning. This
result underscores the necessity of employing more flexible, non-linear models for this type of
granular, operational data.

Chapter 5. Experimental Setup, Model Evaluation, and Results 78

5.2.2 Visual Evaluation of Forecasts and Residuals
Forecast Plots (Actual vs. Predicted)

Visual inspection of forecast outputs complements quantitative evaluation by highlighting the
model’s behavior across different KPIs. In this section, we assess how well the final optimized
LSTM model captures trends and fluctuations by plotting the actual versus predicted values.
This evaluation also includes Prophet-based forecasts for comparison.

Figure 5.1: LSTM Forecast vs. Actual for LTE_Traffic_Volume_DL (Test Set).

Figure 5.1 demonstrates the LSTM model’s effectiveness in forecasting LTE_Traffic_Volume_DL,
accurately capturing the daily cycles and maintaining alignment with peak and off-peak pat-
terns.

Figure 5.2: Optimized LSTM Forecast for LTE_Traffic_Volume_DL (Test Set) after model
refinement.

Figure 5.2 presents the final optimized forecast, illustrating improved accuracy in capturing
traffic volume trends and serving as a representative example of the model’s best practical
performance on this KPI.

Chapter 5. Experimental Setup, Model Evaluation, and Results 79

Figure 5.3: LSTM Forecast vs. Actual for DL_PRB_usage (Test Set).

As shown in Figure 5.3, the model effectively tracks the DL_PRB_usage pattern. However,
it exhibits some smoothing around abrupt changes, suggesting room for further improvement
in handling sudden utilization shifts.

Figure 5.4: LSTM Forecast vs. Actual for LTE_Thro_DL (Test Set).

Figure 5.4 highlights the challenge of forecasting LTE_Thro_DL. While the model captures the
overall pattern, it reacts less sharply to short-term volatility, indicating limitations in dynamic
responsiveness.

Chapter 5. Experimental Setup, Model Evaluation, and Results 80

Figure 5.5: Optimized LSTM Forecast for LTE_Thro_DL (Test Set) after final tuning.

The optimized forecast in Figure 5.5 demonstrates enhanced alignment with peak through-
put periods and a more sensitive response to fluctuations, representing the model’s best achiev-
able performance after refinement.

Figure 5.6: Prophet Forecast vs. Actual for LTE_Thro_DL (Test Set).

For the previous figures, the shaded region represents an approximate 95% confidence in-
terval, generated using Monte Carlo dropout during inference to estimate model uncertainty.

In contrast, Prophet’s forecast in Figure 5.6 shows pronounced deviations from actual values,
failing to adequately track the KPI’s dynamics and reinforcing the LSTM model’s superiority
despite its limitations.

This visual analysis confirms that the final optimized LSTM model performs well for rela-
tively smooth KPIs such as LTE_Traffic_Volume_DL and moderately well for DL_PRB_usage,
while it continues to face challenges with more volatile indicators like LTE_Thro_DL. The opti-
mized plots reflect the model’s best practical performance and highlight areas where additional
techniques or hybrid approaches might yield further gains. Prophet, although simpler, remains
less capable of capturing complex temporal dynamics in telecom KPIs.

Chapter 5. Experimental Setup, Model Evaluation, and Results 81

Residual Analysis for Optimized LSTM Models

In this section, we analyze the residuals of LSTM models optimized for key LTE KPIs:
LTE_Traffic_Volume_DL and LTE_Thro_DL. Residual analysis helps assess model accuracy,
identify remaining temporal patterns, and evaluate distribution symmetry and correlation be-
tween actual and predicted values. Four plots are used for each KPI: residuals over time,
residual distribution, ACF/PACF of residuals, and a scatter plot of actual vs. predicted values.

Residual Analysis: LTE_Traffic_Volume_DL

Figure 5.7: Residuals over Time.

Figure 5.8: Distribution of Residuals.

Chapter 5. Experimental Setup, Model Evaluation, and Results 82

Figure 5.9: ACF and PACF of Residuals.

Figure 5.10: Actual vs. Predicted Scatter Plot.

For LTE_Traffic_Volume_DL, residuals over time (Figure 5.7) appear random and centered
around zero, suggesting minimal bias. The residual distribution (Figure 5.8) is approximately
symmetric, indicating good model fit. ACF and PACF plots (Figure 5.9) confirm that auto-
correlations have largely been eliminated. The actual vs. predicted scatter plot (Figure 5.10)
shows a tight positive correlation, reflecting strong predictive performance.

Chapter 5. Experimental Setup, Model Evaluation, and Results 83

Residual Analysis: LTE_Thro_DL

Figure 5.11: Residuals over Time.

Figure 5.12: Distribution of Residuals.

Figure 5.13: ACF and PACF of Residuals.

Chapter 5. Experimental Setup, Model Evaluation, and Results 84

Figure 5.14: Actual vs. Predicted Scatter Plot.

For LTE_Thro_DL, residuals over time (Figure 5.11) show more variability and slight structure,
suggesting remaining patterns. The distribution (Figure 5.12) is wider and slightly skewed,
reflecting a possible positive bias. ACF/PACF plots (Figure 5.13) reveal lingering autocorre-
lations at lag 1 and seasonal lags. The scatter plot (Figure 5.14) is more diffuse than in the
previous case, which confirms a weaker predictive capacity and lower R2.

Conclusion of Residual Analysis

The LSTM model for LTE_Traffic_Volume_DL demonstrates strong performance, with residu-
als resembling white noise and tight correlation between predictions and true values. Conversely,
the LTE_Thro_DL model leaves behind more structure in residuals, indicating the presence of un-
modeled patterns or noise, particularly due to its bursty, less predictable nature. This analysis
supports the conclusion that while LSTM is effective, further refinement or hybrid approaches
may be necessary for more complex KPIs like throughput.

Chapter 5. Experimental Setup, Model Evaluation, and Results 85

5.3 Qualitative Evaluation of the Forecasting Interface
The AI Insights Dashboard, accessible via the /ai/insights route, features a "KPI Forecasting"
tab (Figure 5.15) that was evaluated for usability and effectiveness in presenting forecast results.

5.3.1 Usability of Forecast Configuration
The left side of the dashboard presents a structured ForecastRequestForm (Figure 5.15), where
users can set:

• Target KPI (e.g., "LTE DL Traffic Volume")

• Time Granularity (e.g., "Hourly")

• Entity Type (Cell, Commune, Wilaya, AllNet)

• Entity ID (e.g., Cell ID "4O13X018_1")

• Technology Vendor (auto-filled from Cell ID)

• Forecasting Model (e.g., LSTM or Prophet)

• Forecast Horizon

Client-side logic in ai_insights_setup.js improves usability via:

• Dependent dropdowns (Wilaya/Commune)

• Auto-filling Tech/Vendor via AJAX from /get_cell_details

• Field visibility adapted to selected entity type

Once "Generate Forecast" is clicked, results appear on the right (Figure 5.16).

Figure 5.15: Forecast form and chart output.

Chapter 5. Experimental Setup, Model Evaluation, and Results 86

Figure 5.16: Web Application: 72-Period Forecast with Confidence Intervals.

5.3.2 Effectiveness of Forecast Visualizations
Forecast results are visualized interactively (Figure 5.17) with several user-friendly features:

• Interactive Chart: Shows historical data, point forecast, and confidence intervals. Leg-
ends distinguish each line.

• Zoom Tooltips: Enabled by chartjs-plugin-zoom, allowing exploration of time series.

• Dark/Light Theme Support: Managed by chart_themes.js.

• Summary Stats: Displayed for both history and forecast segments.

These are followed by more contextual details shown in Figure 5.18:

• Data Table: Shows latest actual values vs. first forecasted values.

• Export Options: Download buttons for CSV export of both data segments.

Chapter 5. Experimental Setup, Model Evaluation, and Results 87

Figure 5.17: 24-period forecast chart.

Figure 5.18: Data overview: actual vs. forecasted values and CSV download buttons.

In summary, the forecasting interface is intuitive and highly usable. It effectively combines form-
based configuration, interactive visualizations, contextual metadata, and exportable data—all
valuable for telecom engineers using AI-powered network forecasting.

Chapter 5. Experimental Setup, Model Evaluation, and Results 88

Conclusion
In summary, this chapter evaluated the performance of the developed forecasting models
through both quantitative metrics and visual inspection. The LSTM model showed promising
results on smoother KPIs, while Prophet proved less effective for capturing complex temporal
patterns. These evaluations confirmed the strengths and current limitations of our models, set-
ting the stage for a more critical discussion of their implications, challenges, and optimization
potential in the next chapter.

