People’s Democratic Republic of Algeria
Tl b 2l % Sl 4 sgendl

T
5 Ministry of Higher Education and scientific researche //
ENSTA) - @ utll
Ecole Natonale Supériure des Technlogies Avancées GM‘ ES . \ P Jw\ r;w\ O)‘)j

‘b National Higher School of Advanced Technologies S s Rl

Lodiza)l Ol oS L) 2l) 2y

Electrical Engineering and Industrial Computing Department
Final Year Project to Obtain the Diploma of
Engineering
- Field -

Telecommunication
- Specialty -

Telecommunication Systems and Networking

- Subject -

Machine Learning-Based DDoS Attacks Detection
and Mitigation in O-RAN Enabled 5G Networks

Realized by

AISSA Manel Fatima Zohra & HAOUA Rania

Members of the Jury

CHIALI Imane Chair
BOUTOUTA Dalila Examiner
BEGHAMI Sami Examiner
BENDOUDA Djamila Supervisor

Algiers, June 24th 2025
Academic year 2024-2025

Dedication

To myself
For the perseverance, the silent battles, and the determination that brought me here.
This achievement is a tribute to my personal growth.

To my dear father
Your unwavering support and strength have been a constant source of motivation. May
these pages carry the echo of my deepest gratitude and love.

To my dear mother
Your infinite patience, care, and encouragement have illuminated my path throughout
this journey. This work reflects all that you have given me.

To my beloved sister Ines and my dear brother Youssef
Your presence, affection, and joy have been my anchors. You are part of every step I
take forward.

To all my family
For your love, warmth, and belief in me — even in silence.

To my friends
Your encouragement and kindness have lightened the road. May success always
accompany you.

To all those I love
Thank you for being part of this journey.

Manel

Dedication

At this very moment, as I write these words, I am deeply aware that I would not have
reached this point without the guidance and grace of God.

My deepest gratitude goes to those whose presence, love, and support have shaped this
journey.

To my beloved parents, your love, your care, and your unwavering support have been
the foundation of everything I have achieved. From my very first steps to this final
milestone, you have stood beside me, and for that, I am endlessly grateful.

To my dear siblings, your constant encouragement and support have always given me
strength, even in the hardest times.

To my friends, thank you all for being part of this journey. A special thank you to
Maria, who has always stood by my side with kindness and loyalty.

To everyone who helped me, in small or big ways, since the very beginning, your impact
is forever part of this accomplishment.

Thank you all.

And finally, I dedicate this work to myself, for never giving up, for battling through
every challenge, even when it was hard to.

Rania

ii

Acknowledgment

First and foremost, we would like to express our deepest gratitude to our god for
granting us the strength, patience, and determination needed to complete this project.

We are especially grateful to our supervisor, BENDOUDA Djamila, for her
unwavering support, generous guidance, and continuous encouragement. Her expertise,
availability, and trust have been invaluable throughout every stage of this work. Her
insightful advice has significantly enriched the quality of our project.

We would also like to extend our heartfelt thanks to the members of the jury CHIALI

Imane, BOUTOUTA Dalila, and BEGHAMI Sami for taking the time to examine

and evaluate our work. Their thoughtful feedback and valuable suggestions are sincerely
appreciated.

We are also profoundly thankful to our families and friends, who have been a constant
source of support and motivation throughout the completion of this thesis. Their
encouragement, understanding, and belief in us were instrumental in helping us
overcome challenges and achieve our goals.

Finally, to all those who contributed directly or indirectly to the success of this project,
thank you. Your support has meant a great deal to us.

iii

sl

S S il SV Jle G Ul Vo2 (56) sl) o2 3 O-RAN 502 £5 Jic
156l 4 sl 180201 G (RIC) %541 250 Sl Sy I3 0 S Sl 321y eV sl
S o Sl Glate Joab 3 O-RAN 3 1Y K3V S5 (SDN) ¢ ol b 3 al))l e
(35S Bal Dbl Lol Oyl 0ds OB (3 o G A3, 3Salys i) o o5 L el
LWL g5 200 s o el i) ods adlaly (DDOS). G5l dedel (2 Slomb AL) Ll e
ol e O-RAN S Jols aad el 3 U gadly DDoS wle e (a2 SU 5

f\.\é.-:“.ulf J Ly (slice-aware) Emell 2By wals Hlas) L2t o ijil\ JH a e e
o) 4l 0o o FlexRIC. S 4y e Iy (OAI) OpenAirlnterface dauly 3Lai] & (ol UL
@2 (g do Bt e g2 5 o) dbasl 3 3l Sl pmet L 2l 22 0 By 0 3510)
(Random &,2e le oA (V) bl 31 o 58 oy genan L e 280N 1,6 55 (RAN).
o SlBlo Yl (BILSTM) ¢ ol 43l¢ 3,1 5 55 T2l (CNN) ¢ 23l V) dpadl) 201 Forest) ¢
1:905 ccos ol olel 07499 ok, D5 i celsl Ll w12l i) 35 bl 8 (ensemble). z#
gl Vs a8l pllss g ¢ e oo 0T Lo BULT e ¢ RAL 00l G s, § ~ K2 ole
ol ey 3L O eIy 4 S L Jid 12 et 2 (UPF) ¢ paiuiall (e 2l 0,5
€ RIC) (Near-RT Aakl ol o e A RIC o 55800 chaa XAPp 3y ps% il b3 e
A Jo 7B 5l Lad Release) (RRC RRC' 131" o Lol FlexRIC:

Sle Y Jixe (2L s DDOS lemd G s BLais) 5 oo ialls by, 2l £ S5
g el Jlar¥1 (3 adle arls] o LUkl s cppmbl O3 b 3 1 Gabsia b oy b
et By e T ool Vs oty cple K8 e 2 i sl e Bl Jo WY1 5,5 o
2 Gl Slaad) drs 3 3sel) o 5G OB 585 Ol 1S Kt e

OpenAirlnterfacec ¢ Y| g\xﬂ‘ (DDoS) ¢ dsud:l L& Sle O-RANC ¢ jusld) |4 u‘i ielte LK
FlexRIC.

iv

Abstract

The integration of O-RAN into 5G networks marks a major paradigm shift in mobile
communications, introducing openness, programmability, and Al-driven control through
centralized RAN Intelligent Controllers (RIC). Inspired by Software-Defined Networking
(SDN), O-RAN’s core innovation is the decoupling of control logic from the data plane,
enabling dynamic and intelligent network management. However, these advancements
also come with significant security challenges, particularly the increasing threat of Dis-
tributed Denial of Service (DDoS) attacks. To address these vulnerabilities, this project
introduces an intelligent framework for real time DDoS detection and mitigation within
a next generation Open RAN (O-RAN) 5G network.

At the core of our solution is a fully containerized and slice aware 5G Simulated
Network, built using OpenAirlnterface (OAI) and orchestrated through the FlexRIC
controller. This architecture enables dynamic and programmable network management,
offering precise control over user connectivity and network slicing at the RAN level. To
enhance detection capabilities, we designed and evaluated a suite of machine learning
models. These include Random Forest, Convolutional Neural Network (CNN), Bidirec-
tional Long Short-Term Memory (BiLSTM), and an ensemble approach. Among them,
the Random Forest model demonstrated the best performance, achieving 99.0% accu-
racy during training and 90% accuracy under real time traffic simulations, all while
maintaining low computational overhead. This detection system was integrated into the
User Plane Function (UPF), allowing real time traffic analysis and anomaly detection.
When malicious activity is identified, a dedicated xApp deployed in the Near-RT RIC via
FlexRIC triggers an RRC Release command, immediately disconnecting the compromised
User Equipment (UE).

Experimental results validate the effectiveness of our system. It achieves accurate,
real time DDoS detection with a low false positive rate and consistently low latency, even
under attack conditions, while maintaining high uplink throughput. This demonstrates
the framework’s ability to preserve performance for legitimate users. Overall, this work
presents a practical and scalable architecture that significantly strengthens the security
and resilience of 5G networks against emerging cyber threats.

Keywords: 5G Security, O-RAN, DDoS , Machine Learning, OpenAirlnterface,
FlexRIC.

Résumé

L’intégration de I'architecture O-RAN dans les réseaux 5G marque un tournant majeur
dans le domaine des communications mobiles, en introduisant ouverture, programmabilité
et controle intelligent via des RAN Intelligent Controllers (RIC) centralisés. Inspirée des
principes du Software Defined Networking (SDN), I'innovation fondamentale de ’'O-RAN
réside dans la séparation entre la logique de controle et le plan de données, permettant une
gestion dynamique, fine et intelligente du réseau. Toutefois, ces avancées technologiques
s’accompagnent de nouveaux défis de sécurité, notamment la montée en puissance des
attaques par déni de service distribué (DDoS). Afin de répondre a ces vulnérabilités, ce
projet propose un cadre intelligent pour la détection et la mitigation en temps réel des
attaques DDoS au sein d’un réseau 5G de nouvelle génération basé sur ’O-RAN.

Au coeur de notre solution se trouve un banc d’essai 5G entierement conteneurisé
et compatible avec le slicing, congu a 'aide de OpenAirlnterface (OAI) et orchestré via
le controleur FlexRIC. Cette architecture offre une gestion réseau dynamique et pro-
grammable, avec un contréle précis de la connectivité des utilisateurs et du découpage
réseau (network slicing) au niveau de la RAN.Pour renforcer les capacités de détection,
nous avons conc¢u et évalué une suite de modeles d’apprentissage automatique, incluant
Random Forest, Convolutional Neural Network (CNN), Bidirectional Long Short-Term
Memory (BiLSTM) ainsi qu’une approche par ensemble (ensemble learning). Parmi
ces modeles, Random Forest a montré les meilleures performances, atteignant 99,0% de
précision en phase d’apprentissage et 90% sous trafic réel simulé, tout en conservant
une empreinte computationnelle réduite.Le systeme de détection a été intégré a la User
Plane Function (UPF), permettant une analyse du trafic en temps réel et la détection
d’anomalies. En cas d’activité malveillante, une xApp dédiée, déployée dans le Near-RT
RIC via FlexRIC, déclenche automatiquement une commande RRC Release, déconnec-
tant immédiatement ’équipement utilisateur (UE) compromis.

Les résultats expérimentaux confirment 'efficacité de notre systeme. II permet une
détection précise et en temps réel des attaques DDoS avec un faible taux de faux positifs
et une latence constamment réduite, méme en conditions d’attaque, tout en maintenant
un débit élevé en liaison montante. Cela démontre la capacité du framework a préserver
les performances pour les utilisateurs légitimes. Globalement, ce travail propose une
architecture pratique et évolutive qui renforce significativement la sécurité et la résilience
des réseaux HG face aux cybermenaces émergentes.

Mots-clés: Sécurité 5G, O-RAN, attaque DDoS, apprentissage automatique, Ope-
nAirInterface, FlexRIC.

vi

Contents

Dedication
Acknowledgment
Abstract

1 GENERAL INTRODUCTION

1.1 Introduction
1.2 Research Motivation
1.3 Research Objectives
1.4 Project Structure

2 BACKGROUND AND RELATED WORK

2.1 Introduction
2.2 5G Network Architecture
2.2.1 User Equipment
2.2.2 Radio Access Network
2.2.3 Core Network Functions
2.3 5G Network Slicing
2.4 5G Network Vulnerabilities,
2.5 DDoS Attacks on 5G Networks
2.5.1 Types of DDoS Attacks
2.6 Traditional Detection Methods
2.6.1 Static Methods
2.6.2 Threshold-Based Detection
2.6.3 Signature-Based Detection
2.7 Modern Detection Methods
2.7.1 Machine Learning Overview
2.7.2 Random Forest
2.7.3 Convolutional Neural Networks
2.7.4 Bidirectional Long Short-Term Memory
2.7.5 Activation Functions
2.7.6 Loss Functions
2.7.7 Overfitting and Regularization Techniques
2.7.8 Optimization Algorithms.
2.7.9 Performance Metrics
2.8 Related Work o
2.8.1 Comparative Analysis of Related Works

3 METHODOLOGY

vii

iii

W NN = =

00 D T U R

10
12
13
13
13
14
14
14
15
16
17
18
19
20
21
22
25

28

viii Contents
3.1 Introduction 28
3.2 5G Architecture Implementation 29

3.2.1 Environment Overview 29
3.2.2 OpenAirlnterface Deployment 30
3.2.3 FlexRIC Controller Integration 34
3.3 Simulating Attack Scenarios 37
3.3.1 SYN Flood Attack 37
3.3.2 UDP Flood Attack 38
3.4 Dataset Preprocessing 38
3.4.1 Description of Dataset 38
3.4.2 Dataset Enhancement for 5G DDoS Detection 38
3.4.3 Preprocessing Pipeline 00 L. 40
3.5 Model Design and Training L. 44
3.5.1 1D-CNN Based Model 46
3.5.2 BIiLSTM-Based Model 47
3.5.3 Random Forest-Based Model 49
3.5.4 Ensemble Model 49
3.5.5 Comparative Overview of the Designed Models 51
3.6 Detection Framework 51
3.6.1 Packet Capture and Decapsulation 53
3.6.2 Feature Extraction, 53
3.6.3 Prediction and Action L. 55
3.7 Mitigation Framework oo 5}
3.7.1 Imitial xApp from FlexRIC 56
3.7.2 Custom Enhancements 58

4 RESULTS AND DISCUSSION 64
4.1 Introduction 64
4.2 Model Evaluationo 64

4.2.1 Random Forest Analysis 65
4.2.2 CNN Model Analysis 65
4.2.3 BILSTM Model Analysis 67
4.2.4 FEnsemble Model Analysis 68
4.3 Model Performance Comparison 69
4.3.1 Interpretation and Discussion 70
4.4 Defense Framework Results 71
4.4.1 Real time Detection Results 72
4.4.2 Real time Mitigation Results 73
4.5 Evaluation of the Defense Framework 74
4.5.1 Round Trip Time L 74
4.5.2 Throughputo 75

5 CONCLUSION AND FUTURE WORK 77

5.1 Conclusion 77
5.1.1 Achievements of the Research 77
5.2 Future Work 79

References 80

Contents ix
A Software Tools 86
A.1 Preprocessing and Training Tools 86

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

O-RAN Architecture [3]o 7
5G Architecture [13] 8
DoS/DDoS Attacks [19] 11
SYN Flood Attack [20] 12
CNN Architecture [38] 15
BiLSTM Architecture [44] Lo 16
Mustration of Dropout technique [50]. 20
Confusion Matrix Example [52]. L. 21
Proposed Method Strategyo 29
Simulated 5G Network 31
5GCN running componentso 32
UEs connected to distinct slices with active PDU sessions 35
gNB E2 Agent log: successful E2 connection 36
FlexRIC controller log showing registration of multiple Service Models and

E2 connection acceptance L. 36
Types of DDoS attacks in CICDDoS2019 [66]. 39
Dataset Enhancement for 5G DDoS Detection 39
Class distribution in the CICDDo0S2019 dataset 40
Correlation matrix between numerical features 42
Training Pipeline oo 45
CNN Model Architecture 47
BiLSTM Model Architecture 48
Ensemble architecture oo 50
Detection Framework 52
IDS Integration within the 5G Network 52
Mitigation strategy Diagramo o7
KPM Measurement Report Showing RAN_UE IDs. 61
Confusion Matrix — Random Forest 65
Confusion Matrix CNN, 66
CNN Training and Validation Accuracy and Loss Curves 66
Confusion Matrix BiLSTM 67
BiLLSTM Training and Validation Accuracy and Loss Curves 67
Ensemble’s Confusion Matrix 69
Precision, Recall, and F1-Score for Models on CICDDo0oS2019 70
Precision, Recall, and F1-Score for Models on CICDDoS-5G 70
Traffic patterns from UEs connected to the same slice 72
IDS Detection results. 72
xApp Action Upon Attack Detection: RRC Release for Target UE. . . . 73

List of Figures xi

4.12 gNB logs confirming RRC Release execution for UE1 73
4.13 RTT comparison. 75
4.14 Throughput comparison of normal UE during DDoS attack with and with-

out defense mechanism 76

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

Comparison of Related Works with Our Proposed Framework 26
Implementation Environment Specifications 30
Total Traffic Before Preprocessing 40
Top 10 Selected Features for CNN and BiLSTM Models 43
Top 15 Selected Features for Random Forest Model 44
Final Dataset Structure After Preprocessing 45
CNN Architecture for Binary DDoS Attack Detection 47
BiLSTM Architecture for Binary DDoS Attack Detection 48
Comparative Table of Models for DDoS Attack Detection 51
Accuracy Comparison 64
Performance Comparison of ML/DL Models for DDoS Detection in 5G

Networks 71

Xii

List of Acronyms

3GPP 3rd Generation Partnership Project
5G 5th Generation
AMF Access and Mobility Management Function

ANNs Artificial Neural Networks
AUSF Authentication Server Function

BiLSTM Bidirectional Long Short-Term Memory

CNN Convolutional Neural Network
CSV Comma-Separated Values
DDoS Distributed Denial of Service
DL Deep Learning

DN Data Network

eMBB Enhanced Mobile Broadband
gNB gNodeB (5G base station)

GTP-U GPRS Tunneling Protocol - User Plane

IDS Intrusion Detection System
[oT Internet of Things
IP Internet Protocol

LSTM Long Short-Term Memory

MAC Medium Access Control
ML Machine Learning
mMTC Massive Machine-Type Communications

NGAP Next Generation Application Protocol

NRF Network Repository Function

xiii

xiv List of Acronyms
NSSF Network Slice Selection Function

O-CU Open Centralized Unit

O-DU Open Distributed Unit

O-RAN Open Radio Access Network

O-RU Open Radio Unit

OAI OpenAirlnterface

PCAP Packet Capture (File Format)

PCF Policy Control Function

PDU Protocol Data Unit

PRB Physical Ressource Block

QoS Quality of Service

RAN Radio Access Network

RC RAN Control

RIC RAN Intelligent Controller

RLC Radio Link Control

RRC Radio Resource Control

SMF Session Management Function

SMO Service Management and Orchestration
UDM Unified Data Management

UE User Equipment

UPF User Plane Function

URLLC Ultra-Reliable Low Latency Communications
xApps External Applications (in O-RAN architecture)

Chapter 1

GENERAL INTRODUCTION

1.1 Introduction

In the era of hyper connectivity, 5G networks form the backbone of next generation dig-
ital infrastructure, delivering ultra fast speeds, low latency, and the capacity to support
billions of connected devices. These capabilities power transformative applications such
as autonomous vehicles, smart factories, and remote healthcare. Unlike previous gener-
ations, 5G is not just a communication upgrade, it represents a complete architectural
shift, designed to support the integration of digital and physical systems in real time [1].

However, with this transformation comes a greater exposure to cybersecurity risks.
As 5G becomes deeply embedded in critical services, it becomes a lucrative target for
cyber threats, particularly Distributed Denial of Service (DDoS) attacks. These threats
exploit the decentralized, high bandwidth nature of 5G to overload network functions,
disrupt services, and potentially cause large scale operational failures [1,2].

A critical target of such attacks is autonomous vehicles and Vehicle-to-Everything
(V2X) systems, which depend on real time alerts to avoid collisions. DDoS related delays
can disrupt these communications, leading to severe accidents. Ensuring low latency,
reliable connectivity is therefore essential to avoid these problems.

Traditional security mechanisms often fall short in this environment due to their static
nature and limited adaptability. The dynamic features of 5G, including massive device
connectivity, network slicing, and edge computing, expand the attack surface and require
new, more flexible defenses [1].

To address these challenges, 5G architecture is evolving through the adoption of the
Open Radio Access Network (O-RAN) paradigm. Inspired by Software Defined Net-
working(SDN), O-RAN introduces modularity and programmability by decoupling the
control and data planes within the Radio Access Network [3]. This design splits tradi-
tional RAN elements into distinct, interoperable components that are orchestrated by an
intelligent RAN controller, the near Real-Time RIC, which enables the deployment of
custom applications known as xApps that can dynamically monitor, analyze, and control
RAN behavior.

Crucially, the programmability of O-RAN provides a natural foundation for incorpo-
rating machine learning into network operations in a meaningful way. Instead of relying
solely on fixed rules or manual oversight, machine learning can help the network recog-
nize patterns, spot unusual behavior, and respond to potential threats more intelligently.
In the context of this work, machine learning is used to enhance the detection of DDoS
attacks making it possible to react faster and more effectively as threats emerge.

2 Chapter 1. GENERAL INTRODUCTION

This thesis proposes a machine learning (ML) based security framework that lever-
ages the flexibility of O-RAN to detect and mitigate DDoS attacks in real time. We
implement and evaluate this framework using a fully containerized 5G Network based on
OpenAirlnterface (OAI) [4], extended with the FlexRIC controller [5] to support near-RT
RIC operations. This setup provides a realistic and modular environment for simulating
real world network behavior and evaluating intelligent, adaptive security mechanisms.

By combining the openness of O-RAN with the analytical power of machine learn-
ing, this research aims to make real time, intelligent threat detection and response a
native capability of future mobile networks ultimately ensuring the resilience, safety, and
reliability of critical digital services.

1.2 Research Motivation

The evolution of 5G networks has introduced not only faster and more reliable connec-
tivity but also a shift in how networks are architected and managed. A major innovation
in this transformation is the O-RAN, which embraces openness, modularity, and pro-
grammability by decoupling traditional monolithic RAN components. This openness is
a game changer, enabling innovation, vendor interoperability, and the deployment of
custom xApps for real time control and optimization.

However, this flexibility comes at a cost. The O-RAN architecture widens the attack
surface by exposing more interfaces, increasing software complexity, and introducing new
trust boundaries. Unlike traditional, closed RAN systems, O-RAN components can be
targeted independently, and security can no longer rely solely on isolation or proprietary
implementations [6].

Simultaneously, With the growth of 5G networks, the amount and variety of data
traffic have increased significantly, coming from many types of devices and services. This
traffic is not only larger in volume but also faster and more dynamic, making it much
harder to monitor and protect. Traditional security methods are no longer effective be-
cause they cannot keep up with the speed and complexity of 5G traffic. This is especially
true for DDoS attacks, which have become more difficult to detect and stop in real time,
as the malicious traffic often blends in with normal network activity.

These challenges highlight the pressing need for smarter and more adaptive defense
mechanisms, especially ones that can operate within the open and programmable na-
ture of O-RAN. Leveraging Machine Learning (ML) and Deep Learning (DL) presents a
promising direction for understanding complex traffic behavior and identifying malicious
patterns more effectively. With the right integration, these intelligent techniques can en-
hance the overall security of next generation networks without compromising performance
or flexibility.

1.3 Research Objectives

The primary objective of this research is to design, implement, and validate an intelligent
machine learning-based framework for the detection and mitigation of DDoS attacks in
O-RAN Enabled 5G Networks. The proposed framework will leverage real time data
processing capabilities to significantly enhance network security.

To achieve this aim, the research is structured around the following specific objectives:

1.4. Project Structure 3

1. Emulate a 5G Slicing Network environment : Develop and deploy an (O-
RAN) 5G slicing environmen using OpenAirInterface (OAI), integrated with the
FlexRIC controller, to simulate realistic network environment and enable dynamic
control and monitoring.

2. Construct and Preprocess an Enhanced Dataset for Model Training:
Augment the CICDDo0S2019 benchmark dataset by injecting emulated 5G traffic
captured from the simulated 5G network, creating a more representative dataset
(CICDDoS-5G). The enhanced dataset will undergo thorough preprocessing to ex-
tract relevant features from both benign and malicious traffic, ensuring its suitabil-
ity for training effective ML /DL models.

3. Develop and Implement ML/DL Algorithms: Design and apply advanced
ML and DL algorithms tailored for DDoS detection in 5G traffic. These models
will be optimized to handle the complex patterns inherent to 5G networks.

4. Design a Real Time Detection System: Create and implement a system capa-
ble of capturing live network traffic and detecting potential DDoS attacks in real
time using the trained models.

5. Implement Mitigation Mechanisms: Develop and deploy automated strategies
to mitigate detected DDoS attacks, while ensuring minimal disruption to legitimate
network services.

6. Evaluate Model and System Performance: Conduct a comprehensive eval-
uation of both the trained models and the overall defense framework using key
performance metrics, and the impact on network performance.

1.4 Project Structure

This project is structured into four key chapters, each building towards an effective so-
lution for DDoS detection and mitigation in O-RAN enabled 5G networks:

o Chapter 2 provides the foundational context, introducing 5G and O-RAN archi-
tectures, DDoS attack taxonomy, and relevant ML /DL models. Tt also includes a
review of related works, highlighting the latest research in the field.

o Chapter 3 outlines the simulation framework, enhanced dataset preparation, and
training models (Random Forest, 1D-CNN, BiLSTM, and ensemble). It also presents
the integration of a real time detection and mitigation system in simulated 5G en-
vironment.

o Chapter 4 presents a comparative analysis of model performance and evaluates
the defense system within the 5G simulated environment.

o Chapter 5 concludes the study by summarizing achievements and proposing future
research directions to advance intelligent DDoS defense.

Chapter 2

BACKGROUND AND RELATED
WORK

2.1 Introduction

This chapter provides an overview of the key concepts and technologies relevant to our
study. It begins by describing the 5G network architecture and the principles of O-RAN
and network slicing, which are essential for understanding the system’s structure and
challenges. It then explores the growing threat of DDoS attacks in 5G environments and
discusses the limitations of traditional detection methods. To address these issues, the
chapter introduces machine learning and deep learning techniques as promising solutions
and also covers key ML concepts such as activation functions, loss functions, regulariza-
tion techniques, and optimization algorithms, which are essential for building accurate
detection systems in the complex and high speed environment of 5G networks. Finally, it
reviews recent research in the field to identify existing approaches and limitations, helping
us build a clear roadmap for the design and implementation of our proposed solution.

