4 FEI LA T S

A Ay i a Ay e ga
People's Democratic Republic of Algeria
.-__,—AJ-I—“ Callyg ,___,.IL.:J Hl—Ll—'i—l'l ST

‘ Ministry of Higher Education and Scientific Research
N \—o YOO

National Higher School of Advanced Technologies

@ il

Génie Flactrigus et Infomatique Industrielle

Department of Electrical Engineering and Industrial Computing

Final Year Project for the Master’s Degree

- Field -

Telecommunications

- Specialty -

Telecommunications and Networking Systems

- Subject -

KPI Analytics Platform:

An Integrated Approach for Multi-Vendor
Mobile Network Performance Monitoring and

Analysis

Realized by:

ALAOUCHICHE Abderrahmane Yaakoub

KESSOUM Mohamed Walid

Members of the Jury:

Name Establishment | Grade | Quality

Mr. Islem BOUCHACHI ENSTA MCA President

Mrs. Souhila BOUTARFA ENSTA MCB Examiner

Mrs. Imane CHIALI ENSTA MCB Examiner

Mrs. Kheira LAKHDARI ENSTA MAB Supervisor

Mr. Abdelkader BELAHCENE | ENSTA MCA Co-Supervisor

Mr. Sifeddine ALREME OTA (djezzy) TBM | External Co-Supervisor

2024-2025

Algiers, 25/06/2025

Dedication

ALAOUCHICHE Abderrahmane Yaakoub

To my parents, grandparents, siblings and close ones for their
constant support.
To my mother especially — your strength and sacrifices have been
my greatest motivation. This achievement is as much yours as it is

mine.

KESSOUM Mohamed Walid

To my parents, siblings, family, and close ones — for their
invaluable support and constant encouragement throughout my
academic journey. This accomplishment is a testament to their

unwavering belief in me.

Acknowledgements

We would like to sincerely thank our academic supervisors, Dr. LAKHDARI Khiera
and Dr. BELAHCENE Abdelkader, Assistant Professors in the GEII department at
ENSTA, for their support and guidance during this project.

We also express our appreciation to Mr. ALREME Sifeddine, Traffic and Budget

Manager at Djezzy, for his role as our industrial supervisor

We extend our gratitude to the members of the jury for their time, valuable com-

ments, and thoughtful evaluation of our thesis.

Finally, we acknowledge the teaching staff at the National Higher School of Advanced
Technologies, as well as the professional instructors involved in our training, whose

expertise contributed to our academic development.

ol

f\e.t L;J‘ Djezzy Ko S Cﬁ.ajjﬂ draae LTE oKl Bij o
Slaeds OM=ly Ul cdsd cuaw Uus” ZTE § Nokia ¢ Huawei
oo Bl Bamsey e dals Gl Lis il KPL eI o) 25
RN cali2 e AN Ol 5 o e)4l G
953 BaslE) U mgy Jonll 1 gy Bamge sl 250 Jo 557
el {<_< oy dadl per iKA gtue s Gulitey dals 4316
Gy sV o s l) e it Bt Gy s

iy LTE iKs 45, (nwsd L.LA“L#MMDJA_J‘ s e
. Djezzy & & 3 adaad! 8l

JL" U2 (Ll

Abstract

Managing multi-vendor LTE networks like Djezzy’s, which features Huawei,
Nokia, and ZTE, poses challenges due to data fragmentation and incom-
patible KPI formats. This thesis presents a centralized, vendor-agnostic
web platform that unifies KPI visualization across systems.

Building on our final engineering project, which focused on designing a
Data Warehouse with normalized KPIs, this work extends that foundation
to enable consistent, network-wide monitoring. The developed platform
features interactive dashboards and a vendor-independent search interface
for performance comparison and analysis.

This thesis provides a practical engineering solution aimed at improving
LTE network visibility and operational efficiency at Djezzy.

Keywords: LTE, Multi-Vendor, KPI Normalization, Monitoring, Data
Warehouse, Visualization.

Résumé

La gestion des réseaux LTE multi-fournisseurs, comme celui de Djezzy
intégrant Huawei, Nokia et ZTE, présente des défis en raison de la frag-
mentation des données et des formats de KPI incompatibles. Ce mémoire
présente une plateforme web centralisée et indépendante des fournisseurs,
qui unifie la visualisation des KPI a travers les différents systemes.

S’appuyant sur notre projet de fin d’études d’ingénieur, qui portait
sur la conception d'un entrepot de données avec des KPI normalisés, ce
travail prolonge cette base pour permettre une surveillance cohérente a
I’échelle du réseau. La plateforme développée propose des tableaux de
bord interactifs et une interface de recherche indépendante du fournisseur
pour la comparaison et I'analyse des performances.

Ce mémoire constitue une solution d’ingénierie concrete visant a améliorer
la visibilité du réseau LTE et l'efficacité opérationnelle chez Djezzy.

Mots-clés : LTE, Multi-Fournisseur, Normalisation KPI, Monitoring,
Entrepot de Données, Visualisation, Flask.

Contents

List of Figures

Introduction

1

Introduction and Problem Statement

1.1 Context and Motivation
1.2 Problem Statement: The Illusion of Unified KPIs
1.3 Proposed Solution: A Vendor-Normalized Visualization Platform

Methodology and System Design

2.1 Requirements Analysis: Toward a Unified Analytical Interface

2.2 Architectural Approach: Data Warehouse and Normalized KPI Abstraction . . .
2.2.1 Data Warehouse Design for Unified Views [1].
2.2.2 Application Design: Flask as the Presentation Layer
2.2.3 Back-End Components (Flask)
2.2.4 Front-End Design

Application Features and Unified Visualization

3.1 General User Interface and Navigation

3.2 KPI Dashboard : Interactive Performance Analysis
3.2.1 Comprehensive Filter Panel
3.2.2 Dynamic Chart Display Area

3.3 Explore Page (/explore): Vendor-Agnostic Network Insights
3.3.1 Search Entities Tab
3.3.2 Statistics & Health Tab L.

Discussion, Limitations, and Conclusion

4.1 Evaluation of the Proposed Framework
4.2 Limitations
4.3 Conclusion and Future Work 0o

18
18
19
19
29
31
31
34

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

Isolated network monitoring silos caused by vendor-specific tools. 4
Varying logic behind same KPI names across different vendors.[2] 5
Cross-vendor analysis via unified platform with normalized KPIs. 7
System Architecture: Flask Web Application and Data Warehouse. 9
Data Warehouse Entity Relationship Diagram [1] 10
Detailed Application Data Flow for a Unified KPI View Request 13
Flask project directory structure in the development environment. 14
Main application Home page oL 18
Dashboard page : Vendor selection 19
Example of Traffic KPIs displayed for the default “ALLNET” vendor selection. . 20
Example PRB Usage and Throughput KPIs for "ALLNET" selection. 20
Cascading geographical filters based on selected Cell ID. 21
Vendor selection dropdown automatically updated by Cell ID. 22
Wilaya dropdown list, populated from the DimGeography dimension table. . . . 22
Commune dropdown dynamically populated post-Wilaya selection. 23
Cell ID input with auto-complete and contextual filter retrieval. 23
"Cell" tab visualizations showing KPIs for a selected cell. 24
"Commune' tab visualizations for aggregated KPIs of cell’s commune. 24
Granularity selection dropdown (Daily, Hourly, Busy Hour). 25
Date/Time range selection interface using Flatpickr. 25
Filter preset management controls (Save, Load, Clear, Reset). 26
Daily PRB Usage/Throughput for cell 4A16X397_5 via preset. 26
Loading a saved Wilaya-level filter preset. 27
Hourly Traffic KPIs for Algiers loaded from Wilaya preset. 27
Hourly PRB Usage/Throughput for Algiers from Wilaya preset. 27
Alert message for no data available with current filters. 29
LTE_Thro_DL chart with summary stats and CSV export buttons. 30
CSV oexport. e 30
Explore Page: Entity search form with multi-criteria filtering and autocomplete

SUPPOTE. . . . o o o e e e e e e 31
Explore Page: Unified search results with matched cells and detailed metadata. . 32
Explore Page: Search input for the cell 4A16X397 5.. 33
Google Maps: Location of the cell 4A16X397 5. 33
Explore Page: Quick Stats section with network entity counts. 34
Explore Page: Overall and vendor-specific cell segmentation pie charts. 35
Explore Page: Detailed segmentation table by quality, tech, vendor. 35
CSV export result: Example file generated for a specific segmentation category. 36
Explore Page: Interactive pie chart for ZTE’s total cell technology. 36

Introduction

The effective management of modern LTE (Long Term Evolution) networks is often complicated
by the use of equipment from multiple vendors, such as Huawei, Nokia, and ZTE. Each of these
vendors uses its own way of organizing data and calculating Key Performance Indicators (KPIs),
making it difficult to evaluate the overall performance of the network in a unified way. This
becomes even more challenging when trying to assess performance at a geographic level, where
different vendors may be responsible for different parts of the area.

