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Abstract—With the rise of 5G networks, the surface
for cyber attacks has expanded significantly, partic-
ularly in the form of Distributed Denial of Service
(DDoS) attacks that threaten the availability of net-
work services. While Machine Learning (ML) has
proven effective in detecting such attacks, these models
often face challenges related to trust, transparency,
and centralized control. This paper proposes a hy-
brid approach that combines ML-based detection with
Blockchain technology to enhance the security, trace-
ability, and robustness of DDoS defense mechanisms
in 5G environments. By utilizing Blockchain’s de-
centralized and tamper proof ledger, the system en-
sures that the outcomes of ML-based detections are
securely recorded, verifiable, and resistant to manip-
ulation. Smart contracts further enable automated
and coordinated responses to threats across distributed
network nodes. Crucially, the integration of ML and
Blockchain enhances traceability, allowing detected
malicious sources to be rapidly shared and acted upon
across the network. This not only strengthens the
reliability of detection but also significantly reduces
the volume of DDoS traffic circulating in the network,
by enabling earlier and more accurate blocking near
the source. The proposed approach highlights how this
synergy can improve both detection performance and
overall network resilience.

Index Terms—5G Networks, Cybersecurity, DDoS
Attacks, Machine Learning, Blockchain,Smart Con-
tracts.

I. INTRODUCTION

In the era of hyper connectivity, fifth generation (5G)
networks have emerged as the cornerstone of next gener-
ation mobile communications and digital infrastructure,
delivering unprecedented ultra-fast speeds, low latency,
and massive device connectivity capabilities [[]. These fea-
tures enable a wide range of transformative applications,
including autonomous transportation, remote healthcare,
industrial automation, and real time emergency response
systems. However, the increased complexity and scale
of 5G architecture have significantly expanded the attack
surface, rendering these networks more vulnerable to so-
phisticated cyber threats.

Among the most pressing threats are Distributed Denial
of Service (DDoS) attacks, which exploit the high band-
width and decentralized architecture of 5G networks to
overwhelm critical network components such as network
slices and core infrastructure [l [2]. Traditional rule-
based security mechanisms, commonly used in earlier
generations, have become inadequate due to their lim-
ited adaptability and inability to respond effectively to
dynamic and large scale attacks in real time [L].

To overcome these limitations, the integration of Ma-
chine Learning (ML) and blockchain technologies has
garnered increasing attention as a promising and robust
approach to 5G cybersecurity [3], [4]. ML techniques
are well-suited for detecting DDoS attacks by processing
vast volumes of network traffic, learning typical behavior
patterns, and identifying anomalies indicative of malicious
activity. Unlike static approaches, ML models can adapt
to evolving threat landscapes, offering enhanced general-
ization and real-time responsiveness [5].

In parallel, blockchain introduces a decentralized and
tamper proof ledger that strengthens trust, transparency,
traceability, and accountability across distributed 5G
environments. When applied to DDoS mitigation,
blockchain enables secure logging of malicious events and
facilitates collaborative threat intelligence sharing among
network entities [2]. Its decentralized nature supports
real time propagation of blacklists without dependence on
a central authority. By distributing knowledge of attack
sources, blockchain ensures that all network nodes can
access a synchronized list of blacklist, thereby improving
the system’s ability to prevent ongoing and future DDoS
attacks [6].

The convergence of ML and blockchain technologies
creates a synergistic framework capable of autonomously
detecting and mitigating DDoS attacks while preserving
the integrity and trustworthiness of shared data. This
integration not only enhances detection accuracy and re-
action time but also ensures traceability and decentralized
propagation of threat intelligence throughout the network.



This paper presents a comprehensive survey of recent

advancements in the integration of machine learning and
blockchain for DDoS detection and mitigation in 5G
networks. It reviews a state of the art methodologies,
highlights key research challenges, and discusses emerging
trends. By exploring this multidisciplinary intersection,
the study aims to support the development of intelligent,
decentralized, and resilient cybersecurity solutions for next
generation wireless systems.
The remainder of this paper is organized as follows:
Section II reviews Background on 5G networks,Machine
Learning and Blockchain highlighting the limitations of
existing ML-based approaches. Section III presents works
related to DDoS attack detection and mitigation in 5G
architectures and finally Section IV describes how the
combination of both machine learning and blockchain can
enhance the detection and mitigation of DDoS attacks in
5G Networks. Finally, Section VI concludes the paper and
outlines directions for future work.