2.2 5G Network Architecture

The 5G network architecture introduces a modern and flexible framework designed to
support high-speed data transmission, ultra-low latency, and massive device connectiv-
ity. Developed under the guidance of the 3rd Generation Partnership Project (3GPP),
it was introduced globally in 2019 [7]. Unlike previous generations, 5G is based on
a Service-Based Architecture (SBA), software-defined networking (SDN) and network
function virtualization (NFV) for enhanced scalability [8].

5G networks rely on two main frequency ranges to deliver versatile connectivity. Fre-
quency Range 1 (FR1), also known as Sub-6 GHz which serves as the backbone of 5G,
balancing speed and coverage. Its low-band frequencies (below 1 GHz) stretch across vast
rural areas and support massive [oT deployments, by prioritizing reliability over speed.
Mid-band frequencies (2-6 GHz), strike a sweet spot—offering faster speeds for urban
smartphone users and connected cars while maintaining reasonable coverage. the sec-
ond range (mmWave,FR2) operates at 24 GHz and above, acting as a speed powerhouse
for dense cities. though its signals struggle with obstacles like walls, requiring dense net-
works of small cells. Together, these frequencies allow 5G to meet diverse needs: seamless
video calls, mission-critical factory automation via ultra-reliable low-latency links, and

4

2.2. 5G Network Architecture 5

blazing-fast mmWave for immersive tech. [9].
It is broadly divided into three main sections: the User Equipment (UE), the Radio
Access Network (RAN), and the Core Network.

2.2.1 User Equipment

User Equipment refers to any device that connects to the 5G network, such as smart-
phones, IoT sensors, tablets, and autonomous vehicles. The UE connects to the RAN via
advanced wireless technologies like massive MIMO and beamforming [1].

2.2.2 Radio Access Network

The 5G RAN is the intermediary layer between the UE and the 5G Core (5GC). The
primary component of the RAN is the gNodeB, which connects devices to the network.
Its key functionalities include UE admission control, radio resource management, mobility
control, routing of user/control-plane packets, Quality of Service (QoS) management, and
support for network slicing [10].

O-RAN Architecture Overview

Traditional RAN architectures have been reliable but face major drawbacks in the 5G
era due to their rigid, vendor-specific designs, where hardware and software are tightly
coupled and controlled by a single manufacturer. This limits flexibility, slows innovation,
and prevents operators from customizing their networks. In response to these challenges,
The Open RAN was introduced to promote openness, interoperability, and intelligence in
the RAN domain, breaking down the RAN into modular components like the Radio Unit
(RU), Distributed Unit (DU), and Centralized Unit (CU) with open interfaces between
them, allowing different vendors to work together. One of the key innovations in O-RAN
is the introduction of the RAN Intelligent Controller (RIC), which allows operators to
run real-time optimization apps(xApps) for tasks like mobility management, load bal-
ancing, and even DDoS mitigation. This open and programmable framework empowers
network operators with unprecedented control and visibility over the RAN, enhancing
both performance and adaptability in 5G networks.
As shown in Figure 2.1, the key elements of the O-RAN architecture are:

« Service Management and Orchestration (SMO): The SMO is the control
center of the O-RAN system. It’s responsible for managing and coordinating all
the parts of the network, including the RAN components (RU, DU, CU), the RICs
(Near-RT and Non-RT), and the open interfaces between them.

+ Non-Real-Time RAN Intelligent Controller (Non-RT RIC): The Non-RT
RIC is part of the Service Management and Orchestration (SMO) framework. which
operates on a timescale of more than 1 second, and focuses on non-real-time tasks
like AT model training, network analytics, and orchestration.It hosts rApps, which
gather performance metrics, train models, and issue strategic policies via the Al

interface to the Near-RT RIC [11].

« Near-Real-Time RAN Intelligent Controller (Near-RT RIC): This con-

troller operates on a 10ms to 1s timescale and enables real-time optimization of

Chapter 2. BACKGROUND AND RELATED WORK

RAN elements like the O-CU and O-DU through the E2 interface. It hosts xApps,
which are software modules that can be deployed to perform that perform dy-

namic tasks such as radio resource management, and network slicing assurance
using AI/ML models and UE/cell metrics [11].

Open Centralized Unit (O-CU): At the top of the RAN stack lies the O-CU,
which performs higher-layer RAN functions such as radio resource control (RRC),
packet data convergence protocol (PDCP), and service data adaptation (SDAP).
These layers manage session handling, QoS enforcement, and secure communica-
tion. The O-CU is typically split into two subcomponents,O-CU-CP (control
plane) and O-CU-UP (user plane), which communicate over the E1 interface.
This split allows for independent scaling and optimization of control and user traf-
fic. Importantly, both the O-DU and O-CU are designed to support network slicing,
enabling the creation of virtual RAN slices tailored to specific service requirements.
Through their modular design and standardized interfaces, the O-RU, O-DU, and
O-CU collectively bring openness, scalability, and multi-vendor interoperability to
the 5G RAN ecosystem [11].

Open Distributed Unit (O-DU): The O-DU is responsible for baseband pro-
cessing and implements critical functions of the RAN protocol layers, including the
high-PHY, MAC (Medium Access Control), and RLC (Radio Link Control). It
serves as the main processing unit that allocates radio resources, schedules trans-
missions, and maintains radio link reliability. it connects to the O-CU via the F1
interface [11].

Open Radio Unit (O-RU): The O-RU is positioned closest to the antenna and
is tasked with handling the transmission and reception of radio signals over the
air interface. It performs low-level physical layer (PHY) functions such as digital-
to-analog conversion, beamforming, and signal amplification. The O-RU connects
to the O-DU through the open fronthaul interface, allowing flexibility in vendor
selection and deployment scenarios [11].

Open Interfaces (e.g., E2, A1, O1): These standardized interfaces connect the
various O-RAN components. For instance, the E2 interface links the Near-RT RIC
to CU/DU, the Al interface connects the Non-RT RIC to the Near-RT RIC, and
the O1 interface allows the SMO to manage network elements [11].

2.2.3 Core Network Functions

The 5G Core (5GC) adopts a Service-Based Architecture (SBA), where network functions
(NFs) are split up by service and communicate using APIs rather than rigid, predefined
interfaces [8]. The functions of the 5G Core include:

« Access and Mobility Management Function (AMF)

The AMF is responsible for managing user mobility, registration and network
access. it serves as the main entry point for user connections, interacting with
the Authentication Server Function (AUSF) to authenticate devices [2].

2.2. 5G Network Architecture 7

Service Non-Real-Time
Management and RIC

ST N o }

—— 3GPP interfaces
——— O-RAN interfaces
— — — For future study

Framework

)

O-eNB

E2 E2 / Yo
/ E1l Y X2-u
N\

——— NG-u

E2

Xn-c
NG-c

Fl-c

Open FH M-Plane

Open FH CUS-Plane

0O-Cloud }

;
¢

Figure 2.1: O-RAN Architecture [3]

 Session Management Function (SMF)

The SMF handels subscriber session management,including IP address alloca-
tion, data session control and mobility management. It also works closely with
the Policy Control Function (PCF) to enforce network policies and Quality of
Service (QoS) rulescite [2,12].

« User Plane Function (UPF)

The UPF is responsible for routing and forwarding user data packets between
the 5G Core and external Data Networks (DN) such as the internet [2].

« Policy Control Function (PCF)

This network function controls integrated policy enforcement across the entire
5G Core network. It provides policy rules to other control plane Functions,
ensuring optimal network performance [2].

« Network Slice Selection Function (NSSF)

The NSSF select the most suitable network slice based on the service require-
ments of the user. It provides AMF selection assistance by ensuring that the
requested services are directed to the correct network slice. [2]

 Authentication Server Function (AUSF)

The AUSF Stores authentication keys for Users accessing the 5G Core network.
It collaborates with UDM to store and validate user credentials [2].

o Unified Data Management (UDM)

UDM is responsible for data management .including managing user subscrip-
tions,storing authentication credentials [2].

8 Chapter 2. BACKGROUND AND RELATED WORK

« Network Repository Function (NRF)

The NRF maintains a registry of all 5G Core Network Functions (NFs), al-
lowing dynamic service discovery. providing interworking mechanisms such as
authentication token management and service monitoring [2].

e Network Exposure Function (NEF)

The NEF is responsible for storing internal and external service functions.
It also exposes securely network capabilities and events to the application
Function (AF) and enables the AF to access these services [2].

NEF NRF PCF ubM
Network Exposure Network Repository Policy Control Unified Data
Function Function Function Management
AUSF AMF SMF
Authentication Server Access and Management Session Management
Function Mobility Function Function
/ / . /;'I;:: L::-‘\:\V
UE - RAN UPF
User Equipment Radio Access Network User Plane Function
_)

Figure 2.2: 5G Architecture [13]

2.3 5G Network Slicing

5G network slicing is one of the most transformative features introduced in the fifth
generation of mobile networks. It enables a single physical infrastructure to be logically
partitioned into multiple virtual networks, called slices, where each slice is tailored to
serve a specific type of service, application, or industry requirement. This allows telecom
operators to run multiple isolated network environments on the same shared physical
resources, each with its own architecture, quality of service (QoS), and security mecha-
nisms [12].

According to the 3GPP standard, 5G network slicing is typically categorized into
three main types, each corresponding to a major family of use cases:

« Enhanced Mobile Broadband (eMBB): This slice is designed for high data
rates and large bandwidth applications such as ultra-HD video streaming, virtual
reality (VR), and high-speed internet access. eMBB focuses on throughput and
user experience in densely populated areas like stadiums or city centers [12].

2.4. 5G Network Vulnerabilities 9

Ultra-Reliable Low-Latency Communications (URLLC): This slice sup-
ports mission-critical applications that require extremely low latency and very high
reliability. Use cases include autonomous vehicles, remote surgery, industrial au-
tomation, and real-time control systems. URLLC slices prioritize stability and
response time over data throughput [12].

Massive Machine-Type Communications (mMTC): Also known as massive
[oT, this slice type supports connectivity for a large number of low-power, low-data-
rate devices such as sensors, smart meters, and environmental monitors. This slice
is optimized for scalability and energy efficiency, rather than speed or latency [12].

the complexity and dynamic nature of 5G slices can introduce new cybersecurity
challenges. Since multiple slices often coexist on shared infrastructure, a vulnerability
in one slice could potentially affect others especially if isolation mechanisms fail or are
misconfigured.

2.4 5G Network Vulnerabilities

5G networks introduce significant advancements but also new security challenges. Below
are key vulnerabilities that make 5G networks susceptible to DDoS attacks:

Massive IoT Device Proliferation: 5G supports an extensive number of IoT
devices, many of which lack robust security mechanisms. This makes them easy
targets for attackers who can compromise [oT devices to form large-scale botnets.
These botnets can then launch volumetric DDoS attacks, overwhelming 5G network
resources, leading to congestion and service degradation [14].

Distributed Architecture with Multi-access Edge Computing (MEC): 5G

relies on a highly distributed network architecture with Multi-access Edge Com-
puting (MEC) at remote locations. Each MEC node becomes a potential DDoS
target, especially since it holds low-latency and latency-sensitive services (like V2V
communication) [14].

Service-Based Architecture (SBA) and Signaling: Unlike 4G LTE, where
control tasks were centralized, 5G relies on a distributed Service-Based Architecture
(SBA), using HTTP/2-based signaling between Network Functions (NFs). While
this enhances scalability, it also increases the attack surface, making the network
susceptible to signaling DDoS attacks. Attackers can flood the network with fake
session registration, attach/detach requests, or service discovery messages, over-
whelming critical NFs like AMF, SMF, and AUSF [2,8].

5G Network Slicing: One of the most significant innovations in 5G, network
slicing, allows the creation of multiple virtual networks on shared infrastructure
to support different services. However, this introduces new security challenges. A
DDoS attack targeting one slice can exhaust shared network resources, indirectly
impacting other slices [12].

GTP-U Transport Protocol: GTP-U (GPRS Tunneling Protocol - User Plane)
is a protocol used to transport user data between the gNodeB and the User Plane

10 Chapter 2. BACKGROUND AND RELATED WORK

Function (UPF) in the 5G core network.it does not verify whether the traffic source
is legitimate or not .So any attacker generating GTP-U traffic can impersonate a
valid UE and overwhelm the UPF [15]

e O-RAN Architecture and its Open Interfaces: The O-RAN architecture,
while enabling openness and intelligent control via RAN Intelligent Controllers
(RIC), also introduces new DDoS vulnerabilities due to its disaggregated nature.
By separating traditional monolithic RAN components into modular and virtual-
ized units (O-RU, O-DU, O-CU) and exposing standardized open interfaces such
as E2 and A1, O-RAN expands the potential attack surface. These open interfaces,
although crucial for programmability and multi-vendor interoperability, can be ex-
ploited by attackers to inject malicious traffic. A DDoS attack targeting the E2
interface can overwhelm the communication channel between the RIC and the RAN
nodes, saturate network resources, and disrupt the real-time control loop. The RIC,
which is central to managing functions like mobility, scheduling, and handover de-
cisions, becomes a critical point of failure when flooded with DDoS Attacks, leading
to degraded performance or complete loss of control in the RAN [6,16].

2.5 DDoS Attacks on 5G Networks

A Distributed Denial of Service (DDoS) attack is one of the most widespread attacks that
attempt to disrupt the availability of a targeted network by overwhelming it with a flood
of excessive traffic. Unlike a standard Denial of Service (DoS) attack, which originates
from a single source, a DDoS attack leverages a network of infected devices controlled by
an attacker (a botnet). The goal is to exhaust network resources like bandwidth, CPU,
or session capacity by flooding the network with malicious traffic, often using massive
botnets made up of compromised IoT devices, rendering it unavailable to legitimate
users [17,18].

As 5G networks promise unprecedented speed, capacity, and low latency, they also
introduce new vulnerabilities, especially to DDoS attacks. In the 5G era, the situation
becomes even more critical: the proliferation of connected devices, and the use of cloud-
native, software-defined infrastructure all contribute to a dramatically expanded attack
surface. DDoS attacks are now not only more frequent, but also more sophisticated often
combining multiple attack vectors such as SYN floods, UDP amplification, and ICMP
floods. They can reach speeds of hundreds of gigabits per second, making them hard to
detect and even harder to mitigate in real time. Traditional defenses struggle to cope with
these evolving threats, which is why researchers are increasingly exploring the integration
of Machine Learning to enable more intelligent defense mechanisms tailored for the 5G
environment [18].

2.5.1 Types of DDoS Attacks
DDoS attacks are broadly categorized into three types, each targeting different layers of

a network:
e Volumetric Attacks

A volumetric DDoS attack is the most well-known and widespread type of DDoS
attacks.

2.5. DDoS Attacks on 5G Networks 11

01000101011
11110010110
01000101011
11110010110

DoS attack DDoS attack

01000109011
11110010110
1000107011 [

Figure 2.3: DoS/DDoS Attacks [19]

The principle behind a volumetric attack is straightforward: saturate the target’s
bandwidth by sending an enormous volume of traffic. Attackers often achieve this
using amplification techniques, with DNS amplification being one of the most com-
monly used methods. these attacks can also be created using botnets made up of
exploited [oT devices. Connected devices usually lack basic security defenses, but
because they’re connected to the Internet and can execute code, they can be easily
exploited. the attack’s intensity is measured in bits per second (bps) or gigabits

per second (Gbps) [17].
UDP Flood

A UDP flood is a volumetric attack where the attacker sends a large number of UDP
packets to random ports on the target system. Because UDP is connectionless,
the server must process each packet, often responding with ICMP "Destination
Unreachable” messages. The attacker typically spoofs source IP addresses in the
UDP packets, ensuring that all ICMP responses are sent to a fake address instead
of the attacker. This will lead to a Denial-of-Service (DoS) condition that blocks
legitimate traffic [17].

e Network Protocol Attacks

Protocol Attacks are a type of DDoS attacks that target vulnerabilities in Layer
3 and Layer 4 of the OSI model, such as flaws in TCP/IP protocols. By flood-
ing targets with malicious requests (e.g., SYN flood) or malformed packets (e.g.,
Ping of Death), they exhaust the target’s ressources causing systems to become
unresponsive [17].

SYN Flood

An example of such an attack is the SYN flood attack that aims to exhaust a server’s
connection resources by exploiting the TCP three-way handshake process through
sending a high volume of SYN (synchronize) packets to the target server, often
with spoofed IP addresses. In response, the server sends SYN-ACK packets and
waits for the final ACK to complete the connection. However, the attacker never
sends the ACK, leaving numerous connections half-open. As the server continues
to allocate resources for these incomplete connections, its memory, CPU, and open
ports become overwhelmed. Once all available connection slots are occupied, the

12 Chapter 2. BACKGROUND AND RELATED WORK

server can no longer process legitimate requests, resulting in a Denial of Service
(DoS) condition [17].

@

===
Attacker :é/:’/;/

Open port. Waiting for ACK’
Open port. Waiting for ACK?
Open port. Waiting for ACK!
Open port. Waiting for ACK’

3 Connections
exhausted

Visitor
Figure 2.4: SYN Flood Attack [20]

o Application Layer Attacks While volumetric attacks and protocol attacks com-
promise a service with the sheer number of requests, application layer attacks, target
an edge server that executes a web application. These threats are harder to detect
because attackers usually make requests like legitimate users. Consequently, these
attacks often show up as smaller traffic spikes and do not require the assistance of
a botnet [17].

HTTP Flood

HTTP flood attacks belong to Layer 7 DDoS attacks, which exploit the HTTP
protocol used for loading webpages and processing online forms. Unlike network
layer attacks, Layer 7 attacks are more difficult to mitigate because malicious traffic
closely resembles normal user behavior. To maximize their impact, attackers often

use botnets to generate massive volumes of HT'TP requests aimed at overwhelming
the target [17].

2.6 Traditional Detection Methods

The deployment of 5G networks marks a significant evolution in mobile communications,
enabled by advanced technologies such as network slicing. These innovations enhance
flexibility and scalability, but simultaneously broaden the attack surface, introducing new
and complex security vulnerabilities. Among the most critical threats in this context are
DDoS attacks, which exploit the dynamic and decentralized nature of 5G infrastructures
to overwhelm network resources with illegitimate traffic. This can severely degrade service
quality, disrupt availability, or even cause complete outages in targeted slices or core
components. Given the potential impact on network performance, there is a pressing
need for robust and adaptive detection and mitigation strategies. Traditionally, DDoS
defense is organized into three key stages: detection, source identification, and response.
Detection involves identifying abnormal traffic patterns or behavioral anomalies indicative
of an attack. Source identification aims to trace the origin of malicious traffic, which is

2.6. Traditional Detection Methods 13

particularly challenging in distributed environments. Finally, response mechanisms are
implemented to neutralize the threat in real time by blocking malicious or spoofed traffic
as close to the source as possible [21].

In the following section, we examine and discuss various techniques used for detecting
DDoS attacks.

2.6.1 Static Methods

Static methods constitute one of the earliest approaches to detecting DDoS attacks.
These techniques operate based on predefined statistical rules to identify abnormal traffic
behaviors. Rather than learning from historical data, they use mathematical models and
statistical tests to compare real-time network traffic against a reference baseline of normal
activity.

A widely adopted technique in this category is entropy analysis, which quantifies the
degree of randomness or unpredictability within specific traffic attributes. In typical
network conditions, fields such as source IP addresses or destination ports exhibit a
relatively stable distribution. However, a sudden spike or drop in entropy may indicate a
DDoS attempt. For instance, an abrupt increase in the diversity of source IP addresses
could suggest a botnet-based attack, while a drop in entropy may reflect a volumetric
attack originating from a single source. Another commonly used static technique is the
chi-square test, which measures how closely the current distribution of selected traffic
features aligns with a predefined baseline. Significant deviations between the observed
and expected distributions may signal malicious activity. For example, an unexpected
surge in traffic directed to a specific port could be flagged through this method [22].

2.6.2 Threshold-Based Detection

Threshold-based detection identifies potential DDoS attacks by observing network or
system activity and comparing it to established normal patterns. If certain metrics like
traffic volume or connection requests go beyond set threshold limits, it indicates abnormal
behavior that might signify an attack. These limits are typically learned over time from
regular, attack-free operations. While this method helps uncover new or evolving attacks,
it can also produce false alarms if thresholds are set too low or miss attacks if they’re set
too high [23].

2.6.3 Signature-Based Detection

Signature-based detection is a widely used technique in intrusion detection systems (IDS),
where incoming traffic is analyzed against a library of predefined attack signatures. These
signatures are built from distinct packet attributes that have been associated with past
malicious activities, such as abnormal protocol usage, fixed payload sizes, or repeated
patterns in packet structure. While this method can effectively detect known DDoS
attack types, it struggles to identify new or slightly modified threats due to its reliance
on previously observed behaviors. Moreover, if attackers use encryption to conceal botnet
communications, this approach becomes ineffective, as it cannot interpret the encrypted
data [21,24].

However, the high-speed and service-oriented nature of 5G networks necessitates in-
telligent and automated defense strategies capable of adapting to evolving attack vectors.

14 Chapter 2. BACKGROUND AND RELATED WORK

This limitation of conventional methods has driven increasing interest in ML and DL ap-
proaches, which offer the potential for real-time, data-driven decision-making and early
detection of sophisticated threats.

2.7 Modern Detection Methods

The increasing frequency and complexity of DDoS attacks demand the implementation
of more intelligent, adaptive, and dynamic security solutions. In this context, Machine
Learning (ML) has emerged as one of the most promising approaches for attack detection.
Unlike traditional detection systems, which are often based on predefined rules or static
signatures, ML algorithms are capable of analyzing large volumes of data in real time and
automatically learning both normal and abnormal system behaviors. This enables them
to detect not only known attacks but also new and evolving threats that may bypass
conventional methods [25].

2.7.1 Machine Learning Overview

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) in which machines
use algorithms to make predictions or classifications by learning from data, whether
labeled or unlabeled [26,27]. These algorithms can range from simple methods like linear
regression to more complex ensemble techniques. They identify patterns, make decisions,
and improve their performance over time and in real-world scenarios, all without the need
for explicit programming [27].

Deep Learning (DL) is a branch of ML that leverages the architecture of multilayered
Artificial Neural Networks (ANNs), which are computational models inspired by the
functioning of biological neurons [28]. A typical neural network consists of three main
components: an input layer, one or more hidden layers, and an output layer. Each layer
is composed of interconnected processing units known as neurons.

The input layer receives raw data, where each neuron corresponds to a specific feature
extracted from the dataset. These features are then propagated through the hidden layers,
where complex nonlinear transformations are applied. Each neuron computes a weighted
sum of its inputs, passes it through an activation function (such as ReLU, sigmoid, or
tanh), and outputs a value that is forwarded to the next layer. If the output exceeds a
certain threshold, the neuron is activated and contributes to subsequent computations.

The output layer produces the final prediction, which can be a classification (e.g.,
attack vs. benign traffic) or a regression output depending on the application. Learning
in neural networks occurs through a process called backpropagation, where errors be-
tween the predicted and actual outcomes are propagated backward to adjust the weights,
minimizing the loss function over successive training iterations [29].

2.7.2 Random Forest

Random Forest is an ensemble learning method used for classification and regression that
builds multiple decision trees during training, combining their predictions through ma-
jority voting (classification) or averaging (regression). Each tree is trained on a random
subset of the data (bootstrap aggregating) and considers only a random subset of features
at each split, enhancing diversity and reducing overfitting. This approach improves gen-
eralization, with the model’s error converging to a limit as the number of trees increases,

2.7. Modern Detection Methods 15

ensuring strong performance even with high-dimensional data, though this comes with
reduced interpretability compared to single decision trees or linear models [30]. Random
Forests mitigate overfitting by combining diverse trees trained on randomized subsets of
data and features [31]. In the field of cybersecurity, Random Forest has proven to be
particularly effective for detecting DDoS attacks [31].

2.7.3 Convolutional Neural Networks

The Convolutional Neural Network is one of the most prominent architectures in the field
of deep learning [32]. CNN have shown remarkable effectiveness in a variety of domains,
including image reconstruction [33] and natural language processing [34]. In recent years,
CNN have also gained increasing attention in the field of cybersecurity [35], particularly
for critical applications such as DDoS attack detection [25,36]. By leveraging components
such as convolutional, pooling, and fully connected layers, CNN can automatically learn
spatial feature hierarchies. These powerful pattern recognition capabilities make CNN
especially suitable for analyzing complex datasets, including traffic in 5G networks [37].

Fully
Connected

Convolution

Input

Feature Extraction Classification

Figure 2.5: CNN Architecture [38]

As depicted in Figure 2.5 , the convolutional layers play a fundamental role in feature
extraction. These layers utilize a set of trainable filters, also referred to as kernels, which
slide across the input data to identify local patterns such as edges, contours, and textures.
At each position, the filter performs an element-wise multiplication with the correspond-
ing segment of the input, followed by a summation. The result of this operation is a
feature map, which captures both spatial and contextual information present in the in-
put. To introduce non-linearity into the model, each feature map is subsequently passed
through an activation function—most commonly the Rectified Linear Unit (ReLU). This
non-linear transformation enables the network to learn and represent more complex pat-
terns [39]. Notably, the convolutional layer benefits from sparse connectivity and shared
weights, which contribute to a significant reduction in both computational cost and mem-
ory requirements [40].

After the convolutional and activation phases, pooling layers are introduced to reduce
the spatial dimensions of the feature maps. This process, known as downsampling, helps
to minimize the number of parameters and operations in the network, while retaining

16 Chapter 2. BACKGROUND AND RELATED WORK

the most critical features. Max pooling, which selects the highest value within a defined
window, and average pooling, which computes the mean, are the most frequently used
strategies [40].