Chapter 6

Discussion of Results and Optimization
Implications

This chapter provides an in-depth discussion and interpretation of the experimental results
presented in Chapter 5 concerning the performance of Prophet and Long Short-Term Memory
(LSTM) models for forecasting hourly Key Performance Indicators (KPIs) in an LTE network.
The findings are analyzed in the context of the initial research objectives, existing literature,
and the inherent characteristics of the telecommunications data. Furthermore, the practical
implications of the developed forecasting capabilities for LTE network optimization are ex-
plored, alongside a frank assessment of the challenges encountered during the project and the
limitations of the current system.

6.1 Implications for LTE Network Optimization
The high-accuracy forecasting capabilities developed in this thesis, particularly the strong per-
formance of the tuned LSTM models, do not constitute an optimization system in themselves.
Rather, they provide the essential, high-quality predictive intelligence that serves as a foun-
dational input for a wide range of network optimization activities. By enabling a shift from
reactive to proactive management, these forecasts have several direct and significant implica-
tions for enhancing LTE network operations at an operator like Djezzy.

6.1.1 Enhanced Proactive Resource Management
Accurate hourly forecasts of LTE_Traffic_Volume_DL and DL_PRB_usage are critical enablers
for more intelligent resource management strategies:

• Informed Capacity Planning: With a model that explains 85% of traffic variance
(R2 ≈ 0.85), a network operator like Djezzy can transition from a reactive to a proactive
capacity management strategy. Engineers can now reliably identify cells that will face
congestion during peak hours before it happens, allowing for preemptive load balancing
or timely planning of hardware upgrades based on data-driven growth forecasts rather
than past failures.

• Foundation for Energy Saving Features: Many modern network energy-saving tech-
niques, such as putting cells into a low-power "sleep mode," depend on accurate traffic
predictions. Our forecasts provide the necessary input to determine precisely when a
cell can be safely powered down during predicted periods of low activity (e.g., late at
night) without impacting user experience, creating a direct path to reduced operational
expenditure (OPEX).

89

Chapter 6. Discussion of Results and Optimization Implications 90

6.1.2 Improved Operational Efficiency
The predictive insights generated by the system can streamline daily network operations and
improve overall efficiency:

• Optimized Maintenance Scheduling: With a forecast accuracy explaining 85% of the
variance for traffic volume, operators can confidently schedule maintenance windows. The
forecasting dashboard allows engineers to schedule planned activities that require taking
a cell offline during periods that are reliably predicted to have the lowest traffic, thereby
minimizing subscriber impact and potentially reducing overtime costs for engineering
teams.

• Dynamic Baselines for Anomaly Detection: Perhaps one of the most significant
implications is the ability to create dynamic, intelligent baselines for anomaly detec-
tion. Traditional systems often rely on static thresholds, leading to false alarms. The
forecasts from our models, especially the breakthrough success in predicting the volatile
LTE_Thro_DL KPI (R2 ≈ 0.48), can serve as a powerful dynamic baseline. A significant
deviation of the actual KPI from its forecasted value is a much stronger indicator of
a genuine anomaly, allowing for the detection of “silent failures” or subtle performance
degradations that static thresholds would miss.

6.1.3 Data-Driven Input for Higher-Level Optimization Algorithms
While this thesis stops short of implementing a closed-loop optimization system, the forecasts
it generates are the primary input required for such advanced algorithms. This work lays the
groundwork for future projects in:

• Reinforcement Learning (RL) for Parameter Tuning: Future RL agents could
use our forecasts of network state (e.g., predicted load) to learn optimal policies for
dynamically adjusting network parameters, such as handover margins or antenna tilts, in
real-time.

• Automated Root Cause Analysis (RCA): An advanced RCA system could correlate
a deviation from a forecast with other network events (e.g., alarms, configuration changes)
that occurred just prior, helping to automatically identify the most likely root cause of a
performance degradation.

The current AI Insights Dashboard, as implemented in the Flask application, serves as the
first step in this direction by making these predictive insights accessible to human operators,
who can then use them to inform their own optimization decisions.

6.2 Challenges Encountered During System Development
The development of this analytics system faced several challenges:

• Data Quality and Integration: Ensuring consistent KPI definitions and handling data
quality issues from multi-vendor environments in the DWH (Chapter 3) was critical.

• Evaluation Pipeline Integrity: As highlighted (Section 4.4.2), ensuring consistent
preprocessing for LSTMs between training and testing was a significant initial hurdle.

• Iterative Feature Engineering for LSTMs: Finding an effective LSTM feature set
required considerable experimentation, with simplification proving more effective initially.

Chapter 6. Discussion of Results and Optimization Implications 91

• Computational Cost of Hyperparameter Optimization: Systematic tuning for
LSTMs with Optuna is computationally intensive.

• Forecasting Highly Volatile KPIs: Accurately forecasting LTE_Thro_DL with high R2
values was challenging with the current univariate approach.

• Flask AI Service Layer Implementation: Integrating AI models into a responsive
Flask backend involved careful management of model loading, preprocessing, and result
serialization.

6.3 Limitations of the Current Forecasting System
The developed system has current limitations:

• Univariate Forecasting Core: Models do not explicitly model dynamic interdepen-
dencies between different KPIs.

• Single-Cell Focus for Tuning: Detailed tuning and evaluation were for one cell; pa-
rameters may not generalize directly.

• Limited Training Data Horizon: Three months of hourly data may not capture
longer-term trends or rare events.

• Static Feature Set Post-Tuning: Potential benefits of re-introducing more complex
features after initial Optuna tuning were not fully explored.

• Evaluation on a Single Hold-Out Period: Performance could vary on different future
periods.

• Batch Training and Model Updates: Models do not currently support online learning
for rapid adaptation.

• Interpretability of LSTM Models: LSTM internal workings are less transparent
("black-box") without specialized interpretability techniques.

• Anomaly Detection as Future Work: A dedicated anomaly detection module is
future work, though forecasts can serve as baselines.

Acknowledging these limitations is crucial for contextualizing achievements and guiding future
development.

Conclusion
In this chapter, we analyzed the performance results of the forecasting models in the context
of network optimization. We examined KPI-specific forecasting accuracy, compared the LSTM
and Prophet models, and highlighted the role of hyperparameter tuning and residual analysis.
These insights were connected to real-world LTE optimization use cases such as proactive re-
source allocation and improved operational efficiency. Limitations and development challenges
were also discussed.

The next and final chapter will conclude the thesis by summarizing key findings, reflecting
on project contributions, and outlining potential directions for future work.

Conclusion and Future Work

This thesis has documented the comprehensive design, development, and evaluation of an in-
tegrated analytics framework aimed at enhancing Long-Term Evolution (LTE) network perfor-
mance management through data-driven insights and Artificial Intelligence (AI). The project
successfully addressed the challenge of transforming vast, often heterogeneous, network data
into actionable intelligence by establishing a robust Data Warehouse (DWH), implementing
sophisticated ETL processes, and developing AI-powered Key Performance Indicator (KPI)
forecasting models. The culmination of these efforts is a functional system with a backend ser-
vice layer capable of delivering these predictive insights, laying a crucial foundation for proactive
and intelligent network optimization.

Summary of Key Contributions and Achievements
The primary contributions of this thesis span data engineering, AI model development, and
system integration, resulting in a significant step towards more advanced LTE network opera-
tions:

1. Establishment of a Scalable Data Management Foundation (Chapter 3):

• A relational DWH was architected using PostgreSQL, employing dimensional model-
ing principles to effectively store and manage historical LTE performance data from
potentially multi-vendor sources. This DWH acts as the single source of truth for
all subsequent analytics.

• Automated ETL pipelines were engineered using Python and SQL, orchestrated by
Apache Airflow. These pipelines handle the ingestion of raw network counter data,
perform crucial transformations including KPI normalization and cleansing, and
populate the DWH. This ensures data consistency and reliability for AI modeling.

• A dynamic KPI calculation engine within the DWH allows for flexible definition
and computation of network performance metrics at various aggregation levels and
granularities.

2. Development and Optimization of High-Performance AI-Driven Forecasting
Models (Chapters 4 & 5):

• This research successfully developed and rigorously evaluated Prophet and Long
Short-Term Memory (LSTM) network models for forecasting critical hourly LTE
KPIs.

• A systematic and iterative methodology was employed, culminating in a highly
effective, Optuna-tuned LSTM model. This model demonstrated a significant
breakthrough by achieving high predictive accuracy across all target KPIs, including
the notoriously volatile LTE_Thro_DL (R2 of 0.48).