II. BACKGROUND
A. 5G Networks

The architecture of 5G networks introduces a cloud-
native, service-oriented design aimed at delivering ultra-
reliable, high-speed communication with minimal latency
and support for massive device connectivity. Standardized
by the 3GPP and globally adopted since 2019 [7], 5G
employs technologies such as Software-Defined Network-
ing (SDN), Network Function Virtualization (NFV), and
Service-Based Architecture (SBA) [8].While this architec-
ture improves scalability and flexibility, it also expands
the potential attack surface particularly for DDoS attacks
which threaten the reliability and availability of network
services.

It is broadly divided into three main sections: the User
Equipment (UE), the Radio Access Network (RAN), and
the Core Network(CN).

1) User Equipment (UE): User Equipment includes all
devices that connect to the 5G network ranging from
smartphones and tablets to IoT devices and autonomous
vehicles. These devices access the network through the
RAN using advanced wireless technologies like massive
MIMO and beamforming [[].

2) Radio Access Network (RAN): The 5G Radio Access
Network (RAN) connects user devices to the 5G Core
via the gNodeB (gNB), the primary base station. its
Key responsibilities include radio resource management,
user admission control, QoS enforcement, mobility man-
agement, and network slicing support [9].

3) 5G Core Network: The 5G Core (5GC) is designed
around a Service-Based Architecture, enabling modular
network functions (NFs) to communicate via APIs. This
decoupled architecture improves scalability, service agility,
and automation [§].
it is illustrated in Figure m As shown, the 5G core serves

as the central brain of the network, coordinating and
managing key services and connectivity.

NEF
Network Exposure
Function

NRF
Network Repository
Function

PCF

UDM
Policy Control

Unified Data
Management

|

Function

H H |

AUSF
Authentication Server
Function

AMF SMF
Access and Management Session Management
Mobility Function Function

UE

User Equipment

—
—— /
— /

Z

- RAN

Radio Access Network

UPF

User Plane Function

Figure 1: 5G network architecture [[L0].

Table ﬂ summarizes the major core functions and their
respective roles.

Table I: Key 5G Core Network Functions

Network Description

Function

Access and Mo- | Handles device registration, mobility, and ac-
bility Manage- | cess management. Works with AUSF for user
ment Function | authentication [2].

(AMF)

Session Manages session setup, IP address allocation,
Management and mobility. Coordinates with PCF for QoS
Function enforcement [2], [L1].

(SMF)

User Plane | Routes and forwards user data between the
Function 5G Core and external networks such as the
(UPF) internet [2].

Policy Control | Enforces network policies and ensures QoS
Function across the core [2].

(PCF)

Network Slice | Chooses appropriate network slices based on
Selection user service needs [2].

Function

(NSSF)

Authentication | Authenticates users in coordination with UDM
Server [2].

Function

(AUSF)

Unified Data | Handles user subscription and authentication
Management data [2].

(UDM)

Network Registers and enables discovery of all network
Repository functions [2].

Function

(NRF)

Network Exposes internal services to application func-
Exposure tions securely [2].

Function

(NEF)

a) 5G Network Slicing: 5G network slicing is one of
the most transformative features introduced in the 5G
networks. It enables a single physical infrastructure to be
logically partitioned into multiple virtual networks, called
slices, where each slice is tailored to serve a specific type of
service, each with its own architecture, quality of service
(QoS), and security mechanisms [11].



According to the 3GPP standard, 5G network slicing
is typically categorized into three main types, each corre-
sponding to a major family of use cases:

o Enhanced Mobile Broadband (eMBB): For high speed
data services such as video streaming and VR [11].

e Ultra Reliable Low Latency Communications
(URLLC): For mission critical applications like
autonomous driving and remote surgery [L1].

o Massive Machine Type Communications (mMTC):
For large scale IoT connectivity involving low power,
low data rate devices [11].

