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Abstract—Skin cancer is one of the most common and deadly
forms of cancer, for which early detection remains critical. In
this paper, we provide a comprehensive review and technical
comparison of artificial intelligence (AI) techniques for skin lesion
analysis. We discuss a wide variety of conventional machine learn-
ing and latest deep learning techniques, with particular focus on
pre-trained convolutional neural networks (CNNs) such as VGG,
ResNet, EfficientNet, and MobileNet. An in-depth comparative
analysis is provided in the form of classification accuracy, model
complexity, training time, and inference speed. Preprocessing
techniques—like hair removal, image normalization, artifact
removal, and data augmentation techniques like geometric and
color transformations—are examined for their effectiveness in
enhancing robustness, particularly on real-world datasets like
HAM10000, ISIC, and PH2. In addition, the paper addresses
the feasibility of executing these models on embedded hardware
platforms (Raspberry Pi, Jetson Nano, Coral Edge TPU) by
analyzing their TensorFlow Lite and ONNX support and the
impact of model compression techniques (quantization, pruning,
distillation). The final cross-comparison identifies the optimal
combination of dataset, model architecture, and hardware plat-
form for creating an inexpensive, interpretable, and real-time
skin lesion detection system. The paper concludes with the key
takeaways for prototyping an embedded diagnostic system for
low-resource environments.

Index Terms—Skin cancer, skin disease detection, skin lesion
datasets, deep learning, convolutional neural networks, vision
transformers, embedded systems, low-cost diagnosis, explainable
AI, real-time inference, data augmentation, transfer learning,
mobile deployment

I. INTRODUCTION

Both melanoma and non-melanoma skin cancers, repre-
sent an important and increasing global health problem.
According to GLOBOCAN 2022 over 330,000 new cases
of melanoma and around 1.2 million non-melanoma skin
carcinomas (NMSC) were diagnosed worldwide in 2020.
worldwide [1].While nonmelanoma skin cancers occur more
frequently, melanoma is responsible for the highest share
of skin cancer deaths due to its higher metastatic potential.
Fortunately, prognosis will improve substantially with early
detection; localized melanoma, for example, has a 5-year
survival rate of greater than 99%, whereas the 5-year survival
rate for distant metastasis from melanoma is less than 35The
following image depicts the distribution of new cancer cases
globally by region in 2020 [2].

Fig. 1. Global Cancer Incidence by Region (2020) [3]

Classic diagnosis is made by visual inspection with the
help of dermoscopy, followed by biopsy and histopathological
analysis. The process is reliant upon medical expertise and
access to dermatology services, which often are limited in low-
resource or rural areas. As Incidences of skin cancers and other
dermatosis tally in the millions, there is increasing prominence
and use of artificial intelligence, especially deep learning, to
assist and possibly automize skin lesion diagnosis [4].

Recent developments in computer vision, most notably con-
volutional neural networks (CNNs), have shown great potential
for classifying dermoscopic images. Research indicates that
well-trained CNNs may equal or exceed diagnostic accuracy
in some tasks when compared with experienced dermatolo-
gists [4]. Architectures such as EfficientNet, MobileNetV3,
and Vision Transformers (ViTs) [5] have been employed to
balance diagnostic accuracy with computational efficiency,
making them suitable for real-time applications and deploy-
ment on embedded or mobile platforms.

Nonetheless, several challenges remain. A critical issue is
dataset bias: most publicly available skin lesion datasets (e.g.,
ISIC [6], HAM10000 [7], PH2 [8]) predominantly feature
lighter skin tones (Fitzpatrick types I–III), leading to models
that may underperform on patients with darker skin [9]. This
lack of representation raises both ethical and clinical concerns,
as it can contribute to disparities in diagnostic outcomes.

Another limitation lies in the interpretability of AI models.
As medical applications demand transparency and account-
ability, black-box models are often met with skepticism. To
address this, explainability techniques such as Grad-CAM and
LIME have been introduced to visualize the regions influenc-



ing model predictions.The methods were created to showcase
model output that are as clinically meaningful (i.e., asymmetry,
border irregularity, color variation) to build trust [10].