92

Chapter 6. Discussion of Results and Optimization Implications 93

• The LSTM model achieved exceptional performance on KPIs with strong seasonal
patterns, such as LTE_Traffic_Volume_DL (R2 of 0.85) and DL_PRB_usage (R2 of
0.66), decisively outperforming all baseline and statistical models.

• The success of the models validates the entire data engineering and AI development
pipeline, from EDA-informed feature engineering to the critical role of automated
hyperparameter optimization.

3. Implementation of an AI Service Delivery Backend (Chapter 4):

• A Flask-based backend application was developed to serve the trained forecasting
models. This service layer handles on-the-fly prediction requests, orchestrating data
fetching from the DWH, necessary preprocessing (consistent with training), model
inference, and post-processing of results.

• The "AI Insights Dashboard" UI provides forms for forecast configuration and dis-
plays the generated predictions and summary statistics, demonstrating the practical
application of the AI models.

4. Establishment of a Rigorous Evaluation Framework (Chapter 5):

• A clear methodology for training data preparation, hold-out test set evaluation, and
the use of standard performance metrics (RMSE, MAE, MAPE, SMAPE, R2, Bias)
was established, ensuring robust and comparable assessment of model performance.

Achievement of Project Objectives
The project successfully met its core objectives as outlined in the introduction:

• Design and implement a scalable Data Warehouse: The PostgreSQL DWH and
associated ETL pipelines (Chapter 3) fulfill this objective, providing a structured and
reliable data foundation.

• Develop robust ETL processes: Automated scripts for data ingestion, transforma-
tion, and KPI calculation were successfully implemented and are integral to the DWH
population.

• Implement AI models for KPI forecasting: Prophet and, more significantly, op-
timized LSTM models were developed, trained, and evaluated, demonstrating tangible
predictive capabilities, especially for traffic volume (Chapters 4 and 5).

• Develop a backend service for AI insights: The Flask application successfully serves
the AI forecasting models, making their predictions accessible for potential integration
into operational tools or more advanced visualization frontends (Chapter 4, Section 4.5).

• Enable proactive network management through predictive insights: The fore-
casting capabilities developed provide the foundational intelligence needed to anticipate
network behavior, thereby enabling a shift towards more proactive network management
strategies as discussed in Chapter 6, Section 6.1.

While the initial broader vision included a fully implemented anomaly detection module and
a comprehensive, independent visualization platform, this thesis has successfully delivered the
crucial DWH backbone and the AI forecasting service layer. The groundwork for anomaly
detection has been laid, and it remains a primary direction for future work.

Chapter 6. Discussion of Results and Optimization Implications 94

Overall Conclusion
This thesis has successfully demonstrated the design, implementation, and validation of a com-
prehensive, data-driven framework capable of delivering high-accuracy forecasts for LTE net-
work performance. By integrating a robust Data Warehouse, automated ETL processes, and a
systematically optimized AI pipeline, this project has moved beyond theoretical application to
produce tangible, high-performance predictive models.

The key achievement of this work lies in the demonstrably superior performance of the
Optuna-tuned LSTM models. The exceptional results, particularly the successful forecasting
of the highly volatile user throughput KPI (R2 of 0.48) and the near-complete explanation
of variance for traffic volume (R2 of 0.85), validate our entire methodological approach. It
underscores that with rigorous data management, deep exploratory analysis, and a commitment
to automated, systematic hyperparameter optimization, deep learning models can overcome the
inherent complexities of telecommunications data to provide powerful predictive insights.

The engineered solution, culminating in a Flask-based service layer, effectively bridges the
gap between model development and operational utility. It provides a foundational platform
for a new generation of proactive network management strategies, proving that a well-executed
machine learning workflow can yield significant and reliable results, paving the way for more
intelligent, efficient, and optimized mobile networks.

Recommendations for Future Work and System Evolution
The platform and AI modules developed in this thesis provide a strong foundation for numerous
exciting future enhancements and research directions:

1. Full Implementation and Integration of Anomaly Detection Module:

• Model Development & Training: Develop and train the ProphetAnomalyDetector
and VAEAnomalyDetector (from app.core_ai.anomaly_detection.models) using
the DWH. This includes establishing methods for defining "normal" behavior and
setting appropriate detection thresholds.

• Service Layer Extension: Extend the Flask backend in app.ai_insights.services
to include functions for on-demand or scheduled anomaly detection runs.

• Web Application Integration: Fully develop the "Anomaly Detection" tab in the
unified_insights_dashboard.html, including forms, visualizations of detected anoma-
lies, and a detailed anomaly table.

• Feedback Loop for Model Refinement: Use confirmed true/false positives from engi-
neer feedback to periodically retrain and refine anomaly detection models.

2. Advanced Forecasting Model Enhancements:

• Multivariate LSTMs for Throughput: Systematically incorporate lagged exogenous
variables (e.g., CQI, PRB utilization, as identified in EDA and suggested by litera-
ture like [51]) into LSTM models for LTE_Thro_DL.

• Attention Mechanisms and Transformers: Explore attention mechanisms within
LSTMs or implement Transformer-based models [52] for KPI forecasting, as inves-
tigated in works like [53].

• GRU Models: Evaluate Gated Recurrent Units (GRUs) as a potentially more com-
putationally efficient alternative to LSTMs.

Chapter 6. Discussion of Results and Optimization Implications 95

• Hybrid Models: Investigate hybrid approaches, such as Prophet-LSTM or statistical
models combined with ML error correction.

3. Broader Platform and Operational Enhancements:

• Spatial-Temporal Forecasting: Extend models to consider spatial dependencies be-
tween cells (e.g., using Graph Neural Networks - GNNs).

• Root Cause Analysis (RCA) for Anomalies: Develop ML models to assist in identi-
fying probable root causes of anomalies by correlating them with network alarms or
configuration changes.

• Real-Time Data Ingestion and Stream Processing: Evolve ETL pipelines to support
near real-time data ingestion (e.g., using Apache Kafka, Flink).

• Scalability and Deployment: Explore containerization (Docker, Kubernetes) for pro-
duction deployment.

• Comprehensive Visualization Frontend: Develop a dedicated, rich interactive visu-
alization frontend that consumes insights from the DWH and AI service layer.

• Closed-Loop Optimization: Integrate predictive capabilities into closed-loop opti-
mization systems (Self-Organizing Networks - SON).

• Expanded Model Benchmarking: To provide an even more robust evaluation of
model performance, future work could include comparisons against classical statis-
tical models like SARIMA. Furthermore, tree-based models such as LightGBM or
XGBoost, which are often highly effective for time-series forecasting when structured
with lag and calendar features, should be benchmarked to create a comprehensive
performance landscape.

4. Expanded Model Benchmarking: To provide an even more robust evaluation of model
performance, future work could include comparisons against classical statistical models
like SARIMA. Furthermore, tree-based models such as LightGBM or XGBoost, which are
often highly effective for time-series forecasting when structured with lag and calendar
features, should be benchmarked to create a comprehensive performance landscape.

Path to Production and Scalability
While this project was developed and tested in a local environment, the architecture was de-
signed with production-readiness in mind. Transitioning this framework from a successful
prototype to a fully scalable, production-grade system would require several key engineering
steps. This path to production represents a critical area for future work.

1. Containerization and Orchestration: Fully containerize the application components
(Airflow, PostgreSQL, Flask App) using Docker and manage them with a container orches-
tration platform like Kubernetes. This would provide automated scaling, fault tolerance,
and environment consistency.

2. Database Migration: Migrate the PostgreSQL database to a managed, production-
grade service (e.g., Amazon RDS, Google Cloud SQL, or a self-hosted, high-availability
cluster). This ensures automated backups, read replicas to handle heavy query loads from
multiple services, and professional maintenance.

3. Distributed ETL Processing: For a national-scale deployment involving thousands of
cells, the current Python and SQL-based ETL scripts would become a bottleneck. Re-
engineering these tasks to run on a distributed processing framework like Apache Spark
would be essential to handle the massive increase in data volume efficiently.

Chapter 6. Discussion of Results and Optimization Implications 96

4. Dedicated Model Serving and CI/CD: Instead of serving models directly from the
Flask application, a dedicated model serving solution (e.g., TensorFlow Serving, Seldon
Core, or BentoML) should be implemented. This would be integrated into a CI/CD
(Continuous Integration/Continuous Deployment) pipeline for automated model retrain-
ing, validation, and deployment, ensuring the system stays up-to-date with the latest data
patterns.