B. DDoS Attacks in 5G Networks

While the 5G architecture design introduces scalability
and service agility, it also creates new avenues for cyber
threats especially Distributed Denial of Service (DDoS)
attacks. a DDoS attack is a common and disruptive cyber
threat that aims to make a network or service unavailable
by overwhelming it with massive amounts of traffic. this
type of attacks use a large network of compromised devices
often IoT-based botnets to flood the target with malicious
traffic in order to exhaust its resources so it locks out
legitimate users [12], [13].

Types of DDoS Attacks: DDoS attacks generally fall into
three main categories based on the layers of the network
they target:

Volumetric Attacks: These attacks aim to saturate the
target’s bandwidth with high volumes of traffic. Often
amplified using techniques like DNS amplification, they
are among the most common types of DDoS attacks.
Many are powered by botnets made up of insecure IoT
devices. Their scale is typically measured in bits per
second (bps or Gbps) [12].

Protocol Attacks: this type of attacks target weaknesses
in network protocols at the transport and network layers.
Examples include SYN floods and Ping of Death attacks,
which send malformed or excessive requests to exhaust
system resources and cause service interruptions [[12].

Application Layer Attacks: These attacks mimic le-
gitimate user behavior to overwhelm applications (like
web servers) at the top layer of the OSI model. They
are harder to detect because they operate with smaller
traffic volumes but focus on exploiting application logic
and resource limits [12].

C. Machine Learning for DDoS Detection

The increasing frequency and complexity of Distributed
Denial of Service (DDoS) attacks demand the implemen-
tation of more intelligent, adaptive, and dynamic security
solutions. In this context, Machine Learning (ML) has
emerged as one of the most promising approaches for
attack detection. Unlike traditional systems based on
predefined rules or static signatures, ML algorithms can
analyze large volumes of data in real-time and automati-
cally learn both normal and abnormal system behaviors.
This allows them to detect not only known attacks but

also novel and evolving threats that conventional systems
might miss [[14].

Machine Learning (ML), a subfield of Artificial Intelli-
gence (Al), involves the use of algorithms that learn from
data—either labeled or unlabeled—to make predictions
or classifications [15], [L6]. These algorithms range from
simple methods like linear regression to complex ensemble
techniques. They are capable of identifying patterns,
making decisions, and improving their performance over
time and in real-world scenarios, all without the need for
explicit programming [L6]. Detecting Distributed Denial
of Service (DDoS) attacks using machine learning involves
two primary approaches: supervised and unsupervised
learning. Each has distinct methodologies:

Supervised learning : Supervised learning is a commonly
used machine learning approach for detecting Distributed
Denial of Service (DDoS) attacks, where models are
trained on labeled datasets that classify network traffic as
either normal or malicious. These models learn to identify
patterns associated with attacks based on extracted fea-
tures such as packet rate, flow duration, and the number
of unique IP addresses. Algorithms like Support Vector
Machines (SVM) and Random Forest are frequently em-
ployed due to their high classification accuracy. While su-
pervised learning can effectively detect known attack types
and some variants, it requires large, high-quality labeled
datasets which can be difficult to obtain in practiceand
may suffer from overfitting or reduced performance when
exposed to novel or evolving attack patterns. [14] , [L6]

Random Forest is an ensemble learning method used for
classification and regression that builds multiple decision
trees during training, combining their predictions through
majority voting (classification) or averaging (regression)
as illustrate in Figure . Each tree is trained on a random
subset of the data (bootstrap aggregating) and considers
only a random subset of features at each split, enhancing
diversity and reducing overfitting. This approach improves
generalization, with the model’s error converging to a
limit as the number of trees increases, ensuring strong
performance even with high-dimensional data, though this
comes with reduced interpretability compared to single
decision trees or linear models [[17]. Random Forest mit-
igates the overfitting by combining diverse trees trained
on randomized subsets of data and features [L§]. In
the field of cybersecurity, Random Forest has proven
to be particularly effective for detecting attacks such as
Distributed Denial of Service (DDoS) [1§].