The main issue is that traditional methods of aggregating KPIs across vendors can lead to
inaccurate or misleading results, as they often assume that all vendors use the same formulas and
definitions. This creates the illusion of a unified view, while in reality the data is inconsistent.
As a result, network engineers struggle to make reliable, data-driven decisions.

To address this challenge, we developed a web-based solution using Flask that allows for
unified visualization of KPIs, regardless of the vendor. The key idea behind our approach is to
introduce a new “merged vendor” concept. This involves defining a set of custom, normalized
KPI formulas based on a combination of the original formulas used by Huawei, Nokia, and
ZTE. These formulas are weighted according to each vendor’s share in the geographic area,
enabling accurate and automatic aggregation of performance indicators at any time — without
the need for manual calculations.

The normalized KPIs are stored and calculated within a centralized Data Warehouse (DWH),
which was designed in prior work [I]. The Flask application connects to this DWH to visualize
the network’s global performance in a consistent and meaningful way. By doing so, it hides the
vendor-specific differences and offers engineers a reliable tool to monitor and compare network

behavior across different regions.

Project Objectives
The main goals of this work are:

o To develop a web application that provides a unified interface for visualizing LTE KPIs

from different vendors.
o To use normalized KPI formulas that ensure data consistency across all vendors.

» To support network engineers with an efficient tool for evaluating and comparing network

performance across geographic areas.

List of Figures 3

Project Structure

o Chapter 1 describes the context and challenges of aggregating KPIs from multiple ven-

dors and outlines the overall solution.

o Chapter 2 explains the methodology and system design, including the architecture of
the Data Warehouse and the components of the Flask application.

o Chapter 3 presents the main features of the platform, especially the KPI Dashboard

and Explore pages, and shows how they enable unified performance visualization.

o Chapter 4 evaluates the system, discusses its current limitations, and concludes with

suggestions for future improvements.

Chapter 1
Introduction and Problem Statement

This chapter introduces the main problem of managing KPIs in multi-vendor LTE networks
like Djezzy’s. Each vendor uses different tools and data formats, making it hard to get a clear
and unified view of network performance. To solve this, we propose building a web application

using Flask that connects to a normalized Data Warehouse.

1.1 Context and Motivation

Modern LTE networks form the backbone of mobile connectivity, enabling services such as
voice, video, and high-speed data. To balance performance needs with cost and flexibility,
operators like Djezzy adopt a multi-vendor strategy, deploying infrastructure from vendors
including Huawei, Nokia, and ZTE.

While this approach offers advantages like reduced vendor lock-in and access to diverse
technologies, it also creates operational complexity. Each vendor provides its own Element
Management System (EMS) or Operations Support System (OSS), such as Huawei’s PRS,
Nokia’s NetAct, and ZTE’s UMI. These systems define KPIs differently, follow distinct data
models, and use separate interfaces, making unified performance monitoring difficult.

As illustrated in Figure 1.1, vendor-specific tools create isolated monitoring environments or
“silos,” limiting cross-vendor visibility and complicating efforts to analyze and optimize overall

network performance.

, .—r\ ;-\

NO<IA g"&

-

ﬂ x HUAWEI x

Figure 1.1: Isolated network monitoring silos caused by vendor-specific tools.

Chapter 1. Introduction and Problem Statement 5)

Currently, network engineers at Djezzy rely on three separate, vendor-specific platforms to
monitor and analyze LTE performance. While each system-PRS, NetAct, and UMI—is feature-
rich and well-integrated with its respective vendor’s hardware, their specialization becomes a
limitation: none provides a unified view of the network across all vendors simultaneously.
Consequently, engineers must frequently switch between tools, manually align KPIs with in-
consistent definitions, and reconcile fragmented insights to form a comprehensive picture of
network health.

Moreover, the lack of standardized, unified KPI computation across platforms means that
overall network performance indicators are not calculated using consistent or exact methodolo-
gies, leading to discrepancies in reported metrics. As a result, the aggregated performance view
is not entirely reliable, introducing a margin of error that can obscure true network conditions.

This operational burden not only affects efficiency but also increases the risk of misinter-

pretation and compromises the accuracy of data-driven decision-making.

1.2 Problem Statement: The Illusion of Unified KPIs

When attempting to visualize LTE performance at the network level, it is tempting to aggregate
KPI values across vendors. However, this approach is highly misleading. While KPI names may
appear standardized (e.g., Call Setup Success Rate or Average DL PRB Usage), the underlying

semantics, data sources, and calculation formulas differ significantly from one vendor to another.

UL AweragaTheoughpt Mew KGR} 1L thep B33 e {0} UL User_thraughpot
IMbps)

Figure 1.2: Varying logic behind same KPI names across different vendors.[2]

As illustrated in Figure 1.2, a KPI reported by Huawei is not directly comparable to one re-
ported by Nokia or ZTE. Each vendor relies on its own proprietary counters, data formats, and
calculation logic. Therefore, blindly aggregating or comparing these values without normaliza-
tion introduces semantic inconsistency that can lead to misleading visualizations, erroneous
conclusions, and suboptimal optimization strategies.

Example: DL PRB Usage
Consider the KPI "DL PRB Usage". Its name may be identical across vendors, but the

formulas differ:

Chapter 1. Introduction and Problem Statement 6

e Huawei:
L.ChMeas.PRB.DL.Used.Avg 100
L.ChMeas.PRB.DL.Avail
- ZTE: C373424610
——— x 100
C373424611
« Nokia:

2,5 M8011Ci x ((i — 24) x 10)
>, M8011Ci

x 100

Clearly, you cannot simply sum, average, or directly aggregate these KPIs across vendors.
Doing so would result in distorted and unreliable indicators. Instead, a field study is required
to deeply understand the structure and behavior of each KPI, in order to design a normalized
formula that truly reflects the overall network’s performance.

That is precisely the approach we adopted. For instance, in the case of DL PRB Usage, we

worked closely with domain engineers at the company to define a unified abstraction model:

e Unified abstraction:

Huawei used 4+ ZTE used 4+ Nokia weighted used
Huawei avail + ZTE avail + Nokia total

x 100

This example illustrates just one KPI. In practice, similar vendor-specific discrepan- cies
exist for all major KPIs—including Call Drop Rate, Accessibility, Availability, and Throughput.
To enable reliable cross-vendor comparisons, each KPI must be redefined using an abstraction

layer that harmonizes the formulas and normalizes values

1.3 Proposed Solution: A Vendor-Normalized Visualiza-

tion Platform

The proposed solution is the development of a centralized, web-based platform that unifies
and normalizes Key Performance Indicator (KPI) definitions across multiple vendors. It is
important to emphasize that this platform is not intended to replace the established vendor-
specific Element Management Systems (EMS) or Operations Support Systems (OSS), which
remain highly robust, feature-rich, and indispensable for in-depth network management
and troubleshooting within their respective vendor ecosystems.

Instead, our platform addresses a significant operational challenge: the fragmentation of

KPI definitions, formats, and visualizations across heterogeneous vendor environments.

Chapter 1. Introduction and Problem Statement 7

oas W 7TE

Q)
NO<IA g@ ZTE HUAWEI

NO<IA
HUAWEI -
ZTE

Figure 1.3: Cross-vendor analysis via unified platform with normalized KPIs.

As shown in Figure 1.3, the proposed platform introduces a normalization layer that harmo-
nizes KPI definitions and semantics, enabling unified analysis and cross-vendor comparability.
Our solution fills this critical gap by providing a common, vendor-agnostic interface that
aggregates and normalizes KPI data, thus enabling consistent, high-level insight across the
entire LTE network infrastructure.

The platform leverages a pre-existing, rigorously designed Data Warehouse (DWH) that
implements vendor normalization formulas to abstract away underlying differences in KPI
definitions and data semantics. This normalization layer is the core innovation enabling the
platform to present coherent, comparable performance metrics regardless of the source vendor.

The web application, developed using the Flask [3] framework, selected for its lightweight

nature and flexibility, provides:

+ A unified dashboard (/visualize) presenting normalized KPIs from all vendors, of-

fering network engineers a consolidated view of key performance trends.

« An exploratory analysis module (/explore) that allows for flexible filtering, segmen-
tation, and drilling down into normalized KPIs to better understand network behavior

under varying conditions.

o Cross-vendor comparison tools that highlight performance disparities and identify

potential areas for optimization across the multi-vendor network.