In the final stages of the CNN , the output of the convolutional and pooling layers
is passed to one or more fully connected layers. These layers are responsible for aggre-
gating the extracted features and making final predictions. For classification tasks, the
network typically concludes with a SoftMax output layer, which produces a probability
distribution over the target classes, thereby yielding the final decision of the model [39].

2.7.4 Bidirectional Long Short-Term Memory

Bidirectional Long Short-Term Memory networks are an advanced extension of tradi-
tional models, designed to capture both past and future context in sequential data. While
standard LSTM networks process information in a single direction—from past to future—
BiLSTM incorporates an additional LSTM layer that reads the input sequence in reverse.
This dual-processing mechanism enables the network to have a more comprehensive un-
derstanding of the entire sequence, which is especially valuable in tasks where context
on both sides of a token is essential, such as in speech recognition, sentiment analysis, or
named entity recognition [41,42]. BiLSTM has been successfully applied in the detection
of cyberattacks, including DDoS attacks, intrusions, and anomalous traffic behavior in
networks [43].

TN f

Output Layer { /,'n n
LSTM Layer // / —
orwar:
MLWM ﬁif M propagation
Backward (LsTM}e B
propagation Al

Input Layer

Figure 2.6: BiLSTM Architecture [44]

The architecture of a BiLSTM consists of two LSTM layers, as depicted in Figure 2.6,
running in parallel. The forward LSTM processes the input sequence in its natural order
(from the first to the last time step), while the backward LSTM reads the same sequence
in reverse (from the last to the first time step). At each time step, the outputs from
both directions are concatenated or combined, resulting in a richer representation that
incorporates information from both past and future contexts. This feature distinguishes
BiLSTM from unidirectional models, which rely solely on historical inputs for prediction.

Internally, each LSTM unit within the forward and backward layers contains memory
cells and three types of gates—input, forget, and output gates—that regulate the flow
of information through time. These gates determine which information to keep, forget,
or pass to the next state. By doing so, LSTM networks are able to preserve relevant

2.7. Modern Detection Methods 17

information over long sequences, avoiding issues like vanishing gradients that typically
affect vanilla Recurrent Neural Networks [45].

The output of a BILSTM layer at each time step is a vector that merges the outputs
of both the forward and backward LSTM. This enriched representation is particularly
effective for tasks requiring detailed sequence labeling or classification. For example, in
the BILSTM-CRF architecture, a Conditional Random Field (CRF) layer is often added
on top of the BiLSTM to model dependencies between output labels, thereby improving
sequence prediction accuracy [46].

2.7.5 Activation Functions

An activation function is a mathematical transformation applied to the output of each
neuron in ANN models. Its primary role is to introduce non-linearity into the model,
allowing the network to learn complex relationships between input data and target out-
puts. Without a non-linear activation function, a deep network would behave like a simple
linear model, incapable of solving complex tasks such as image recognition or sequence
prediction [47]. There are several types of activation functions; the most commonly used
are presented below.

ReLU (Rectified Linear Unit)

ReLU is the most widely used activation function in the hidden layers of DL models. It
is simple, computationally efficient, and helps mitigate the vanishing gradient problem.
ReLU does not saturate for positive values, enabling efficient learning. However, it can
lead to the "dying ReLLU” problem when outputs consistently remain zero for = < 0 [29].

ReLU(z) = max(0, z) (2.1)

Sigmoid (Logistic Function)

The sigmoid function maps the input into a range between 0 and 1. It is especially suitable
for binary classification problems and is typically used in the output layer. However, it

suffers from the vanishing gradient problem in deep networks, which slows down learning
[29].

o(x) = (2.2)

Softmax

The softmax function transforms a vector of raw scores (logits) into a probability dis-
tribution, where the sum of all output values is equal to 1. It is used in the output
layer of multi-class classification networks, allowing each output to be interpreted as the
probability associated with a particular class [29].

e’
Softmax(z;) = =5—— fori=1,2,..,n (2.3)
Zj:l e®s

18 Chapter 2. BACKGROUND AND RELATED WORK

2.7.6 Loss Functions

The loss function is a mathematical function that quantifies the discrepancy between a
model’s predictions and the actual ground truth values. In supervised learning, it serves
as a learning signal by providing a numerical measure of the model’s performance on
specific training examples [29].

In the context of DL, the loss function is a critical component during training. It
is used to compute gradients that guide the optimization algorithm (such as gradient
descent) in updating the model’s weights to minimize prediction errors. A wide range of
loss functions exist, each tailored to specific tasks, data types, and optimization goals [29].
At a high level, they are categorized into regression loss functions—such as Mean Squared
Error—and classification loss functions, such as Cross-Entropy Loss [48]. This project
focuses on classification loss functions, which assess prediction errors for discrete class
labels.

Cross-Entropy Loss

A commonly used classification loss is the cross-entropy loss, which originates from the
concept of entropy and measures the uncertainty in a system. It quantifies the difference
between the predicted probability distribution and the true distribution. The loss is
minimized when the predicted probabilities align closely with the actual labels. Cross-
entropy is formally linked to the Kullback-Leibler divergence, which measures how one
probability distribution diverges from another. Thus, minimizing cross-entropy reduces
the difference between the predicted and actual class probability distributions [48].

Binary Cross-Entropy

Binary cross-entropy is used for binary classification problems. The model outputs values
between 0 and 1, while the true labels are either 0 or 1. This loss penalizes both incorrect
predictions and low-confidence predictions.

1 <) .
Loinary = —— > [yilog(fi) + (1 — y:) log(1 —)] (2.4)
=1

This function strongly penalizes confident but wrong predictions due to the logarith-
mic scale. It encourages the model to make both accurate and confident predictions [48].

Categorical Cross-Entropy

Categorical cross-entropy is used in multi-class classification tasks. It measures the dis-
tance between the true class distribution (usually one-hot encoded) and the predicted
class distribution (typically obtained via a softmax activation function in the output
layer) [48].

n C
Ecategorical = - Z Z Yij log(gz]) (25)

i=1 j=1

Where:

o n: number of examples,

2.7. Modern Detection Methods 19

e (C: number of classes,
o y;;: true label (0 or 1),
e ¥;;: predicted probability for class j.

This function is especially suitable for tasks where each input belongs to one of mul-
tiple exclusive categories.

2.7.7 Overfitting and Regularization Techniques

In the field of ML, the primary objective is to build a model capable of generalizing to
unseen data. However, a common issue encountered during model training is overfitting,
which occurs when the model learns not only general patterns but also the noise and
anomalies specific to the training set. This leads to low error on the training data but
high error on validation or real-world data [49]. Common causes of overfitting include:

o A model that is too complex (e.g., too many parameters),
o A dataset that is too small,
o A lack of noise or diversity in the data.

Regularization refers to a set of techniques aimed at limiting model complexity to
prevent overfitting. Its main goal is to improve the model’s ability to generalize [29]. The
following are widely adopted regularization techniques:

L1 Regularization

L1 regularization adds a penalty proportional to the sum of the absolute values of the
model’s weights. It promotes sparsity, meaning some weights may become exactly zero,
effectively performing feature selection [29].

L2 Regularization

L2 regularization adds a penalty proportional to the square of the model’s weights. It
prevents the weights from growing too large, which stabilizes the learning process and
enhances generalization [29].

Dropout

During training, dropout randomly deactivates a subset of neurons, as illustrated in
Figure 2.7. This prevents the network from becoming overly reliant on specific neurons,
encouraging redundancy and improving generalization [29].

Early Stopping

Early stopping involves monitoring the model’s performance on a validation set during
training and halting training when the performance begins to deteriorate. This strategy
helps avoid overfitting by preserving the model state that best generalizes to unseen
data [29].

20 Chapter 2. BACKGROUND AND RELATED WORK

Output layer

Hidden layers

PRERPS

....‘ .@@‘.

Figure 2.7: Ilustration of Dropout technique [50].

2.7.8 Optimization Algorithms

In the context of MLL and DL, optimization algorithms are essential for effectively training
models. Their main objective is to minimize the loss function by adjusting the model
parameters. There are many different optimizers, among which the most commonly used
include:

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a classical method that updates the model param-
eters using only a single sample or a small batch (mini-batch) of data at each iteration.
Unlike traditional batch gradient descent, which requires scanning the entire dataset
before each update, SGD offers more frequent updates and helps accelerate learning,
especially for large datasets.

However, gradients computed from a single example are noisy, which can make the
optimization trajectory unstable. To address this, techniques such as momentum or
dynamic learning rate adjustments are often applied alongside SGD [29].

Adaptive Moment Estimation

The Adam algorithm is a more advanced optimization method that combines the ad-
vantages of two techniques: momentum, which accelerates descent using the history of
gradients, and RMSProp, which adapts the learning rate based on recent gradients. Adam
computes moving averages of the first and second moments of the gradients for each pa-
rameter, allowing for a different learning rate per weight. Adam is widely used in deep
learning models due to its ability to converge quickly and stably, even in situations with
complex loss functions or noisy data. It requires little manual tuning and performs well
by default, making it a preferred choice in most modern neural network architectures [29].

2.7. Modern Detection Methods 21

2.7.9 Performance Metrics

Assessing the performance of ML models, particularly in classification tasks, necessitates
more than a simple evaluation of accuracy. Classification models produce discrete out-
puts, and as such, require metrics capable of capturing the correctness of these categorical
predictions in a structured manner.

The confusion matrix is a fundamental evaluation tool that presents a tabular com-
parison between the predicted class labels and the actual ground-truth labels. It provides
essential insight into the model’s behavior by detailing true positives, false positives, true
negatives, and false negatives (see Figure 2.8) [51].

Predicted class

P N
True False
P | Positives Negatives
(TP) (FN)
Actual
Class
False True
N | Positives Negatives
(FP) (TN)

Figure 2.8: Confusion Matrix Example [52].

Accuracy

Accuracy measures the overall correctness of a model by calculating the proportion of
true results (both true positives and true negatives) among the total number of cases
examined [51]. It is defined as:

TP +TN
TP+TN+ FP+ FN

Accuracy = (2.6)

Precision

Precision evaluates how many of the instances predicted as positive are actually positive.
It is especially useful when false positives are costly [51]:

TP
Precision = ———— 2.7
recision = o (2.7)
A high precision indicates a low false positive rate, which is critical in avoiding un-

necessary alerts and system disruptions.

22 Chapter 2. BACKGROUND AND RELATED WORK

Recall

Recall, also known as sensitivity or true positive rate, measures the ability of a model to
detect actual positive cases. In the context of attack detection, it indicates how well the
system identifies real attacks [51].

TP
Recall = TP-|——FN (28)

High recall is essential in ensuring that malicious activities are not overlooked. How-
ever, recall alone is insufficient if it comes at the expense of precision.

F1-Score

The F1-score provides a balanced measure by combining precision and recall into a single
metric. It is the harmonic mean of precision and recall [51]:

Precision - Recall
F1- =2. 2.9
SEOTe Precision + Recall (2.9)

The Fl-score is particularly useful when there is a trade-off between precision and
recall and is widely used in evaluating models for DDoS detection, where both false
positives and false negatives can be critical.

2.8 Related Work

This literature review was one of the most important and helpful parts during our thesis
preparation, as it provided valuable insights into how recent research has approached
DDoS detection and mitigation using ML-based methods. The goal of this review is to
examine previous studies that focus on the application of machine learning techniques to
detect and mitigate DDoS attacks in various types of networks, with particular emphasis
on 5G networks. To ensure the relevance and timeliness of our analysis, we concentrated
on research published from the year 2020 onward, prioritizing studies that closely align
with the objectives and context of our thesis. In this section, we present a review of such
papers, highlighting their key contributions and how they relate to our work.

Khan (2023). In his thesis, Khan [12] focused on the detection of DoS and DDoS
attacks specifically targeting 5G network slices using deep learning methods. He proposed
a simulation framework built with FreebGC and UERANSIM to replicate real-world 5G
slicing scenarios. To address the lack of datasets tailored to this context, a new datasets
were generated using both VM-based and container-based implementations. The study
introduced two deep learning models CNN and BiLSTM to classify and detect these
attacks. The BiLSTM model achieved the highest detection accuracy of 99.96%. This
work highlights the importance of dataset generation and real-time detection in securing
5G network slicing environments.

Elzayn et al. (2023). In [53], the authors proposed a reinforcement learning-based
approach for mitigating DDoS attacks in 5G-V2X networks. They designed a realistic
environment using OpenAirlnterface, FlexRIC, and robot cars equipped with 5G modules
to simulate both benign and attack traffic. The architecture includes two network slices:

2.8. Related Work 23

a benign slice for normal users and a sinkhole-type slice with limited resources to isolate
suspected attackers. A deep learning agent detects the attack, while a reinforcement
learning agent—trained using Q-learning, DQN, A2C, and PPO algorithms decides when
to release the user from isolation. Among all models, Q-learning showed the most stable
performance, achieving less than 3.2% average error in attack duration estimation using
real testbed data. This work demonstrates the effectiveness of combining real-world 5G-
V2X environments with intelligent RL-based mitigation strategies.

Sheikhi and Kostakos (2024) [54] proposed an unsupervised Federated Learning
(FL) approach to detect DDoS attacks in 5G core networks. Their work addresses the
limitations of centralized machine learning models, particularly privacy concerns and
scalability issues. They built a realistic 5G testbed using Open5GS and UERANSIM,
where SYN and UDP flood attacks were simulated on separate 5G Core instances. Net-
work traffic was captured and preprocessed using Tshark, and an Autoencoder model
was trained locally on each node. Instead of sharing raw data, each node sent its learned
model parameters to a global server for aggregation. The final model achieved a detec-
tion accuracy of up to 99%, showing the viability of FL-based DDoS detection in 5G
environments where data privacy is crucial.

Park et al. (2022) In this article [2], the authors address a critical gap in existing
research by focusing on signaling DDoS attacks in the 5G Core Network (CN), rather
than the Radio Access Network (RAN), which has traditionally received more attention.
Their study introduces a machine learning-based intrusion detection system designed to
detect attacks targeting CN functions such as AMF, SMF, and UPF. They propose a
dual-method approach using Entropy-Based Analysis (EBA) and Statistical-Based Anal-
ysis (SBA) to preprocess traffic data and extract meaningful features. The dataset was
generated with a Spirent Landslide 5G traffic generator, simulating 625,000 users. The
system was evaluated using SVM, Naive Bayes, and Random Forest, with Random Forest
achieving the highest accuracy of 98.4%. Their approach demonstrates high efficacy in
differentiating between normal and attack traffic based on statistical and entropy features
of session behavior, reinforcing the potential of ML in safeguarding CN infrastructure.

Saini et al. (2020) In [55], the authors introduce a machine learning-based detection
framework for DDoS attacks. the study relys on an existing dataset that contain some of
the latest types of attacks like SIDDoS and Smurf attacks. Features such as average packet
size, bit rate, packet size, inter arrival time...etc are extracted and used to train the models
via the Weka platform. The evaluated algorithms include Naive Bayes, Random Forest,
MLP, and J48, with the latter achieving the highest detection accuracy of 98.64% . This
study underscores the practical applicability of ML techniques in live traffic environments
and the effectiveness of decision tree based methods for DDoS detection.

Reddy (2024) in [56] conducted a comprehensive study on DDoS detection in 5G net-
works using machine learning and deep learning techniques. The research developed and
validated multiple models, including BERT, BiLSTM, Custom CNN, Random Forest,
SVM, XGBoost, and an ensemble of Random Forest and XGBoost, within a simulated
5G environment created using freebGC and UERANSIM. The ensemble model achieved
the highest accuracy (99.72%), demonstrating superior performance in detecting TCP

24 Chapter 2. BACKGROUND AND RELATED WORK

flood, UDP flood, and other DDoS attacks. However, the study also highlighted the
trade-off between the ensemble model’s improved accuracy and its increased computa-
tional complexity, suggesting that traditional ML models like Random Forest (99.59%
accuracy) may be more practical for resource-constrained environments. The work ad-
dressed a critical gap by evaluating modern DL techniques alongside traditional ML and
ensemble methods, providing a balanced analysis of their effectiveness in real-time DDoS
detection for 5G networks. The simulation-based approach enabled rigorous testing under
controlled attack scenarios while maintaining ethical standards through synthetic data
usage.

Rana & Filippo (2024) in [57] propose a real-time DDoS detection framework for 5G
networks that combines P4-programmable data planes with deep learning. Their system
collects telemetry data through P4-based UPF and DPUs, processing it in real-time
using Fastcapa and DPDK workers. A CNN model analyzes traffic patterns continuously,
achieving 98.6% detection accuracy with sub-millisecond latency, triggering immediate
mitigation upon attack detection.

Bomidika S(2024) in [31] explores the application of both ML and DL techniques for
the detection of DDoS attacks within 5G networks. The findings indicate that ensemble-
based models achieve superior accuracy compared to individual ML or DL approaches.
The research is conducted in a simulated 5G environment utilizing Free5GC and UER-
ANSIM, which enables the generation of realistic traffic patterns for model evaluation.

Abdoul & Ataro (2024) in [58] propose a hybrid deep learning approach for de-
tecting and mitigating DDoS attacks targeting 5G core network Virtual Network Func-
tions (VNFs). The method combines XGBoost for feature extraction with a deep neural
network for classification. To preserve data privacy in distributed environments, Feder-
ated Learning (FL) is employed for model training. Evaluated using the CICDD0S2019
dataset, the framework demonstrated high accuracy.

Morteza et al. (2022) in [59] propose a distributed SDN-based architecture to de-
tect and mitigate DDoS attacks in 5G networks. The system uses multiple dispersed
controllers managed by a master controller, which dynamically balances the processing
load among them. This hierarchical approach enhances scalability, reliability, and detec-
tion efficiency. Simulation results demonstrate the system’s effectiveness in distributing
workload and improving DDoS mitigation performance.

Bousalem et al. (2022) in [60] proposed a deep learning-based method to detect and
mitigate DDoS attacks in 5G networks using dynamic network slicing. When an attack
is detected, the system isolates the malicious users by moving them to a low-resource
“sinkhole” slice. Their solution was tested on a real 5G prototype using OpenAirInterface
and FlexRAN, with traffic generated from both real and virtual users. Among 100 trained
models, the best one achieved around 97% accuracy and less than 4% false positive rate.
Unlike previous works, this approach targets the RAN and is validated in a realistic
environment, offering an effective and automated response to DDoS attacks.

2.8. Related Work 25

Wen et al. (2022) in [16] introduced MobiFlow, a telemetry system tailored for en-
hancing security in 5G Open RAN networks. Drawing inspiration from NetFlow, Mob-
iFlow captures detailed, real-time data from user devices, RAN components, and core
network elements, and makes this information available to xApps on the near-real-time
RIC. This rich telemetry stream enables a range of security applications, such as intru-
sion detection, rogue base station identification, and dynamic RAN control. What sets
MobiFlow apart from existing solutions is its focus on fine-grained, low-level data—going
beyond basic KPIs to support more responsive and intelligent security mechanisms. The
authors argue that this level of detail is critical for building robust and scalable security
services in the flexible, software-driven O-RAN environment.

Wen et al. (2024) in [61] introduced 5G-SPECTOR, the first comprehensive frame-
work designed to detect Layer-3 cellular protocol exploits within the O-RAN architecture.
Unlike traditional security solutions that operate on coarse-grained metrics or limited van-
tage points, 5G-SPECTOR leverages a novel fine-grained telemetry stream called Mobi-
Flow, which captures detailed RRC and NAS-level events from user equipment and base
stations. It integrates with a programmable xApp, MobiFxpert, that allows operators
to define rule-based detection logic using the P-BEST language. The system was vali-
dated on a real O-RAN testbed using SD-RAN and OpenAirInterface, demonstrating its
effectiveness in detecting both known and previously unseen attacks with low overhead.
Furthermore, its modular design allows it to be extended with AI/ML-based analytics,
such as MobiWatch, making it a flexible and forward-looking platform for cellular intru-
sion detection in programmable 5G networks.

Awad et al. (2024) in [62] presented a novel 5G prototype framework that integrates
machine learning-driven xApps within the O-RAN architecture to detect and mitigate
DDoS attacks in V2X scenarios. Their approach uses two key xApps: an Attack Detec-
tion (AD) xApp that employs deep learning to monitor live traffic and identify malicious
flows in real time, and a Resource Control (RC) xApp that dynamically reallocates net-
work resources to limit the impact of detected attackers. The system was implemented
on a hybrid testbed combining physical and virtual UEs, using srsRAN and Open5GS,
and demonstrated the effectiveness of xApps in ensuring reliable V2X communication
even under DDoS attacks. By leveraging the Near-Real-Time RIC and modular O-RAN
components, the framework ensures rapid detection and mitigation without disrupting
service to legitimate users.

2.8.1 Comparative Analysis of Related Works

Table 2.1 presents a structured comparison of recent contributions to DDoS detection
and mitigation in 5G networks, focusing on core attributes that are highly relevant to
the design of our proposed framework. These include the type of datasets used, model
selection and performance, simulation platforms, and the level of O-RAN integration.

This comparative review was instrumental in identifying the most suitable components
for our architecture. In particular, it helped clarify which models consistently perform
well in 5G settings, which datasets offer realistic traffic characteristics, and how xApps
can be practically deployed for near-real-time defense. Based on these insights, we built
a roadmap that balances effectiveness, modularity, and realism for 5G specific threat
detection and response.

26 Chapter 2. BACKGROUND AND RELATED WORK
Table 2.1: Comparison of Related Works with Our Proposed Framework

Study Dataset Models Eval- | Best Per- | 5G Simula- | Mitigation

Used uated forming tion Tools Strategie

Model

Khan Custom CNN, BiLSTM | BiLSTM FreebGC, No
(2023) [12] | + CICD- (99.96%) UERANSIM

DoS2019
Elzayn et | Real testbed | DQN, A2C, | Q-learning OAI, Yes (O-RAN
al. (2023) | traffic PPO, CNN variant FlexRIC, integra-
[53] Robot Cars tion/xApp)
Park et al. | Spirent traf- | RF, SVM, | RF (98.4%) Simulated No
(2022) [2] | fic (625k | Naive Bayes CN only

users)
Awad et al. | Hybrid re- | DL + xApp | AD xApp DL | srsRAN, Yes (2 xApps)
(2024) [62] | al/virtual AD model Open5GS
Reddy Simulated RF (99.59%), | Ensemble Free5GC, No
(2024) [56] | 5G traffic | CNN (RF+XGB: UERANSIM

(Attack- (98.78%), 99.72%)

/normal) BiLSTM

(99.52%), En-
semble
Rana and | Real-time CNN CNN (98.6%) | P4 UPF, | Yes (mitiga-
Filippo telemetry Fastcapa, tion with pro-
(2024) [57] | (P4-DPU) DPDK grammable
P4 switch
UPF)

Key Observations and Roadmap Implications:

Dataset Strategy: While many works rely on custom or synthetic data, CICD-
Do0S2019 remains a standard benchmark due to its wide attack coverage. Our
decision to enhance it with real 5G simulated traffic makes it more representative
of live network behavior without sacrificing reproducibility.

Model Selection: Most studies focus on deep learning (CNN, BiLSTM), but
Random Forest consistently appears among top performers for its speed, inter-
pretability, and robust performance. Our roadmap adopted all three (RF, CNN,
BiLLSTM)

Simulation Tools: While some works adopt OpenAirInterface for its realism and
integration capabilities, our selection of OAI and FlexRIC was primarily driven by
their native compatibility with the O-RAN architecture. Specifically, their support
for the E2 interface and xApp programmability made them ideal for implementing
a near-real-time control and mitigation framework aligned with O-RAN standards.

Mitigation Support: Active mitigation is rare in the reviewed literature. When it
appears, it is often limited to high-level strategies like slice isolation. Our framework

2.8. Related Work 27

directly targets and disconnects malicious UEs through the mitigation xApp, an
approach not seen in previous works.

o xApp Design and Scope: While Awad and Elzayn leverage xApps, their focus
is limited to specific domains such as V2X. In contrast, our system introduces a
general purpose detection xApp and a dedicated mitigation xApp designed to act
autonomously in real time.

Conclusion: This analysis confirms that while DDoS detection in 5G is widely studied,
few frameworks implement actionable, real time mitigation. Even fewer are designed
with O-RAN compliance in mind. Our proposed system fills this gap by delivering an
interpretable, xApp-driven architecture that integrates both detection and mitigation
within a fully simulated 5G/O-RAN environment. This makes it especially relevant for
modern network deployments requiring fast, scalable, and standards compliant defense
mechanisms.

Chapter 3

METHODOLOGY

3.1 Introduction

The related work survey served as a crucial foundation for our project. It helped us
understand the strengths and limitations of existing approaches and guided our selection
of tools, datasets, and machine learning models. By analyzing prior solutions, we were
able to build a structured roadmap for implementing a practical and efficient DDoS
detection and mitigation framework tailored specifically for a simulated 5G environment.

As illustrated in Figure 3.1, our methodology begins with the simulation of an O-RAN
enabled 5G network using OpenAirInterface (OAI) and the FlexRIC near-real-time RIC.
The simulated setup includes a containerized core network, a gNB, and user equipment
(UE) configured through Linux namespaces. This allowed us to generate realistic 5G
traffic, both normal and malicious.

The generated traffic was then used to enhance the CICDD0S2019 dataset, resulting
in a new version referred to as CICDDoS-5G, which is more representative of realistic
5G network conditions. Prior to model training, the CICDDo0S-5G dataset underwent a
comprehensive preprocessing phase, including data cleaning, label encoding, and feature
extraction. This step was essential to ensure data consistency and improve the quality of
the training input for machine learning algorithms.