Support Vector Machine (SVM) is a prominent su-
pervised machine learning algorithm employed for the
detection of Distributed Denial of Service (DDoS) at-
tacks in network environments. It constructs an optimal
hyperplane to separate data points into distinct classes,
effectively distinguishing between legitimate and malicious
traffic. In the context of DDoS detection, SVM models are
trained on labeled datasets to learn and recognize traffic
patterns, enabling accurate identification of anomalous
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Figure 2: Random Forest Model Architecture [[19].

behavior indicative of an attack. Owing to its strong ca-
pability in managing high-dimensional data and its proven
effectiveness in binary classification, SVM is regarded as
a dependable and efficient method for mitigating DDoS
threats, particularly within the complex infrastructure of
5G networks [20]. The algorithm’s ability to maximize
the margin between classes ensures robust generalization
to unseen data, while kernel functions extend its power to
handle non-linear separations—making it suitable for the
dynamic and diverse nature of 5G traffic [21] .

Unsupervised learning: Unsupervised learning works a
bit differently from supervised methods—it doesn’t need
any labeled data to function. Instead, it looks for patterns
or unusual behavior in the traffic on its own. This makes
it especially useful for spotting brand-new or unexpected
DDoS attacks that haven’t been seen before. Since it
doesn’t rely on past examples, it’s great in situations
where we don’t have labeled datasets. These methods
can sometimes raise too many false alarms, and figuring
out what the algorithm has actually found isn’t always
straightforward—it often needs a human expert to make
sense of the results [14], [16].

D. Deep Learning for DDoS Detection

Deep Learning (DL), a branch of ML, is based on mul-
tilayer artificial neural networks (ANNSs), inspired by bio-
logical neurons [22]. A neural network consists of an input
layer, one or more hidden layers, and an output layer, with
each layer made up of interconnected neurons. The input
layer processes raw data where each neuron corresponds
to a feature. Hidden layers perform complex transforma-
tions, and the output layer generates predictions, such as
classification labels or continuous values. FEach neuron
combines its inputs using weights, applies an activation
function, and produces an output. If this output exceeds
a threshold, the neuron activates and passes information
to the next layer; otherwise, no signals transmitted [23].
Various neural network architectures have been designed
to suit different data types and application requirements.

1) The Convolutional Neural Network (CNN): The
Convolutional Neural Network (CNN) is one of the most
prominent architectures in the field of deep learning [24].
CNNs have shown remarkable effectiveness in a variety of
domains, including image reconstruction [25] and natural
language processing [26]. In recent years, CNNs have
also gained increasing attention in the field of cyberse-
curity [27], particularly for critical applications such as
Distributed Denial of Service (DDoS) attack detection
[14], [28], By leveraging components such as convolutional,

ooling, and fully connected layers As depicted in Figure

, CNNs can automatically learn spatial feature hier-
archies. These powerful pattern recognition capabilities
make CNNs especially suitable for analyzing complex
datasets, including traffic in 5G networks [29].
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Figure 3: CNN Model Architecture [30]

Convolutional layers in a CNN use trainable filters
to extract local patterns like edges and textures from
the input data, producing feature maps that are then
passed through non-linear activation functions, typically
ReLU, to capture complex representations [Bl]. These
layers benefit from sparse connectivity and shared weights,
reducing computational cost and memory usage [32]. Pool-
ing layers follow to downsample feature maps, preserving
key information while minimizing parameters commonly
using max or average pooling [32]. Finally, fully connected
layers aggregate these features and generate predictions,
ending with a SoftMax layer for classification tasks [31].

2) Bidirectional Long Short-Term Memory (BiLSTM):
Bidirectional Long Short-Term Memory (BiLSTM) net-
works are an advanced extension of traditional LSTM
models, designed to capture both past and future con-
text in sequential data. While standard LSTM networks
process information in a single direction from past to
future BILSTMs incorporate an additional LSTM layer
that reads the input sequence in reverse. This dual-
processing mechanism enables the network to have a
more comprehensive understanding of the entire sequence,
which is especially valuable in tasks where context on both
sides of a token is essential, such as in speech recognition,
sentiment analysis, or named entity recognition [33], [34].
BiLSTM has been successfully applied in the detection
of cyberattacks, including DDoS attacks, intrusions, and
anomalous traffic behavior in networks [B5]. BiLSTM



network comprises two parallel LSTM layers—one As
depicted in Figure W, processing the input sequence for-
ward and the other in reverse. At each time step, their
outputs are combined, creating a richer representation
that captures both past and future context. Each LSTM
unit includes input, forget, and output gates that control
the flow of information, helping retain important data over
time and addressing issues like vanishing gradients [36].
This bidirectional structure makes BiLSTMs particularly
effective for sequence-based tasks, and performance can
be further enhanced by adding a CRF layer for structured
prediction [37].