This solution is designed to complement, rather than supplant, vendor-specific EMS/OSS
tools. Those native platforms will continue to serve as the authoritative systems for detailed
fault management, configuration, and vendor-specific feature utilization due to their depth and
tight integration with vendor equipment.

Our platform, by contrast, empowers engineers with a streamlined, vendor-neutral
vantage point, facilitating faster, more effective cross-network analysis and strategic decision-
making. This high-level abstraction reduces operational complexity, enhances situational aware-

ness, and ultimately contributes to more efficient network performance management.

Chapter 2

Methodology and System Design

This chapter explains how the system was designed and built. It starts with the technical

requirements needed to hide vendor differences and support unified KPIs. Then, it describes

the architecture, which includes a Data Warehouse and a Flask web app. We'll also explain

how the backend and frontend work together, including how data is handled, displayed, and

visualized.

2.1 Requirements Analysis: Toward a Unified Analyti-

cal Interface

Network operations and engineering teams identified the need for an analytical interface that

overcomes the limitations of vendor-specific tools. The main requirements are:

Unified KPI View: The platform must show KPIs from different vendors (Huawei,
Nokia, ZTE) side-by-side on the same charts, and also provide an aggregated network-

wide KPI view based on normalized formulas.

Vendor-Agnostic Exploration: Users should be able to search and explore network

entities (cells, sites) without needing to specify the vendor.

Accuracy and Consistency: Aggregated KPIs must be calculated using reliable nor-

malization methods to ensure accurate and comparable results.

Filtering and Interactivity: The system should offer filtering by vendor (individual
or all), technology (2G, 3G, 4G), geography (Wilaya, Commune, Cell), time granularity

(daily, hourly, busy hour), and custom date ranges.

Responsiveness and Usability: The user interface must be responsive, intuitive, and
provide quick access to data, even with large datasets. Loading indicators and feedback

are essential.

Data Export: Users must be able to export chart data and lists for offline analysis or

reporting.

Chapter 2. Methodology and System Design 9

o Extensibility: The platform should be designed to support future updates, including

integration of new radio technologies or additional vendors.

To meet these requirements, the system uses a reliable backend Data Warehouse for data
consolidation and normalization, combined with a web application that supports interactive

visualization and user interaction.

2.2 Architectural Approach: Data Warehouse and Nor-
malized KPI Abstraction

The adopted solution follows a multi-tiered architectural pattern, depicted in Figure 2.1. It

comprises:

1. A backend Data Warehouse using PostgreSQL [1] responsible for ingesting, storing, pro-
cessing, and normalizing raw performance data from multiple vendor systems. This DWH

was designed and its ETL processes established as part of the Final Education Project

[1].

2. A Flask-based web application (the focus of this thesis) that serves as the middleware
and presentation layer, querying the DWH and rendering interactive visualizations to the

end-user via a web browser.

/
Front End C‘ !
~aHnteracts—

serveing

~#—Data Queries—]

— Backend

- FAPI Calls————=1 Handing . -

SQL Data Flask API
Warehouses - Users

Figure 2.1: System Architecture: Flask Web Application and Data Warehouse.

2.2.1 Data Warehouse Design for Unified Views [1]

The Data Warehouse (DWH) for this telecom network performance monitoring system employs
a dimensional modeling approach, manifesting as a star schema. This design is inherently
optimized for analytical queries and business intelligence, which are the bedrock of effective
data visualization.

A diagram of the star schema is presented in Figure 2.2, illustrating the central fact table and
its relationships with the surrounding dimension tables. This schema supports efficient slicing,
dicing, filtering, and drill-down operations, which are essential for responsive and insightful
web-based dashboards.

Staging, RawCounter

5 " s
il b e
i .
W cownter name —C—
raw v —
venas asma o
toch e v
Fename o
oo Bnestamp -~

e code

v mame

i mcthve

LV B S

wrakar namr e e name i
o B
duie ph s
'Y —
howt il
-
F.] fresgen —— b et ph = o
) —— wo | 1] [ol o i
. - ; end
P i — j— vpid war FactAQEregatedkPl [Hodty) .
” 1 i " @ emcied ges code
o i - b o " & tma P s
] affecied coll i
- toch i * i) e i o deccripts
§ w Tigtion
ol e w i v P socy o
-] Soeemla iae @ e i P T razs
|
| - kpi id e
im el 2 DimiGengraphy
b 245 tewel i
EPWFormula 5 o
LY toreruls id i geo mame
mery - a8 dane ph -3 LY date ph ary] parsnt geo code
& ook al e & il i i -3 o code e BamErt gro name
& wendar & — L] Tech id e | L e wwch i e hararchy drved
formuia .- e dor e o wemclor. i A |
| r-4 commer o - F- plid v
¥ ol [=
o e - o e e dawe -
= 99 e i
XP1Dufinicion e geb code i
= e [| O
& wengar o nian
ke hame - L8 anomaty id [P
b e — o cell id -
eargtEn i —l e ph S o tanget e p S by e o =
o o — o i g bury hour i
e vendor i -=bied & et v o i
i o el vaiue ha
categary s B ey o — N
snemty sy =
mede! name aatd
ataus —-

Figure 2.2: Data Warehouse Entity Relationship Diagram [1]

Legend

. Dimension
@ ract

B Oefinition
. Staging

@ Al Extension
@, Primary Key
0 Foreign Key

UuSISo(] WoISAG pur AS0[0poyeN g Ioideyn

0T

Chapter 2. Methodology and System Design 11

The following DWH elements are particularly crucial for enabling the Flask web application

to deliver rich, performant, and semantically consistent visualizations :

1. Foundation of Semantic Consistency for Unified Views: A primary challenge in
multi-vendor telecom networks (Huawei, Nokia, ZTE) is presenting a unified and compa-
rable view of network performance. Raw counters often differ in naming, granularity, or
definition. The DWH addresses this through:

e DimVendor: This dimension table is fundamental. It allows the Flask application
to present data either for a specific vendor or for the entire network through a
synthetic "ALL" vendor (e.g., vendor_id = 3). This "ALL" vendor concept is key

for aggregated, network-wide visualizations.

e KPIDefinition: Provides user-friendly names and descriptions for KPIs, ensuring
visualizations are clearly labeled. It defines KPIs for individual vendors and, impor-

tantly, for the "ALL" synthetic vendor.

e KPIFormula: This table is central to achieving data harmonization. For the "ALL"
vendor (vendor_id = 3), the formula_expression column stores the normalized
formulas. These reconcile differences in raw counters and KPI definitions from dis-
parate vendors, producing KPI values that are consistent and comparable across the
entire network. This normalization is paramount for any meaningful network-wide

visualization.

2. Pre-Aggregated Data for Responsive Dashboards: Visualizations, especially dash-
boards displaying trends over time or across broad geographical areas, can suffer from
poor performance if they require on-the-fly aggregation of vast, granular datasets. The
DWH mitigates this with:

o FactAggregatedKPI (hourly) and FactAggregatedKPIDaily (daily): These fact
tables are workhorses for the Flask application’s high-level visualizations. They
store KPI values that have already been calculated and aggregated to various geo-
graphical levels (e.g., agg_level such as 'COMMUNE’, "WILAYA’, "ALLNET").
When the Flask app requests a network-wide daily trend for a specific KPI, it
queries FactAggregatedKPIDaily (e.g., for agg_level = ’ALLNET’, vendor_id =
3). This query is exceptionally fast due to pre-computation, leading to snappy and

responsive dashboards.

3. Granular Data for Drill-Down and Detailed Analysis: While high-level views are

essential, users often need to drill down into specifics to diagnose issues.

o FactKPI (hourly) and FactKPIDaily (daily): These tables store KPI values at a
granular level (per cell, per hour/day). If an anomaly is observed at a higher ag-

gregation level (e.g., Wilaya), the Flask application can query these tables (filtered

Chapter 2. Methodology and System Design 12

for cells within that Wilaya and for vendor_id = 3 for normalized values) to enable

detailed investigation at the cell level.

4. Rich Context through Dimension Tables for Filtering and Slicing: FEffective
visualization requires context. Dimension tables provide this essential contextual infor-

mation.

o DimGeography: Enables the Flask application to present KPIs on maps, and to offer
filters and aggregations by 'COMMUNE’, "WILAYA’, or the entire network. The
hierarchical structure (parent_geo_code, hierarchy_level) supports interactive

drill-down and roll-up capabilities in visualizations.

e DimCell: Provides detailed attributes for cell-specific visualizations, including latitude
and longitude for map plotting, and site_code/site_name for grouping or label-
ing.

o DimTime: Indispensable for all time-series visualizations (e.g., line charts, trend anal-
yses). Columns like date_pk and hour allow precise filtering and grouping by various

time periods.

o DimTechnology: Allows users to filter visualizations to view performance specific to
"2G", "3G", or "4G" networks.