By pursuing these avenues, the developed analytics framework can evolve into an increasingly
powerful and indispensable tool for the intelligent management and optimization of current and
future mobile communication networks, delivering tangible benefits in terms of performance,
efficiency, and user satisfaction.

Appendix A

System Orchestration and
Environment Setup

A key contribution of this project is the creation of a fully automated and reproducible data
pipeline. This is achieved through two core components: a workflow orchestration engine using
Apache Airflow and a containerized environment defined with Docker Compose. This
appendix outlines this technical architecture, highlighting how the system ensures reliability
and scalability.

A.1 Workflow Orchestration with Apache Airflow
Apache Airflow is an open-source platform used to programmatically author, schedule, and
monitor workflows. As described by the Apache Software Foundation, workflows are defined as
Directed Acyclic Graphs (DAGs) of tasks. This paradigm allows for the clear definition
of complex dependencies, ensuring that each step of a data pipeline executes only after its
prerequisites have been successfully completed.

For this project, Airflow was chosen to serve as the central orchestrator for the entire data
processing lifecycle. It automates the daily execution of all tasks, from data extraction and
ETL to the final triggering of the AI forecasting models. This approach transforms a series of
individual scripts into a single, cohesive, and robust automated system. The structure of our
primary pipeline is visualized in Figure A.1.

Figure A.1: Logical Flowchart of the Airflow DAG

97

Appendix A. System Orchestration and Environment Setup 98

The primary execution steps defined in the DAG are:

1. Raw Data Ingestion: A task group that fetches vendor-specific files, standardizes their
format, and places them in a processing area.

2. Load to Staging: A task that bulk-loads the standardized files into the Staging
_RawCounter table in the Data Warehouse.

3. Core ETL: The main transformation step that validates, enriches, and moves data from
the staging table into the final, clean fact tables.

4. SQL Calculations: A task group that executes a sequence of ‘.sql‘ scripts against the
DWH to compute daily aggregates and all levels of KPIs.

5. AI Forecasting: The final stage, which triggers the Python forecasting script to generate
new predictions based on the freshly processed data.

A.2 Reproducible Development Environment with Docker
Compose

To ensure that the entire system is self-contained and easily reproducible, we use Docker
Compose to define and manage all the required services. This isolates dependencies and
allows any developer to spin up the complete environment with a single command. A key
architectural choice is the use of two separate PostgreSQL instances: one dedicated to
the Airflow metadata backend and another serving as the project’s primary Data Warehouse.
This separation is a best practice that prevents the operational load of the application from
impacting the performance and stability of the orchestrator.

The essential services defined in the ‘docker-compose.yml‘ file are:

postgres An official PostgreSQL container that serves as the metadata backend for Apache
Airflow itself. It stores the state of DAG runs, task instances, and connections.

datawarehouse A second, independent PostgreSQL container that functions as our project’s
Data Warehouse. It is initialized with our custom schema (‘dbcreation.sql‘) and is exposed
on the host machine for direct access and analysis.

airflow-scheduler The core Airflow component that monitors all DAGs and triggers task
instances once their dependencies are met.

airflow-webserver The Airflow user interface, providing a visual dashboard to monitor DAG
runs, inspect logs, and manage the system.

airflow-init A one-time initialization service that prepares the Airflow database and sets
up the necessary connections, such as the one pointing to our ‘datawarehouse‘ service.

This containerized approach ensures a consistent environment across different machines and
provides a clear blueprint for a future production deployment.

1 x-airflow - common :
2 &airflow - common
3 # In order to add custom dependencies or upgrade provider packages you can

use your extended image.
4 # Comment the image line , place your Dockerfile in the directory where you

placed the docker - compose .yaml

Appendix A. System Orchestration and Environment Setup 99

5 # and uncomment the "build" line below , Then run ‘docker - compose build ‘ to
build the images .

6 #image: ${ AIRFLOW_IMAGE_NAME :- apache / airflow :2.10.5}
7 build: .
8 environment :
9 &airflow -common -env

10 AIRFLOW__CORE__EXECUTOR : LocalExecutor
11 AIRFLOW__DATABASE__SQL_ALCHEMY_CONN : postgresql + psycopg2 :// airflow :

airflow@postgres / airflow
12 AIRFLOW__CORE__FERNET_KEY : ${ FERNET_KEY : -""}
13 AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION : ’true ’
14 AIRFLOW__CORE__LOAD_EXAMPLES : ’false ’
15 AIRFLOW__API__AUTH_BACKENDS : ’airflow .api.auth. backend .basic_auth ,

airflow .api.auth. backend .session ’
16 AIRFLOW_CONN_DATAWAREHOUSE : postgres ://${ DB_USER }:${ DB_PASSWORD }@${

DB_HOST }:${ DB_PORT }/${ DB_NAME } # yamllint disable rule:line - length
17 # Use simple http server on scheduler for health checks
18 # See https :// airflow . apache .org/docs/apache - airflow / stable /

administration -and - deployment /logging - monitoring /check - health .html#
scheduler -health -check - server

19 # yamllint enable rule:line - length
20 AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK : ’true ’
21 # Adding performance tuning parameters
22 # AIRFLOW__SCHEDULER__MIN_FILE_PROCESS_INTERVAL : 60
23 # AIRFLOW__CELERY__WORKER_CONCURRENCY : 8
24 # AIRFLOW__CORE__PARALLELISM : 16
25 # AIRFLOW__CORE__DAG_CONCURRENCY : 8
26 DB_NAME : ${ DB_NAME }
27 DB_USER : ${ DB_USER }
28 DB_PASSWORD : ${ DB_PASSWORD }
29 DB_HOST : ${ DB_HOST }
30 DB_PORT : ${ DB_PORT }
31 # WARNING : Use _PIP_ADDITIONAL_REQUIREMENTS option ONLY for a quick

checks
32 # for other purpose (development , test and especially production usage)

build/ extend Airflow image.
33 # _PIP_ADDITIONAL_REQUIREMENTS : ${}
34 # The following line can be used to set a custom config file , stored in

the local config folder
35 # If you want to use it , outcomment it and replace airflow .cfg with the

name of your config file
36 # AIRFLOW_CONFIG : ’/opt/ airflow / config / airflow .cfg ’
37 volumes :
38 - ${ AIRFLOW_PROJ_DIR : -.}/ config :/ opt/ airflow / config
39 - ${ AIRFLOW_PROJ_DIR : -.}/ dags :/ opt/ airflow /dags
40 - ${ AIRFLOW_PROJ_DIR : -.}/ logs :/ opt/ airflow /logs
41 - ${ AIRFLOW_PROJ_DIR : -.}/ plugins :/ opt/ airflow / plugins
42 - ${ AIRFLOW_PROJ_DIR : -.}/ Def :/ opt/ airflow /Def
43 - ${ AIRFLOW_PROJ_DIR : -.}/ Fact :/ opt/ airflow /Fact
44 - ${ AIRFLOW_PROJ_DIR : -.}/ Dim :/ opt/ airflow /Dim
45 user: "${ AIRFLOW_UID : -50000}:0"
46 depends_on :
47 &airflow -common -depends -on
48 postgres :
49 condition : service_healthy
50 datawarehouse :
51 condition : service_healthy
52

53 services :
54 postgres :

Appendix A. System Orchestration and Environment Setup 100

55 image: postgres :13
56 environment :
57 POSTGRES_USER : airflow
58 POSTGRES_PASSWORD : airflow
59 POSTGRES_DB : airflow
60 ports :
61 - "5432:5432"
62 volumes :
63 - postgres -db - volume :/ var/lib/ postgresql /data
64 healthcheck :
65 test: [" CMD", " pg_isready ", "-U", " airflow "]
66 interval : 10s
67 retries : 5
68 start_period : 5s
69 restart : always
70

71 datawarehouse :
72 image: postgres :13
73 environment :
74 POSTGRES_USER : ${ DB_USER }
75 POSTGRES_PASSWORD : ${ DB_PASSWORD }
76 POSTGRES_DB : ${ DB_NAME }
77 volumes :
78 - datawarehouse - volume :/ var/lib/ postgresql /data
79 - ./ dbcreation .sql :/ docker -entrypoint - initdb .d/ dbcreation .sql
80 ports:
81 - 5433:5432
82 healthcheck :
83 test: [" CMD", " pg_isready ", "-U", "${ DB_USER }"]
84 interval : 5s
85 retries : 5
86 restart : always
87 # Adding resource limits
88 # deploy :
89 # resources :
90 # limits :
91 # cpus: ’1’
92 # memory : 1G
93