Based on the refined dataset, Based on our earlier analysis, we designed and trained
three machine learning models, Random Forest, CNN, and BiLLSTM for traffic classifica-
tion. These models were carefully selected for their ability to handle complex patterns
and temporal dependencies present in 5G traffic, ensuring robust detection of both benign
and malicious flows.

Next, we developed a detection framework that operates on the UPF, where it captures
real-time traffic and identifies anomalies. Upon detecting an attack, it immediately sends
alerts to a mitigation framework implemented as an xApp on the FlexRIC controller. This
xApp then responds by disconnecting the malicious UEs, ensuring timely and automated
mitigation of DDoS threats.

28

3.2. 5G Architecture Implementation 29

3 Add to —-— \

Ge'nerate Tr?fflc CICDD0S2019 @ Implement IDS in

(Benign + Malicious) — —> UPF
Dataset —

Simulate a 56 O-RAN Preprocess The Design and Train

Slicing Network Dataset ML Models

OPEN AIR —

=—— INTERFACE

Monitor Real-Time
Traffic in a Simulated
Environment

Send {UE IP, Number
J N of Normal and
Continue Monitoring Anomaly Flows} For <
Each UE to the xApp

%
e

'V

N
FlexRic r‘
[3

Controller

<%

MOSA‘IC

Disconnect XApp Triggers RRC| s Anomaly Calculate Anomaly
Suspicious UE Release Ratio > 0.7 Ratio for Each UE

Figure 3.1: Proposed Method Strategy

3.2 5G Architecture Implementation

3.2.1 Environment Overview

The implementation was carried out on a native Linux environment running Ubuntu
22.04 due to its compatibility with the required software and its official support for 5G
networks simulation tools. The entire 5G network was fully simulated on a physical
machine without the use of virtual machines. The hardware and software specifications
of the machine are summarized in the table below3.1.

Software Prerequisites

Before deploying the 5G simulation environment, several essential software components
were installed following the official tutorial provided by the OpenAirInterface project on
GitLab [63]. These tools were chosen to ensure compatibility with the simulation software
and to provide a stable foundation for running containerized services.

The key software prerequisites included are:

e putty: PuTTY is a free and open-source terminal emulator widely used for remote
access to servers, particularly through SSH (Secure Shell) and Telnet protocols. It
provides a simple interface for connecting to remote machines.

e Docker: Docker is a platform that simplifies application development and de-
ployment by using containers, a lightweight, isolated environments that package
everything an application needs to run. In this 5G simulation, all core components
such as AMF, SMF, UPF...etc are running inside containers. This made the setup
easy to manage without relying on virtual machines or external infrastructure [64].

30 Chapter 3. METHODOLOGY

e Docker Compose: Docker Compose is a tool used to define and manage multi-
container Docker applications. It allows users to configure all services and networks
required by an application in a single YAML file. This simplifies the deployment
and orchestration of complex systems, making it particularly useful for managing
containerized 5G network components. In this setup, Docker Compose was used
to efficiently coordinate and launch all the core services using one docker compose

file [65].

These steps ensured that the environment was ready to run OpenAirlnterface and
FlexRIC services for the 5G network simulation.

Table 3.1: Implementation Environment Specifications

Category ‘ Specification
Hardware
Device Dell Laptop
Processor Intel Core i5 (8th Generation)
RAM 8 GB
Storage SSD (256 GB)
Software
Operating System Ubuntu 22.04 LTS
5G simulated network | OpenAirInterface (OAI)
RIC Platform FlexRIC (near-RT RIC)

3.2.2 OpenAirlnterface Deployment

OpenAirlnterface (OAI) [4] is an open source platform that provides a full stack imple-
mentation of the 5G network, supporting both software-based emulation and integration
with radio hardware. In this project, OAI was used to simulate a complete 5G network.
The 5G Core components were deployed in a containerized environment using Docker
Compose, while the gNB was built natively on the host system. Multiple UEs were
instantiated in isolated Linux network namespaces, enabling realistic simulation of the
Radio Access Network (RAN), as illustrated in the simulated 5G architecture shown in
Figure 3.2.

Core Network

The 5G Core Network in this setup is composed of the essential core components such
as the AMF, SMF, UPF, NRF, and NSSF each running in isolated Docker containers to
ensure modularity and scalability. Docker Compose was used to orchestrate and manage
these services efficiently.

Network Slicing Implementation

To enable network slicing within the 5G testbed, the deployment was extended to include
two independent slices. This was achieved by deploying two instances of SMF and two
instances of UPF, each responsible for handling a specific data slice. These instances
were built using the official Docker images provided by OpenAirlnterface.

3.2. 5G Architecture Implementation 31

OPE NEWA;!&CE 5G Core Network

OPEN AIR

EINTERFACE dOCer
5G Radio Access
Network UDM| (UDR| INSSF| |NRF
I [I
| I I [
AUSF |[SMF1| |SMF2
slice1 [<l ((())) AMF
10.0.0.024\ = RF | ‘
Simulator
UPF2
UPF1
slicez (il 8 ﬂ ‘
12.0.0.0124 \ =T
E2 interface
. O d
FlexRIC: “ “
RAN Monitoring and‘ “
Management “‘ ,. EE
MOSAIC

Figure 3.2: Simulated 5G Network

Both slices belong to the same Slice/Service Type (SST), specifically eMBB, but they
are distinguished by different Slice Differentiators (SD), allowing the system to route
traffic logically between slices. Each SMF-UPF pair was configured to serve a unique
Data Network Name (DNN), representing different service types or applications.

To support this setup:

e The ‘docker compose‘ configuration was modified to launch the two SMF and two
UPF containers.

o FEach SMF was linked to its corresponding UPF and assigned a unique DNN.

« The amf config file was updated to include mappings between S-NSSAT (SST/SD)
and DNN values.

» UE configuration files were adapted to request specific S-NSSAI values to connect
to the appropriate slice.

Additionally, the Network Slice Selection Function (NSSF) was configured to handle
the slice selection process, ensuring that each UE is directed to the correct slice based
on the requested SD value. This setup enabled dynamic slice assignment, isolated traffic
handling, and realistic simulation of differentiated services all running on shared physical
infrastructure.

To run the core network services, the following Docker Compose command was used
from the OAI CN5G directory:

docker compose up -d

This brings up all defined services (AMF, SMF, UPF, NRF, AUSF, etc.) in detached

mode as shown in figure 3.3.

32 Chapter 3. METHODOLOGY

$ docker compose up -d

[+] Running 12/12
Container oail-ext-dn
Container oail-nssf
Container oail-nrf
Container mysql
Container oail-udr
Container oail-udm
Container oai-ausf
Container oail-amf
Container oail-smf-slicel
Container oail-upf-slicel
Container oail-smf-slice2
Container oail-upf-slice2

Figure 3.3: 5GCN running components

Next Generation NodeB (gNB)

The gNB represents the 5G base station responsible for handling radio communication be-
tween the UE and the 5G core. In this simulated environment, the gNB was built directly
on bare-metal by following the official OpenAirInterface (OAI) tutorial and documenta-
tion [4]. This approach provided full access to low-level configurations and enabled the
integration of an E2 agent for O-RAN programmability.

To ensure compatibility with O-RAN xApps and the FlexRIC platform, we focused
on compiling the gNB with E2 support. The steps followed for building both gnb and
user equipments are listed below:

git clone https://gitlab.eurecom.fr/oai/openairinterfacebg
cd openairinterfacebg

git checkout slicing-spring-of-code

cd cmake_targets

./build_oai -c¢ -C -w SIMU --gNB --nrUE --build-e2 --ninja
cd ../

git checkout develop

cd cmake_targets

./build_oai --build-1lib telnetsrv

The initial checkout to the ‘slicing-spring-of-code branch enables slicing and E2 agent
support. The flag ——build-e2 is essential, as it compiles the gNB with the E2 interface,
a cornerstone of O-RAN’s openness and programmability. This E2 agent allows external
controllers (like the Near-RT RIC) to access and modify RAN behavior at runtime. Ad-
ditionally, the flag ——nrUE ensures that the NR User Equipment (UE) is also compiled,
allowing full-stack simulations involving both the gNB and UE in a standalone setup.

After building the RAN components, including the E2 agent and the Telnet server
library, the gNB was launched from the build directory using the following command:

sudo ./nr-softmodem \
-0 ../../../targets/PROJECTS/GENERIC-NR-5GC/CONF/gnb.sa.band78.fr1.106PRB.
— usrpb210.conf \
--sa \ --rfsim \ -E \
--gNBs. [0] .min_rxtxtime 6 \
--telnetsrv \
—-telnetsrv.shrmod rrc

3.2. 5G Architecture Implementation 33

This command runs the gNB in standalone (SA) mode using the --sa flag, meaning
it connects directly to the 5G Core Network (5GC) without relying on a 4G EPC fallback.

The --rfsim option enables the RF simulator, allowing simulation of radio fre-
quency behavior entirely in software eliminating the need for physical RF hardware.

The -E flag activates the compiled E2 agent, enabling communication with the FlexRIC
Near-RT RIC and allowing programmable control of RAN functions such as PRB alloca-
tion and RRC management.

The executable nr-softmodem is a central software component that implements the
5G NR protocol stack (PHY and MAC layers) in real-time. The configuration file spec-
ified by the -0 flag contains essential radio settings such as the frequency band (Band
78), numerology, subcarrier spacing, and number of physical resource blocks (106 PRBs
in this case), which emulate a realistic mid-band 5G deployment.

The --telnetsrv flag starts the Telnet server, which enables runtime monitoring
and debugging. The additional option —-telnetsrv.shrmod rrc specifically enables
the observation and adjustment of the Radio Resource Control (RRC) layer during op-
eration.

After initialization, the gNB sends an NGAP (Next Generation Application
Protocol) connection request to the AMF. This request initiates the signaling interface
between the RAN and the Core. Upon receiving a successful response from the AMF,
the gNB transitions to a ready state and starts listening for User Equipments (UEs)
attempting to attach to the network.

This NGAP-based communication establishes the NG interface, which is essential
for handling signaling and mobility management procedures between the gNB and the
core. Once the NG interface is active, the gNB can handle RRC (Radio Resource Control)
connection requests from UEs and forward relevant messages to the AMF for registration,
authentication, and session establishment.

User Equipments

To emulate User Equipments in our 5G environment, we used the namespace-based ap-
proach provided by OpenAirInterface (OAI). OAI offers two primary methods for run-
ning multiple UEs simultaneously: one based on Docker containers and the other using
Linux network namespaces. For this setup, we opted for the namespace method due to
its simplicity, lower resource overhead, and seamless integration with the host system.
Compared to Docker, namespaces eliminate the need for container orchestration or image
management, making development, debugging, and monitoring much easier.

The process begins by creating a dedicated network namespace for the UE using the
multi-ue.sh script provided by OAI. This script not only sets up the isolated namespace
but also creates a virtual Ethernet pair, one interface remains on the host while the other
is moved into the UE’s namespace. An IP address is then assigned to each end of the pair,
establishing a direct communication link. This link is later used by the UE to connect to
the RF simulator (rfsim) server, enabling simulated radio access.

the following command creates one UE namespace (-c1) and opens a shell inside it

(=] ot - w [-

34 Chapter 3. METHODOLOGY

(-e):

sudo /home/ensta/5G-testbed/openairinterfacebg/tools/scripts/multi-ue.sh -c1 -
— e

Once the namespace was set up, the UE was launched inside it using the following
command:

sudo LD_LIBRARY_PATH=. ./nr-uesoftmodem \

--rfsimulator.serveraddr 10.201.1.100 \

-r 106 \

--numerology 1 --band 78 -C 3619200000 \

--rfsim \

-0 /home/ensta/5G-testbed/openairinterfacebg/targets/PROJECTS/GENERIC-NR-5GC/
< CONF/ue.conf -E

This command starts the UE in RF simulator mode (‘-rfsim‘) and connects it to
the simulated gNB via the specified server address. The configuration file defines the
UE’s parameters, including band, carrier frequency, and numerology. Once launched,
the UE initiates the registration procedure with the gNB and subsequently with the Core
Network, completing the full attach process and enabling end-to-end data communication
within the 5G architecture.

As shown in Figures 3.4a and 3.4b, each UE successfully initiates a PDU session
establishment procedure with the 5G Core Network. The NAS signaling indicates that
the UEs send a ‘Pdu Session Establishment Request® to the AMF, which then forwards
the request to the appropriate SMF based on the requested S-NSSAI. After validation, the
core responds with a ‘PDU Session Establishment Accept® message, confirming successful
session creation. Each UE is assigned a distinct [Pv4 address from its respective slice
subnet.

3.2.3 FlexRIC Controller Integration

To enable intelligent and programmable control over the RAN, the simulated 5G network
was extended with the integration of the FlexRIC controller. FlexRIC is an open and
modular near-real-time RAN control platform developed to support the O-RAN archi-
tecture. It provides the necessary components for managing and interacting with RAN
elements through the standardized E2 interface, allowing the implementation of intelli-
gent applications (xApps) that can observe and control RAN behavior dynamically.

The installation and configuration of FlexRIC were carried out by following the official
instructions available on the project’s GitLab repository [5]. Once integrated, FlexRIC
established E2 connectivity with the gNB.

The integration architecture consists of the following key components:

o E2 Agent: This runs on the OAI gNB and acts as the interface between the gNB
and the controller. It exposes RAN data and accepts control commands from the
FlexRIC controller.

o E2 Termination (E2T): A central component within the FlexRIC platform that
handles communication with multiple E2 Agents. It manages the setup and main-
tenance of K2 connections.

3.2. 5G Architecture Implementation 35

[NAS] Send NAS_UPLINK_DATA_REQ message(PduSessionEstablishRequest)

[NR_PHY] [UE @] RSRP = -41 dBm

[NR_RRC] RRCReconfiguration includes radio Bearer Configuration

[PDCP] added drb 1 to UE ID 0

[SDAP] Default DRB for the created SDAP entity: 1

[NR_RRC] State = NR_RRC_CONNECTED

[RLC] Added srb 2 to UE @

[RLC] Added drb 1 to UE @

[RLC] Added DRB to UE 0

[NR_RRC] RRCReconfiguration includes Measurement Configuration

[NAS] [UE ®] Received NAS CONN ESTABLI CNF: errCode 1, length 101

[NR_RRC] rrcReconfigurationComplete Encoded 10 bits (2 bytes)

[NR_RRC] Logical Channel UL-DCCH (SRB1), Generating RRCReconfigurationComplete (bytes 2)
[NAS] Received PDU Session Establishment Accept, UE IPv4: 10.0.0.3

Unknown IEI 129

[MAC] [UE ®] Applying CellGroupConfig from gNodeB

[OIP] Interface oaitun uel successfully configured, IPv4 10.0.0.3, IPv6é (null)

(a) UE connected via Slice 1 (SST=1, SD=0X000001)

[NAS] Send NAS UPLINK DATA REQ message(PduSessionEstablishRequest)

[NR_PHY] [UE O] RSRP = -41 dBm

[NR_PHY] [UE 0] RSRP = -41 dBm

[NR_RRC] RRCReconfiguration includes radio Bearer Configuratioen

Entering ITTI signals handler

TYPE <CTRL-C> TO TERMINATE

[PDCP] added drb 1 to UE ID 0@

[SDAP] Default DRB for the created SDAP entity: 1

[NR_RRC] State = NR_RRC_CONNECTED

[RLC] Added srb 2 to UE @

[RLC] Added drb 1 to UE @

[RLC] Added DRB to UE @

[NR_RRC] RRCReconfiguration includes Measurement Configuration

[NR_RRC] rrcReconfigurationComplete Encoded 10 bits (2 bytes)

[NR_RRC] Logical Channel UL-DCCH (SRB1), Generating RRCReconfigurationComplete (bytes 2)
[NAS] [UE] Received NAS CONN ESTABLI CNF: errCode 1, length 102

[NAS] Received PDU Session Establishment Accept, UE IPv4: 12.0.0.2

Unknown TIEI 129

[MAC] [UE @] Applying CellGroupConfig from gNodeB

[0IP] Interface oaitun_uel successfully configured, IPv4 12.0.0.2, IPv6 (null)

(b) UE connected via Slice 2 (SST=1, SD=0X000005)

Figure 3.4: UEs connected to distinct slices with active PDU sessions

o xApps: Modular control or monitoring applications that plug into FlexRIC. These
can implement functions such as traffic steering, slice orchestration, anomaly de-
tection, or handover optimization.

FlexRIC supports a range of E2 Service Models, which define the type of informa-
tion exchanged between the controller and the RAN node. These service models include:

« KPM (Key Performance Measurement): Provides statistics and performance
metrics from the gNB, such as throughput and latency.

« RC (RAN Control): Enables control of specific RAN behaviors, including han-

dovers and scheduling decisions.

« RAN Slice Information: Allows slicing-related data to be reported and config-
ured, facilitating slice-aware control.

The integration process involved compiling FlexRIC from source and configuring it to
recognize and communicate with the E2 Agent embedded within the OAI gNB. Once the
E2 connection was established, the gNB began transmitting real time RAN metrics (such

36 Chapter 3. METHODOLOGY

as radio link quality, UE state, or load) to the controller. In return, FlexRIC through its
xApps was able to send control commands back to the gNB to adjust behaviors such as
scheduling, slicing policies, or resource allocation.

[E2 AGENT]: E2 S
[E2-AGENT]: E2 SETUP RESPONSE rx
[E2-AGENT]: Transaction ID E2 SETUP-REQUEST 4 E2 SETUP-RESPONSE 4

ETUP REQUEST timeout. Resending again (tx)
E

Figure 3.5: gNB E2 Agent log: successful E2 connection

:~% ./start-ric.sh
[UTIL]: Setting the config -c file to /usr/local/etc/flexric/flexric.conf
[UTIL]: Setting path -p for the shared libraries to /Jusr/local/lib/flexric/
[NEAR-RIC]: nearRT-RIC IP Address = 127.0.0.1, PORT = 36421
[NEAR-RIC]: Initializing
[NEAR-RIC]: Loading SM ID = 143 with def = RLC_STATS V@
[NEAR-RIC]: Loading SM ID = 142 with def = MAC_STATS V@
[NEAR-RIC]: Loading SM ID = 144 with def = PDCP_STATS V@
[NEAR-RIC]: Loading SM ID = 148 with def = GTP_STATS_ V@
[NEAR-RIC]: Loading SM ID = 2 with def = ORAN-E2SM-KPM
[NEAR-RIC]: Loading SM ID = 146 with def = TC_STATS V@
[NEAR-RIC]: Loading SM ID 3 with def = ORAN-E2SM-RC
[NEAR-RIC]: Loading SM ID 145 with def = SLICE_STATS V0@

[iApp]: Initializing ...

[iApp]: nearRT-RIC IP Address = 127.0.0.1, PORT = 36422

[NEAR-RIC]: Initializing Task Manager with 2 threads

[E2AP]: E2 SETUP-REQUEST rx from PLMN 1. 1 Node ID 3584 RAN type ngran_gNB

[NEAR-RIC]: Accepting RAN function ID 2 with def = ORAN-E2S5M-KPM
[NEAR-RIC]: Accepting RAN function ID 3 with def = ORAN-E2S5M-RC
[NEAR-RIC]: Accepting RAN function ID 142 with def = MAC_STATS VO
[NEAR-RIC]: Accepting RAN function ID 143 with def = RLC_STATS VO
[NEAR-RIC]: Accepting RAN function ID 144 with def PDCP_STATS VO
[NEAR-RIC]: Accepting RAN function ID 145 with def SLICE _STATS Vo
[NEAR-RIC]: Accepting RAN function ID 146 with def = TC_STATS_V@
[NEAR-RIC]: Accepting RAN function ID 148 with def = GTP_STATS VO
[iApp]: E42 SETUP-REQUEST rx

[1App]: E42 SETUP-RESPONSE tx

Figure 3.6: FlexRIC controller log showing registration of multiple Service Models and
E2 connection acceptance

As shown in Figures 3.5 and 3.6, the gNB E2 agent initially reports a timeout while
attempting to send the E2 SETUP REQUEST. This occurred because the FlexRIC con-
troller had not yet been launched. Once the controller was started, the gNB successfully
received the corresponding E2 SETUP RESPONSE, establishing the E2 connection.

On the controller side, the FlexRIC log confirms the successful loading and registration
of multiple RAN function IDs, corresponding to service models such as KPM, RC, MAC,
RLC, and SLICE. These enable both monitoring and control functionalities over the
RAN.

Furthermore, the last two lines of the log
[iApp]: E42 SETUP-REQUEST rx
[iApp]: E42 SETUP-RESPONSE tx

3.3. Simulating Attack Scenarios 37

appear after launching the xApp, indicating that it has connected to the FlexRIC con-
troller and established its own E2 Application Protocol (E42) session. This confirms
that the xApp is now actively communicating with the RIC and is ready to subscribe to
service models, receive data, or send control commands to the gNB.

This end to end integration —gNB with E2 Agent, FlexRIC as the Near-RT RIC,
and the xApp— enables full programmability and dynamic control of the RAN, in line
with the O-RAN architecture’s goals of openness, flexibility, and disaggregation

3.3 Simulating Attack Scenarios

To evaluate the effectiveness of our proposed machine learning-based defense framework,
we conducted a series of controlled DDoS attack simulations within a containerized 5G
network environment built using OpenAirlnterface (OAI) and the FlexRIC controller.
This setup allowed us to emulate realistic network behavior while maintaining the flexi-
bility to control and monitor attack parameters.

We designed two types of attack scenarios to analyze the impact of volumetric DDoS
attacks on network performance and slice isolation:

 Intra-slice attack scenario: Both User Equipments (UEs) belong to the same
network slice. One UE generates legitimate traffic while the second launches an
attack. This helps us study how malicious traffic affects other users within the
same slice.

» Inter-slice attack scenario: The attacking and legitimate UEs are assigned to
different slices. This setup is used to assess how well network slicing isolates services
and whether DDoS traffic in one slice spills over to affect another.

The attacks were executed from the UEs toward a key core network component like
the User Plane Function (UPF) using the hping3 traffic generation tool. Below, we
describe the two specific attack types simulated in the simulated 5G network.

3.3.1 SYN Flood Attack

To evaluate the resilience of our defense framework, we simulated a TCP SYN flood
attack using the well known packet crafting tool hping3. This type of attack is designed
to exhaust server resources by rapidly sending a large number of TCP connection requests,
ultimately aiming to overwhelm the target and degrade service quality.

The attack was launched using the following command:

hping3 -S -d 100000000000000000 -I oaitun_uel --flood 192.168.70.134

This command sends a continuous stream of TCP SYN packets (-S flag), with an
abnormally large payload size specified by the -d flag, over the interface oaitun_uel the
tunnel interface used by the UE. The --flood option ensures that packets are sent as
fast as possible, creating an intense flood toward the target IP address (in this case, the
UPF at 192.168.70.134).

38 Chapter 3. METHODOLOGY

3.3.2 UDP Flood Attack

In addition to TCP based attacks, we also simulated a UDP flood attack to evaluate
how our defense framework handles different types of volumetric DDoS threats. Unlike
TCP SYN floods, which aim to exhaust server-side connection tables, UDP flood attacks
overwhelm the target with a high volume of stateless datagrams. These attacks consume
bandwidth and processing resources, often causing disruption to legitimate services due
to their intensity and randomness.

The attack was launched from one of the UEs in the simulated 5G environment using
the hping3 tool. The UE, assigned to a dedicated slice, sent a continuous stream of UDP
packets at high speed toward a component of the 5G core (e.g., the UPF or DNS server).
The following command was used to initiate the flood:

hping3 --udp -d 1200 -I oaitun_uel --flood 192.168.70.134 -p 80

This command generates UDP packets (-—udp) with a payload size of 1200 bytes (-d
1200), transmitted through the oaitun_uel interface. The packets are sent to the target
IP address 192.168.70.134 on port 80 (-p 80), using the -—-flood option to maximize
the packet rate.

This scenario helps us analyze the impact of high volume, connectionless traffic on
network behavior, especially in the context of 5G slice isolation. It also tests the respon-
siveness of our defense framework in detecting and mitigating UDP based threats, which
are typically more difficult to track due to their stateless nature.

3.4 Dataset Preprocessing

To build a reliable and high-performing DDoS detection model, the quality, diversity,
and volume of the training data are just as essential as the choice of ML algorithm. In
this study, we selected the CICDDo0S2019 dataset, which provides a rich and varied set of
network traffic data including both benign and multiple DDoS attack scenarios. However,
raw data from such datasets often contains noise, redundancy, and inconsistencies that
can negatively impact model performance. Therefore, we have applied a thorough pre-
processing pipeline to refine and prepare the data before feeding it into our ML models.
The steps of this preprocessing pipeline are detailed below.

3.4.1 Description of Dataset

The CICDDo0S2019 dataset, developed by the Canadian Institute for Cybersecurity, con-
sists of 18 CSV files containing flow-based analysis results generated by CICFlowMeter-
V3. It offers over 80 features, including timestamps, IP addresses, ports, and proto-
cols. The dataset contains more than 12.7 million labeled traffic records collected over a
two-day period in a controlled testbed environment. It includes 19 types of recent, real-
world-like DDoS attacks, categorized into reflection-based and exploitation-based types,
as illustrated in Figure 3.7.

3.4.2 Dataset Enhancement for 5G DDoS Detection

We initially trained our detection model using the CICDD0S2019 dataset, which is a rich
and diverse resource for studying various DDoS attack types. However, this dataset was

3.4. Dataset Preprocessing

DDoS Attacks
I
Reflection Exploitation
Attacks attacks
v ' ¥ v)
TCP based TCP/UDP UDP based UDP based TCP based
Attacks based attacks attacks attacks 3“7"‘5
) —
[CharGen[TFTP[NTP]
¥ L | — ¥ [sYNFlood | [UDP-LAG | UDP Flood |
[PORTMAP | SNMP | DNS [LDAP| NETBIOS |

Figure 3.7: Types of DDoS attacks in CICDD0S2019 [66].