5. Performance Enhancement via Materialized Views: For frequently accessed, com-

plex aggregations, materialized views offer a significant performance boost.

e MV _DailyNetworkKPI and MV_HourlySiteKPI: These pre-computed tables store the
results of common, potentially expensive queries (e.g., daily network-wide KPT aver-
ages, hourly site-level KPI aggregations). The Flask application can query these MVs
directly, leading to faster data retrieval for these predefined views and an improved

user eXperience.

6. Specialized Insights Ready for Visualization: Certain complex metrics can be pre-

calculated and stored for direct visualization.

o FactBusyHour: This table stores pre-determined busy hour information for various
aggregation levels and entities. The Flask application can directly query this table
to visualize busy hours (e.g., for each Wilaya or for specific cells) without needing

to perform complex traffic analysis computations in real-time.

In essence, the DWH is meticulously designed to empower the Flask application’s visual-

ization component by:

e Delivering trustworthy and comparable KPIs across a multi-vendor environment,

primarily through the normalized formulas in KPIFormula and the "ALL" vendor concept.

Chapter 2. Methodology and System Design 13

« Ensuring fast dashboard loading and high interactivity by providing pre-aggregated
data in tables like FactAggregatedKPI(Daily) and further optimized views in Material-

ized Views.

« Enabling powerful filtering, drill-down capabilities, and contextual understand-

ing through well-structured dimension tables.

» Providing access to granular data via FactKPI(Daily) when detailed investigation is

necessary.

The Flask application can thus rely on the DWH to provide data that is largely pre-processed or
readily combinable, minimizing the computational load on the application server and ensuring

a responsive and insightful user experience for network performance visualization.

2.2.2 Application Design: Flask as the Presentation Layer

The Flask web application is architected to provide a clear separation of concerns, with distinct
backend and frontend components. Figure 2.3 illustrates the typical data flow for rendering a
unified KPI view.

§
E b Javaseript Chartjs
g User selects | recelves JSON updates
e fitersand oy response Dashboard
| applies w o .
POST request T
e

r J)

Y
.
% Buiid QL query Exe:: gaq;ery Returns KFPI
.é with filters warehouse data
(=]

Figure 2.3: Detailed Application Data Flow for a Unified KPI View Request

This diagram highlights the modularity and clarity of the application’s architecture. It em-
phasizes the distinct responsibilities of each component—from request handling and database
access to data formatting and frontend rendering. The design ensures scalability and main-
tainability by cleanly separating concerns between business logic, data processing, and user

interface updates.

Chapter 2. Methodology and System Design 14

2.2.3 Back-End Components (Flask)

The backend of the application is developed using the Flask microframework, which enables a
lightweight and modular architecture. As illustrated in Figure 2.4, the project is structured to
promote maintainability and separation of concerns, with clearly defined modules for configu-

ration, database access, routing, and utilities.

*0®

Flask/

__pycache__/
.eny

[— analysis_results/

app/
}— __pycache__/

ai_insights/
core_ai/

— main/

==

| b errors.py

‘ forms. py
routes.py

T—— static/

— css/

| | |} input.css

‘ L— tailwind.css
fonts/

| b images/

[B

1 prlg

| ‘ 2.png

| 3.png

| | L— icon.png

| 5/

| |— ai_insights_setup.js

| | f— chart_themes. js

| ‘ dashboard_setup. js

| explore_setup.js

L— vendor/
temp ate°f
F—— _insights/

|

rl:ll—-'aa
‘ ”— 484.html
| 580 . html

ncludes/
‘ F—— flash_messages.html
‘ form_macros. html

— visualize_form_content.html
| | base.html
‘ T—— explore.html
— index.html

| L— visualize_dashboard.html
i L— __init__.py
— config.py

db.py
.flaskenv

|— notebooks/
package-lock. json
package.json

|— requirements.txt

I: run.py

scripts/

— tailwind.config.js
utils.py

|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|

Figure 2.4: Flask project directory structure in the development environment.
Backend modules include:

» config.py: Manages application configurations (Development, Production) including
database connection parameters (host, port, name, user, password from environment vari-
ables), secret key, cache settings, and logging levels. These variables are loaded from the
.flaskenv file, which sets key environment parameters such as FLASK_APP, FLASK_ ENV,

Chapter 2. Methodology and System Design 15

SECRET_KEY, and PostgreSQL connection details (PGHOST, PGPORT, etc.), allowing secure

and environment-specific configuration without hardcoding credentials.
o db.py: This module acts as the data access layer, abstracting database interactions.

— Connection Pooling (init_pool, get_db, close_db): Implements a PostgreSQL
connection pool (psycopg2.pool.SimpleConnectionPool) to efficiently manage database

connections. Connections are managed within Flask’s application context (g).["]

— Cursor Management (get_cursor): Provides a context manager for obtain-
ing database cursors (using psycopg2.extras.DictCursor), handling transactions

(commit /rollback), and ensuring cursors are closed.

— Generic Query Functions (fetch_all, fetch_one, execute_commit): Utility

functions for executing SELECT queries and DML statements.

— get_dropdown_data: Fetches distinct KPIs, cell IDs, technologies, vendors (in-
cluding an "ALL" vendor representation), and geographical entities (Wilayas, Com-
munes). This data is cached using Flask-Caching (@cache.memoize) for perfor-

mance.

— get_cells_for_geo: Dynamically fetches cell IDs based on selected technology,
vendor, and geographical filters. Handles vendor_id=3 ("ALL") by querying for

vendors 0, 1, and 2.
— get_multiple_kpi_results: Core function for the KPI Dashboard.

1. For comparative visualizations: fetches per-vendor data from raw KPI tables
(FactKPI, FactKPIDaily) using vendor_id IN (0,1,2).
2. For aggregated views: queries FactAggregatedKPI or FactAggregatedKPIDaily

for vendor_id=3.

The function adjusts granularity (hourly, daily, busyhour) and dynamically builds
SQL JOINs based on selected KPIs.

— get_detailed_cell_statistics: Computes active vs. created cell counts and seg-
mentation (Good, Bad, Critical) using thresholds (e.g., throughput) from FactKPI.

— search_entities_v3: Vendor-agnostic search across Wilayas, Communes, Sites,
and Cells using pattern matching (ILIKE). Returns detailed metadata and Google
Maps links.

— get_total_counts: Retrieves global summary stats (e.g., number of active cells,

sites) for the Explore page.
» main/routes.py: Defines application routes and associated logic.

— Helper Routes (/get_cells, /get_communes, /get_kpis, etc.): Serve dynamic
UI content via AJAX (e.g., updating dropdowns).

Chapter 2. Methodology and System Design 16

— /visualize (KPI Dashboard):
x GET: Populates default view (e.g., "ALL" vendor, latest dates).

x POST: Validates form data, determines vendor/tech context, selects aggrega-
tion levels (Cell, Commune, Wilaya, ALLNET), fetches KPIs using
db.get_multiple_kpi_results, and renders charts.

— /explore (Exploratory Analysis Interface Page):

x GET: Loads network and segmentation stats.

x POST: Executes AJAX search via db.search_entities_v3.
— Export Routes: Serve CSV downloads for KPI data and segmentation results.
» utils.py: Contains helper functions.
— format_chart_data_multiple_kpis: Converts raw KPI data into JSON format
for Chart.js [0], separating datasets by KPI/Vendor and assigning labels/colors.
— calculate_summary_stats: Computes min, max, avg, and count for KPI sets.
— decimal_to_dms: Converts decimal GPS coordinates to DMS format.
e app/__init__.py: Application factory (create_app): Initializes Flask extensions (e.g.,

Flask-Caching), registers blueprints, sets up logging, error handlers, and Jinja [7] filters
(e.g., file_exists_filter).

2.2.4 Front-End Design

The frontend is designed to be responsive, dynamic, and maintainable, relying on modern web

technologies for optimal user experience:

« HTML5 (in templates/): The Flask application uses the Jinja2 templating engine to
render dynamic HTML pages. Key templates include:

— base.html: Defines the main layout, including the navigation bar, footer, and shared
assets (CSS/JS). It also implements light /dark mode toggling via Alpine.js [3] and

localStorage.

— visualize dashboard.html: Hosts the form for KPI visualization filters and the

output containers for charts and statistics tables.

— explore.html: Structures the Explore page with tabbed interfaces for "Search En-

tities" and "Statistics Health," including related forms and result displays.

— errors/404.html and errors/500.html: Custom templates for handling client and

SErver errors.