94

95 airflow - webserver :
96 <<: *airflow - common
97 command : webserver
98 ports:
99 - "8080:8080"

100 healthcheck :
101 test: [" CMD", "curl", "--fail", "http :// localhost :8080/ health "]
102 interval : 30s
103 timeout : 10s
104 retries : 5
105 start_period : 30s
106 restart : always
107 depends_on :
108 <<: *airflow -common -depends -on
109 airflow -init:
110 condition : service_completed_successfully
111 # Adding resource limits
112 # deploy :
113 # resources :
114 # limits :

Appendix A. System Orchestration and Environment Setup 101

115 # cpus: ’1’
116 # memory : 1G
117

118 airflow - scheduler :
119 <<: *airflow - common
120 command : scheduler
121 healthcheck :
122 test: [" CMD", "curl", "--fail", "http :// localhost :8974/ health "]
123 interval : 30s
124 timeout : 10s
125 retries : 5
126 start_period : 30s
127 restart : always
128 depends_on :
129 <<: *airflow -common -depends -on
130 airflow -init:
131 condition : service_completed_successfully
132 # Adding resource limits
133 # deploy :
134 # resources :
135 # limits :
136 # cpus: ’1’
137 # memory : 1G
138

139

140 airflow - triggerer :
141 <<: *airflow - common
142 command : triggerer
143 healthcheck :
144 test: ["CMD -SHELL", ’airflow jobs check --job -type TriggererJob --

hostname "$${ HOSTNAME }"’]
145 interval : 30s
146 timeout : 10s
147 retries : 5
148 start_period : 30s
149 restart : always
150 depends_on :
151 <<: *airflow -common -depends -on
152 airflow -init:
153 condition : service_completed_successfully
154 # Adding resource limits
155 # deploy :
156 # resources :
157 # limits :
158 # cpus: ’1’
159 # memory : 1G
160

161 airflow -init:
162 <<: *airflow - common
163 entrypoint : /bin/bash
164 # yamllint disable rule:line - length
165 command :
166 - -c
167 - |
168 if [[-z "${ AIRFLOW_UID }"]]; then
169 echo
170 echo -e "\033[1;33 mWARNING !!!: AIRFLOW_UID not set !\e[0m"
171 echo "If you are on Linux , you SHOULD follow the instructions

below to set "
172 echo " AIRFLOW_UID environment variable , otherwise files will be

Appendix A. System Orchestration and Environment Setup 102

owned by root ."
173 echo "For other operating systems you can get rid of the warning

with manually created .env file :"
174 echo " See: https :// airflow . apache .org/docs/apache - airflow /

stable /howto/docker - compose /index.html#setting -the -right -airflow -user"
175 echo
176 fi
177 one_meg =1048576
178 mem_available =$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) /

one_meg))
179 cpus_available =$$(grep -cE ’cpu [0 -9]+ ’ /proc/stat)
180 disk_available =$$(df / | tail -1 | awk ’{print $$4 }’)
181 warning_resources =" false"
182 if ((mem_available < 4000)) ; then
183 echo
184 echo -e "\033[1;33 mWARNING !!!: Not enough memory available for

Docker .\e[0m"
185 echo "At least 4GB of memory required . You have $$(numfmt --to iec

$$((mem_available * one_meg)))"
186 echo
187 warning_resources =" true"
188 fi
189 if ((cpus_available < 2)); then
190 echo
191 echo -e "\033[1;33 mWARNING !!!: Not enough CPUS available for

Docker .\e[0m"
192 echo "At least 2 CPUs recommended . You have $${ cpus_available }"
193 echo
194 warning_resources =" true"
195 fi
196 if ((disk_available < one_meg * 10)); then
197 echo
198 echo -e "\033[1;33 mWARNING !!!: Not enough Disk space available for

Docker .\e[0m"
199 echo "At least 10 GBs recommended . You have $$(numfmt --to iec $$

((disk_available * 1024)))"
200 echo
201 warning_resources =" true"
202 fi
203 if [[$${ warning_resources } == "true"]]; then
204 echo
205 echo -e "\033[1;33 mWARNING !!!: You have not enough resources to

run Airflow (see above)!\e[0m"
206 echo " Please follow the instructions to increase amount of

resources available :"
207 echo " https :// airflow . apache .org/docs/apache - airflow / stable /

howto/docker - compose /index.html#before -you -begin"
208 echo
209 fi
210 mkdir -p / sources /logs / sources /dags / sources / plugins
211 chown -R "${ AIRFLOW_UID }:0" / sources /{logs ,dags , plugins }
212

213 airflow db migrate
214

215 until pg_isready -h datawarehouse -p 5432 -U ${ DB_USER }; do
216 echo " Waiting for PostgreSQL to be ready ..."
217 sleep 5
218 done
219

220 echo " Creating datawarehouse connection ..."

Appendix A. System Orchestration and Environment Setup 103

221 # Check if connection already exists
222 if ! airflow connections get datawarehouse > /dev/null 2 >&1; then
223 airflow connections add datawarehouse \
224 --conn -type postgres \
225 --conn -host "${ DB_HOST }" \
226 --conn - schema "${ DB_NAME }" \
227 --conn -login "${ DB_USER }" \
228 --conn - password "${ DB_PASSWORD }" \
229 --conn -port "${ DB_PORT }"
230 echo " Connection created ."
231 else
232 echo " Connection already exists ."
233 fi
234

235 echo " Checking connection ..."
236 airflow connections get datawarehouse
237

238 exec / entrypoint airflow version
239

240 # yamllint enable rule:line - length
241 environment :
242 <<: *airflow -common -env
243 _AIRFLOW_DB_MIGRATE : ’true ’
244 _AIRFLOW_WWW_USER_CREATE : ’true ’
245 _AIRFLOW_WWW_USER_USERNAME : ${ _AIRFLOW_WWW_USER_USERNAME :- airflow }
246 _AIRFLOW_WWW_USER_PASSWORD : ${ _AIRFLOW_WWW_USER_PASSWORD :- airflow }
247 _PIP_ADDITIONAL_REQUIREMENTS : ’’
248 user: "0:0"
249 volumes :
250 - ${ AIRFLOW_PROJ_DIR : -.}:/ sources
251

252 airflow -cli:
253 <<: *airflow - common
254 profiles :
255 - debug
256 environment :
257 <<: *airflow -common -env
258 CONNECTION_CHECK_MAX_COUNT : "0"
259 # Workaround for entrypoint issue. See: https :// github .com/ apache /

airflow / issues /16252
260 command :
261 - bash
262 - -c
263 - airflow
264

265 # You can enable flower by adding "-- profile flower " option e.g. docker -
compose --profile flower up

266 # or by explicitly targeted on the command line e.g. docker - compose up
flower .

267 # See: https :// docs. docker .com/ compose / profiles /
268

269 volumes :
270 postgres -db - volume :
271 datawarehouse - volume :

Listing A.1: Docker Compose config file contents.

Appendix B

Metadata and Configuration Files

A core design principle of this project is its metadata-driven architecture. Instead of hard-
coding business logic, KPI formulas, or model parameters, the system is controlled by external
configuration files. This approach makes the framework highly flexible, maintainable, and
adaptable to new vendors, KPIs, or modeling requirements without changing the core source
code.

This appendix provides key samples of these configuration files, demonstrating how they
govern the behavior of both the ETL and AI forecasting pipelines.

B.1 ETL and Data Warehouse Configuration
The ETL processes rely on a set of CSV and YAML files to understand the structure of incoming
data and the definitions of the KPIs to be calculated.

B.1.1 KPI and Counter Definitions
The foundation of the DWH’s business logic resides in two definition files. ‘counter_definitions.csv‘
maps raw, vendor-specific counter names to a standardized internal ID. ‘kpi_formula.csv‘ then
uses these standardized IDs to define the mathematical expressions for calculating final KPIs.