Output Layer

LSTM Layer

Backward
propagation

Input Layer

Figure 4: BiLSTM Model Architecture [@]

E. Blockchain Technology

Blockchain is a decentralized and distributed ledger
technology that securely records transactions across mul-
tiple network nodes as shown in figureff. Originally
introduced for cryptocurrencies, its core principles, im-
mutability, transparency, and decentralized trust make it
highly suitable for a wide range of applications, including
security in next generation networks. Data stored on
a blockchain is grouped into blocks, cryptographically
linked, and validated by consensus among participating
nodes, ensuring resistance to tampering and unauthorized
modifications E]

The main features of blockchain are:

o Decentralization: Blockchain operates across a net-
work of distributed nodes, each maintaining a syn-
chronized copy of the ledger. This peer to peer
structure removes the need for a central authority by
distributing trust and control among all participants.
If someone attempts to alter data on one node, the
rest of the network can detect and reject the change,
ensuring data integrity. This redundancy makes the
system more resilient and tamper resistant [39].

o Immutability: Once a transaction is verified and
added to the blockchain, it becomes permanent and
cannot be altered or deleted. This is made possible by
cryptographic hash functions that link each block to
the previous one, creating a secure chain of records.
Any attempt to change data in a past block would
break the chain and be immediately rejected by the
network. This property ensures that all recorded

actions are irreversible and non repudiable, making
blockchain a reliable source of truth [40)].

o Transparency: In blockchain systems, every partic-
ipant (node) has access to a shared copy of the
ledger, which is continuously updated and verified.
This means transactions can be viewed and traced
in real time using blockchain explorers, ensuring full
visibility across the network. Although data on
the blockchain is encrypted and users can remain
pseudonymous, the transaction history itself is com-
pletely transparent making it possible to trace the
movement of assets while preserving user privacy [39].

o Security: Blockchain ensures data security through
strong cryptographic algorithms and a structure that
links each block to the previous one using hashes.
Once a block is added to the chain, altering any
data within it would change its hash breaking the
connection with subsequent blocks. Since every node
on the network maintains a copy of the chain, any
tampered version would be rejected by the others due
to mismatched hashes. This makes it nearly impos-
sible to alter past records on large, well-distributed
networks, providing a high level of integrity and
protection against tampering [39].

Blockn + 1

= = -
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Blackn

Block 1
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Fj@,nre 5: Mlustration of the blockchain transaction process

[40].

1) Blockchain Architecture: The architecture of a
blockchain system is typically composed of several inter-
connected layers, each playing a crucial role in ensuring
the functionality, security, and scalability of the network:

e Data Layer: This foundational layer stores all
transaction-related data within blocks. It includes
block headers, timestamps, cryptographic hashes, and
Merkle trees to guarantee data integrity and verifia-
bility [41).

o Network Layer: Respounsible for peer-to-peer (P2P)
communication among nodes. It manages transaction
propagation, block dissemination, and node discovery
across the decentralized network [41].

o Consensus Layer: Ensures all network participants
agree on the current state of the blockchain. It
employs various consensus algorithms such as Proof
of Work (PoW), Proof of Stake (PoS), or Byzantine



Fault Tolerance (BFT) to maintain consistency and
prevent malicious activity [41].

o Incentive Layer: This layer introduces economic
mechanisms to reward honest behavior and penalize
malicious actions. Participants, such as miners or
validators, are compensated with tokens or cryptocur-
rency for contributing computing power or validating
transactions.

o Contract Layer: Also known as the smart contract
layer, it enables the deployment and execution of
programmable logic. This supports automation of
transactions and rules-based operations within decen-
tralized applications [41].

o Application Layer: The topmost layer that interacts
with end users and external systems. It provides
interfaces for real-world applications including supply
chain management, identity verification, and e-voting
[41].
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Contact Algorithm, Smart Contract, Script Code
Layer
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Network P2P Network, Communication
Laver Mechanism, Verification Mechanism

Data Layer Data Block, Chain Structure, Time Stamp

Figure 6: Layeres of blockchain systems [41].