— includes/_flash messages.html: Renders transient messages (flashed messages)
from the Flask backend.

Chapter 2. Methodology and System Design 17

o CSS (TailwindCSS): A utility-first framework compiled from input.css into tailwind.css
[9] is used for styling. It enables fast UI prototyping and clean, consistent component

theming, inspired by the Shaden Ul design system.

« JavaScript (in static/js/): The frontend logic is handled using vanilla JavaScript
and Alpine.js for lightweight reactivity.

— dashboard_setup.js: Manages the ‘/visualize‘ page, including:
* Initializing Flatpickr [10] for date/time inputs.

« Dynamically updating dependent dropdowns (e.g., Wilaya — Commune — Cell
suggestions) via AJAX.

x Managing vendor and technology selections and corresponding hidden inputs.
% Performing client-side form validation.
* Rendering and updating Chart.js visualizations based on server responses.

« Handling presets (save/load/clear filter configurations).
— explore_setup. js: Powers the ‘/explore’ page, handling:
x Chart initialization for segmentation and distribution visualizations.

x AJAX-driven form submissions for entity searches.

*

Autocomplete suggestions for input fields.

* Dynamic filter logic for charts on the statistics tab.

— chart_themes. js: Centralizes Chart.js theming, ensuring consistent styling (col-
ors, tooltips, scales). It supports reading CSS variables to adapt to theme changes

dynamically.

— Alpine.js: Provides reactive Ul behavior, such as toggling menus, managing loading

states, and controlling tab visibility.

e Chart.js: A JavaScript library used for rendering all KPI visualizations (line, bar, and

pie charts), providing interactivity such as tooltips, legends, and theme-aware rendering.

The system design presented here solves the problem of vendor diversity by combining a
normalized Data Warehouse with a modular Flask application. Key elements like the database
module and the user-friendly frontend help display accurate KPI data. This design sets the

stage for the features covered in the next chapter.

Chapter 3

Application Features and Unified

Visualization

This chapter details the functionalities of the developed Flask web application, emphasizing

how it achieves unified and comparative KPI visualization.

3.1 General User Interface and Navigation

The application provides a clean, responsive, and intuitive user interface built with HTML,

TailwindCSS, and Alpine.js for consistent look and interactivity.
o Layout: Consistent layout with sticky navbar, footer, and dynamic main content.
o Navigation: Links to Home, Dashboard, Explore; highlights active page.
o Theme: Toggle between light and dark modes via navbar button.

« Feedback: Loading indicators and Toast notifications for user feedback.

|0 KPiAnalytics @ Hame 09

Network Performance
Analytics

Figure 3.1: Main application Home page

18

Chapter 3. Application Features and Unified Visualization 19

3.2 KPI Dashboard : Interactive Performance Analysis

The KPI Dashboard serves as the primary interface for conducting in-depth time-series analysis
of critical network performance indicators (KPIs). Accessible via the /visualize web route,
its client-side interactivity and dynamic updates are predominantly managed by the JavaScript
file located at static/js/dashboard_setup.js. This dashboard empowers users to explore

network data through a granular and customizable lens.

3.2.1 Comprehensive Filter Panel

To facilitate precise and targeted analysis, the dashboard provides users with a comprehensive
filter panel. This panel allows for the meticulous definition of the scope of investigation, ensuring
that the visualized data aligns perfectly with the analytical requirements. The various filtering

options are detailed below.

e Vendor Selection: Users can select network equipment vendors using a dedicated row of
buttons. Options include individual vendors such as Huawei, Nokia, and ZTE, or a consol-
idated “ALL” vendors option. The “ALL” option, internally represented by vendor_id=3,
is particularly crucial for generating unified views that encompass data from all available
vendors, providing a holistic network performance overview. As illustrated in Figure 3.2,
the button corresponding to the currently selected vendor (or “ALL”) is visually high-
lighted for immediate user feedback. Figures 3.3 and 3.4 demonstrate example KPI charts
generated when “ALL” vendors are selected under default settings, showcasing traffic and

PRB/throughput metrics respectively.

Llﬂ KPl Analytics & o §8 Dashboard 1 Explore -

KPI Dashboard

Configure Visualization

Vendor Technology

® JTE mael @ a6 36 26

Wilaya Commune cell D Granularity

Select Wilaya (Optional) - Salect Wilaya First - Hourly

Start Timea End Tima

19/04/2025 00:00 23/04/2025 00:00

Fitter Presets

Figure 3.2: Dashboard page : Vendor selection

Chapter 3. Application Features and Unified Visualization 20

lol KPIAnalytics @ Hoe B3 Dashbosrd (3 Expile W
& Allnet

ALLNET (ALLNET - Default View)

Traffic KPts (ALLNET - Default View)

Figure 3.3: Example of Traffic KPIs displayed for the default “ALLNET” vendor selection.

ol ®P1Ansiytics (2 Home BS Dashboard O Expier B

PRE Usage & Throughput (ALLNET - Default View)

DL_PRE_ usage

LTE.Tha, DL

Figure 3.4: Example PRB Usage and Throughput KPIs for "ALLNET" selection.

o Technology Selection: A set of radio buttons enables users to filter the displayed KPIs
based on network technology. Common selections include 4G (LTE) and 3G (UMTS),
with 4G being the default technology selected upon loading the dashboard. This allows

analysts to focus on performance metrics pertinent to specific radio access technologies.

o Geographical Filters: A sophisticated cascading system of dropdown menus allows
for precise geographical filtering of network elements. This hierarchical selection process

ensures data relevance to specific regions or sites:

1. Wilaya (Region/Province): The first level of geographical filtering is by Wilaya.
This dropdown (Figure 3.7) is populated with data sourced from the DimGeography

Chapter 3. Application Features and Unified Visualization 21

dimension table in the data warehouse. Selecting a Wilaya dynamically triggers an

update of the subsequent Commune dropdown.

2. Commune (Municipality): Upon selection of a Wilaya, the Commune dropdown
(Figure 3.8) is populated. This is achieved via an asynchronous JavaScript and
XML (AJAX) call to the /get_communes server endpoint, which returns a list of

communes belonging to the selected Wilaya.

3. Cell ID: For granular analysis at the cell level, users can utilize a text input field
for Cell ID, shown in Figure 3.9. This input is enhanced with an associated datal-
ist (<datalist id="cell-list">), providing auto-suggestions. These suggestions
are dynamically populated based on the currently selected Technology, Vendor,
and upstream Geographical filters (Wilaya, Commune) through AJAX calls to the
/get_cells endpoint. Users also have the flexibility to manually enter a specific
Cell ID. A key feature is that upon selecting a valid Cell ID (either from sugges-
tions or manual input), the system automatically locks and updates the Vendor,
Technology, Wilaya, and Commune filters. This ensures consistency by reflect-
ing the true attributes of the selected cell, whose details are fetched via AJAX
calls to /get_cell_details and geographical context from /get_geo_for_cell.
This behavior is demonstrated in Figure 3.5, where Wilaya and Commune are auto-
populated. Figure 3.6 shows the vendor selection dropdown which can also be part

of this auto-update mechanism.

|00 KP1Analytics @& Her 88 Dashboard 0 Exy #

KPI Dashboard

Configure Visualization

Vendor Technology

Wilaya Commune Cell ID Granularity

amereas Hourly

Start Time End Time

08/03/2025 00-00 08/04/2025 00:00

Filter Presets

Figure 3.5: Cascading geographical filters based on selected Cell ID.

Chapter 3. Application Features and Unified Visualization

L AR Hatwork Porformance Analytics
|00 KPiAnalytics (@ Home 3 Dashboard () Expiore %
KPI Dashboard
Configure Visualization
Vendor Technalogy
@ ZTE rwou 8 16 £ 26
Wilaya Commurne Cell ID Granularity
- Selact Wilaya {Optianal) - ~ -- Salect Wilaya First - e Hourly

Start Time: End Time

19/04/2025 0000 23/04/2025 00:00

Filter Prasats

Figure 3.6: Vendor selection dropdown automatically updated by Cell ID.

LER] Haotwork Pocformance Analytics

. ket Anatytics G I | - - B

ANNABA

BATNA

BECHAR

BEAIA KPI Dashboard
Bani Abbas

BISKRA

BLIDA

Bordj Badji Mokirtar pashboard
BORD.J BOU ARRERIDS

BOUIRA P
BOUMERDES

CHLEF

CONSTANTINE

[== Select 'M.iﬂminr'all -

Technology
4G 3G 26

«| Communo Cell ID Granularity

] == Select Wilaya First == v Specific Cell (Optional) Hourly v

Start Time End Time

18/04/2025 00:00 23/04/2025 00:00

Filter Presets

Save Sick

Figure 3.7: Wilaya dropdown list, populated from the DimGeography dimension table.