Table B.1: Sample from ‘counter_definitions.csv‘, linking raw counters to standardized IDs.

counter_id counter_name tech_id vendor_id kpi_id
L.Thrp.bits.DL L.Thrp.bits.DL 0 0 LTE_Traffic_Volume_DL
C373230691 DL PRB Usage Rate 0 1 DL_PRB_usage
M8012C20 PDCP_SDU_VOL_DL 0 2 LTE_Traffic_Volume

Table B.2: Sample from ‘kpi_formula.csv‘, defining KPI calculations.

formula_id kpi_id vendor_id formula_expression
F_HW_Traffic_DL LTE_Traffic_Volume_DL 0 (((([L.Thrp.bits.DL]/1024)/1024)/1024)/8)
F_ZTE_Traffic_DL LTE_Traffic_Volume_DL 1 (([C373343806]*1000+[C373343807])/8e6)

B.1.2 Source Data Mapping Configuration
To handle the heterogeneity of data from different vendors, a central ‘source_mappings.yml‘ file
is used. This file instructs the data loading scripts on how to parse each vendor’s files, specifying

104

Appendix B. Metadata and Configuration Files 105

everything from the filename pattern to the column names for key fields like timestamps and cell
identifiers. This declarative approach allows new data sources to be added simply by creating
a new entry in this YAML file.

1 # source_mappings .yml
2

3 huawei_4g :
4 vendor : " HUAWEI "
5 technology : "4G"
6 filename_pattern : " huawei_4g_ *. csv"
7 timestamp_column : "Time"
8 timestamp_format : "%Y-%m-%d %H:%M:%S"
9 cell_id_column : "Cell Name"

10 counters :
11 L.CSFB. PrepAtt : "L.CSFB. PrepAtt "
12 L.Thrp.bits.DL: "L.Thrp.bits.DL"
13 # ... more counter mappings
14

15 zte_4g :
16 vendor : "ZTE"
17 technology : "4G"
18 filename_pattern : " zte_4g_hourly_ *. csv"
19 timestamp_column : "Time"
20 timestamp_format : "%Y-%m-%d %H:%M:%S"
21 cell_id_column : "Cell Name"
22 counters :
23 C373343806 : " C373343806 "
24 C373343807 : " C373343807 "
25 # ... more counter mappings
26

27 nokia_4g :
28 vendor : "NOKIA"
29 technology : "4G"
30 filename_pattern : " nokia_4g_ *. csv" # Example pattern
31 timestamp_column : "Time"
32 timestamp_format : "%d/%m/%Y %H:%M"
33 cell_id_column : "Cell Name"
34 counters :
35 M8011C12 : " M8011C12 "
36 M8011C13 : " M8011C13 "
37 # ... more counter mappings

Listing B.1: Sample from the ‘source_mappings.yml‘ configuration file, defining parsing rules
for different vendors.

B.2 AI Forecasting Module Configuration
Similarly, the entire AI forecasting pipeline is governed by a centralized YAML configuration
file, ‘forecasting_config.yml‘. This allows for the easy modification of model parameters, feature
sets, and training routines without altering the core Python code. A key feature is the ability
to define KPI-specific overrides, allowing us to use the best hyperparameters discovered by
Optuna for each specific KPI.

1

2 # app/ core_ai / configs / forecasting_config .yml
3

4 # General settings applicable to the entire forecasting pipeline
5 general :

Appendix B. Metadata and Configuration Files 106

6 log_level : INFO
7 model_store_base_path : "app/ core_ai / model_store "
8 seed: 42
9

10 # Defines the scope of data used for training and evaluation
11 data_source :
12 training_history_days : 90
13 evaluation_test_period_days : 30
14 entities_to_train :
15 - entity_type : "CELL"
16 entity_id : "4 O13X018_1 "
17 kpis: [" LTE_Thro_DL ", " LTE_Traffic_Volume_DL ", " DL_PRB_usage "]
18 granularities : [" HOURLY "]
19

20 # Default parameters for LSTM models , can be overridden per KPI
21 lstm_forecasting :
22 min_obs_for_training : 150
23 preprocessing :
24 scaling_method : " minmax "
25 # Features to be automatically joined from the DimTime table
26 dim_time_features_to_join :
27 - " day_of_week "
28 - " hour_of_week_sin "
29 - " hour_of_week_cos "
30 - " is_weekend "
31 - " is_holiday "
32 # ... and others
33 training_params :
34 epochs : 100 # Max epochs for final training
35 validation_split : 0.2
36

37 # ==
38 # === KPI - Specific Configurations & Hyperparameters ===
39 # ==
40 kpi_specific_configs :
41 LTE_Thro_DL :
42 description : "LTE Downlink User Throughput in Mbps"
43 lstm:
44 enabled : true
45 apply_log_transform : true
46 # --- Best Hyperparameters from Optuna ---
47 time_steps : 72
48 lstm_units : [32]
49 dropout_rate : 0.4
50 use_bidirectional : true
51 learning_rate : 0.0049
52 batch_size : 32
53

54 LTE_Traffic_Volume_DL :
55 description : "LTE Downlink Traffic Volume in GB"
56 lstm:
57 enabled : true
58 apply_log_transform : true
59 # --- Best Hyperparameters from Optuna ---
60 time_steps : 48
61 lstm_units : [48]
62 dropout_rate : 0.3
63 use_bidirectional : true
64 learning_rate : 0.0012
65 batch_size : 64

Appendix B. Metadata and Configuration Files 107

66

67 DL_PRB_usage :
68 description : " Downlink Physical Resource Block Usage Percentage "
69 lstm:
70 enabled : true
71 apply_log_transform : false
72 # --- Best Hyperparameters from Optuna ---
73 time_steps : 96
74 lstm_units : [48]
75 dropout_rate : 0.15
76 use_bidirectional : true
77 learning_rate : 0.0003
78 batch_size : 64

Listing B.2: Centralized configuration file for the AI forecasting module
(forecasting_config.yml).

Appendix C

Supplementary Exploratory Data
Analysis (EDA) Plots

This appendix provides the complete set of exploratory data analysis (EDA) plots for the Key
Performance Indicators (KPIs) discussed in Chapter 4. These plots, generated from the training
dataset, were foundational in understanding the data’s characteristics—such as seasonality,
distribution, and stationarity—and directly informed the feature engineering and model design
choices for the AI forecasting models.

C.1 EDA for LTE_Traffic_Volume_DL

The following plots provide a comprehensive visual analysis of the hourly LTE_Traffic_Volume_DL
KPI.

Figure C.1: Hourly Time Series of LTE_Traffic_Volume_DL (Training Data).

The time series plot (Figure C.1) showcases a very pronounced and regular daily pat-
tern. Traffic volume consistently surges during evening peak hours and plummets during late-
night/early-morning off-peak hours. No strong long-term linear trend is immediately visible
over the training period.

108

Appendix C. Supplementary Exploratory Data Analysis (EDA) Plots 109

(a) Distribution (Histogram and KDE). (b) Box Plot.

Figure C.2: Distribution and outlier analysis for hourly LTE_Traffic_Volume_DL.

The distribution (Figure C.2a) is significantly right-skewed, a characteristic confirmed by
the mean (1.45 GB) being notably higher than the median (0.97 GB). This skewness indicated
the necessity of a ‘log1p‘ transformation for stabilizing variance during model training. The
box plot (Figure C.2b) further illustrates the skew and highlights outliers representing periods
of exceptionally high traffic.

Figure C.3: Additive Seasonal Decomposition of LTE_Traffic_Volume_DL.

Appendix C. Supplementary Exploratory Data Analysis (EDA) Plots 110

Figure C.4: ACF and PACF Plots for LTE_Traffic_Volume_DL.

Seasonal decomposition (Figure C.3) successfully isolates an extremely strong and regular
daily seasonal component. The Autocorrelation (ACF) and Partial Autocorrelation (PACF)
plots (Figure C.4) unequivocally confirm this dominant daily seasonality, with significant spikes
at lags 24, 48, etc. This pattern informed the selection of seasonal lag features for the LSTM
model.

Figure C.5: LTE_Traffic_Volume_DL by Hour of Day.

The hourly profile (Figure C.5) vividly illustrates the diurnal traffic pattern, with minimal
traffic in the early morning and sharp peaks in the late evening, justifying the creation of
time-of-day features.

Appendix C. Supplementary Exploratory Data Analysis (EDA) Plots 111

C.2 EDA for DL_PRB_usage

The following plots provide a comprehensive visual analysis of the hourly DL_PRB_usage KPI.

Figure C.6: Hourly Time Series of DL_PRB_usage (Training Data).

The time series for DL_PRB_usage (Figure C.6) mirrors the cyclical patterns of traffic volume,
increasing during high data demand and decreasing during low-activity periods.

(a) Distribution (Histogram and KDE). (b) Box Plot.

Figure C.7: Distribution and outlier analysis for hourly DL_PRB_usage.

Similar to traffic, the distribution of DL_PRB_usage (Figure C.7a) is positively skewed. The
box plot (Figure C.7b) confirms this and highlights outliers corresponding to hours of high
resource utilization.