2) Blockchain Tazxonomy: Blockchain can be classified
into three main types:

o Public Blockchain: Also known as permissionless
blockchain where anyone can join, participate, and
interact without needing approval [42]. every partici-
pant in this kind of blockchains has the ability to send
and receive transactions, take part in the consensus
process, and maintain a full copy of the distributed
ledger [43].

To add new blocks to the chain, participants usually
have to either solve complex computational puzzles
(as in Proof of Work) or stake their own cryptocur-
rency (as in Proof of Stake). These mechanisms help
secure the network by making it extremely difficult
and costly to alter any data. As a result, pub-
lic blockchains are generally considered secure and
tamper-resistant [44].

Well-known examples of public blockchains include
Bitcoin, Ethereum, and Litecoin [40].

o Private Blockchain: A private or a permissioned
blockchain, operates under the control of a specific
organization or group. Only authorized participants

can join the network, and access is typically granted
through invitations or approvals from existing mem-
bers [42].

e Consortium Blockchain: A consortium blockchain,
also called a federated blockchain, is a permissioned
system managed by a group of trusted entities rather
than a single organization. In this type of blockchain,
only selected nodes are granted the authority to
participate in the consensus process and verify trans-
actions. Access to data can also be restricted to
specific participants, offering a higher level of privacy
compared to public blockchains [40].

III. RELATED WORK

This section reviews recent works on using machine
learning to detect and stop DDoS attacks, and how
blockchain can improve the security and reliability of those
systems. It highlights how combining both technologies
can lead to smarter and more trusted solutions for pro-
tecting 5G networks.

Manikumar and Maheswari [3] proposed a hybrid sys-
tem that combines machine learning and blockchain to
detect and mitigate DDoS attacks. They used models like
KNN, Decision Tree, and Random Forest to classify mali-
cious traffic, with Random Forest achieving the best accu-
racy. Detected malicious IPs are stored on the Ethereum
blockchain using smart contracts, ensuring they can’t be
altered. This decentralized and automated approach adds
transparency and improves the trustworthiness of DDoS
defense systems.

Agrawal et al [45] explore the integration of blockchain
and artificial intelligence to enhance the performance and
reliability of 5G-enabled IoT systems, which are often chal-
lenged by data congestion, privacy concerns, and limited
processing efficiency. To address these issues, the authors
propose a lightweight consensus mechanism (Raft), a high-
speed blockchain distribution network (bloXroute) to im-
prove data propagation, and the use of Hyperledger Fabric
as a permissioned blockchain.

In another notable work, the authors in [46] proposed a
collaborative system that combines machine learning with
blockchain smart contracts to detect and mitigate DDoS
attacks. Their architecture allows different autonomous
systems and clients to share blacklisted IP addresses on a
public blockchain, using Ethereum-based smart contracts
to automate response actions. The system enables real-
time detection through ML analysis of traffic patterns
and ensures that mitigation decisions are stored in a
tamper-proof and decentralized manner. Compared to
traditional centralized methods, this approach enhances
scalability, transparency, and cross-domain cooperation
while preserving the privacy of contributors.

Liu et al. [40]provide a thorough survey on the integra-
tion of blockchain and machine learning to enhance the
security, intelligence, and efficiency of modern commu-
nication networks. The paper highlights how blockchain



supports machine learning by enabling secure, decentral-
ized data sharing and transparent decision-making, while
ML strengthens blockchain through anomaly detection,
resource optimization, and smarter contract execution. It
also explores real-world use cases across 5G, IoT, and
edge computing, and outlines key challenges such as scal-
ability, privacy, and interoperability. This work offers a
strong foundation for understanding the complementary
roles of blockchain and ML in building more secure and
autonomous network systems.

Fang et al. [@] proposed a blockchain-Al hybrid defense
against DDoS attacks in 5G networks. Their framework
hides protected servers within the blockchain, forcing all
traffic through verified nodes. An AI module in smart
contracts analyzes traffic in real time, assigning a confi-
dence score—higher scores (indicating suspicious activity)
trigger increased transaction fees (Gas), raising attack
costs. To ensure trust, the Al is trained on-chain using
secure methods like YODA and MIRACLE, preventing
tampering.