Generated Traffic ~ CICDD0S2019

S g

Traffic Generation and

Collecting Setup

: SEEEE—
csv
Simulated O-RAN 5G network

CICDDOS-5G Data
Preprocessing

New Dataset

Figure 3.8: Dataset Enhancement for 5G DDoS Detection

40 Chapter 3. METHODOLOGY

Distribution des classes dans le dataset

200000 4

175000

150000 A

125000 -

100000 4

Nombre d'occurrences

75000 +

50000 -

25000 -

o

& > R Q 2 Q o & v 3 > & 2 Q 3
& & & & & . K R T L SRR s B P
& & & § o ¥ el ¥ & & oF T of &
& < Q 2y O 7 o
§ S § o & & Q &
< <) Q&o dQQ J o \

Types d'attagues

Figure 3.9: Class distribution in the CICDD0S2019 dataset

not designed specifically for 5G network environments and does not reflect the unique
characteristics of O-RAN 5G network slices. As a result, when deploying our model in
a simulated 5G network environment using the OAI simulator, the model struggled to
effectively detect DDoS attacks, revealing a key limitation in the dataset’s applicability
to modern 5G systems.

To overcome this limitation, we implemented a 5G network slicing scenario using OIA
and generated new traffic data tailored to O-RAN 5G environments. For benign traffic,
ICMP ping was used, while various DDoS attacks such as UDP flood and SYN flood
were simulated using the hping3 tool. The traffic was captured using tcpdump in PCAP
format and subsequently converted into CSV format using CICFlowMeter, extracting
84 relevant flow-based features. These new data samples, comprising both malicious
and benign traffic specific to 5G network slices, were integrated with the CICDD0S2019
dataset.

The result is a new enriched dataset, named CICDDo0S-5G, which more accurately
reflects the dynamic behavior and architectural specificities of modern 5G networks. The
distribution of traffic in our final dataset is presented in Table 3.2. The overall process
of dataset enhancement is illustrated in Figure 3.8.

Table 3.2: Total Traffic Before Preprocessing

Property Value
CICDDo0S2019 traffic | 632.474
Real-time traffic 100.883

3.4.3 Preprocessing Pipeline

The dataset employed in this study exhibits a pronounced class imbalance, with benign
(normal) flows significantly underrepresented compared to attack instances. To ensure
robust binary classification (Attack vs. Normal), this imbalance was addressed using

- w

© oo ~ (=] o

10

3.4. Dataset Preprocessing 41

a controlled downsampling strategy. Instead of enforcing strict class parity, the num-
ber of DDoS samples was reduced according to a fixed ratio relative to benign flows.
This approach preserved a representative distribution of both classes while minimizing
information loss. The initial class distribution is illustrated in Figure 3.9.

Dataset Cleaning

We began by cleaning the dataset to improve its quality prior to training our model.
Unnecessary columns such as Timestamp, IP addresses, and Flow ID were removed, as
they do not contribute to the detection of attacks.

All infinite values were replaced with NaN. Columns or rows containing an excessive
number of missing values were dropped, and the remaining missing values were imputed
using the mean of each respective column. Additionally, we removed columns with more
than 90% zero values and excluded rows containing negative values in features such as
Flow Duration, which should always be positive.

Data Cleaning and Feature Removal

to_drop = ['Timestamp', 'Source IP', 'Destination IP', 'Flow ID']
df .drop(columns=to_drop, inplace=True)

df .replace([np.inf, -np.inf], np.nan, inplace=True)

Remove rows with negative values in key columns
positive_cols = ['Flow Duration', 'Total Length of Fwd Packets']
exists = [c for c¢ in positive_cols if c¢ in df.columns]
if exists:
df = df [(df [exists] >= 0).all(axis=1)]

Listing 3.1: Data Cleaning and Feature Removal

Next, we converted the categorical columns into numbers using one-hot encoding.
This step was necessary because most ML and DL algorithms can only work with numer-
ical inputs.

df = pd.get_dummies(df, columns=cat_cols)

Listing 3.2: One-hot Encoding

We then used the StandardScaler from Scikit-learn to scale all the feature values.
This standardization step is important because it puts all features on the same scale,
which helps the DL model treat each feature fairly.

StandardScaler transforms each feature so that it has a mean of 0 and a standard de-
viation of 1. This is done by subtracting the mean and dividing by the standard deviation
for each value. Features with large ranges (like byte counts or durations) can otherwise
dominate the learning process, so standardizing ensures better model performance and
faster convergence during training.

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X scaled = scaler.fit transform(X)

Listing 3.3: Feature Standardization

Finally, we converted the target column Label into binary values. We replaced the
BENIGN class with 0, and grouped all attack types (such as SYN, TFTP, DrDoS_NTP,
etc.) under the value 1.

42 Chapter 3. METHODOLOGY

[] Matrice de corrélation AVANT suppression des colonnes fortement corrélées
Destination Port -Jilil 1.00
Protocol - |l | | |

Flow Duration - | HEE EEEE EEE
Total Fwd Packets -

Total Backward Packets -
Total Length of Fwd Packets -
Total Length of Bwd Packets -

Fwd Packet Length Max -

Fwd Packet Length Min -

Fwd Packet Length Mean -

Fwd Packet Length Std -

Bwd Packet Length Max -

Bwd Packet Length Min -

Bwd Packet Length Mean -
Flow Bytes/s -
Flow Packets/s -
Flow IAT Mean -
Flow IAT Std -
Flow IAT Max -
Flow IAT Min -
Fwd IAT Total -
Fwd IAT Mean -
Fwd IAT Std -
Fwd IAT Max -
Fwd IAT Min -
Bwd IAT Total -
Bwd IAT Mean -
Bwd IAT Max -

HE 0.75

|] | [|] - 0.50

-0.25

Bwd IAT Min - | | - 0.00
Fwd Header Length - | | | |
Bwd Header Length - | |
Fwd Packets/s - L | | |
_ Bwd Packets/s - | |
Min Packet Length - B
Max Packet Length - B | |
Packet Length Mean - ||
Packet Length Std - Bl B
Packet Length Variance -]
ACK Flag Count - [| | | |
Down/Up Ratio -

Average Packet Size - [[[} [| ||
Avg Fwd Segment Size - T]] [|
Avg Bwd Segment Size - |] [| [|

Fwd Header Length.1 - | | ||
Subflow Fwd Packets - u [|
Subflow Fwd Bytes - [| |
Subflow Bwd Packets - H B | []
Subflow Bwd Bytes - H E [||
Init_Win_bytes_forward - | |
Init_Win_bytes_backward - | |
act_data_pkt_fwd - | | —0.75
Inbound -

--0.25

—0.50

Protocol -

Flow Duration -

Total Fwd Packets -
Inbound -l

Total Backward Packets -

Total Length of Fwd Packets -

Bwd IAT Min -
s _forward -
ta_pkt_fwd -

Fwd Header Length -

Fwd IAT Min -
Bwd Header Length -

Flow Bytes/s -

Flow Packets/s -

Flow IAT Mean -

Flow IAT Std -

Flow IAT Max -

Flow IAT Min -

Fwd IAT Total -

Fwd IAT Mean -

Fwd IAT Std -

Fwd IAT Max -

Bwd IAT Total -

Bwd IAT Mean -

Bwd IAT Max -

Fwd Packets/s -

Bwd Packets/s -

Min Packet Length -

Down/Up Ratio -

Average Packet Size -
yie:

tes_backward -

ACK Flag Count -
Avg Fwd Segment Size -

Destination Port

Y

Subflow Fwd Bytes -
act_dal

Subflow Bwd Packets -
Subflow Bwd Bytes -

Init_Win_b:

Packet Length Std -
Init_Win_b

Fwd Packet Length Max -
Fwd Packet Length Min -
Fwd Packet Length Mean -
Fwd Packet Length Std -
Bwd Packet Length Max -
Bwd Packet Length Min -
Bwd Packet Length Mean -
Max Packet Length -
Packet Length Mean -
Packet Length Variance -
Avg Bwd Segment Size |
Fwd Header Length.1 -
Subflow Fwd Packets -

Total Length of Bwd Packets -

Figure 3.10: Correlation matrix between numerical features

df ['Label'] = df['Label'].apply(lambda x: O if x.upper() == 'BENIGN' else 1)

Listing 3.4: Label Encoding

Feature Selection

Feature selection is a crucial step in building efficient and reliable ML models. By reducing
the number of features, we can minimize noise in the dataset, reduce the risk of overfitting,
and improve model performance. In our approach, we first calculated the correlation
matrix between all numerical features. When two features had a correlation coefficient
greater than 0.95, we removed one of them to avoid redundancy. The correlation matrix
is shown in Figure 3.10.

We then applied two feature selection techniques: the Chi-Square (Chi?) test and the
Information Gain Ratio (IGR). The Chi? test evaluates the statistical dependence between
each feature and the target variable, helping to identify the most relevant features for
classification tasks. In contrast, IGR is based on information theory and measures how
much information a feature contributes to the prediction of the target, taking into account
the feature’s entropy.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3.4. Dataset Preprocessing

43

Table 3.3: Top 10 Selected Features for CNN and BiLSTM Models

Feature Name

Simple Description

Bwd [IAT Mean

Average time between packets going backward

Bwd IAT Min

Smallest time between two backward packets

Flow IAT Mean

Average time between packets in a flow

Flow IAT Std

Variation in the time between packets in a flow

Fwd Header Length

Total header size of forward packets

Total Length of Fwd Packets

Total size of all forward packets

ACK Flag Count

Number of ACK flags in the flow

Protocol

Type of protocol used (e.g., TCP, UDP)

Flow Packets/s

Number of packets sent per second

Flow Bytes/s

Number of bytes sent per second

We applied the Chi-Square and Information Gain Ratio (IGR) methods using a cus-
tom Python function (see Listing 3.5) that selects the top 35 features from each method,
intersects the two sets, and retains the 10 most relevant features.

def select_features(X, y):
X_chi = X.copyQ
X chi[X chi < 0] =0
chi2_selector =

SelectKBest (score_func=chi2, k=35)

chi2_selector.fit(X_chi, y)
chi2_features = X.columns[chi2_selector.get_support()].tolist()

def information_gain_ratio(X_discretized, y):

info_gain =
— True)
entropy_feature = [

mutual_info_classif(X_discretized, y, discrete_features=

-np.sum((counts / np.sum(counts)) * np.log2(counts / np.sum(counts))

—)

for _, counts in (np.unique(X_discretized[:, i], return_counts=True)
<~ for i in range(X_discretized.shape[1]))

]

entropy_feature =

— entropy_feature)

np.where(np.array(entropy_feature) == 0,

le-6,

return info_gain / entropy_feature

kbin =

KBinsDiscretizer(n_bins=10, encode='ordinal', strategy='uniform')

X_binned = kbin.fit_transform(X)

igr_scores =

information_gain_ratio(X_binned, y)

igr_features = X.columns[np.argsort(igr_scores) [-35:]].tolist()

final_features =

[f for f in igr_features if f in chi2_features]

topl0 = final features[:10]

return X[top10], topl0

Listing 3.5: Feature Selection Function Combining Chi-Square and IGR

For the feature selection process to train random forest model , we applied a feature

44 Chapter 3. METHODOLOGY

Table 3.4: Top 15 Selected Features for Random Forest Model

Feature Description

Destination Port The destination port number used in the flow.
Inbound Whether the packet is incoming to the internal network.
Min Packet Length Minimum length of the packets in the flow.

URG Flag Count Number of packets with the TCP URG flag set.
ACK Flag Count Number of packets with the TCP ACK flag set.
Fwd Packet Length Min Minimum packet length in the forward direction.
Flow Bytes/s Number of bytes transmitted per second in the flow.
Init. Win_bytes forward | Initial TCP window size in the forward direction.
Bwd Packets/s Number of backward packets per second.

Packet Length Std Standard deviation of the packet lengths.

Fwd Packet Length Mean | Average packet length in the forward direction.
CWE Flag Count Count of packets with CWE (ECN-Echo) flag.
act_data_pkt fwd Number of forward packets carrying actual data.
Flow IAT Mean Mean inter-arrival time between packets.

Total Backward Packets Total number of packets in the backward direction.

selection process based on a Random Forest classifier. We trained the model on the full
training dataset and leveraged its built-in feature importance scores, accessible via the
feature_importances_ attribute. The features were ranked by importance in descending
order, and the top 15 most influential features were selected for the final training.

This selection method helped reduce overfitting, improved training efficiency, and
maintained high classification accuracy. Table 3.4 lists the chosen features along with a
brief description of each.

Dataset Balancing and Shuffling

To address the imbalance between benign and attack traffic in our dataset, we applied
the SMOTE (Synthetic Minority Over-sampling Technique). This method synthetically
generates new instances of the minority class, helping balance the number of samples in
both categories.

After oversampling, we shuffled the dataset rows using the following Python instruc-
tion:

df = shuffle(df,random_state=42) .reset_index(drop=True)

Listing 3.6: Shuffling the dataset

Shuffling ensures that the model does not learn any ordering or pattern from the data
sequence, which could lead to biased training or overfitting. This randomization step is
essential for improving the generalization ability of the model. The final distribution of
the dataset is shown in Table 3.5.

3.5 Model Design and Training

Model training is a crucial phase in the machine learning pipeline, where various ML
and DL algorithms are applied to the preprocessed dataset, as illustrated in Figure 3.11.

3.5. Model Design and Training

45

Table 3.5: Final Dataset Structure After Preprocessing

Property Value
Total samples 1,032,105
Number of features | 10
BENIGN instances | 513,459
ATTACK instances | 518,646

Feature Extraction

<

-

CICDDOS-5G Preprocessing
- @
ML&DL hyperparameter Traihing Model Evaluation
Models tuning
Attack Detector Testing
in Real Time

Figure 3.11: Training Pipeline

46 Chapter 3. METHODOLOGY

This study leverages a diverse set of models—Random Forest, CNN, BiLSTM, and an
ensemble approach—each selected for its specific strengths in detecting DDoS attacks
and analyzing network traffic patterns.

« Random Forest was chosen for its robustness, interpretability, and ability to
handle high-dimensional data. As a tree-based ensemble method, it effectively
captures non-linear relationships in traffic features and is resistant to overfitting
due to its use of multiple decision trees.

o CNN is well-suited for identifying local spatial dependencies in data. In the con-
text of network traffic, CNN can extract hierarchical patterns from input features,
making it effective for detecting abrupt changes or anomalies in traffic behavior
typically associated with DDoS attacks.

o BiLSTM was selected for its ability to learn from sequential and time-dependent
data. Since network traffic is inherently temporal, BiLSTM networks can capture
long-range dependencies in both past and future directions, which is valuable for
identifying slow or stealthy DDoS attack patterns.

« Ensemble Approach combines the strengths of multiple models to improve detec-
tion accuracy and robustness. By aggregating predictions from different algorithms,
the ensemble reduces the risk of relying on a single model’s limitations and improves
generalization performance across diverse attack types.

To ensure optimal performance, key hyperparameters such as the learning rate, num-
ber of layers, and dropout rate were carefully tuned to strike a balance between model
complexity and generalization. Overfitting was mitigated through techniques such as
cross-validation and regularization.

The dataset was divided into 70% for training, 20% for testing, and 10% for vali-
dation, allowing for effective learning, robust evaluation, and fine-tuned hyperparameter
optimization. Model training involved experimentation with different epochs and batch
sizes, while performance was monitored through loss and accuracy metrics, enabling real-
time adjustments and improved training outcomes.

3.5.1 1D-CNN Based Model

In this project, we developed a CNN model specifically tailored for binary classification
tasks, with a primary focus on detecting DDoS attacks. The architecture comprises two
1D convolutional layers with increasing filter sizes (32 and 64), each followed by max
pooling and dropout layers to reduce overfitting and extract robust features. The output
is then flattened and passed through a fully connected dense layer with 128 neurons,
followed by another dropout layer. Finally, a single neuron with a sigmoid activation
function generates the binary classification output.

This architecture, illustrated in Figure 3.12, is well-suited for processing structured
and sequential input data, such as network traffic lows, where capturing temporal depen-
dencies and local feature patterns is essential for accurate classification. The proposed
CNN model leverages multiple layers to extract and learn hierarchical representations of
input features, enhancing its ability to distinguish between benign and malicious traffic.
A summary of the CNN architecture is presented in Table 3.6.

3.5. Model Design and Training A7

The model is compiled using the Adam optimizer, known for its adaptive learning
rate and efficient convergence. The loss function selected is binary cross-entropy, which
is most appropriate for binary classification tasks such as distinguishing between benign
traffic and DDoS attacks.

Table 3.6: CNN Architecture for Binary DDoS Attack Detection

Layer Type Details

Conv1D 32 filters, kernel size = 3, activation = ReLLU
MaxPoolinglD | Pool size = 2

Dropout Rate = 0.25

ConvlD 64 filters, kernel size = 3, activation = ReLLU
MaxPoolinglD | Pool size = 2

Dropout Rate = 0.25

Flatten Converts 2D feature maps to 1D feature vector
Dense 128 units, activation = ReLLU

Dropout Rate = 0.5

Dense (Output) | 1 unit, activation = Sigmoid

X1 Fully
| connected
X 2 Layer
(o}
— b o
C &
/ X, » ’ o .
/10
» - > -0 X .
ConviD MaxPooling ConviD MaxPooling Flatten W0 .
Data | L] L Dropout o)
2 (o

Dropout Dense Dropout Dense output

Layer
Input Layer Y

Figure 3.12: CNN Model Architecture

3.5.2 BiLSTM-Based Model

To capture the temporal dependencies present in sequential network traffic data, we im-
plemented a BiLSTM model tailored for binary classification. This model is particularly
effective in learning both forward and backward temporal patterns, thereby enhancing
its capability to detect complex anomalies such as DDoS attacks.

The architecture, illustrated in Figure 3.13, begins with a BiLSTM layer comprising
64 units, enabling the model to learn patterns from both directions of the input sequence.
This bidirectional mechanism significantly improves the model’s ability to differentiate
between normal and malicious traffic behaviors. To stabilize and accelerate training,
batch normalization is applied to the output of the BiLSTM layer. A dropout layer with
a rate of 30% follows, serving as a regularization mechanism to mitigate overfitting.

48 Chapter 3. METHODOLOGY

A GlobalAveragePoolinglD layer is subsequently employed to reduce the temporal
dimension by computing the average of each feature map across time steps, effectively
summarizing the sequence into a fixed-length vector. This representation is then passed
to a dense layer with 32 units and a LeakyReL.U activation function, which allows a small
gradient when the neuron is inactive, improving learning dynamics. A second dropout
layer is added to further enhance generalization. The final layer is a dense layer with a
single neuron and a sigmoid activation function, producing a probability that indicates
whether the input traffic is benign or part of a DDoS attack.

A summary of the BiLSTM architecture is presented in Table 3.7.

Table 3.7: BIiLSTM Architecture for Binary DDoS Attack Detection

Layer Type Details

BiLSTM 64 units, outputs sequence for each timestep

Batch Normalization Normalizes output to improve stability and training
speed

Dropout Rate = 0.3 (30%)

GlobalAveragePooling1D | Aggregates temporal features into a fixed-length vector

Dense 32 units, activation = LeakyReLU

Dropout Rate = 0.3 (30%)

Output Layer Dense (1 unit), activation = Sigmoid

b 5
> o B

E [a]

=] -
by —» —s 2

W g Ls 'g ;'f’

hy —» 2 —»é

Xq
Input data - —0\ h, > >
LSTM

Dropout

BiLSTM Layer

Figure 3.13: BILSTM Model Architecture

The model is trained using the Adam optimizer due to its fast convergence properties
and robustness. Binary cross-entropy is used as the loss function, which is suitable
for binary classification tasks. Additionally, early stopping and learning rate reduction
callbacks are employed to prevent overfitting and ensure efficient convergence.

3.5. Model Design and Training 49

3.5.3 Random Forest-Based Model

Our Random Forest model is specifically designed to handle the high-dimensional and
structured nature of network traffic data. This architecture is particularly well-suited
for tabular datasets such as network flow features due to its robustness to noise and its
ability to handle both numerical and categorical data effectively. The model architecture
is composed of the following components:

o Input Layer: Receives a fixed-size feature vector composed of 15 selected and
normalized flow-based features. These features capture statistical and protocol-
level characteristics of the network traffic.

« Ensemble of Decision Trees: The core of the Random Forest consists of 250
independently trained decision trees. Each tree is trained on a different bootstrap
sample from the training dataset and uses a random subset of features at each split.
This introduces diversity among the trees and reduces the risk of overfitting.

e« Majority Voting Layer: For each input sample, predictions from all trees are
aggregated using a majority voting scheme to produce the final class label. This
ensemble decision process enhances prediction stability and improves generalization.
Class labels are defined as 0 for BENIGN and 1 for DDoS.

3.5.4 Ensemble Model

In order to leverage the strengths of different machine learning approaches, we designed
an ensemble architecture combining three complementary models: a Random Forest
,BILSTM and CNN. This choice is based on our intention to capture:

« the explicit tabular features of network flows (effectively modeled by Random For-
est).

« the local spatial patterns in tabular data (identified by the CNN).

 the temporal dynamics of flow sequences (learned by the BiLSTM).

Each model is trained independently using the same preprocessed dataset. During the
inference stage, their outputs are fused using a weighted voting scheme to form the final
decision, as illustrated in Figure 3.14 .

The ensemble score is computed using the following formula:

Scoreensemble =a- SCOreBiLSTM + b- ScoreRandomForest +c- SCOI‘eCNN (31)

where a, b, and ¢ are the voting weights assigned to BiLSTM, Random Forest, and
CNN respectively. These weights are constrained such that a + b+ ¢ = 1, and they are
dynamically determined based on the validation accuracy of each individual model.

A classification threshold of 0.5 is then applied to the aggregated ensemble score to
predict the traffic class: BENIGN (label 0) or DDoS (label 1). This ensemble method aims
to mitigate the individual weaknesses of each model, enhance generalization performance,
and improve robustness in handling dynamic traffic patterns, particularly within the
challenging and heterogeneous context of 5G network environments.

50

Chapter 3. METHODOLOGY

CNN Classifier

{

CNN

Predection

INPUT TRAFFIC

&

BiLSTM classifier

3

BiLSTM

Predection

|

Random Forest
Classifier

y

Random

Predection

Majority Voting

|

Final

Predection

Figure 3.14: Ensemble architecture

3.6. Detection Framework 51

Table 3.8: Comparative Table of Models for DDoS Attack Detection

Model |Model |Features|Architecture Optimizer| Loss Overfitting Output
Name Type Func- Control Type
tion
Random | ML 15 250 decision trees with | N/A N/A Tree di- | Class label:
Forest bootstrap sampling, versity, mno|0/1
majority voting pre- backpropa-
diction gation
1D-CNN | DL 10 2xConv1lD (32,64), | Adam Binary Dropout, Probability
MaxPooling, Dropout Cross- pooling
(0.25,0.5), Dense(128), Entropy |layers
Sigmoid output
BiLSTM |DL 10 BiLSTM(64), Batch-|Adam Binary Dropout, Probability
Norm, Dropout(30%), Cross- early stop-
GlobalAvgPool- Entropy |ping
ing, Dense(32,
LeakyReLU), Sig-
moid
Hybrid Hybrid 15 Weighted voting: | N/A Binary Model Final deci-
Ensemble | Model a-BiLSTM + b-RF + Cross- fusion sion 0/1
¢CNN (a+b+c=1) Entropy |strategy

3.5.5 Comparative Overview of the Designed Models

In Table 3.8, we present a comparative analysis of the models we employed for DDoS
attack detection. Each model was selected for its unique strengths in handling different
aspects of network traffic. Our Random Forest model offers robustness and interpretabil-
ity for structured data using an ensemble of decision trees. The 1D-CNN model allows
us to capture local spatial patterns through convolutional and pooling layers, which is ef-
fective in identifying abrupt traffic anomalies. With the BiLSTM model, we were able to
learn temporal dependencies in both directions of traffic flow, making it particularly suit-
able for detecting stealthy or evolving attack behaviors. To enhance detection accuracy
and resilience, we designed a Hybrid Ensemble that combines the outputs of these three
models using a weighted voting scheme. This ensemble approach enabled us to mitigate
the limitations of individual models and improve our system’s ability to generalize across
diverse attack scenarios.

3.6 Detection Framework

Our detection framework, illustrated in Figure 3.15, integrates a ML-based Intrusion
Detection System (IDS) within a simulated 5G network using OAI as the core platform.
The IDS is embedded in each dedicated UPF instance per slice, enabling per-UE traffic
monitoring and DDoS attack detection. It operates by capturing network traffic in real
time, extracting relevant flow-level features, and classifying this data using a trained ML
model. Upon detecting an attack, the system can trigger alerts.

This modular design ensures independent detection and response capabilities across
different slices, promoting scalability, isolation, and efficient protection of network re-
sources. Figure 3.16 illustrates the positioning of the IDS within the UPF and its inter-

52

Chapter 3. METHODOLOGY

M= —=Q

Feature
Extractuion Model Predction Attack Demc“"”

GTP
J C:> Decapsulation

Slicet
10.0.0.0/24

Slice2
12.0.0.0/24

Capture Real Time : f&
Traffic h)
Extract VE IP
Xapp
Figure 3.15: Detection Framework
OPE%’:\T!EAEESG Core Network

oF Eéﬁ!l@;\c{ docker

5G Radio Access L

Network UDM| (UDR| INSSF| |NRF

-%- 8 _ ((())) A|\|n|= AUSF 'SMF1 sw‘le

Simulator

% 8 } UPF1

- ® g
‘ o & ﬁé?
MOSAICEE ID.S1

FlexRIC:
Network Intrusion xApp

UPF2

Figure 3.16: IDS Integration within the 5G Network

© oo ~ (=]

10

11

3.6. Detection Framework 53

action with other components of the 5G network.