Additionally, using AI-enabled systems in operational set-
tings must consider hardware capabilities, compliance with
laws and regulations, and compatibility with clinical work-
flows. Lightweight models are being considered and optimized
through pruning, quantization, or knowledge distillation to be
practical on devices with limited computational capabilities. At
the same time, regulatory bodies like the FDA and EMA are
beginning to approve AI-powered diagnostic tools, signaling
a move toward broader adoption [11].

This review outlines current advances (2017-2024) in ar-
tificial intelligence in skin cancer detection. We provide a
summary of improvements in model architecture, training
approaches, dataset issues, interpretability, as well as designs
for implementation in embedded context. Ultimately, we want
to highlight viable opportunities for creating low-cost, inter-
pretable, and accurate diagnostic systems that can be utilized
in real time to tackle health inequities across the globe.

II. RELATED WORK

Early automated skin lesion analysis relied on traditional
machine learning (ML) using handcrafted image features.
These methods typically extract descriptors (color, texture,
shape) and classify lesions with algorithms like support vec-
tor machines (SVM), k-nearest neighbors, decision trees or
logistic regression [12]. For example, Bechelli and Delhom-
melle compared several ML classifiers (logistic regression,
LDA, KNN, decision tree, naïve Bayes) to deep CNNs on
ISIC/HAM10000 data, finding that CNNs far outperformed
ML (e.g., VGG-16 achieved ∼88% accuracy vs. only ∼70%
for ML) [12]. In general, traditional ML systems attained
modest accuracy and suffered when datasets grew large or
diverse, paving the way for deep learning approaches.

A. Deep Convolutional Neural Networks

The advent of deep convolutional neural networks (CNNs)
has revolutionized lesion classification. Standard architectures
(AlexNet, VGG, ResNet, DenseNet, Inception, etc.) have
either been fine-tuning, or trained on dermoscopic images,
and frequently times with expert or near-expert performance.
Ensemble CNNs are particularly good: for instance, one
study reports that a majority-vote ensemble of InceptionV3,
DenseNet, InceptionResNetV2 and VGG-19 achieved ∼98%
accuracy on the ISIC archive [13]. Naqvi et al. note that deep
models on ISIC obtain high accuracy (e.g. 88%) and F1-
scores, whereas on larger, more heterogeneous datasets like
HAM10000 the best CNN (VGG-16) reached only ∼70%
accuracy, highlighting generalization challenges [14]. Cheng
et al. propose a MobileNet-based network with a novel spatial-
channel attention module; this “MobileNet-MFS” achieved
over 87% accuracy on ISIC-2019 data and outperformed
competing models in precision, recall and F1-score [15] .

The following image shows the CNN architecture used to
classify skin lesions into 7 categories

Fig. 2. Convolutional Neural Network (CNN) for Skin Lesion Classification
[16]

B. Vision Transformers
In addition to CNNs, vision transformer (ViT) architectures

have also been applied to dermoscopy. ViTs and hybrid CNN-
Transformer networks arose in a similar timeframe (2020-
2022). A recent scoping review shows that the use of ViTs
in diagnosing skin cancers has climbed significantly in 2020-
2022 with "superior performance" on dermoscopic images.
However, ViTs tend to require very large training sets and
can have difficulty with smaller datasets - as de Yuhan and
Zhenglin noted, transformers generally performed poorly with
low image counts [17], whereas CNNs remain robust on
smaller samples. Hybrid strategies are sometimes used to
balance power and data demands.

C. Hybrid and Ensemble Models
Many recent models combine multiple learning strategies.

Khan et al. extract features from ResNet101 and DenseNet201,
optimize them via a Moth-Flame optimizer, and classify with
a kernel extreme learning machine, achieving 90.7% accuracy
on HAM10000 [18]. Amin Tajerian fuse deep CNN features
with maximum correlation analysis and classify with KELM,
reporting accuracies of 95–99% across several datasets [19].
Gilani et al. introduce a spiking neural-network variant of
VGG-13 achieving 89.6% accuracy and improved energy
efficiency [20].

D. Interpretability and Explainability
Interpretable AI has gained a lot of attention recently. Grad-

CAM, SHAP, and LIME are most noted for their capacity
to visualize decisions. A recent literature review (2019-2023)
indicates that most CNN based pipelines include an explain-
ability module [21]. These module augment clinician trust and
expose bias, however, they still come with hurdles such as
imbalanced datasets and generalizeability [21].