Manikumar et al. [@] proposed a federated learning-
based DDoS detection framework integrated with
blockchain to enhance network resilience. Their approach
enables distributed model training across nodes while
preserving data privacy. To address potential poisoning
by malicious nodes, they introduce a dynamic reputation-
based miner selection mechanism and store the trained
model on-chain for integrity. Experiments using Random
Forest, Multilayer Perceptron, and Logistic Regression
achieved up to 99.1 % accuracy, demonstrating superior
performance over traditional centralized detection
methods.

Ahmad Alaziz et al. [B] proposed a blockchain-based
blacklisted IP distribution system to enhance DDoS miti-
gation in Snort IPS. Their framework leverages Ethereum
smart contracts to share malicious IP addresses across dis-
tributed IPS nodes, enabling collaborative attack blocking
closer to the source. By deploying a private blockchain
with a Proof-of-Authority (PoA) consensus, the system
ensures tamper-proof IP blacklisting while minimizing
latency. Experimental results demonstrated a 76% reduc-
tion in attack traffic (from 115,578 to 27,165 packets) by
allowing edge IPS nodes to proactively block threats using
shared intelligence. The study highlights blockchain’s
potential to decentralize threat intelligence, though it
notes a 3-7 second delay for IP propagation. Future
work includes testing public blockchains and diverse DDoS
attack vectors.

Tayyab et al. [@] propose a decentralized approach in
which each IDS functions as a node within a blockchain
network. These IDS nodes collaborate by exchanging cor-
related alarm data to enhance the detection of ICMPv6-
based DDoS attacks. While this distributed sharing of
threat intelligence can improve detection performance,
the practical deployment faces challenges. For instance,
integrating blockchain compatibility across heterogeneous

IDS vendors in enterprise environments may be difficult.
Additionally, identifying DDoS attacks at the IDS level
may occur too late in the attack lifecycle, by which point
edge or content delivery network (CDN) resources could
already be saturated.

IV. BLOCKCHAIN FOR DISTRIBUTED BLACKLIST

In 5G networks, DDoS attacks pose a critical threat due
to the increased connectivity and low-latency requirements
of the infrastructure. Various detection mechanisms, in-
cluding machine learning-based approaches, have been de-
veloped to identify such attacks. Once malicious activity
is detected, the initial step involves identifying the source
associated with the abnormal traffic pattern [3]. However,
due to the dynamic IP allocation and the user-centric
nature of 5G networks [50], IP-level identification alone
is insufficient. The subsequent step consists of identifying
the malicious source using unique user identifiers, such
as the International Mobile Subscriber Identity (IMSI).
These identifiers enable the network to accurately asso-
ciate suspicious behavior with specific users or devices [51].

Traditionally, each Intrusion Detection System (IDS)
maintains its own local mapping and blacklist, which can
lead to fragmented threat intelligence and inconsistent re-
sponses across network functions. This highlights the need
for a unified, distributed mechanism to ensure coherent
and effective identification of malicious actors throughout
the 5G architecture. To address this limitation, a dis-
tributed solution is required to ensure synchronization and
consistency of blacklist across all IDS instances. Figure
illustrates the proposed architecture that combines ma-
chine learning-based DDoS detection with a blockchain-
enabled distributed blacklist system.
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Figure 7: Architecture of a Blockchain-Enabled and ML-
Based DDoS Detection System in 5G Networks.

A. Benefits of Blockchain Integration

Integrating blockchain technology into DDoS defense
systems offers two principal advantages that enhance the



effectiveness and responsiveness of network protection
mechanisms:

o Traceability: Every interaction within the network,
including malicious activities, is recorded immutably
on the blockchain. This ensures a transparent and
verifiable audit trail, enabling the accurate identifica-
tion and accountability of attack sources.

o Preemptive Attack Mitigation: Blockchain en-
ables real time propagation of verified threat intelli-
gence across all IDS nodes. Once a malicious source
is detected and blacklisted at any point in the net-
work, the information is immediately synchronized,
allowing other nodes to proactively block the threat
before the attack traffic reaches them. This collective
defense significantly reduces the impact, spread, and
recurrence of DDoS attacks [52], [53].

o« Tamper Resistance: Once a malicious source is
blacklisted, the corresponding entry is recorded im-
mutably on the distributed ledger, ensuring integrity
and verifiability by all nodes [54].