3.6.1 Packet Capture and Decapsulation

The IDS captures GTP-U packets from the tunO interface in the UPF of the 5G network.
Specifically, it filters packets originating from the targeted network slice using a subnet
filter. The following code snippet illustrates the packet capture loop:

Listing 3.7: Packet Capture Function

def capture_traffic():
subnet_filter = "src net 10.0.0.0/24"
while True:
try:
sniff (iface='tun0', filter=subnet_filter, prn=process_packet, store=
— False)
except KeyboardInterrupt:
logging.info("Packet capture stopped by user.")
break
except Exception as e:
logging.error (f"Error during packet capture: {e}")
time.sleep(10)

Once a GTP-U packet is captured, the IDS performs decapsulation to extract the
inner IP packet, which contains the actual UE traffic. From this inner IP packet, the
UE’s IP address is retrieved and used as a key identifier for further analysis. The following
code illustrates the GTP-U decapsulation and subsequent extraction of the IP address:

Listing 3.8: Packet Decapsulation and Processing

def process_packet (pkt):
ip_pkt, teid = decapsulate_gtp(pkt)
if not ip_pkt or IP not in ip_pkt:
return

ue_ip = ip_pkt[IP].src
sliding_windows [ue_ip] .append(ip_pkt)

For each UE, the IDS maintains a sliding window of 40 packets. When this window
reaches its maximum size, it triggers the feature extraction and prediction processes. The
window then advances with an overlap, enabling the system to analyze both flow-level
behaviors and point anomalies effectively. This architecture ensures that the IDS can
process multiple UE flows in real time, maintaining a continuous and efficient monitoring
system within the 5G network infrastructure.

3.6.2 Feature Extraction

Once packets are captured from the network interface and grouped into sliding windows,
the system extracts a set of features that capture the temporal and behavioral characteris-
tics of the network traffic. This transformation of raw packet-level data into a structured
set of features is essential for model-based analysis.

The feature extraction process leverages the capabilities of Scapy, a Python-based
packet manipulation library, to analyze packets and compute a rich set of statistical,

10

11

12

13

14

15

16

17

18

19

54 Chapter 3. METHODOLOGY

protocol, and flow-level features. These features are designed to capture both the intrinsic
properties of the packets and their aggregated flow behavior.

The key features computed per window include: Flow Duration, Protocol Flags, and
Header Attributes. The following Python function illustrates the core feature extraction
logic using Scapy:

Listing 3.9: Feature Extraction

import pandas as pd
from scapy.all import *

def extract_selected_features(packets):
packet_sizes = [len(pkt) for pkt in packets]
forward_packets = [pkt for pkt in packets if pkt[IP].src == ue_ip]
inbound_packets = [pkt for pkt in packets if pkt[IP].dst == ue_ip]
flow_duration = (packets[-1].time - packets[0].time) if packets else 1

features = {}
features['Min Packet Length'] = min(packet_sizes) if packet_sizes else 0
features['ACK Flag Count'] = sum(l for pkt in packets if TCP in pkt and pkt
— [TCP].flags & 0x10)
features['Fwd Packet Length Min'] = min([len(pkt) for pkt in
— forward_packets]) if forward_packets else 0
features['Flow Bytes/s'] = sum(len(pkt) for pkt in packets) / flow_duration
— if flow_duration else O
features['Bwd Packets/s'] = len(inbound_packets) / flow_duration if
— flow_duration else O
features['Packet Length Std'] = pd.Series(packet_sizes).std() if len(
— packet_sizes) > 1 else 0
features['Total Backward Packets'] = len(inbound_packets)

return pd.DataFrame([features])

This approach ensures that each window of packets is transformed into a structured
feature vector that matches the model’s expectations. Once features are extracted, they
must be normalized and aligned with the model’s input format. This step is critical
because machine learning models are sensitive to feature scales and input order. The sys-
tem uses a pre-trained ‘StandardScaler‘, fitted during the training phase, to standardize
the features. Before normalization, a verification step ensures that all required features
(defined in FINAL_FEATURES) are present. The following function demonstrates the
normalization process:

Listing 3.10: Feature Normalization and Alignment

scaler = joblib.load("scaler.pkl")
def normalize_and_align(df, required_columns):
for col in required_columns:
if col not in df:
df [col]l = 0O
df = df[required_columns].fillna(0)
df _normalized = pd.DataFrame(scaler.transform(df), columns=required_columns
—)
return df _normalized

© oo ~ (=]

10

11

3.7. Mitigation Framework 5}

This ensures that the input data is consistent with the model’s training format, pre-
venting issues such as mismatched feature dimensions or out-of-distribution values during
real-time predictions.

3.6.3 Prediction and Action

A pre-trained machine learning model classifies aggregated network flows by analyzing
key features extracted from packet windows, determining whether each flow represents
normal traffic or a potential DDoS threat. For each source entity, the system continuously
monitors and maintains a count of both normal and anomalous flows.

Upon detecting suspicious activity, the Intrusion Detection System (IDS) transmits a
structured message to the xApps via a TCP socket, enabling real-time coordination and
response.

Listing 3.11: Establishing TCP Connection and Capturing Traffic

def main():
global sock
while True:
try:
sock = socket.create_connection(("192.168.70.129", 8080))
logging.info("Connected to the server.")
break
except ConnectionRefusedError:
logging.error("Server not ready. Retrying in 5 seconds...")
time.sleep(5)
capture_traffic()

The transmitted message includes critical information such as the source UE iden-
tifier, the volume of anomalous and legitimate flows, and the corresponding network
slice parameters, namely the SST and SD. This real-time communication facilitates rapid
decision-making and supports dynamic mitigation strategies within the 5G architecture.

Listing 3.12: Formatted Message and Sending via Socket

message = f"sst:{sst},sd:{sd},normal:{total_normal_packets},anomaly:{
— total_ddos_packetsl}"
send_message_to_server (message)

3.7 Mitigation Framework

The mitigation framework we developed is designed to act as a reactive layer in our 5G
enviroment, built on the FlexRIC platform. Its main objective is to respond to detected
anomalies by taking direct RAN level actions to free up resources and protect the network
infrastructure.

Specifically, the mitigation framework is implemented as a custom xApp that targets
DDoS attacks on critical 5G core components such as the UPF. When an attack is
detected on a specific network slice, specialized detection systems are used to define the
responsible UE(s). These systems communicate the relevant information to the xApp
through a dedicated socket interface.

56 Chapter 3. METHODOLOGY

Upon receiving this information, the xApp reacts using the E2SM-RC (Radio Control)
service model. It triggers a targeted RRC Release procedure for the identified malicious
UE, effectively disconnecting it from the network. This allows the xApp to isolate suspi-
cious behavior at the UE level without compromising the rest of the slice’s operations.

In parallel, our system enforces a static and balanced PRB allocation strategy by
equally dividing them between the network slices, ensuring fairness and stability in the
distribution of radio resources. This configuration remains fixed, providing predictable
resource isolation even under attack scenarios.

The result is a responsive mitigation mechanism that operates close to the RAN, by
enforcing real time control over UE connectivity. the full mitigation logic is illustrated in
Figure 3.17.

3.7.1 Initial xApp from FlexRIC

As a foundation for our work, we adopted a reference xApp implementation provided
by the FlexRIC project. This xApp was built using the standardized O-RAN E2SM-RC
service model and was designed to demonstrate basic control functionalities, particularly
those related to slice level PRB (Physical Resource Block) quota enforcement in the RAN.
which governs how available radio resources are distributed among multiple network slices
within a gNB.

Key Features of the xApp

o Slice Level Resource Allocation: The xApp enforces policies for distributing
PRBs among network slices using three configurable ratios defined in the 3GPP
specification:

— Minimum PRB Ratio: Guarantees a minimum share of PRBs for a slice,
ensuring it always has resources even under high load.

— Maximum PRB Ratio: Caps the maximum PRBs a slice can use, prevent-
ing resource monopolization.

— Dedicated PRB Ratio: Reserves a fixed portion of PRBs exclusively for a
slice, which cannot be reallocated to other slices.

o Static Configuration: The xApp uses hardcoded values for slice configurations
in its current implementation. Only the dedicated PRB ratio is explicitly defined,
while both the minimum and maximum PRB ratios are set to 0, indicating that they
are unset and not enforced by the gNB.

1
2 const char* sst _str[] = {"1", "1"};
3 const charx sd_str[] = {"1", "5"};
4 int dedicated_ratio_prb[] = {70, 30};
5 for (int 1 = 0; i < num_slice; i++) {
6 gen_rrm_policy_ratio_group(&RRM_Policy_Ratio_List->ran_param_val.lst->
— 1lst_ran_param[i],
sst_str[il],
8 sd_str[il,
9 0, dedicated_ratio_prb[il, 0);
0 | }}

3.7. Mitigation Framework

57

Intrusion Detection Systems

IDS1 IDS2

Per-UE Monitoring Per-UE Monitoring

v Slices v
Slice 1 Slice 2
10.0.0.0/24 12.0.0.0/24
UE Reports: UE Reports:
*UE's IP *UE's IP
* Normal flows * Normal flows
* Anomaly flows * Anomaly flows

l J
\Qlear-RTRIC ,

Mitigation xApp

Anomaly Ratio Calculation:
(Anomaly Flows) / (Total Flows)

L i |

Threshold Check:
Ratio = 0.7?

True False

. !

Execute Mitigation:
* RRC Release UE Continue Monitoring
* PRB Reallocation

Figure 3.17: Mitigation strategy Diagram

58 Chapter 3. METHODOLOGY

These values allocate 70% of PRBs to the first slice (SST=1, SD=1) and 30% to
the second slice (SST=1, SD=5).

« E2SM-RC Control Procedures: The xApp constructs and sends control mes-
sages to the gNB via the E2 interface. The messages adhere to the E2SM-RC
Control Header (Format 1) and Control Message (Format 1) specifications.

Limitations and Extensions

o Unequal PRB Allocation: In its original form, the xApp applies hardcoded,
unbalanced PRB ratios across slices (70/30), which may lead to unfair resource
distribution and underutilization in lightly loaded slices.

o No Security Mechanisms: The initial xApp does not incorporate any form of
security awareness or protection against malicious UEs, such as those involved in
DDoS attacks targeting the core network.

o Lack of Real-Time Response: The control logic is static and does not respond
dynamically to real-time events or changing network conditions at the UE level.

« No External Integration: The xApp operates in isolation and lacks connectivity
with external analytics or anomaly detection engines that could provide valuable
context for intelligent decision making.

In our extended implementation, we addressed these issues by enforcing equal PRB
allocation across slices (50/50), which improves fairness and predictability. We also in-
troduced a lightweight mitigation mechanism that integrates with two anomaly detection
engines. Upon detecting suspicious UEs, the xApp is capable of issuing targeted RRC
Release commands via the E2SM-RC, effectively disconnecting malicious devices in real
time. These enhancements enable our system to provide better resource management
and enhanced security at the RAN level, while maintaining the simplicity of static policy
enforcement.

3.7.2 Custom Enhancements

To make the xApp truly effective for our DDoS attacks mitigation,we made several im-
portant enhancements. These changes were aimed at giving the xApp more awareness of
network behavior and the ability to act quickly when something goes wrong.

We started by improving how the xApp communicates with the external IDS modules,
enabling it to receive real time traffic data for each UE. We also built in multithreaded
support so it can handle data from multiple IDS sources at the same time without de-
lays or blocking. Most importantly, we added intelligent logic that allows the xApp to
calculate anomaly levels per UE and take actions based on what it receives.

These custom improvements allow the xApp to go beyond passive monitoring and
actively defend the network in real time.

Socket Communication and Multithreading

To support real time anomaly detection across multiple UEs, the xApp incorporates a
multithreaded TCP server that manages concurrent communication with two independent

10

11

12

13

14

15

16

3.7. Mitigation Framework 29

IDS clients. Each IDS monitors its own slice and periodically transmits per UE anomaly
statistics to the xApp.

Upon startup, the main() function initializes the TCP server by creating a socket,
binding it to a known address and port, and listening for incoming client connections.
When an IDS client connects, a new thread is spawned using pthread_create() to
handle communication for that client independently. This allows the xApp to process
traffic insights from both slices.

Each thread receives a pointer to a client data_t structure containing the client’s

socket and unique identifier. As connections are established, a global counter clients_connected

is incremented to track how many IDS clients have joined. This counter is protected by
a mutex to ensure thread safety. Once a client connects, the thread signals a condition
variable, notifying the main thread of its arrival.

The main thread remains blocked on pthread_cond_wait() until all expected IDS
clients have connected. This synchronization ensures that control operations don’t pro-
ceed until all monitoring components are active.

pthread_mutex_lock(&lock);
clients_connected++;
pthread_cond_signal (&cond) ;
pthread_mutex_unlock(&lock) ;

pthread_t sniffer_thread;

if (pthread_create(&sniffer_thread, NULL, handle_ids, (void*)client_data) < 0)
— A
perror ("Could not create thread");
return 1;%}

pthread_detach(sniffer_thread) ;

pthread_mutex_lock(&lock) ;

while (clients_connected < IDS_CLIENTS) {
pthread_cond_wait (&cond, &lock);}

pthread_mutex_unlock(&lock) ;

puts("Both IDS connected. Starting main loop...");

This multithreaded design ensures robust and scalable data ingestion. By separating
client handling into parallel threads and synchronizing initialization, the xApp can re-
liably receive and process anomaly reports in real time. These statistics are later used
to compute anomaly ratios and trigger targeted RAN control actions like RRC release
based on per-UE behavior.

Client Handling

The handle_ids() function manages communication with each IDS client in its own
thread, allowing the xApp to process data from multiple sources concurrently. Each
thread runs a continuous loop, receiving structured messages from its assigned IDS client.
These messages include essential information such as slice identifiers (SST and SD), the
number of normal and anomalous packets, and the IP address of the UE.

When a message is received, it is parsed and the extracted values are stored in the
shared ue_datal[] structure. To ensure thread safety while multiple threads access this
global data, updates are performed under a mutex lock.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

60 Chapter 3. METHODOLOGY

Once the shared data is updated, the thread signals a condition variable to notify the
main control logic that fresh data is available. This allows the xApp to react in real time
if a UE shows a high anomaly ratio.

The core of this functionality is illustrated in the following loop:

while ((read_size = recv(sock, client_message, BUFFER_SIZE, 0)) > 0) {
client_message[read_size] = '\0';

printf ("Received message from IDS %d: %s\n", ids_id + 1, client_message);

int sst, sd, normal_count, anomaly_count;
char ip[INET_ADDRSTRLEN] = {03};

if (sscanf(client_message, "sst:%d,sd:%d,normal:%d,anomaly:%d,ue_ip:%15s",
&sst, &sd, &normal_count, &anomaly_count, ip) == 5) {
pthread_mutex_lock(&lock);
ue_data[ids_id] .sst = sst;
ue_datalids_id].sd = sd;
ue_data[ids_id] .normal_count = normal_count;
ue_datalids_id] .anomaly_count = anomaly_count;
strncpy(ue_datalids_id] .ip_address, ip, INET_ADDRSTRLEN);

if (sd == 1) {
if (strcemp(ip, "10.0.0.2") == 0) {
ue_datalids_id] .rrc_ue_id = 1;
} else if (strcmp(ip, "10.0.0.3") == 0) {
ue_datalids_id] .rrc_ue_id = 2;
}
} else if (sd == 5) {
if (stremp(ip, "12.0.0.2") == 0) {
ue_datal[ids_id] .rrc_ue_id = 3;
} else if (strcmp(ip, "12.0.0.3") == 0) {
ue_datal[ids_id] .rrc_ue_id = 4;
}
+

messages_received++;

pthread_cond_signal (&cond) ;
pthread_mutex_unlock(&lock);

printf ("Parsed values for IDS %d: SST: %d, SD: %d, Normal: %d, Anomaly:
— %4, IP: %s, RRC UE ID: %d\n",
ids_id + 1, sst, sd, normal_count, anomaly_count, ip, ue_datal
< ids_id] .rrc_ue_id);}

Static Mapping from IP Address to RRC UE ID A crucial part of this function
is assigning a valid RRC_UE_ID to each UE. Since RRC Release messages require UE iden-
tifiers known to the gNB, and IDS clients only report UE IP addresses, we implemented
a static mapping between IP addresses and RRC UE IDs. This was necessary because
the gNB’s internal identifiers are not directly accessible via IDS data.

© oo ~ (=2 ot [w N -

3.7. Mitigation Framework 61

The mapping is hardcoded and based on observations from KPM measurement
reports, as shown in Figure 3.18. By monitoring KPM logs from the FlexRIC based
xApp, we correlated UE IPs with their corresponding RRC UE IDs as recognized by the
gNB.

1 KPM Measurement Report
RAN_UE_ID:
RAN_UE_ID:

1
RAN_UE_ID: 3
RAN_UE_ID: 4

Figure 3.18: KPM Measurement Report Showing RAN_UE_IDs

This mapping allows the xApp to identify the correct RRC UE ID from the UE’s IP,
making it possible to issue an RRC Release via the E2 interface.

After updating the shared data, the function signals a condition variable to notify the
main control thread that new IDS statistics are available.

Triggering RRC Release for Malicious UEs

In 5G networks, the RRC (Radio Resource Control) Release procedure is used to discon-
nect a UE from the radio network. This is typically triggered when a device becomes idle,
moves out of coverage, or in our work exhibits malicious behavior. Releasing the RRC
connection not only prevents the offending UE from continuing to impact the network
but also frees up radio resources.

To implement this functionality, we extended the xApp to send RRC Release com-
mands via the E2 interface using a simple yet effective mechanism. The setup includes a
telnet server running on the E2 Agent, which listens for commands on TCP port 9090.
The xApp uses the netcat (nc) utility to send commands to this server.

Once a UE is identified as malicious the xApp invokes the rrc_release_ue() func-
tion, passing the UE’s RAN ID. This function spawns a new thread to handle the release
asynchronously, ensuring that the main control loop remains responsive:

Listing 3.13: RRC Release Execution Logic

void rrc_release_ue(int ran_ue_id) {
pthread_t thread;
int* arg = malloc(sizeof (xarg));
if (arg) {
*arg = ran_ue_id;
pthread_create(&thread, NULL, rrc_release_ue_thread, arg);
pthread_detach(thread);

The release thread constructs a shell command that echoes the release instruction and
pipes it into netcat. The instruction takes the form rrc release rrc <RAN_UE_ID> and
is transmitted to the E2 Agent via TCP:

62 Chapter 3. METHODOLOGY

Listing 3.14: RRC Release Thread

void* rrc_release_ue_thread(void* arg) {
int ran_ue_id = *((int*)arg);
char command[256] ;
snprintf (command, sizeof (command),
"echo rrc release_rrc %d | nc %s 9090", ran_ue_id, SERVER_IP);
system(command) ;
free(arg);
return NULL;

This mechanism enables real time control of UE disconnection. By tying this release
logic to UE anomaly detection, we can rapidly respond to suspicious traffic behavior,
protecting the network and its legitimate users from potential attacks.

Static PRB Allocation Enforcement

Once an attack is detected and the malicious UE is removed from the network through
an RRC release, the xApp immediately reinforces static PRB allocation to rebalance
resources across slices. This step is crucial to prevent the attack from continuing to affect
the performance of other users.

The xApp achieves this by calling the enforce_slicing() function, which sends a
control message to the gNB using the RC service model. This message instructs the gNB
to reapply a fixed PRB split, typically a 50/50 distribution between the two slices. This
ensures that each slice regains its intended share of radio resources, keeping the network
fair and stable.

By tying together per UE anomaly detection with slice level PRB enforcement. the
xApp maintains both security and service quality. Even in the presence of malicious
traffic, this approach helps ensure that legitimate users continue to get the resources they
need.

Per-UE Anomaly Ratio

To enable control decisions, the xApp computes an anomaly ratio for each UE based on
data received from the IDS clients. Each IDS client is responsible for monitoring traffic
flows associated with specific UEs and sends statistics to the xApp in the form of normal
and anomalous flow counts. These values are parsed and stored in the global ue_datal]
structure.

The following code block shows the main control logic that processes these statistics:

Listing 3.15: Anomaly Ratio Calculation and RRC Release Decision

void apply_rrc_release(e2_node_arr_xapp_t nodes) {
for (int i = 0; i < IDS_CLIENTS; i++) {
int total_flows = ue_datali] .normal_count + ue_datali].anomaly_count;
double anomaly_ratio = (total_flows > 0) 7
(double)ue_datali] .anomaly_count / total_flows : O;

if (anomaly_ratio > 0.7) {
printf("Client %d (RAN UE ID: %d) has %.0f%) anomaly. Triggering RRC
< release.\n",

10

11

12

13

14

15

3.7. Mitigation Framework 63

i + 1, ue_datali].rrc_ue_id, anomaly_ratio * 100);
rrc_release_ue(ue_datal[i] .rrc_ue_id);

}

enforce_slicing(nodes);

For each connected IDS client the xApp retrieves the total number of normal and
anomaly flows, computes the anomaly ratio, then compares this ratio to a predefined
threshold (0.7).

If a UE’s anomaly ratio exceeds the threshold, the xApp invokes the rrc_release_ue()
function with the corresponding RRC UE ID. This action instructs the RAN to release
the UE, effectively removing it from the radio network and mitigating the threat it may
pose.

This mechanism allows the xApp to autonomously detect and act upon UE-specific
anomalies based on real-time traffic behavior, with decisions derived from decentralized
IDS monitoring but enforced centrally through RRC control.

After each RRC release, the xApp also calls the enforce_slicing() function to
reapply static PRB slicing policies across the slices. This ensures that once an attack is
mitigated by disconnecting the malicious UE, each network slice continues to receive its
guaranteed share of radio resources.

This mechanism allows the xApp to autonomously detect and respond to anomalies
while maintaining fair and consistent resource isolation between slices.

Chapter 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter evaluated the performance of our proposed solution by testing the effec-
tiveness of the ML/DL models on both the benchmark dataset CICDD0S2019 and the
enhanced version, CICDDoS-5G. A comparison between the models was carried out to
highlight the strengths and weaknesses of each one. We then moved on to present the
results of both the detection and mitigation frameworks in real time scenarios.

To further demonstrate the effectiveness of our defense framework, we analyzed key
network performance indicators such as round trip time (RTT) and throughput. These
metrics clearly showed the significant impact DDoS attacks can have on the user expe-
rience, as well as the ability of our framework to effectively counter and mitigate those
effects.

4.2 Model Evaluation

The performance of the models was evaluated using two datasets: the original CICD-
DoS2019 dataset and the enhanced dataset (CICDDoS-5G), which aims to improve the
detection of DDoS attacks in a 5G environment by incorporating traffic patterns adapted
to 5G network characteristics.

Model performance was assessed using well-established metrics: accuracy, precision,
recall, and Fl-score. These metrics provide a comprehensive understanding of each
model’s ability to correctly detect and classify DDoS attacks. Accuracy reflects the
overall correctness of the model’s predictions, while precision measures the proportion of
true positives among all positive predictions. Recall (or sensitivity) indicates the model’s
ability to identify actual attack instances. The F1l-score, which combines precision and
recall into a single value, offers a balanced evaluation of the model’s performance.

Table 4.1 summarizes the performance metrics for the four models.

Table 4.1: Accuracy Comparison

Dataset Random Forest | CNN | BiLSTM | Ensemble
CICDDo0S2019 99.90 98.6 98.83 99.0
CICDDoS-5G 90.38 73.92 84.18 84.24

64

4.2. Model Evaluation 65

random forest - CICDDOS2019 random forest - CICDDOS-5G
600000

20000

500000

26739

BENIGN
BENIGN
L

15000 400000

Real
real

- 300000
- 10000

- 200000
74352 613390

DDoS

- 5000

- 100000

1 1
BENIGN DDoS BENIGN DDoS
Predicted Predicted

Figure 4.1: Confusion Matrix — Random Forest

4.2.1 Random Forest Analysis

The Random Forest model achieved a very high accuracy of 99.9% on the CICDDo0S2019
dataset, demonstrating its strong capability in feature integration and decision-making
for DDoS detection. The confusion matrix in Figure 4.1 for this dataset showed mostly
correct predictions, with few false positives and false negatives, highlighting the model’s
ability to effectively distinguish between benign and DDoS traffic.

Random Forest is particularly appreciated for its robustness against overfitting, its
ability to handle high-dimensional data, and its relatively low computational requirements
compared to deep learning models. Its ensemble of decision trees provides a reliable
assessment of feature importance, and the model is highly effective for classifying data
with clear decision boundaries.

However, when applied to the enhanced dataset CICDDOS-5G comprising more di-
verse and realistic traffic, the confusion matrix in Figure 4.1 revealed an increase in false
positives and false negatives, and the model’s accuracy dropped to 90.3%. This per-
formance gap illustrates Random Forest’s limitations in adapting to more complex data
without extensive feature engineering. Furthermore, while Random Forest offers better
interpretability than deep learning models, it may struggle to handle the volume and
velocity of real-time 5G traffic or to capture more subtle, high-level patterns.