Chapter 3. Application Features and Unified Visualization 23

° Motwork Performance Analytics

BORDJ EL KIFFAN

|00 KPiAnalytics @ Home BS Dashboard C) Explo s

BOURDUBA
BOUZAREAH
CASBAH
CHERAGA 1board
DAR EL BEIDA
DELY BRAHIM

Configure Visualization DJISR KSENTINA

Bt [t rate th DOUERA

DRARIA

Vendor Technology

p— EL ACHOUR

ZTE o it 4G 3G 26
EL HARRACH
EL MADANIA

Wilaya | EL MAGHARIA - Cell ID Oranularity

ALGER [- Setect Commilie (Option:] ! : Hourly
Start Time: End Time
19/04/2025 DO:0D 23/04/2025 D000
Filter Presets

Figure 3.8: Commune dropdown dynamically populated post-Wilaya selection.

L MNotwork Porformance Analytics
lol KPIAnalytics & Ho 98 Dashboard £
KPI Dashboard
4A16X00 11
4A16X001 13
Configure Visualization
4o e “ AATGX0 16
Vendaor Technology
=TT "
@) 71 - .
Wilaya Commune Cell ID
Start Time End Time
18/04/2025 00:00 23/D4/2025 DO:00

AA16X105 1

4A16X105_10

Filter Presets
4AT6XW05_ 1

Figure 3.9: Cell ID input with auto-complete and contextual filter retrieval.

o Dashboard Tabs & Visualization Scope: The dashboard interface is thoughtfully
organized into dedicated tabs to support both high-level KPI aggregation and detailed

root cause analysis. This structure enhances user experience and analytical efficiency:

— When a user selects a specific Cell ID within the filter form, all relevant charts and
visualizations pertaining to that cell are automatically rendered within the appro-

priate tab (e.g., the "Cell" tab, as shown in Figure 3.10).

— Crucially, the broader geographical context of the selected entity—encompassing

its Commune (Figure 3.11) and Wilaya—is also clearly displayed. This provides a

Chapter 3. Application Features and Unified Visualization 24

comprehensive understanding of the cell’s performance relative to its locality and its
potential impact on the wider network.
— Depending on the level of detail specified in the filter form, users can opt to view ag-

gregated data at varying granularities: Wilaya level, Commune level, or individual
Cell level.

This modular and hierarchical design allows network engineers and analysts to seam-
lessly navigate between different levels of detail, facilitating both routine performance

monitoring and in-depth troubleshooting tasks.

°

o0 KPiAnalytics 0@ Heme @8 Dashboard (Ol Explore B

B Save & Lead v & Clear All O Resat

@co

CELL (Cell: 4A03X028_1)

Traffic KPis (Cell: 4A03X028.1)

Figure 3.10: "Cell" tab visualizations showing KPIs for a selected cell.

°

o0 KPIAnalytics ([Home 98 Dashboard O Explors 3

B Save & Load ~ 8 Clear All O Reset

COMMUNE (Parent Commune: LAGHOUAT)

Traffic KPls (Parent Commune: LAGHOUAT)

Figure 3.11: "Commune" tab visualizations for aggregated KPIs of cell’s commune.

Chapter 3. Application Features and Unified Visualization 25

« Granularity Selection: A dropdown menu (Figure 3.12) allows users to choose the
time granularity for KPI aggregation. The available options are Daily, Hourly, or Busy
Hour. This selection directly influences which fact tables from the data warehouse are
queried by the backend: FactKPIDaily for daily granularity, FactKPI for hourly, and
FactBusyHour for busy hour data (or their aggregated counterparts if applicable).

|0 KP1Analytics G Home 85 Dashbosrd () Explore %

KPI Dashboard

Configure Visualization

Vendar Technology

Wilaya Commune Call 1D Granutarit y

hriksse _
Dty

i
Start Time End Time Buay Hotr

18/04/2025 00:00 23/04/2025 0000

Fllter Presets

Figure 3.12: Granularity selection dropdown (Daily, Hourly, Busy Hour).

o Date/Time Range Selection: Two input fields, seamlessly integrated with the Flat-
pickr JavaScript library, provide an intuitive calendar and time picker interface (Fig-
ure 3.13). Users can select the start and end dates and times for their analysis period.
The inputs are formatted as DD/MM/YYYY HH:00. By default, the range is typically set to
the last 3 days relative to the latest available data timestamp in the DimTime dimension

table, ensuring users initially see recent trends.

o0 KPiAnalyties () Home 3§ Dashboard Ex k.3
KPI Dashboard
April 2025

Technalagy

Cell ID Granularity

w30 ' AATBXIATS Daity

. End Time

[19/04/2025 0000 L] l 23/04/2025 00:00

Filter Presets

Figure 3.13: Date/Time range selection interface using Flatpickr.

Chapter 3. Application Features and Unified Visualization 26

o Filter Preset Management: To streamline repetitive analysis workflows, users can
save their current filter configurations as presets and load them for future sessions. The
system allows for up to three preset slots. As shown in Figure 3.14, controls include a
dropdown to select a preset slot, a text input for naming the preset, and buttons to Save,
Load, Clear All presets, and Reset to Defaults. These presets are conveniently stored
in the browser’s local storage, making them persistent across sessions for the same user
on the same browser. Figure 3.15 shows an example visualization after loading a preset
for a specific cell (4A16X397_5) with daily granularity. Figure 3.16 illustrates the act
of selecting a Wilaya-level preset. After loading such a preset, visualizations like hourly
traffic KPIs (Figure 3.17) and hourly PRB/throughput KPIs (Figure 3.18) for the selected
Wilaya (e.g., Algiers) are generated.

lol ®P1Analytics vome 8§ Dashboard 3 Exp s

Wiaya Commune el 1D Gramuarit v

Figure 3.14: Filter preset management controls (Save, Load, Clear, Reset).

|08 KPiAnalytics @@ Home B3 Dashboard O3 Explore £

PRB Usage & Throughput (Cell: AA1BX357.5)

W Nl fﬁmw ﬂ I

'V';.IW | A Wy
v
KNV WY v’JM\f u MA«lL l”l i"* n"d M. }.'lhllliw n P,U|||| ;"|r.| ‘Jﬁ

DL_FRE usage
LTE Tho_DL i &

Figure 3.15: Daily PRB Usage/Throughput for cell 4A16X397_5 via preset.

Chapter 3. Application Features and Unified Visualization 27

ane

|8 KPlAnalytics i@ Home 8 Deshboard) Ewplare &

OF/03/2024 0000 0OID4T02S D000
Filtir Presots

- E3

Gsave @oec~ @ ChseAl D Rset

ENSTA site
Dergana

Dally
(o024, 2025)

ENSTA site

[

Daily

(202A/2025) P Call

CELL (Cek: 4A16X397 5)

Figure 3.16: Loading a saved Wilaya-level filter preset.

ane istirs B frmstice: Acsalutics

[o0 KPiAnalytics (& vowe B8 Dashboard (1 Esplors »

m weays
WILAYA [Wilaya: ALGER)

Traffic KPis (Wilaya: ALGER]

. e '__'__/\ /_/"_".
I"'. ,_/_._/ \,\ = . _/—\/ \'\
\ o \ / F025-04-78 7300 \ - d
N =L o\ /
\/ \/ i T &
A % A

Figure 3.17: Hourly Traffic KPIs for Algiers loaded from Wilaya preset.

ane

[o0 KPiAnalytics @ Hore S8 Dashbesrd O Fralive °

Access Success Rate [(Wilaya: ALGER)

RRC_SR{%) |

Figure 3.18: Hourly PRB Usage/Throughput for Algiers from Wilaya preset.

Chapter 3. Application Features and Unified Visualization 28

e Generate Visualization Button and Feedback Mechanisms: The Generate Visu-
alization button is a pivotal element in the user workflow. Clicking this button initiates
the process of submitting the meticulously selected filter criteria to the server, which then

queries the data warehouse and prepares the data for chart generation.

Prior to submission, the client-side script (dashboard_setup.js) executes robust valida-

tion routines. These checks ensure data integrity and usability:

— All mandatory fields (such as Vendor, Technology, and Date Range) must be com-
pleted.

— The selected date interval must be logically consistent (i.e., the start date must

precede or be the same as the end date).

— If geographical or cell-level filters are applied, they must adhere to a valid hierarchical

structure (e.g., a selected Commune must belong to the selected Wilaya).