Appendix C. Supplementary Exploratory Data Analysis (EDA) Plots 112

Figure C.8: Additive Seasonal Decomposition of DL_PRB_usage.

Figure C.9: ACF and PACF Plots for DL_PRB_usage.

Seasonal decomposition (Figure C.8) clearly extracts a strong daily seasonal component,
which is further confirmed by the strong, repeating patterns in the ACF/PACF plots (Figure
C.9).

Appendix C. Supplementary Exploratory Data Analysis (EDA) Plots 113

Figure C.10: DL_PRB_usage by Day of Week.

The weekly profile (Figure C.10) indicates differing PRB usage patterns across days, par-
ticularly on weekends, confirming the need for day-of-week features in the forecasting models.

Bibliography

[1] GSMA, “Lte standards evolution towards an all-business-connected primary infrastruc-
ture,” February 2018.

[2] Bale. (2025) Lte architecture. [Online]. Available: https://forum.huawei.com/enterprise/
intl/en/thread/LTE-Architecture/667281353609199616?blogId=667281353609199616

[3] X. Zhang, LTE Optimization Engineering Handbook, 2018.

[4] Huawei Technologies Co., Ltd., eNodeB V100R005C00 KPI Reference, 2012, issue 01,
March 30.

[5] Gartner, “The impact of marginal network performance improvements on operator revenue
and churn,” Gartner, Inc., Tech. Rep., 2023, available to Gartner subscribers.

[6] A. Mason, “Network performance and customer retention: Quantifying revenue protec-
tion,” Analysys Mason Ltd., Tech. Rep., 2022, access requires subscription.

[7] Ericsson, “Ericsson mobility report,” Ericsson AB, Tech. Rep., 2023, accessed: 2025-06-08.
[Online]. Available: https://www.ericsson.com/en/reports-and-papers/mobility-report

[8] S. B. Patel and M. Kansara, “Comparative study of 2g, 3g, and 4g,” International Jour-
nal of Scientific Research in Computer Science, Engineering and Information Technology
(IJSRCSEIT), vol. 3, pp. 2456–3307, September 2018.

[9] K. Budigere, B. Chemmagate et al., “Lte: Long term evolution of 3gpp,” International
Journal of Scientific Research in Computer Science, Engineering and Information Tech-
nology, April 2010.

[10] 3GPP, “Long term evolution (lte) and system architecture evolution (sae),” 2008, 3GPP
Release 8.

[11] DigitalCommons, “Lte phy performance analysis under 3gpp standards parameters,” Dig-
italCommons@University of Nebraska - Lincoln, 2018.

[12] 3GPP, “Evolved universal terrestrial radio access network (e-utran) and evolved packet
core (epc),” 2018, 3GPP TS 36.300.

[13] A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamentals of LTE. Pearson
Education, 2010.

[14] M. Z. Shakir, M. A. Al-Garadi, M. J. Bocus, and O. A. Dobre, “Machine learning for lte/5g
network optimization: A survey,” IEEE Communications Surveys & Tutorials, vol. 25,
no. 1, pp. 486–524, 2023.

114

https://forum.huawei.com/enterprise/intl/en/thread/LTE-Architecture/667281353609199616?blogId=667281353609199616
https://forum.huawei.com/enterprise/intl/en/thread/LTE-Architecture/667281353609199616?blogId=667281353609199616
https://www.ericsson.com/en/reports-and-papers/mobility-report

Bibliography 115

[15] N. H. Mohammed, H. Nashaat, S. M. Abdel-Mageid, and R. Y. Rizk, “A machine learning-
based framework for efficient lte downlink throughput,” Wireless Personal Communica-
tions, vol. 126, no. 3, pp. 2407–2433, 2022.

[16] A. Adeel, H. Larijani, A. Javed, and A. Ahmadinia, “Critical analysis of learning algorithms
in random neural network based cognitive engine for LTE systems,” in Proceedings of the
2015 IEEE 81st Vehicular Technology Conference (VTC Spring). Glasgow, UK: IEEE,
May 2015, pp. 1–5.

[17] H. Wang, F. Xu, Y. Li, P. Zhang, and D. Jin, “Understanding mobile traffic patterns
of large scale cellular towers in urban environment,” in Proceedings of the 2015 Internet
Measurement Conference, Tokyo, Japan, October 2015, pp. 225–238.

[18] Y. Zang, F. Ni, Z. Feng, S. Cui, and Z. Ding, “Wavelet transform processing for cellular
traffic prediction in machine learning networks,” in Proceedings of the 2015 IEEE China
Summit and International Conference on Signal and Information Processing (ChinaSIP).
Chengdu, China: IEEE, July 2015, pp. 458–462.

[19] L. Pierucci and D. Micheli, “A neural network for quality of experience estimation in
mobile communications,” IEEE MultiMedia, vol. 23, no. 3.

[20] F. Xu, Y. Lin, J. Huang, D. Wu, H. Shi, J. Song, and Y. Li, “Big data driven mobile traffic
understanding and forecasting: A time series approach,” IEEE Transactions on Services
Computing, vol. 9, no. 5, pp. 796–805, 2016.

[21] A. Nikravesh, S. Ajila, C.-H. Lung, and W. Ding, “Mobile network traffic prediction using
MLP, MLPWD, and SVM,” in Proceedings of the 2016 IEEE International Congress on
Big Data (BigData Congress). San Francisco, CA, USA: IEEE, June-July 2016, pp.
402–409.

[22] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang, “Spatiotemporal mod-
eling and prediction in cellular networks: A big data enabled deep learning approach,” in
Proceedings of the IEEE INFOCOM 2017 - IEEE Conference on Computer Communica-
tions. Atlanta, GA, USA: IEEE, May 2017, pp. 1–9.

[23] C.-W. Huang, C.-T. Chiang, and Q. Li, “A study of deep learning networks on mobile traffic
forecasting,” in Proceedings of the 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC). Montreal, QC, Canada:
IEEE, October 2017, pp. 1–6.

[24] C. Zhang and P. Patras, “Long-term mobile traffic forecasting using deep spatio-temporal
neural networks,” in Proceedings of the Eighteenth ACM International Symposium on Mo-
bile Ad Hoc Networking and Computing (MobiHoc), Los Angeles, CA, USA, June 2018,
pp. 231–240.

[25] X. Wang, Z. Zhou, F. Xiao, K. Xing, Z. Yang, Y. Liu, and C. Peng, “Spatio-temporal
analysis and prediction of cellular traffic in metropolis,” IEEE Transactions on Mobile
Computing, vol. 18, no. 9, pp. 2190–2202, 2018.

[26] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin, “Improving traffic forecasting for
5g core network scalability: A machine learning approach,” IEEE Network, vol. 32, no. 6,
pp. 42–49, 2018.

[27] A. Akbas, H. Yildiz, A. Ozbayoglu, and B. Tavli, “Neural network based instant parameter
prediction for wireless sensor network optimization models,” Wireless Networks, vol. 25.

Bibliography 116

[28] C. Zhang, H. Zhang, D. Yuan, and M. Zhang, “Citywide cellular traffic prediction based on
densely connected convolutional neural networks,” IEEE Communications Letters, vol. 22,
no. 8, pp. 1656–1659, 2018.

[29] J. Feng, X. Chen, R. Gao, M. Zeng, and Y. Li, “DeepTP: An end-to-end neural network
for mobile cellular traffic prediction,” IEEE Network, vol. 32, no. 6, pp. 108–115, 2018.

[30] Y. Yamada, R. Shinkuma, T. Sato, and E. Oki, “Feature-selection based data prioritization
in mobile traffic prediction using machine learning,” in Proceedings of the 2018 IEEE Global
Communications Conference (GLOBECOM). Abu Dhabi, UAE: IEEE, December 2018,
pp. 1–6.

[31] Y. Hua, Z. Zhao, Z. Liu, X. Chen, R. Li, and H. Zhang, “Traffic prediction based on
random connectivity in deep learning with long short-term memory,” in Proceedings of the
2018 IEEE 88th Vehicular Technology Conference (VTC-Fall).

[32] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “DeepCog: Cognitive
network management in sliced 5G networks with deep learning,” in Proceedings of the
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 118–126.

[33] J. Shodamola, U. Masood, M. Manalastas, and A. Imran, “A machine learning based frame-
work for KPI maximization in emerging networks using mobility parameters,” September
2020, aI4Networks Research Center, Dept. of Electrical & Computer Engineering, Univer-
sity of Oklahoma, USA. Presented possibly at a conference or as a technical report.