4.2.2 CNN Model Analysis

The CNN model achieved an accuracy of 98.6% on the CICDD0S2019 dataset but dropped
to 73.92% on the enhanced CICDDoS-5G dataset, as shown in Figure 4.2. This demon-
strates its ability to learn from structured, feature-rich data while highlighting its limi-
tations in handling diverse and complex traffic patterns. CNN is effective at capturing
spatial and temporal dependencies within DDoS attacks, but it struggles to generalize
when exposed to varied data. This suggests that additional feature engineering may be

66

Chapter 4. RESULTS AND DISCUSSION

CNN- CICDDOS2019

80000

CNN- CICDDOS-5G

500000

128698

232135

BENIGN
BENIGN

400000
60000

Real
Real

- 300000
- 40000

] 98010

DDoS
DDoS

- 200000
-20000

- 100000

i i
BENIGN BENIGN

DDoS

DDoS

Predicted Predicted

Figure 4.2: Confusion Matrix CNN

Model Training History

Training and Validation Accuracy Training and Validation Loss

—— Training Loss

e — = Validation Loss

0.98 4

0.971

Loss

0.96 4

Accuracy

0.954

—— Training Accuracy
Validation Accuracy

0.94

6 7 8 9 0 1 2 3

4 5 4 5
Epoch Epoch

Figure 4.3: CNN Training and Validation Accuracy and Loss Curves

required to enhance its adaptability and robustness in real-world 5G scenarios.
The training and validation curves in Figure 4.3 illustrate the following key points:

« Effective Learning: Both accuracy and loss curves show steady improvement,
indicating successful training.

« Generalization: Validation accuracy reaches 98.7%, slightly higher than training
, suggesting good generalization without overfitting.

« Stable Convergence: The curves converge smoothly, with loss values decreasing
consistently, confirming learning stability.

o Intersection Insight: At epoch 5, the training and validation curves intersect,
highlighting the model’s balanced learning.

4.2. Model Evaluation

67

BiLSTM- CICDD0OS2019

80000

BENIGN

60000

Real

- 40000

DDoS

- 20000

1
BENIGN DDoS
Predicted

100000

BILSTM- CICDDOS-5G

500000

400000

360772

BENIGN

300000

Real

—-200000

165683 522059

DDoS

- 100000

|
BENIGN DDoS
Predicted

Figure 4.4: Confusion Matrix BiLSTM

Model Training History

Training and Validation Accuracy

Training and Validation Loss

0.990 1 _’\\/———s’"

—— Training Accuracy 0.04 1
Validation Accuracy

0.10

0.12 + —— Training Loss
— = Validation Loss

0 1 2 3 4 5 6 7 8
Epoch

9 o] 1 2 3 4 5 6 7 8

Figure 4.5: BiLSTM Training and Validation Accuracy and Loss Curves

4.2.3 BiLSTM Model Analysis

The BiLSTM model achieved a strong accuracy of 98.83% on the CICDD0S2019 dataset
and 84.19% on the enhanced dataset CICDDOS-5G (Figure 4.4), demonstrating its abil-

ity to learn sequential patterns from network traffic data.

The high performance on

CICDDo0S2019 confirms BiLSTM’s strength in capturing temporal dependencies, as it
processes data in both forward and backward directions. However, the drop in accuracy
on the enhanced dataset suggests challenges in generalizing to more complex or varied
data, as BILSTM models can be sensitive to shifts in data distribution and variability.
The training and validation curves in Figure 4.5 illustrate the following key points:

o The BiLSTM model exhibits rapid convergence, achieving over 98.5% accuracy
by epoch 2, indicating efficient learning dynamics.

o The validation accuracy consistently surpasses the training accuracy, reaching up

68 Chapter 4. RESULTS AND DISCUSSION

to 99.2%, which suggests a high degree of generalization to unseen data.

e Both training and validation loss curves exhibit a smooth and monotonic decrease,
with validation loss remaining slightly lower, reflecting stable optimization and
effective regularization.

o The absence of a significant gap between training and validation metrics indicates
that the model is neither overfitting nor underfitting, maintaining strong predictive
performance across the dataset.

4.2.4 Ensemble Model Analysis

To improve detection performance on the enhanced dataset, we developed an ensemble
model that integrates the predictions of three complementary classifiers: BiLSTM, Ran-
dom Forest, and CNN. This approach was designed to leverage the individual strengths
of each model, BILSTM’s capability to capture temporal dependencies in sequential data,
Random Forest’s effectiveness in handling structured tabular features and delivering high
interpretability, and BiLSTM’s ability to extract local spatial patterns within flow level
traffic data.

Each model was trained independently on the same preprocessed dataset. During
inference, the final decision is made through a weighted voting scheme, which combines
the prediction scores of each base model according to the following formula:

Scoreensemble =a- SCOreBiLSTM + b- ScoreRandomForest +c- SCOI‘eCNN (41)

where a = 0.25, b = 0.5, and ¢ = 0.25. These weights were selected empirically based
on the validation performance of each model, with Random Forest achieving the highest
standalone accuracy and thus receiving the largest voting weight. The ensemble output
score is then thresholded at 0.5 to classify network traffic as either benign(label 0) or
DDoS(label 1).

The ensemble model achieved an overall accuracy of 84.18% on the enhanced dataset.
According to the classification report, it attained a precision of 0.69 and recall of 1.00 for
the benign class, and a precision of 1.00 and recall of 0.76 for the DDoS class. The macro
average Fl-score was 0.84, and the weighted average F1-score reached 0.85, indicating
a well-balanced and effective model performance. The confusion matrix is illustrated in
figd.6.

The ensemble architecture successfully mitigates the limitations of individual classi-
fiers, offering improved generalization and robustness, especially in the context of dynamic
and heterogeneous 5G network environments. Nevertheless, the relatively low precision
for benign traffic (0.69) suggests a tendency to produce false positives, which could be a
concern in real world deployments.

The strengths of the ensemble model include its ability to combine the complementary
strengths of individual models, improving robustness and handling diverse traffic patterns
more effectively. It achieves better generalization compared to single models and reduces
the risk of overfitting to a specific dataset. However, the ensemble’s precision for benign
traffic is relatively low (0.69), meaning it tends to classify some benign traffic as DDoS,
which could lead to false positives in a real world scenario.

4.3. Model Performance Comparison 69

Confusion Matrix - Ensemble

500000

359509 400000

BENIGN

300000

Actual

- 200000

163904 523838

DDoS

- 100000

|
BENIGN DDoS
Predicted

Figure 4.6: Ensemble’s Confusion Matrix

4.3 Model Performance Comparison

This section presents a comparative analysis of the trained models Random Forest, CNN,
BiLSTM, and an Ensemble approach. The evaluation is conducted using two datasets:
the original CICDDo0S2019 dataset and a realistically enhanced version, referred to as
CICDDoS-5G, derived from traffic generated by the simulated 5G network.

The performance of each model is assessed using the following metrics (see table 4.2):

e Accuracy: Overall detection rate.

» False Positive Rate (FPR): Ratio of benign traffic misclassified as attacks.
« False Negative Rate (FINR): Ratio of attack traffic misclassified as benign.
o Execution Time: Time required to train and evaluate the model.

o Precision, Recall, and F1-score: Represented graphically in histograms.

Figures 4.7 and 4.8 illustrate the precision, recall, and F1-score of the models on both
datasets.

70 Chapter 4. RESULTS AND DISCUSSION

Precision, Recall, and F1-Score Comparison (CICDD052019)

1.04 4

1.02 4

0.99 0.99 0.99

Score

Metric
Precision

mm Recall

I Fl-Score

T
Random Forest CNN BILSTM Ensemble
Model

Figure 4.7: Precision, Recall, and F1-Score for Models on CICDD0S2019

Precision, Recall, and F1-Score Comparison (CICDD0S-5G)

1.0

0.88

0.84

Score

Metric
Precision

mam Recall

B Fl-Score

T
Random Forest BILSTM Ensemble
Model

Figure 4.8: Precision, Recall, and F1-Score for Models on CICDDoS-5G

4.3.1 Interpretation and Discussion

o Random Forest consistently delivers the highest performance in terms of accuracy,
F1-score, and low error rates. It also exhibits the fastest execution time, making it
suitable for real time applications.

o CNN performs well on the original dataset but suffers a notable performance drop
on the enhanced dataset CICDDo0S-5G, indicating a limited ability to generalize
temporal traffic variations.

4.4. Defense Framework Results 71

e BiLLSTM provides strong results on both datasets, benefiting from its ability to
model sequential data. However, it demands higher computational resources and
longer execution time.

o The Ensemble approach combines the strengths of individual models and achieves
balanced performance but at the cost of increased complexity and slower execution.

Real Time Detection Performance

In high throughput 5G environments, Random Forest stands out due to its low latency
and efficient processing. While CNN and BiLSTM are powerful in pattern recognition,
their heavier computational requirements make them less suitable for ultra low latency
scenarios unless hardware acceleration is employed.

Preprocessing Complexity

Random Forest requires minimal feature preprocessing. In contrast, CNN needs feature
reshaping, and BiLSTM demands careful handling of temporal sequences, making them
more complex to deploy.

Table 4.2: Performance Comparison of ML /DL Models for DDoS Detection in 5G Net-
works

Model Dataset Accuracy FPR FNR Execution
(%) Time
CICDDo0S2019 99.90 0 0.001
Random Forest © Fast
CICDDoS-5G 90.38 0.0741 0.1081
CICDDoS2019 98.60 0.0428 0.0360
CNN © Moderate
CICDDoS-5G 73.92 0.6433 0.1425
ICDDoS201) .0084 .0134
BiLSTM CICDDoS2019 98.83 0.008 0.013 Slow
CICDDoS-5G 84.18 0.0001 0.2409
CICDDo0S2019 99.00 — —
Ensemble Slowest
CICDDoS-5G 84.24 0.0037 0.2383

Overall, the results highlight the trade offs between accuracy, execution time, and model
complexity. Based on these considerations and the need for efficient real time detection
in 5G networks, Random Forest was selected for this application due to its high accuracy,
low false positive rate, and fast execution time.

4.4 Defense Framework Results

To validate our Defense framework, we designed a realistic test scenario where a compro-
mised UE executes malicious traffic patterns. The system’s response was evaluated across
three key components: the external IDS for detection, the xApp for decision-making, and
the gNB for proper mitigation execution.

72 Chapter 4. RESULTS AND DISCUSSION

4.4.1 Real time Detection Results

Our detection system was evaluated in a simulated 5G network scenario, where two UEs
from the same network slice were deployed: one generating normal traffic through ICMP
(ping), and the other simulating a DDoS attack using the Hping tool targeting the UPF,
as shown in Figure 4.9.

:~$ sudo ip netns exec uel bash
[sudo] password for linux:
root@linux: /home/1linux# sudo ip route add 192.168.70.142 dev oailtun_uel

root@linux: /home/1inux# hping3 -S -d 100000 192.168.70.142 --flood
HPING 192.168.70.142 (oaitun _uel 192.168.70.142): S set, 40 headers + 34464 data bytes
hping in flood mode, no replies will be shown

(a) DDoS attack traffic generated by UE1

:~$ sudo ip netns exec ue3 bash
[sudo] password for linux:
root@linux: /home/1inux# ping -I oaitun uel 8.8.8.8

PING 8.8.8.8 (8.8.8.8) from 10.0.0.3 oaitun uel: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp seq=1 ttl1l=108 time=114 ms
64 bytes from 8.8.8.8: icmp seq=2 ttl=108 time=620 ms

(b) Normal ICMP traffic generated by UE2

Figure 4.9: Traffic patterns from UEs connected to the same slice

The IDS consistently demonstrated strong detection capabilities. When the malicious
UE (10.0.0.2) initiated the DDoS attack, the system accurately identified the anomalous
behavior with a 100% true positive rate across all test runs, as shown in Figure 4.10.
The detection process exhibited an average latency of 1.2 seconds from attack initiation,
indicating near real time response capabilities. Additionally, the IDS effectively leveraged
flow level features to establish a strong correlation between traffic characteristics and
anomaly scores, confirming its robustness in distinguishing between benign and malicious
flows. These results validate the system’s ability to detect and respond to DDoS attacks
in 5G environments.

$ sudo docker exec -ti ocai-upf-slicel bash
[sudo] password for linux:
root@81513d3da96f: fapp# pythenB IDS.py
2025-605-31 20:01:52,149 Connected to the server.
2025-85-31 2'3:'35:54,334 Predicting for UE IP: 10.
2025-05-31 20:05:54,729 Mormal: 4, DDoS: ©, UE: 1
2025-05-31 20:06:12,174 Predicting for UE IP: 10.
2025-05-31 20:06:13,431 Normal: ©®, DDoS: 4, UE: 1

0.0.3
0.0.0.
0.0.2.
0.0.0

Figure 4.10: IDS Detection results.

4.4. Defense Framework Results 73

Waiting for incoming connections...
Connection accepted from IDS 1
Connection accepted from IDS 2
Both IDS connected. Starting main Lloop...
[xApp]: CONTROL-REQUEST tx
[xApp]: CONTROL ACK rx
[xApp]: Successfully received CONTROL-ACK
RC initialization completed. Starting main Lloop...
Received message from IDS 1: sst:1,sd:1,normal:4,anomaly:0,ue_ip:10.0.0.3
values for IDS 1: S5T: 1, SD: 1, Normal: 4, Anomaly: 6, IP: 10.8.0.3, RRC UE ID: 2
5 1: S5T: 1, SD: 1, Normal: 4, Anomaly: ©
: §5T: 1, SD: 5, Normal: ©®, Anomaly: @
CONTROL-REQUEST tx
[xApp]: CONTROL ACK rx
[xApp]: Successfully received CONTROL-ACK
Received message from IDS 1: sst:1,sd:1,normal:®,anomaly:4,ue ip:18.0.08.2
Parsed values for IDS 1: SST: 1, SD: 1, Normal: @, Anomaly: 4, IP: 10.0.0.2, RRC UE ID: 1
1: 55T: 1, SD: 1, Normal: ©, Anomaly: 4
IDS 2: S5T: 1, SD: 5, Normal: ©®, Anomaly: @
IDS 1 (RAM UE ID: 1) has 160% anomaly. Triggering RRC release.
[xApp]: CONTROL-REQUEST tx
[xApp]: CONTROL ACK rx
[xApp]: Successfully received CONTROL-ACK
RRC Release triggered for UE 1

Figure 4.11: xApp Action Upon Attack Detection: RRC Release for Target UE.

E2-AGENT]: CONTROL ACKNOWLEDGE tx

TELNETSRV] Telnet client connected....

NR_RRC] [FRAME ©0000][gNB][MOD @O][RNTI 1] Logical Channel DL-DCCH, Generate RRCRelease (bytes 3)
E1AP] releasing UE 1

GTPU] [181] Deleted all tunnels for ue id 1 (1 tunnels deleted)
SDAP] Successfully deleted SDAP entity for UE 1
UE 1: received bearer release complete

Figure 4.12: gNB logs confirming RRC Release execution for UE1

4.4.2 Real time Mitigation Results

The Figure 4.11 illustrate a successful mitigation process triggered by the xApp in re-
sponse to detected anomalies. The xApp, after registering one E2 node and establishing
connections with two IDS, began monitoring network traffic. IDS 1 reported significant
anomalies, with four anomaly flows and zero normal activities from UE1 with IP address
10.0.0.2 while UE2 with IP address 10.0.0.3 has zero anomaly flows and four normal
flows, IDS 2 showed no traffic. The xApp determined that IDS1’s data indicate a 100%
anomaly rate for the UE associated with RAN UE ID 1, prompting immediate action.

gNB reaction

Upon identifying the threat, the xApp initiated a control request to release the RRC
connection for the affected UE. The gNB received the command and executed the RRC
release procedure, as evidenced by the logs in figure 4.12. The gNB generated an RRC
Release message, released the UE’s resources, and deleted all associated GTP-U tunnels.
The UE confirmed the release by sending a bearer release complete message, concluding
the mitigation process. This sequence demonstrates the xApp’s ability to autonomously
detect anomalies and enforce countermeasures to isolate potentially compromised devices,
thereby maintaining network integrity.

These results confirm that the proposed system not only detects threats rapidly but
also reacts in a timely and coordinated manner to mitigate potential harm to the 5G

74 Chapter 4. RESULTS AND DISCUSSION

infrastructure.

4.5 Evaluation of the Defense Framework

To evaluate the effectiveness of the defense framework, we designed two distinct scenarios.
The first scenario serves as a baseline in which no defense mechanisms are applied, leaving
the network fully exposed to DDoS attacks. The second scenario integrates our proposed
defense framework. By systematically comparing the performance of both scenarios across
key metrics such as Round Trip Time and Throughput, we aim to demonstrate the obvious
benefits of our solution in maintaining optimal network performance, even under attack
conditions.

4.5.1 Round Trip Time

Round Trip Time (RTT) is a key metric for evaluating network performance, representing
the delay between sending a packet and receiving its response. It is particularly critical
in 5G networks, where ultra low latency is a fundamental requirement. To assess the
effectiveness of the framework, we conducted two experiments within the 5G simulated
network setup.

Interpretation

As shown in Figure 4.13, there is a clear performance gap between the two scenarios. In
the first scenario, where no defense mechanisms were enabled, RTT increases significantly,
with spikes reaching up to 4000 ms. This renders the network nearly unusable under
attack conditions and highlights the severe impact of DDoS attacks on service availability.

In contrast, when the defense framework is activated, RTT remains stable and con-
sistently below 100 ms even during the attack phase. This represents an improvement of
over 97% in latency performance. The network remains responsive and maintains a good
quality of service for legitimate users, showcasing the effectiveness of our defense system
in preserving low latency requirements under adverse conditions.

Discussion

The two experiments were conducted as follows:

« Without defense framework: Two UEs were deployed, each belonging to a
different network slice. UE1 from the first slice generated normal ICMP (ping)
traffic, maintaining very low RTT initially. However, once UE2 from the second
slice launched a flood based DDoS attack using the hping tool, the RTT for UE1
increased dramatically. This indicates a lack of slice isolation at the resource allo-
cation level, as an attack targeting one slice severely affected the performance of
another.

o With defense framework: In this scenario, the proposed mitigation system was
enabled. Upon detecting the malicious traffic generated by UE2, the attacker was
immediately disconnected from the network. As a result, UE1 continued to expe-
rience smooth and stable latency performance, as evidenced in Figure 4.13. This

4.5. Evaluation of the Defense Framework 75

Latency Comparison: With vs Without defense framework

—— Without defense framework
—— With defense framework

4000

3000 4

Latency (ms)

2000+

1000

T u T T T T T T T
o 25 50 75 100 125 150 175 200
time

Figure 4.13: RT'T comparison.

confirms the real time responsiveness and efficacy of our defense mechanism in
mitigating DDoS attacks while ensuring continued quality of service.

These results emphasize the necessity of integrated defense mechanisms in modern 5G
networks. Our framework not only detects and mitigates attacks effectively but also en-
forces strong isolation between network slices, ensuring a reliable and secure environment
for all users.

4.5.2 Throughput

Throughput is one of the key measures of how well a 5G network performs. It tells
us how much data is successfully sent from a user device(UE) to the network. For
applications that need high speed connections like video streaming or critical real time
services, maintaining fast and stable throughput is essential. To understand how well
our defense system works under attack, we ran two test scenarios in our simulated 5G
environment: one without any protection, and one with our mitigation framework turned
on.

Interpretation

As illustrated in Figure 4.14, the impact of a DDoS attack on the uplink throughput of
a normal UE is starkly different between the two scenarios.

In the first case, without any mitigation, the UE initially maintains a high throughput
of approximately 24 Mbps. However, after the attack begins at the 18th second, there is
a dramatic and sustained drop in throughput to around 11 Mbps. This clearly indicates
the network’s vulnerability to resource exhaustion caused by malicious traffic, which
compromises performance for legitimate users.

In contrast, when the defense mechanism is active, the throughput briefly dips after
the attack started but quickly stabilizes in the range of 19-22 Mbps. This indicates that
the framework successfully detects and suppresses the impact of the attack, maintaining
network performance for non-malicious users.

76 Chapter 4. RESULTS AND DISCUSSION

Discussion

The experiment was structured as follows:

o« Without defense framework: Two UEs were connected to the 5G core. UE1
transmitted traffic normally, while UE2 initiated a flood-based DDoS attack. The
network failed to differentiate between normal and malicious flows, leading to a
sharp drop in UE1’s throughput due to resource contention caused by the attack.

« With defense framework: The defense mechanism monitored traffic patterns
and identified the abnormal flow from UE2. Upon detection, the attacker was
promptly removed from the network. As a result, UE1 maintained high throughput
throughout the experiment, showing the resilience of the network under attack
conditions.

These findings underscore the importance of intelligent, real time mitigation systems
in 5G architectures. Our proposed framework not only identifies and neutralizes threats
effectively but also ensures that legitimate users continue to experience high throughput,
fulfilling one of the core promises of 5G networks.

normal UE Throughput During attack 'w/o Defense framework' normal UE Throughput During attack 'w Defense framework'
—— Throughput

ughput (Mbps)
Throughput (Mbps)

Thro

Time (s) Time (s)

(a) Normal UE throughput without defense (b) Normal UE throughput with defense
framework framework

Figure 4.14: Throughput comparison of normal UE during DDoS attack with and without
defense mechanism

Chapter 5

CONCLUSION AND FUTURE
WORK

5.1 Conclusion

This thesis presents a meaningful advancement to the field of cybersecurity in 5G Net-
works through the design and evaluation of a complete machine learning based defense
system capable of detecting and mitigating DDoS attacks in real time. Central to our
approach was the creation of a realistic and modular 5G simulation environment built
upon OpenAirlnterface and enhanced with the FlexRIC controller to support O-RAN ar-
chitectural principles. This testbed played a vital role in emulating complex, real world
network behaviors and enabled the implementation of custom xApps within a near-RT
RIC context.

Furthermore, our work integrates advanced machine learning models trained on an
enhanced dataset, which combines the CICDD0S2019 benchmark dataset with real traffic
generated from our simulated O-RAN based 5G network. This approach ensures high
adaptability and performance under diverse network conditions. The result is a robust
and scalable security solution that not only detects malicious behavior with high accu-
racy but also actively mitigates it by disconnecting compromised UEs through targeted
RRC Release procedures. To preserve service quality, the system maintains balanced
resource distribution across network slices following mitigation actions. This research
demonstrates both the feasibility and the necessity of embedding intelligent security
mechanisms directly into the fabric of next generation mobile networks.

5.1.1 Achievements of the Research

e Simulation of a 5G Network Integrated with Open RAN Architecture:
A fully functional Simulated 5G Network was developed using OpenAirlnterface
(OAI) to simulate realistic 5G network scenarios. We extended this environment
by integrating the FlexRIC near-RT RIC controller, thereby enabling support for
the O-RAN architecture and laying the foundation for implementing intelligent
XApps in a controlled setup.

e Construction of the CICDDo0S-5G Enhanced Dataset:

77

78

Chapter 5. CONCLUSION AND FUTURE WORK

To ensure model relevance to real world 5G environments, we constructed an en-
hanced dataset named CICDDo0S-5G, which combines the CICDD0S2019 bench-
mark dataset with real traffic generated from our OAl-based O-RAN simulated
network. This involved capturing both benign and malicious traffic in the simu-
lated environment and carefully merging it with the existing traffic. The resulting
dataset provides a richer and more representative training resource, enabling the
machine learning models to generalize better and perform effectively in diverse and
dynamic 5G scenarios.

Development and Training of Robust ML-Based Detection Models:

We built and trained machine learning models using the enhanced CICDDoS-5G
dataset. The dataset was thoroughly preprocessed to extract relevant features and
ensure model generalization. The developed models include Random Forest, Convo-
lutional Neural Networks (CNN), Bidirectional Long Short-Term Memory networks
(BiLSTM), and an ensemble model that combines the strengths of all three, with
Random Forest contributing the most due to its consistently high performance,
achieving an accuracy of 90.38% across evaluation metrics.

Comprehensive Model Performance Evaluation:

The trained models were evaluated on both the original CICDD0S2019 and the
enhanced CICDDoS-5G datasets. Key performance metrics such as accuracy, pre-
cision, recall, and F1-score were used to assess model effectiveness. Additionally,
confusion matrices were generated to visualize classification results and analyze
misclassification patterns. This dual evaluation confirmed the enhanced dataset’s
contribution to better generalization and higher performance, particularly in more
realistic 5G traffic conditions.

Design of a Real Time Detection Framework: A lightweight detection system
was implemented using the Scapy library to capture live traffic, extract features on
the fly, and classify incoming flows using our trained models. Instead of evaluating
packets individually, the system processes groups of packets as a flow, enabling
more accurate context aware predictions. The detection output is integrated into
the O-RAN environment by forwarding alerts to the xApp running on the near-RT
RIC, enabling coordinated mitigation.

Implementation of a Real Time Mitigation xApp: We developed an xApp
capable of listening to multiple Intrusion Detection Systems (IDS) simultaneously
and taking real time mitigation actions. Based on the anomaly score of each UE,
the xApp could issue RRC release commands to disconnect malicious UEs. Addi-
tionally, the xApp implemented an equal PRB reallocation strategy to maintain
fairness and service continuity across slices. This ensured that the impact of an
attack was isolated and did not degrade the experience of other legitimate UEs,
whether on the same or different network slices.

Evaluation of the Defense Framework: The effectiveness of the overall detec-
tion and mitigation frameworks were evaluated using key performance indicators
such as Round Trip Time (RTT) and throughput. Measurements before, during,
and after DDoS attack scenarios showed that the proposed system effectively re-
duced latency spikes and restored throughput levels after mitigation actions. This

5.2. Future Work 79

confirms the framework’s ability to maintain service quality and network respon-
siveness in the presence of attacks.

5.2 Future Work

To further enhance the effectiveness and applicability of our proposed defense system,
several directions will be pursued in future work:

e Multi class Classification: Extend the current binary classification approach to
a multi class classification framework. This will enable the system to accurately
identify and differentiate between multiple types of DDoS attacks, thereby improv-
ing detection precision and response strategies.