Upon successful validation and submission, a loading spinner is prominently displayed.
This visual cue indicates to the user that the dashboard is actively processing the request
and fetching the relevant data from the backend data warehouse, significantly improving

the user experience by providing immediate feedback on system activity.

In scenarios where the chosen combination of filters does not yield any corresponding
data in the data warehouse (e.g., no recorded KPIs for a specific cell in the selected time
range), the system handles this gracefully. A non-intrusive notification, such as the alert
message shown in Figure 3.19, is displayed. This informs the user that no data was found

for their selected criteria and encourages them to revise their filter inputs.

This feedback mechanism is typically triggered by server-side checks that determine data
availability, with the notification rendered client-side using JavaScript alert modals or
inline message boxes, depending on the specific context. This approach ensures a respon-
sive, transparent, and guided user experience, effectively bridging the visualization logic

with the underlying data availability in the warehouse.

Chapter 3. Application Features and Unified Visualization 29

|80 KPiAnalytics Home Dashboard Expiors #

KPI Dashboard

Configure Visualization

Vandor Tachnology

Wilaya Commung cell 1D Granularity

AAD3XD03.4 Busy Hour

Start Time End Time

27/04/2025 00:00 0U05/2025 00:00

Figure 3.19: Alert message for no data available with current filters.

3.2.2 Dynamic Chart Display Area

After submitting the filter form—or by default on initial load—the backend retrieves and pro-
cesses the required KPI data. This is done via the db.get_multiple_kpi_results function,
which queries the data warehouse based on selected filters. The resulting data is then format-
ted using utils.format chart_data_multiple_kpis and sent to the frontend, where Chart.js
renders dynamic, interactive charts.

The chart area is structured for readability and detailed analysis. Key features include:

o KPI Grouping: Charts are organized into logical categories for ease of interpretation,

such as:

— Traffic KPIs: e.g., LTE_Traffic_Volume DL, LTE Traffic Volume UL.
— PRB/Throughput KPIs: e.g., DL_PRB_usage, LTE_Thro_DL.

— Access/User KPIs: e.g., RRC_SR(%), E_RAB_SR(%), Avg_User.

o Interactive Charts: Users can hover to view tooltips with timestamp, KPI value, and

vendor. Legends allow toggling specific data series for focused comparison.

o« Summary Statistics: Below each chart, a table summarizes key metrics—average, min,

max, and count—calculated by utils.calculate_summary_stats.

o« CSV Export: Each KPI series can be exported via a "Download CSV" button, which
triggers an HT'TP request to the /export/csv endpoint.

Figure 3.21 shows an example chart with summary statistics and export options.

Chapter 3. Application Features and Unified Visualization

*ne Hutwork Porformance Anatytics
|8 KPiAnalytics (@ Home B3 Dashboard O Expiore

PRB Usage & Throughput (Cell: 4A18X307.5)

MMN LTI R

2025-02-2%
) DL_PRE_usage (%) - HUAWE] - HUAWEE 30.1%

DL_PRA_usage

(S e

LTE Thio_DIL [

Figure 3.20: LTE_Thro_DL chart with summary stats and CSV export buttons.

ane MNetwnrk Perfomance Analytins

time_point kpi_value metric vendor_name
2024-04-09 31.9211 % HUAWEI
2024-04-10 36.6657 % HUAWEI
2024-04-11 33.8822 % HUAWEI
2024-04-12 34.9491 % HUAWEI
2024-04-13 40.0103 % HUAWEI
2024-04-14 28.951 % HUAWEI
2024-04-15 27.0379 % HUAWEI
2024-04-16 31.9988 % HUAWEI
2024-04-17 33.0977 % HUAWEI
2024-04-18 30,3724 % HUAWEI
2024-04-19 32,9217 % HUAWEI
2024-04-20 34.6081 % HUAWEI
2024-04-21 29.7085 % HUAWEI
2024-04-22 32,1767 % HUAWEI
2024-04-23 31.0893 % HUAWEI
2024-04-24 28,5823 % HUAWEI
MNIANAIS 27 187 % Ll IAVAIE]

Figure 3.21: CSV export.

Chapter 3. Application Features and Unified Visualization 31

3.3 Explore Page (/explore): Vendor-Agnostic Network
Insights

The Explore page, accessible via the /explore route and primarily managed by the client-
side script static/js/explore_setup. js, provides comprehensive tools for high-level network
exploration and aggregated statistical summaries. Unlike the KPI Dashboard, this page is
vendor-agnostic and supports cross-vendor comparative insights. It is organized into two main
tabs: Search Entities and Statistics € Health.

3.3.1 Search Entities Tab

This tab provides a versatile interface to search for network entities across technologies and

vendors using multiple filters.

e Search Form: Search criteria include:

— Wilaya name
— Commune name
— Site code or name
— Cell ID or name
— Technology (dropdown)
— Vendor (dropdown)
Autocomplete suggestions are provided via dedicated API endpoints such as

/autocomplete/ an example of this autocomplete functionality can be seen for the "Cell
(ID or Name)" field in Figure 3.22.

foll KPI Analytics Dasfiboard Explore *

Explore Network Data

) SearchEsstos % Staniasics & Hus

......

Teen Nambor

Figure 3.22: Explore Page: Entity search form with multi-criteria filtering and autocomplete
support.

Chapter 3. Application Features and Unified Visualization 32

o Unified Search Results: Searches are handled by db.search entities_v3, which
returns cross-vendor results including:
— Matched wilayas (name, code)
— Matched communes (name, code, parent wilaya)
— Matched sites (code, name)
— Matched active cells (cell ID, name, technology, vendor, site, commune, wilaya,

coordinates in DMS and decimal, and Google Maps links)

Results are demonstrated in Figure 3.23.

ol KPIAnalytics @ Home 25 Dashbosrs ©) Explore 2
7 Search Filters. o Whayss e ==
Wikaya
W ME I
ALGER BORDJ EL —r S BT 4AIEXTISL
Commuane KIFFAN
ARIEXG23

Site {Code or Name) W Active Cells Found

NAME TECH VENDOR SITE COMMUNE

Cell (i or Name] &
AATERIAA) wna 4G HUAWEL 4aiBxias ST ALGER @
Dargana KEFAN
AAIBXIA4I0 jana 4 HUAWE amexiaas =~ £n (]
Tech Vendar L "
a5 HUAWEI : AAIEX144.000 T s 4G MUAWE 4Atexiaa oo oER ®
L |

Figure 3.23: Explore Page: Unified search results with matched cells and detailed metadata.

Chapter 3. Application Features and Unified Visualization 33

« Example: Locating a Specific Cell Near Our School
As a practical example, we searched for the cell with ID 4A16X397 5, which is located
near our school. Figure 3.24 shows the search form after inputting the cell 1D, while

Figure 3.25 shows the resulting location on Google Maps.

ene Natwork Posformance Analytics
|0 KPlAnalytics [Home 25 Dashbosrd Q Explore &

% Search Filters [Witayas @ Communes £ sies

1 1 t
Wilaya
Wilays namie (e.0., ALGER) NAME CODE NAME CODE WILAYA CODE MNAME
ALGER 15 BORDJ EL 1636 ALGER 16 AM16X397 ANEX30T
Commune KIFFAN

Gommune name (e.g., DAR EL BEIDA)

4 Active Calls Found
Site (Code or Name) 1

Site code of name (e.g., 4A18XT1E)

CELL D MNAME TECH VENDOR SITE COMMLUNE WILAYA COORDINATES MAP
Cell D or Name) Cite 16 HUMWE| 4Atexaay DBORDJEL ALGER ivas un Biee, Fnsras sy
SAXN2S Diplomatigue % - B KIFFAN - e - ’
Tech Vendor
Any - Any v

Figure 3.24: Explore Page: Search input for the cell 4A16X397_5.

ene Motwork Performance Aralytics

-_— P ' J 11 [=1
: P 3. - =t

LN

i \ 4

36°46'40.8"N 3"15'35.4'E

Q =« ¢ 3 <

Directions Save Neacby Send to Share
phone

QTHE+5WW Bordj El Bahri
¢ Add a missing place
m_ Add your business
(B

Add a labet

Figure 3.25: Google Maps: Location of the cell 4A16X397 5

Chapter 3. Application Features and Unified Visualization 34

3.3.2 Statistics & Health Tab

This tab offers an overview of the network’s composition and health status through multiple

interactive and informative components:

o Quick Stats Section: Displays aggregate counts of core network elements such as total
active cells, sites, wilayas (provinces), communes (municipalities), supported technolo-
gies, and distinct vendors (excluding the aggregated "ALL" option). These metrics are
dynamically fetched from the backend using db.get_total_counts, providing a quick

snapshot of network scale.