[34] N. H. Mohammed, H. Nashaat, S. M. Abdel-Mageid, and R. Y. Rizk, Intelligent Systems
Design and Applications, ch. A Machine Learning-Based Framework for Efficient LTE
Downlink Throughput Optimization.

[35] D. Wass, “Transformer learning for traffic prediction in mobile networks,” KTH Royal
Institute of Technology, Stockholm, Sweden, Degree Project in Computer Science and
Engineering, 2021, tRITA-EECS-EX-2021:319.

[36] S. T. Nabi, M. R. Islam, M. G. R. Alam, M. M. Hassan, S. A. Alqahtani, G. Aloi, and
G. Fortino, “Deep learning based fusion model for multivariate LTE traffic forecasting
and optimized radio parameter estimation,” IEEE Access, vol. 11, pp. 12 345–12 356,
2023. [Online]. Available: https://doi.org/10.1109/ACCESS.2023.3242861

[37] S. Sharma, “Machine learning-based predictive modeling for 4G long term evolution (LTE)
traffic prediction,” 2023, publication details unavailable. Year estimated from table context.

[38] M. A. Mohammadi Banadaki, “Optimizing LTE network performance using machine
learning techniques,” MSc Research Project, Arden University, 2023, course code:
RES6012SCC-Research Project.

[39] A. G. B. Colpitts and B. R. Petersen, “Short-term multivariate KPI forecasting in rural
fixed wireless LTE networks,” IEEE Networking Letters, 2023.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[41] S. J. Taylor and B. Letham, “Forecasting at scale,” The American Statistician, vol. 72,
no. 1, pp. 37–45, 2018.

https://doi.org/10.1109/ACCESS.2023.3242861

Bibliography 117

[42] S. Sesia, I. Toufik, and M. Baker, LTE – The UMTS Long Term Evolution: From Theory
to Practice, second edition ed. John Wiley Sons, 2011.

[43] X. Zhang, LTE Optimization Engineering Handbook. John Wiley Sons, 2018.

[44] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-generation
Hyperparameter Optimization Framework,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, ser. KDD ’19. New
York, NY, USA: Association for Computing Machinery, 2019, pp. 2623–2631.

[45] K. K. A. Ghany, H. M. Zawbaa, and H. M. Sabri, “COVID-19 prediction using LSTM
algorithm: GCC case study,” Informatics in Medicine Unlocked, vol. 26, p. 100714, 2021.

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. [Online].
Available: http://www.deeplearningbook.org

[47] S. Dash, C. Chakraborty, S. K. Giri, and S. K. Pani, “Intelligent computing on time-series
data analysis and prediction of covid-19 pandemics,” Pattern Recognition Letters, vol. 151,
pp. 69–75, November 2021.

[48] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 2nd ed.
OTexts, 2018, melbourne, Australia. [Online]. Available: https://otexts.com/fpp2/

[49] N. I. of Standards and Technology, “Percentiles,” https://www.itl.nist.gov/div898/
handbook/prc/section2/prc252.htm, 2012, accessed: 2025-06-08.

[50] A. Y. Alaouchiche and M. W. Kessoum, “Kpi analytics platform: An integrated approach
for cross-generation mobile network performance monitoring and analysis,” Master Project,
ENSTA, 2025, master Report.

[51] M. A. A. Mohammadi Banadaki, “Ai-driven multi-kpi optimization for self-organizing
cellular networks,” Ph.D. dissertation, University of Waterloo, 2023, available at UWSpace:
http://hdl.handle.net/10012/19888.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[53] D. Wass, “Transformer learning for traffic prediction in mobile networks,” Degree Project
in Computer Science and Engineering, Second Cycle, KTH Royal Institute of Technology,
Stockholm, Sweden, 2021, 30 credits.

http://www.deeplearningbook.org
https://otexts.com/fpp2/
https://www.itl.nist.gov/div898/handbook/prc/section2/prc252.htm
https://www.itl.nist.gov/div898/handbook/prc/section2/prc252.htm
http://hdl.handle.net/10012/19888

	List of Figures
	List of Tables
	Acronyms
	List of Symbols
	Introduction
	Theoretical Background and State of the Art
	Overview of Mobile Networks
	Brief Introduction to Mobile Network Generations (2G, 3G, 4G)
	Schema of Mobile Network Generations

	Introduction to LTE
	LTE as the Foundation for 5G and Beyond

	LTE Architecture and Components
	Overview of LTE Architecture
	Interaction Between UE, E-UTRAN, and EPC
	User Equipment (UE)
	E-UTRAN: The Radio Access Network
	EPC: The Core Network

	Key Performance Indicators (KPIs) and Optimization in LTE
	Defining Key Performance Indicators (KPIs)
	KPI Analysis Process
	Data-Driven Methods for Network Optimization

	State of the Art: Existing Work on LTE Optimization using AI
	Comparative Table of Studies
	Synthesis of Limitations and Challenges

	Methodology
	Problem Statement
	Problem Overview

	Insights from the State of the Art
	Trends in Research: Focus on Prediction Rather than Optimization
	Multi-KPI Trade-offs: A Complex Balancing Problem

	Proposed Solution
	Shifting from Direct Optimization to Predictive Analytics for Decision Support
	Choice of AI Models: LSTM and Prophet Models
	Role of Prediction in Network optimisation

	Tools and Technologies Used in Our Solution
	Data Warehousing and ETL for Telecom Analytics
	Full-Stack Web Application Development for Data Products

	Design and Implementation of the Data Management Subsystem
	Overall System Architecture
	Project File Structure for Data Management

	Data Warehouse Design and Rationale
	Dimensional Modeling Approach
	Detailed Schema
	Data Granularity and Aggregation Strategy
	Indexing, Materialized Views, and Performance Considerations

	ETL Pipeline Implementation
	Data Extraction and Staging
	Transformation Logic: KPI Calculation, Data Cleansing
	Loading Data into the DWH (Dimension and Fact Tables)
	Automated Aggregation Scripts (Daily, Geo, Busy Hour)
	Data Archiving and Maintenance Procedures

	Data Quality Assurance within the Pipeline

	AI-Based KPI Forecasting
	Introduction to AI-Based Forecasting for LTE Network Optimization
	Theoretical Foundations of Forecasting Models
	Long Short-Term Memory (LSTM) Networks
	The Prophet Model

	Data Foundation and Exploratory Analysis for Forecasting
	Data Sourcing, Scope, and Initial Preprocessing
	Exploratory Data Analysis (EDA) of Training Data
	Translating EDA Insights into Model Architecture

	Forecasting Model Development: An Iterative Journey
	Baseline Model Implementation and Initial Performance Benchmarks
	Initial Challenges with Advanced Models and Evaluation Pipeline Verification
	The Prophet Model as an Advanced Baseline
	LSTM Model: Architectural Evolution and Optimization

	Flask Backend for AI Service and Visualization
	Main Backend Parts and Integration (app/ai_insights/ folder)
	AI Visualization

	Experimental Setup, Model Evaluation, and Results
	Experimental Setup
	Justification for Single-Cell Deep-Dive Methodology
	Dataset and Partitioning for Evaluation
	Evaluation Metrics for Forecasting Performance
	Baseline Models for Comparison

	Forecasting Performance Evaluation and Results
	Quantitative Performance Metrics: Comparative Analysis
	Visual Evaluation of Forecasts and Residuals

	Qualitative Evaluation of the Forecasting Interface
	Usability of Forecast Configuration
	Effectiveness of Forecast Visualizations

	Discussion of Results and Optimization Implications
	Implications for LTE Network Optimization
	Enhanced Proactive Resource Management
	Improved Operational Efficiency
	Data-Driven Input for Higher-Level Optimization Algorithms

	Challenges Encountered During System Development
	Limitations of the Current Forecasting System

	Conclusion and Future Work
	Summary of Key Contributions and Achievements
	Achievement of Project Objectives
	Overall Conclusion
	Recommendations for Future Work and System Evolution

	Appendices
	System Orchestration and Environment Setup
	Workflow Orchestration with Apache Airflow
	Reproducible Development Environment with Docker Compose

	Metadata and Configuration Files
	ETL and Data Warehouse Configuration
	KPI and Counter Definitions
	Source Data Mapping Configuration

	AI Forecasting Module Configuration

	Supplementary Exploratory Data Analysis (EDA) Plots
	EDA for LTE_Traffic_Volume_DL
	EDA for DL_PRB_usage