This decentralized sharing of verified threat intelligence
enables each detection node to contribute to and benefit
from a collective and proactive defense strategy, ensuring
traceability of malicious activity across the network. In
addition to reducing response time but also limits attack
propagation by enabling early identification and blocking
of threats.

B. Smart Contracts for Autonomous Blacklist Manage-
ment

Smart contracts are self-executing programs deployed
on blockchain platforms such as Ethereum. They au-
tonomously enforce predefined rules and access control
policies without relying on centralized authority. In the
context of 5G network security, smart contracts signifi-
cantly enhance the efficiency and integrity of distributed
blacklist management by enabling secure, automated re-
sponses to DDoS threats.

Upon detection of a potential DDoS source, IDS gen-
erates a validated alert, which is forwarded to a smart
contract. The contract then autonomously updates the
blacklist on the blockchain in a tamper-proof and trans-
parent manner. The smart contract is responsible for the
following core functions:

o Addition of malicious sources: Upon receiving
alerts from machine learning-based Intrusion Detec-
tion Systems (IDS), the identified malicious source
is added to the blacklist along with metadata such
as the timestamp and the unique identifier of the
reporting IDS. This allows for traceability and trust
in the source of the alert.

o Verification and enforcement: During access con-
trol decisions, the contract verifies the presence of the
source in the blacklist and checks the time elapsed
since the alert was issued. If the elapsed time is below

a predefined threshold, and the IDS identifier is recog-
nized as trustworthy, the source is temporarily denied
access to the network. This ensures timely mitigation
while avoiding permanent exclusion in cases of false
positives or spoofed behavior.

By automating these tasks, smart contracts ensure that
only authorized and trusted entities can modify the black-
list, preserving its integrity, transparency, and operational
reliability [3].

Given the stringent performance requirements of 5G
networks, permissioned blockchains are more suitable
than public alternatives. While public platforms such as
Ethereum offer open participation and full transparency,
they typically involve higher latency, greater energy con-
sumption, and reduced control over participant behavior.
In contrast, permissioned blockchains limit participation
to verified nodes and offer several advantages:

o Reduced latency through efficient consensus mecha-

nisms .

o Improved scalability to support real-time and high-

volume traffic.

o Enhanced regulatory compliance via identity manage-

ment and traceability.

These characteristics make permissioned blockchain
platforms highly suitable for deploying smart contract-
based blacklist management systems within 5G infrastruc-
tures [4].

V. CONCLUSION

The evolution of 5G networks has introduced unprece-
dented performance capabilities, including low latency,
high throughput, and flexible network slicing to support
diverse use cases. However, this complexity also increases
the attack surface, making 5G infrastructures particularly
vulnerable to sophisticated cyber threats such as Dis-
tributed Denial of Service (DDoS) attacks. Traditional
defense mechanisms often fall short due to limitations in
scalability, centralized control, and delayed response.

To address these challenges, this article explored a hy-
brid approach that combines Machine Learning (ML) and
Blockchain technologies for enhanced DDoS mitigation.
ML enables intelligent detection of anomalies in network
traffic, while Blockchain introduces a decentralized, tam-
per proof ledger to ensure trusted information sharing
across network nodes. The integration of Smart Contracts
further automates and synchronizes the response process,
allowing detected threats to be quickly shared and blocked
across multiple Intrusion Detection Systems (IDS).

Notably, the traceability enabled by Blockchain plays a
crucial role in mitigating DDoS traffic across the network.
By distributing blacklist entries in real time, malicious
entities can be identified and filtered closer to their origin,
thereby preventing disruptive traffic from reaching and
overwhelming critical infrastructure layers. This synergy
between machine learning and Blockchain technologies
provides a robust, scalable, and trustworthy solution for



protecting 5G network slices and maintaining service avail-
ability

Future research could explore adapting this architecture
to public blockchain environments, incorporating addi-
tional attack types, and enhancing smart contract logic
for more dynamic policy enforcement.
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