[0 KPIAnalytics Dastboard Exgplorg -

Explore Network Data

H Statistics & Heatth

123060 21582 58
1527 3 3

= Segmentation Threshalds

{B Overall Active Cell Seg - HUAWEI Segmants NOKIA Segments. ITE Segments

Figure 3.26: Explore Page: Quick Stats section with network entity counts.

o Cell Segmentation Thresholds & Statistics: Users can define throughput thresholds
used to classify cells into health categories. Input fields include:
— 8: General downlink throughput threshold (in Kbps).

— S_L900: Specialized threshold for 900 band cells.

After submission, segmentation statistics are refreshed accordingly.

This section includes:

— Quverall Active Cell Segmentation Pie Chart: Shows the distribution of active cells
into “Good,” “Bad,” “Critical,” and “Indeterminate” categories based on the latest

hourly KPI data. Data is aggregated using db.get_detailed cell statistics.

— Vendor-Specific Segmentation Pie Charts: These smaller pie charts show the same
segmentation breakdown for each major vendor (Huawei, Nokia, ZTE), allowing for

per-vendor health assessments.

Chapter 3. Application Features and Unified Visualization 35

b8 KPIAnalyties Home Dastbosi Explors &

3= Segmentation Thresholds
oLThek 308 Sipee A58 o

iied 10 S0Eve ool UBNG AIem Nourty tho:

(& Overall Active Cell Segments SRR Sy mine: HOKIA Segmants ZTE Segmants

9 9200

Figure 3.27: Explore Page: Overall and vendor-specific cell segmentation pie charts.

o Detailed Counts Table: A tabular summary displaying the number of created and
active cells, as well as the distribution of cells by quality category—Good, Bad, and
Critical—segmented by both technology and vendor. This data is retrieved from the
function db.get_detailed_cell_statistics, and it provides a quick overview of the
current network health across all domains. The visualization of this data is shown in
Figure 3.28.

[08 KPIAnalytics tome Dasibos Explors

5 Detalled Counts & Segmentation

reakdown by Technalagy and Ven d on latest datal

G [
26 E o
40 3296
G 0
26 o
a0 [T 1

Figure 3.28: Explore Page: Detailed segmentation table by quality, tech, vendor.

o Segmentation List Export: Each row of the table includes a download button that
allows exporting the list of cells for a given segmentation category (e.g., Good 4G Huawei
cells) as a CSV file.

This export is handled via the endpoint /export/segmentation/<tech_id>/<vendor_id>,
making it convenient for external analysis or reporting purposes. An example of a result-

ing CSV file export is illustrated in Figure 3.29.

Chapter 3. Application Features and Unified Visualization 36

cell_sagmentation 46

Figure 3.29: CSV export result: Example file generated for a specific segmentation category.

o Interactive Cell Distribution Pie Chart: Lets users visualize cell distribution based

on:

— Vendor filters: Huawei, Nokia, ZTE.
— Technology filters: 2G, 3G, 4G.
— Cell status filters: Toggle between “Total Cells” and “Active Cells.”

The chart updates dynamically using client-side processing via explore_setup.js and
the data object detailedStatsData.by_tech_vendor.

|od KPIARalytics -

Interactive Cell Distributions

ZTE: Created Calls by Technology

Disaribution Type

Tt

Figure 3.30: Explore Page: Interactive pie chart for ZTE’s total cell technology.

The features described in this chapter show how the application brings together KPI data
from multiple vendors in a clear, interactive way. The KPI Dashboard allows detailed filtering
and comparison, while the Explore page provides vendor-independent search and statistics.

Together, they give engineers a practical tool for monitoring network performance.

Chapter 4

Discussion, Limitations, and

Conclusion

4.1 Evaluation of the Proposed Framework

The web application successfully fulfills its primary objective of providing a unified, accurate,
and interactive LTE performance monitoring solution. Through the abstraction of vendor-
specific details via a semantic normalization layer in the Data Warehouse (DWH), the platform
delivers consistent and actionable insights to network operators.

Originally, the scope of this project aimed to support all radio access technologies—2G,
3G, and 4G. However, due to time constraints, the current implementation focuses solely on
LTE (4G) but covers all major vendors in the network: Huawei, Nokia, and ZTE. Despite
this narrowing of scope, the underlying architecture of both the data warehouse and the web
application was designed to be adaptable and scalable. It supports easy extension to additional
technologies such as 2G, 3G, and even future deployments like 5G. Similarly, the framework is
built to accommodate new vendors should the operator decide to onboard others in the future.

This design ensures that the solution is not limited to Djezzy’s network but can be gener-
alized across mobile operators who face similar challenges in harmonizing heterogeneous KPI
definitions. The only significant bottleneck in scaling this solution is the time-intensive process

of defining and validating normalization logic for each new KPI, vendor, or technology.

4.2 Limitations

o The system currently supports a fixed set of normalized KPIs. Expanding this catalog

would significantly enhance the platform’s analytical capabilities.

» Real-time data ingestion and processing are not yet implemented; the system operates in

batch mode with periodic updates.

o The accuracy of unified KPIs is contingent on the correctness and completeness of the

normalization formulas.

37

Chapter 4. Discussion, Limitations, and Conclusion 38

o The framework focuses on aggregated KPI visualization and does not delve into vendor-

specific counter-level diagnostics.

4.3 Conclusion and Future Work

This thesis has introduced a scalable and extensible platform for vendor-agnostic LTE KPI vi-
sualization. The normalization framework, in conjunction with an interactive front-end, enables
unified analysis across multiple vendors—resolving a key pain point in multi-vendor network
environments.

Future work will focus on:

o Integrating Al modules—such as anomaly detection and KPI forecasting—developed as

part of our final education project [1].

o Enabling real-time data ingestion and streaming visualizations to support near-instantaneous

network monitoring.

o Applying machine learning to automate and refine the normalization process, thereby

improving accuracy and scalability.

o Incorporating a notification and alert system based on dynamic threshold rules to assist

in proactive network management.

Overall, the architecture and approach presented in this work demonstrate high potential
for broader application across mobile operators, offering a future-proof solution for performance

monitoring in complex, heterogeneous network environments.

Bibliography

1]

A.Y. Alaouchiche and M. W. Kessoum, “Machine Learning-Based Performance Optimiza-
tion in LTE Networks,” Final Education Project, ENSTA, 2025.

D. O. T. Algérie, “Internal KPI Documentation and Formulas,” Accessed during engineer-

ing internship at Djezzy, 2025, unpublished company resource.

A. R. et al., Flask: Web Development, One Drop at a Time, Pallets Projects, 2024, https:
/ /flask.palletsprojects.com/.

P. G. D. Group, PostgreSQL Documentation, 2024, https://www.postgresql.org/docs/.

F. D. G. et al., psycopg2: PostgreSQL database adapter for Python, 2024, https://www.

psycopg.org/docs/.

C. Contributors, Chart.js: Simple yet flexible JavaScript charting, 2024, https://www.

chartjs.org / .
P. Projects, Jinja2 Documentation, 2024, https://jinja.palletsprojects.com/.

C. Porzio, Alpine.js: A rugged, minimal framework for JavaScript, 2024, https://alpinejs.
dev/.

T. Labs, Tailwind CSS: A Utility-First CSS Framework, 2024, https://tailwindcss.com/.

G. Schier, flatpickr: Lightweight and powerful datetime picker, 2024, https://flatpickr.js.

org/.

39

https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://www.postgresql.org/docs/
https://www.psycopg.org/docs/
https://www.psycopg.org/docs/
https://www.chartjs.org/
https://www.chartjs.org/
https://jinja.palletsprojects.com/
https://alpinejs.dev/
https://alpinejs.dev/
https://tailwindcss.com/
https://flatpickr.js.org/
https://flatpickr.js.org/

	List of Figures
	Introduction
	Introduction and Problem Statement
	Context and Motivation
	Problem Statement: The Illusion of Unified KPIs
	Proposed Solution: A Vendor-Normalized Visualization Platform

	Methodology and System Design
	Requirements Analysis: Toward a Unified Analytical Interface
	Architectural Approach: Data Warehouse and Normalized KPI Abstraction
	Data Warehouse Design for Unified Views 1
	Application Design: Flask as the Presentation Layer
	Back-End Components (Flask)
	Front-End Design

	Application Features and Unified Visualization
	General User Interface and Navigation
	KPI Dashboard : Interactive Performance Analysis
	Comprehensive Filter Panel
	Dynamic Chart Display Area

	Explore Page (/explore): Vendor-Agnostic Network Insights
	Search Entities Tab
	Statistics & Health Tab

	Discussion, Limitations, and Conclusion
	Evaluation of the Proposed Framework
	Limitations
	Conclusion and Future Work