« Utilization of Real 5G Traffic Data: Incorporate real world 5G network traffic
data into the training and evaluation pipeline to improve model generalization,
reliability, and relevance in practical deployment scenarios.

e Dynamic PRB Allocation for Mitigation: Investigate the implementation of
dynamic PRB allocation strategies as a means to mitigate DDoS attacks. This
involves adjusting resource allocation in real time to isolate or restrict malicious
traffic while preserving service quality for legitimate users.

e« Dynamic Mapping of UE Identifiers for Precise Mitigation: Enhance the
mitigation process by implementing a dynamic mapping mechanism between UE IP
addresses (identified by traffic analysis engines) and their corresponding RAN_UE_ID
as known by the gNB. This mapping can be achieved by utilizing the O-RAN KPM
(Key Performance Measurement) service model, which provides realt ime reporting
of UE level performance metrics, including identifiers, thereby enabling precise
correlation and targeted mitigation actions.

o Adaptive and Self Learning Models: Develop adaptive ML and DL models
that dynamically adjust to changing network conditions and evolving attack pat-
terns. Incorporating reinforcement learning techniques could enable these models to
continuously learn from new data, improving detection accuracy and responsiveness
over time.

e Generalization to Diverse Network Threats: Broaden the scope of the pro-
posed detection framework by adapting its methodologies and models to detect
a wider range of network threats, including intrusion attempts, malware propaga-
tion, and other sophisticated anomalies. Such an expansion is essential for achieving
comprehensive and resilient security in increasingly complex and dynamic environ-
ments, particularly within 5G and future 6G networks.

These future directions aim to contribute to the development of a more intelligent,
adaptive, and robust intrusion detection and mitigation system tailored for the dynamic
environment of 5G networks.

Bibliography

1]

[10]

Cavli Wireless, “Architectural advancements in 5g technology,” 2023, accessed:
2025-04-16. [Online|. Available: https://www.cavliwireless.com/blog/not-mini/
architectural-advancements-in-5g-technology

S. Park, B. Cho, D. Kim, and I. You, “Machine learning based signaling
ddos detection system for bg stand alone core network,” Applied Sciences,
vol. 12, mo. 23, p. 12456, 2022, accessed: 2025-04-16. [Online]. Available:
https://www.mdpi.com/2076-3417/12/23 /12456

O-RAN Alliance. (2022) O-ran alliance introduces 53 new specifications released
since july 2022. Accessed: 2025-05-07. [Online]. Available: https://www.o-ran.org/
blog/o-ran-alliance-introduces-53-new-specifications-released-since-july-2022

OpenAirlnterface, “Openairinterface: An open-source 5g wireless software plat-
form,” https://openairinterface.org/, 2025, accessed: 2025-05-09.

MOSAIC5G, “FlexRIC: Open RAN near-RT RIC platform,” https://gitlab.eurecom.
fr/mosaicbg/flexric, 2025, accessed: 2025-05-09.

A. Elbarbary, P. Bertin, L. Bertaux, Y. Meidan, and P. Owezarski, “Open
ran security: Challenges and opportunities,” Journal of Network and Computer
Applications, vol. 210, p. 103563, 2023, accessed: Jun. 12, 2025. [Online|. Available:
https://doi.org/10.1016/j.jnca.2022.103563

3GPP, “System architecture for the 5G system (release 15),” 3GPP, Technical Spec-
ification TS 23.501, 2018.

Calsoft Inc., “5G service-based architecture (SBA) explained,” 2023, ac-
cessed: 2025-04-16. [Online]. Available: https://www.calsoftinc.com/blogs/
5g-service-based-architecture-sba.html

Y. Imam-Fulani, N. Faruk, O. Sowande, A. Abdulkarim, E. Alozie, A. Usman,
K. Adewole, A. Oloyede, H. Chiroma, S. Garba, A. Imoize, B. Baba, A. Musa,
Y. Adediran, and L. Taura, “5g frequency standardization, technologies, channel
models, and network deployment: Advances, challenges, and future directions,”
Sustainability, vol. 15, no. 6, p. 5173, 2023, accessed: 2025-04-16. [Online].
Available: https://www.mdpi.com/2071-1050/15/6/5173

A. 1. Grohmann, M. Seidel, S. A. W. Itting, R.-G. Cheng, M. Reisslein, and
F. H. P. Fitzek, “Multi-ue 5g ran measurements: A gamut of architectural
options,” IEEE Access, vol. 13, 2025, accessed: 2025-04-16. [Online]. Available:
https://ieeexplore.ieee.org/document /10816630

80

https://www.cavliwireless.com/blog/not-mini/architectural-advancements-in-5g-technology
https://www.cavliwireless.com/blog/not-mini/architectural-advancements-in-5g-technology
https://www.mdpi.com/2076-3417/12/23/12456
https://www.o-ran.org/blog/o-ran-alliance-introduces-53-new-specifications-released-since-july-2022
https://www.o-ran.org/blog/o-ran-alliance-introduces-53-new-specifications-released-since-july-2022
https://openairinterface.org/
https://gitlab.eurecom.fr/mosaic5g/flexric
https://gitlab.eurecom.fr/mosaic5g/flexric
https://doi.org/10.1016/j.jnca.2022.103563
https://www.calsoftinc.com/blogs/5g-service-based-architecture-sba.html
https://www.calsoftinc.com/blogs/5g-service-based-architecture-sba.html
https://www.mdpi.com/2071-1050/15/6/5173
https://ieeexplore.ieee.org/document/10816630

Bibliography 81

[11]

[12]

[13]

[14]

[17]

[18]

[19]

[20]

K. Alam, M. A. Habibi, M. Tammen, D. Krummacker, W. Saad, M. Di Renzo,
T. Melodia, X. Costa-Pérez, M. Debbah, A. Dutta, and H. D. Schotten, “A
comprehensive overview and survey of o-ran: Exploring slicing-aware architecture,
deployment options, and use cases,” Submitted to IEEE for possible publication,
2024, accessed: 2025-05-07. [Online]. Available: https://arxiv.org/abs/2405.03555

M. S. Khan, “Detection of dos and ddos attacks on 5g network slices using
deep learning approach,” Master of Science Thesis, University of Regina, Regina,
Saskatchewan, 2023, accessed: 2025-04-16.

Digi International, “What is 5g network architecture?” 2023, accessed: 2025-04-16.
[Online]. Available: https://www.digi.com/blog/post/5g-network-architecture

D. Bloom, R. Filkovsky, and B. Lifshitz, “The top 4 ddos at-
tack vectors threatening 5g networks,” https://www.allot.com/blog/
top-ddos-attack-vectors-threatening-5g/, 2022, accessed: 2025-04-16.

J. Zhou, M. Abolhasan, B. Javadi, and J. Lipman, “5gdad: A deep learning approach
for ddos attack detection in bg p4-based upf,” Computer Networks, vol. 237, p.
110005, 2023, accessed: 2025-04-16.

H. Wen, P. Porras, V. Yegneswaran, and Z. Lin, “A fine-grained telemetry
stream for security services in 5g open radio access networks,” in Proceedings
of the 2022 ACM Workshop on Emerging Topics in Wireless (EmergingWireless
'22). Roma, Italy: ACM, December 2022, p. 6. [Online]. Available:
https://doi.org/10.1145/3565474.3569070

Cloudflare, “What is a ddos attack?” 2023, accessed: 2025-04-17. [Online].
Available: https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

Y. Huang, Y. Bai, J. Zhang, Y. Li, and Y. Feng, “Trend analysis and
countermeasure research of ddos attack under bg network,” I[FEE Access,
vol. 9, pp. 137587-137600, 2021, accessed: 2025-04-16. [Online]. Available:
https://ieeexplore.ieee.org/document /9560039

Radware, “Dos vs. ddos attack: What is the difference?” 2023, accessed:
2025-04-17. [Online]. Available: https://fr.radware.com/cyberpedia/ddos-attacks/
dos-vs-ddos-attack-what-is-the-difference/

INSA TC, “Tout ce que vous avez toujours voulu savoir sur les attaques ddos,”
2023, accessed: 2025-04-17. [Online]. Available: https://medium.com/insa-tc/
tout-ce-que-vous-avez-toujours-voulu-savoir-sur-les-attaques-ddos-65beed2b96a

T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense
mechanisms countering the dos and ddos problems,” in ACM Computing Surveys,
vol. 39, no. 1, 2007, pp. 1-42.

L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, “Statistical approaches
to ddos attack detection and response,” in Proceedings of the DARPA Information
Survivability Conference and Exposition (DISCEX’03), 2003, pp. 303-314.

https://arxiv.org/abs/2405.03555
https://www.digi.com/blog/post/5g-network-architecture
https://www.allot.com/blog/top-ddos-attack-vectors-threatening-5g/
https://www.allot.com/blog/top-ddos-attack-vectors-threatening-5g/
https://doi.org/10.1145/3565474.3569070
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://ieeexplore.ieee.org/document/9560039
https://fr.radware.com/cyberpedia/ddos-attacks/dos-vs-ddos-attack-what-is-the-difference/
https://fr.radware.com/cyberpedia/ddos-attacks/dos-vs-ddos-attack-what-is-the-difference/
https://medium.com/insa-tc/tout-ce-que-vous-avez-toujours-voulu-savoir-sur-les-attaques-ddos-65beed2b96a
https://medium.com/insa-tc/tout-ce-que-vous-avez-toujours-voulu-savoir-sur-les-attaques-ddos-65beed2b96a

82

Bibliography

[23]

[24]

[25]

[29]

[30]

[31]

[32]

33]

[34]

J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mech-
anisms,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 2, pp.
39-53, 2004.

M. Dimolianis, A. Pavlidis, and V. Maglaris, “Signature-based traffic classification
and mitigation for ddos attacks using programmable network data planes,” IEEFFE
Access, vol. 9, pp. 113061-113 075, 2021.

R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. M. del Rincon, and D. Siracusa,
“Lucid: A practical, lightweight deep learning solution for ddos attack detection,”
pp. 876-889, 2020.

IBM, “Machine learning,” https://www.ibm.com/think/topics/machine-learning,
2025.

T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997, online: https:
//www.cs.cmu.edu/~tom/files/MachineLearning TomMitchell. pdf.

M. M. Noel, S. Bharadwaj, V. Muthiah-Nakarajan, P. Dutta, and G. B. D. Amali,
“Biologically inspired oscillating activation functions can bridge the performance
gap between biological and artificial neurons,” Fxpert Systems with Applications,
vol. 266, 2025.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, online:
http://www.deeplearningbook.org.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

B. S. Reddy, “Advancing ddos detection in 5g networks through machine learning
and deep learning techniques,” Master’s thesis, Blekinge Institute of Technology,
Karlskrona, Sweden, 2024.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Commun. ACM, vol. 60, no. 6, 2017.

C. Zeng, Z. Wang, and Z. Wang, “Image reconstruction of iot based on parallel cnn,”
in Proc. 2020 Int. Conf. on Internet of Things (iThings), 2020, accessed: 2025-04-16.

K. S. Varshitha, C. G. Kumari, M. Hasvitha, S. Fiza, A. K., and V. Rachapudi,
“Natural language processing using convolutional neural network,” in Proc. 2023
7th Int. Conf. on Computing Methodologies and Communication (ICCMC), 2023,
accessed: 2025-04-16.

R. Alguliyev and R. Shikhaliyev, “Computer networks cybersecurity monitoring
based on cnn-lstm model,” in Proc. 2024 IEEE 18th Int. Conf. on Application of
Information and Communication Technologies (AICT), 2024, accessed: 2025-04-16.

R. A. Bakar, F. Alhamed, P. Castoldi, A. Sgambelluri, J. J. V. Olmos, F. Cugini,
and F. Paolucci, “bgdad: A deep learning approach for ddos attack detection in
5g pd-based upt,” 2024 IEEE 25th Int. Conf. on High Performance Switching and
Routing (HPSR), 2024.

https://www.ibm.com/think/topics/machine-learning
https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
http://www.deeplearningbook.org

Bibliography 83

[37] Z. Gao, “bg traffic prediction based on deep learning,” Computa-
tional Intelligence and Neuroscience, vol. 2022, pp. 1-5, 2022, online:
https://www.hindawi.com/journals/cin/2022/3174530/.

[38] UpGrad Blog, “Basic cnn architecture,” n.d., accessed: 2025-04-17. [Online].
Available: https://www.upgrad.com/blog/basic-cnn-architecture/

[39] M. M. Taye, “Understanding of machine learning with deep learning: Architectures,
workflow, applications and future directions,” Computers, vol. 12, no. 6, p. 91, 2023.

[40] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,
J. Santamaria, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning:
concepts, cnn architectures, challenges, applications, future directions,” Journal of
Big Data, vol. 8, no. 1, pp. 1-74, 2021.

[41] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, 1997.

[42] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks. Springer,
2012.

[43] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory recurrent
neural network classifier for intrusion detection,” in 2016 International Conference
on Platform Technology and Service (PlatCon), 2016, pp. 1-5.

[44] ResearchGate, “BAT: Deep Learning Methods on Network Intrusion Detection us-
ing NSL-KDD dataset - Scientific Figure,” https://www.researchgate.net/figure/
The-architecture-of-BLSTM-model fig2 339174926, n.d., accessed: 2025-04-18.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735-1780, 1997.

[46] Z. Huang, W. Xu, and K. Yu, “Bidirectional Istm-crf models for sequence tagging,”
arXiv preprint arXiw:1508.01991, 2015.

[47) C. Stryker. (2024, October) What is a recurrent neural network (rnn)?
Accessed: 2025-05-11. [Online]. Available: https://www.ibm.com/think/topics/
recurrent-neural-networks

[48] IBM Corporation, “Loss function — ibm cloud learn hub,” https://www.ibm.com/
think /topics/loss-function, 2024, accessed: May 2025.

[49] IBM. (2020) Overfitting in machine learning. Accessed: 2025-05-11. [Online].
Available: https://www.ibm.com/think/topics/overfitting

[50] ——. (2020) Regularization in machine learning. Accessed: 2025-05-11. [Online].
Available: https://www.ibm.com/think/topics/regularization

[51] N. Team, “Performance metrics in machine learning: Complete guide,” https:
/ /neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide, 2022,
accessed: 2025-04-18.

https://www.upgrad.com/blog/basic-cnn-architecture/
https://www.researchgate.net/figure/The-architecture-of-BLSTM-model_fig2_339174926
https://www.researchgate.net/figure/The-architecture-of-BLSTM-model_fig2_339174926
https://www.ibm.com/think/topics/recurrent-neural-networks
https://www.ibm.com/think/topics/recurrent-neural-networks
https://www.ibm.com/think/topics/loss-function
https://www.ibm.com/think/topics/loss-function
https://www.ibm.com/think/topics/overfitting
https://www.ibm.com/think/topics/regularization
https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide
https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide

84

Bibliography

[52]

[53]

[54]

[55]

[56]

[58]

[59]

[60]

[61]

[62]

S. Raschka, “Confusion matrix — mlxtend,” https://rasbt.github.io/mlxtend /user
guide/evaluate/confusion_ matrix/, 2024, accessed: 2025-04-18.

B. Bousalem, M. A. Sakka, V. Silva, W. Jaafar, A. Ben Letaifa, and R. Langar,
“DDoS Attacks Mitigation in 5G-V2X Networks: A Reinforcement Learning-Based
Approach,” in 2023 19th International Conference on Network and Service
Management (CNSM), ser. 2023 19th International Conference on Network and
Service Management (CNSM). Niagara Falls, Canada: IEEE, Oct. 2023, accessed:
2025-04-18. [Online|. Available: https://hal.science/hal-04492996

S. Sheikhi and P. Kostakos, “Ddos attack detection using unsupervised federated
learning for 5g networks and beyond,” University of Oulu, Faculty of Information
Technology and Electrical Engineering, Oulu, Finland, Master’s Thesis, 2024, ac-
cessed: 2025-04-18.

A. Saini and A. Arora, “Detection of ddos attacks using machine learning algo-
rithms,” in 7th International Conference on Computing for Sustainable Global De-
velopment (INDIACom). TEEE, 2020, pp. 16 978-16 983, accessed: 2025-04-18.

B. S. Reddy, “Advancing ddos detection in 5g networks through machine learning
and deep learning techniques,” Master’s thesis, Blekinge Institute of Technology,
Karlskrona, Sweden, 2024.

P.C. A.S. J. J.V.O. F. C. R. Abu Bakar, F. Alhamed and F. Paolucci, “5gdad: A
deep learning approach for ddos attack detection in 5g p4-based upf,” in Proc. 202}
IEEFE 25th Int. Conf. on High Performance Switching and Routing (HPSR). Pisa,
Italy: IEEE, Jun. 2024, pp. 1-6.

A.-A. Maiga, E. Ataro, and S. Githinji, “Xgboost and deep learning based-federated
learning for ddos attack detection in 5g core network vnfs,” in 2024 6th International

Conference on Computer Communication and the Internet (ICCCI). Tokyo, Japan:
IEEE, Jun. 2024, pp. 1-6.

S. K. M. Sheibani and I. Awan, “Ddos attack detection and mitigation in software-
defined networking-based 5g mobile networks with multiple controllers,” in 2022 9th
International Conference on Future Internet of Things and Cloud (FiCloud). Rome,
Italy: IEEE, 2022, pp. 32-39.

B. Bousalem, V. F. Silva, R. Langar, and S. Cherrier, “Ddos attacks detection and
mitigation in 5g and beyond networks: A deep learning-based approach,” in Pro-
ceedings of the IEEE Global Communications Conference (GLOBECOM), Rio de
Janeiro, Brazil, Dec. 2022, pp. 1259-1264.

H. Wen, P. Porras, V. Yegneswaran, A. Gehani, and Z. Lin, “bg-spector:
An o-ran compliant layer-3 cellular attack detection service,” in Proceedings
of the 81st Annual Network and Distributed System Security Symposium
(NDSS’24). San Diego, CA: Internet Society, February 2024. [Online]. Available:
https://dx.doi.org/10.14722 /ndss.2024.24527

M. Awad, A. A. Hamid, Y. Ranganathan, N. Choubik, R. Langar, and W. Jaafar,

“xapps for ddos attacks detection and mitigation in 5g-v2x o-ran networks,” in

https://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/
https://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/
https://hal.science/hal-04492996
https://dx.doi.org/10.14722/ndss.2024.24527

Bibliography 85

[63]

[64]

[65]

Proceedings of the 2024 Tth Conference on Cloud and Internet of Things (CloT).
Paris, France: IEEE, June 2024, pp. 97-104, accessed: 2025-06-12. [Online].
Available: https://doi.org/10.1109/CIoT63799.2024.10757133

OpenAirlnterface, “Nr sa tutorial - oai 5g core,” 2025, accessed: 2025-05-
09. [Online|. Available: https://gitlab.eurecom.fr/oai/openairinterfacebg/- /blob/
develop/doc/NR_SA_Tutorial OAI _CN5G.md

Docker, Inc., “What is docker?” https://docs.docker.com /get-started /
docker-overview/, 2025, accessed: 2025-05-09.

——, “Docker compose overview,” https://docs.docker.com/compose/, 2025, ac-
cessed: 2025-05-09.

M. Elsayed, N.-A. Le-Khac, S. Dev, and A. Jurcut, “DDoSNet: A Deep-Learning
Model for Detecting Network Attacks,” in 2020 IEEFE 21st International Symposium
on "A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Jun. 2020,
pp. 367-372.

Google. (2023) Tensorflow: An end-to-end open-source machine learning platform.
Accessed: 2025-05-11. [Online|. Available: https://www.tensorflow.org

Keras Team. (2023) Keras: Deep learning for humans. Accessed: 2025-05-11.
[Online]. Available: https://keras.io

The Pandas Development Team. (2023) Pandas: Python data analysis library.
Accessed: 2025-05-11. [Online|. Available: https://pandas.pydata.org

NumPy Developers. (2023) Numpy: The fundamental package for scientific
computing with python. Accessed: 2025-05-11. [Online]. Available: https:

//numpy.org

Scikit-learn Developers. (2023) Scikit-learn: Machine learning in python. Accessed:
2025-05-11. [Online]. Available: https://scikit-learn.org

Matplotlib Development Team. (2023) Matplotlib: Visualization with python.
Accessed: 2025-05-11. [Online|. Available: https://matplotlib.org

https://doi.org/10.1109/CIoT63799.2024.10757133
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/doc/NR_SA_Tutorial_OAI_CN5G.md
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/doc/NR_SA_Tutorial_OAI_CN5G.md
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/compose/
https://www.tensorflow.org
https://keras.io
https://pandas.pydata.org
https://numpy.org
https://numpy.org
https://scikit-learn.org
https://matplotlib.org

Appendix A

So

Al

ftware Tools

Preprocessing and Training Tools

Python: Python version 3.10 served as the foundational basis for our project de-
velopment. It is a high-level, interpreted programming language widely recognized
for its readability, versatility, and robust open-source community. Python sup-
ports multiple programming paradigms—including object-oriented, and functional
programming—making it an ideal choice for scientific computing and machine learn-
ing. Its extensive ecosystem of libraries and strong integration capabilities facilitate
the seamless development of end-to-end data analysis pipelines. [?].

TensorFlow: TensorFlow is a scalable open-source framework developed by Google
for large-scale machine learning and deep learning tasks. In this work, TensorFlow
was essential for designing and training deep learning models such as CNN and BiL-
STM. Its support for GPU acceleration significantly reduced training time, while
its flexible computational graph architecture allowed for efficient experimentation
and model tuning [67].

Keras: Keras, a high-level API built on top of TensorFlow, played a key role in
rapidly developing and fine-tuning deep learning models. Its intuitive syntax and
modular design simplified the construction of complex neural networks, accelerating
prototyping and experimentation with architectures suitable for classifying DDoS
traffic patterns [68].

Pandas: Pandas was used extensively for preprocessing the CICDD0S2019 dataset.
Its powerful DataFrame structures facilitated tasks such as handling missing values,
merging data, transforming categorical variables, and summarizing network traffic
statistics. These preprocessing steps were critical for cleaning and preparing the
dataset prior to model training [69].

NumPy: NumPy provided the numerical backbone for many preprocessing oper-
ations. Its efficient manipulation of multi-dimensional arrays enabled fast compu-
tation of statistical features and transformations applied to large-scale traffic data.
NumPy also served as a fundamental dependency for Pandas and Scikit-learn, sup-
porting matrix operations and numerical stability during training [70].

Scikit-Learn: Scikit-learn was vital for implementing the machine learning pipeline,
particularly for the Random Forest model. It also offered a rich set of utilities for

86

Al

Preprocessing and Training Tools 87

feature scaling, encoding, dimensionality reduction, and model evaluation. These
capabilities ensured consistent preprocessing and robust validation of model per-
formance on DDoS detection tasks [71].

Matplotlib: Matplotlib was used to visualize data distributions, model perfor-
mance, and evaluation metrics such as accuracy, precision, recall, and F1-score.
These visualizations were instrumental in interpreting model behavior and validat-
ing the effectiveness of the detection system in both training and real-time inference
scenarios [72].

CICFlowMeter v3: CICFlowMeter is an open-source tool developed by the
Canadian Institute for Cybersecurity to convert raw network traffic captured in
PCAP format into structured bidirectional flow-based CSV files. In this work,
CICFlowMeter v3 was used to transform the captured PCAP files from the 5G
simulated environment (using OpenAirlnterface and FlexRIC) into flow-level fea-
tures compatible with ML and DL models for DDoS detection.

Scapy: Scapy is a powerful Python-based packet manipulation tool. In our setup,
Scapy was used to capture live traffic and extract essential packet-level information
in real time. This capability was critical for enabling on-the-fly feature extraction
and feeding the real-time detection system integrated within our xApp framework.

	Dedication
	Acknowledgment
	Abstract
	GENERAL INTRODUCTION
	Introduction
	Research Motivation
	Research Objectives
	Project Structure

	BACKGROUND AND RELATED WORK
	Introduction
	5G Network Architecture
	User Equipment
	Radio Access Network
	Core Network Functions

	5G Network Slicing
	5G Network Vulnerabilities
	DDoS Attacks on 5G Networks
	Types of DDoS Attacks

	Traditional Detection Methods
	Static Methods
	Threshold-Based Detection
	Signature-Based Detection

	Modern Detection Methods
	Machine Learning Overview
	Random Forest
	Convolutional Neural Networks
	Bidirectional Long Short-Term Memory
	Activation Functions
	Loss Functions
	Overfitting and Regularization Techniques
	Optimization Algorithms
	Performance Metrics

	Related Work
	Comparative Analysis of Related Works

	METHODOLOGY
	Introduction
	5G Architecture Implementation
	Environment Overview
	OpenAirInterface Deployment
	FlexRIC Controller Integration

	Simulating Attack Scenarios
	SYN Flood Attack
	UDP Flood Attack

	Dataset Preprocessing
	Description of Dataset
	Dataset Enhancement for 5G DDoS Detection
	Preprocessing Pipeline

	Model Design and Training
	1D-CNN Based Model
	BiLSTM-Based Model
	Random Forest-Based Model
	Ensemble Model
	Comparative Overview of the Designed Models

	Detection Framework
	Packet Capture and Decapsulation
	Feature Extraction
	Prediction and Action

	Mitigation Framework
	Initial xApp from FlexRIC
	Custom Enhancements

	RESULTS AND DISCUSSION
	Introduction
	Model Evaluation
	Random Forest Analysis
	CNN Model Analysis
	BiLSTM Model Analysis
	Ensemble Model Analysis

	Model Performance Comparison
	Interpretation and Discussion

	Defense Framework Results
	Real time Detection Results
	Real time Mitigation Results

	Evaluation of the Defense Framework
	Round Trip Time
	Throughput

	CONCLUSION AND FUTURE WORK
	Conclusion
	Achievements of the Research

	Future Work

	References
	Software Tools
	 Preprocessing and Training Tools