E. Segmentation and Classification Pipelines
Segmentation is often the first stage in CAD pipelines, han-

dled by encoder–decoder CNNs such as U-Net and its variants.
Khan et al. proposed a 10-layer saliency-based CNN [22],
and Adegun et al. presented a Gaussian-refined lightweight
encoder–decoder achieving 98% segmentation accuracy [23].

F. Datasets and Benchmarks
Datasets like HAM10000, ISIC and PH2 are widely used

for benchmarking. Data augmentation and multi-institutional
images are often used to address melanoma rarity and improve
generalization.



G. Mobile and Embedded Implementation

Mobile and embedded deployment models usually leverage
lightweight CNN models like MobileNet or EfficientNet-lite;
one particular example is Cheng et al.’s MobileNet-MFS
model. Gilani et al.’s spiking neural VGG-13, also designed
for neuromorphic hardware, adds to the mix as an efficient in-
ference model. Real-world applications such as DermaSensor,
do exist, and in some cases with commercial trials as well,
either using on-board or cloud-based inference [11].

H. Regulatory Approval and Clinical Validation

DermaSensor is the first FDA-cleared AI skin cancer di-
agnostic device [11]. A Mayo Clinic trial found 96% sen-
sitivity in identifying cancerous lesions. The device felt it
cut melanoma miss-rates in primary care in half as well as
improved referral rates. Only time will tell what AI clinical
integration looks like at scale.

III. REVIEW METHODOLOGY

The literature review strategy was based on a Boolean query
combining relevant keywords related to artificial intelligence
and skin lesions. This query was applied across multiple
leading scientific databases.

A. Sources and Search Engines

The following databases were consulted:
• IEEE Xplore, for engineering and computer vision re-

search;
• PubMed / Medline, for biomedical and clinical articles;
• SpringerLink, Scopus, MDPI, and ScienceDirect, for

multidisciplinary journal coverage;
• Google Scholar, used as a supplementary search engine.
Keywords used included: "skin lesion classification",

"melanoma detection", "deep learning dermatology", "AI skin
cancer", combined with logical operators (AND, OR).

B. Timeframe and Selection Criteria

The search was limited to publications from 2017 to 2024
to capture recent advances in deep learning and AI-assisted
diagnostics.

a) Inclusion criteria::
• Original research articles published in peer-reviewed jour-

nals;
• Experimental studies applying AI to the detection or

classification of skin lesions;
• Availability of quantitative results using public or repro-

ducible datasets;
• Use of CNN architectures, hybrid methods, or embedded

models.
b) Exclusion criteria::

• General reviews, non-peer-reviewed preprints, book chap-
ters, or short communications;

• Theoretical studies without experimental validation;
• Studies outside the medical or dermatology context;
• Publications dated before 2017 or not available in full

text.

C. Selection Procedure

Once the results were merged and duplicates were deleted,
an initial screening was carried out on titles and abstracts,
followed by full text assessment of all selected articles. Two
reviewers independently determined the relevance of each
study. Disagreements were resolved by discussion or a third
opinion.

For each selected publication, the following data were
extracted: authors, year, dataset used, AI model, preprocessing
and optimization techniques, and performance metrics.

D. Thematic Organization

The reviewed articles were categorized along four major
axes:

1) Datasets used (ISIC, HAM10000, PH2, etc.);
2) Learning models (classical CNNs, MobileNet, ResNet,

etc.);
3) Deployment on embedded hardware (Raspberry Pi,

Jetson Nano, Coral TPU);
4) Performance and comparisons (accuracy, F1-score,

latency, etc.).
This method ensures rigorous and focused coverage of

recent, relevant, and experimental contributions to AI systems
for automatic skin lesion detection.

IV. COMPARATIVE STUDY OF SKIN IMAGING DATABASES

The development of AI systems for the automatic detection
of skin lesions relies heavily on the availability of publicly
annotated datasets. This section provides a comparative anal-
ysis of the main skin image databases commonly used in the
literature [6], [7], [24]–[29].

A. Overview of the Datasets

The most widely used datasets are: ISIC Archive,
HAM10000, PH2, Dermofit, Derm7pt, PAD-UFES-20,
BCN20000, and MED-NODE.

• ISIC Archive contains tens of thousands of annotated
dermoscopic images collected from various international
centers. Some subsets (ISIC Challenges) include segmen-
tation masks [6].

• HAM10000 consists of 10,015 dermoscopic images rep-
resenting 7 lesion types, accompanied by clinical meta-
data (age, sex, lesion location) [7].

• PH2 is a smaller dataset (200 images) with manual
segmentation and precise diagnoses, ideal for validation
purposes [24].

• Dermofit includes 1,300 macroscopic clinical pho-
tographs covering 10 lesion categories [25].

• Derm7pt provides annotations following the 7-point
checklist method used in dermoscopic diagnosis [26].

• PAD-UFES-20 contains 2,298 clinical images taken with
smartphones in Brazil, covering a variety of skin photo-
types [27].

• BCN20000 brings together more than 19,000 dermo-
scopic images from the Hospital Clinic of Barcelona [28].



• MED-NODE includes 170 clinical photos classified into
two groups: melanoma and nevus [29].

B. Skin Lesion Datasets

Table I represents a comparative study of the most com-
monly used skin lesion image datasets. It highlights their size,
diversity, annotation types, and acquisition modalities.

C. Critical Analysis and Recommendations

These datasets exhibit high clinical quality; however, several
limitations must be considered when developing an embedded
system:

• Population bias: The majority of datasets (e.g., ISIC,
HAM10000, BCN20000) predominantly contain images
of light-skinned individuals. This can reduce accuracy for
darker skin tones.

• Class imbalance: Benign lesions (e.g., nevi) are signifi-
cantly overrepresented compared to malignant ones such
as melanoma.

• Dataset size: Large datasets such as ISIC, HAM10000,
and BCN20000 are suitable for training; smaller ones like
PH2, PAD-UFES, or MED-NODE are better suited for
validation.

• Image type: Embedded systems designed for use with
standard cameras should be validated on clinical photos
(e.g., PAD-UFES, MED-NODE), not only dermoscopic
images.

For an AI model intended for an embedded platform, the
following recommendations are suggested:

• Train on a large and diverse corpus (e.g., ISIC,
BCN20000),

• Validate on external datasets that include diverse skin
phototypes (e.g., PAD-UFES),

• Test on clinical photographs that closely reflect real-world
conditions (e.g., smartphone images).

Special attention should be paid to data augmentation tech-
niques and the representativeness of cases to ensure robust
performance under real-world deployment conditions.

V. AI TECHNIQUES FOR SKIN LESION ANALYSIS

A. Machine Learning Foundations

The traditional machine learning (ML) methods in der-
matology are based on hand-crafted features and traditional
classifiers. The early CAD systems extracted color, shape
and texture descriptors (e.g., histogram, GLCM, ABCD rule),
and trained models (e.g., support vector machines (SVM), k-
nearest neighbors (k-NN), and decision tree) [30]. Traditional
ML CAD systems require careful preprocessing and segmenta-
tion of the skin lesions and suffer from the strong dependency
on the quality of hand-crafted features.

While these approaches are light on computation and inter-
pretable, they do not generalize well across complex or varied
image sets. Recent efforts combine deep features from CNNs
(e.g., ResNet, MobileNet) with classical ML classifiers and
have the advantages of rich representation as well as a low
inferential cost [31].

B. Deep Learning Advances

Convolutional neural networks (CNN), a branch of Deep
learning (DL), have revolutionized the field of skin lesions
analysis. CNNs ignore manual feature engineering and instead
learn to extract hierarchical features from raw pixels automat-
ically [31]. Architectures like ResNet, DenseNet, EfficientNet,
and MobileNet have performed well in dermoscopic classifi-
cation with high accuracy.

Deep models require larger datasets and more computation
but can model complex lesion patterns more effectively. With
large public datasets like ISIC or HAM10000, CNNs often
outperform classical ML methods [30]. Ensemble strategies
combining multiple CNNs (e.g., VGG16 + InceptionV3 +
ResNet50) have also been shown to boost performance to over
95% accuracy [32].

To illustrate the overall workflow of transfer learning
applied to skin lesion classification, the following diagram
presents a two-stream architecture integrating pre-trained CNN
models (Xception and ShuffleNet), feature fusion, and opti-
mized classification across seven lesion types.

Fig. 3. Overview of a Two-Stream Transfer Learning Architecture for Skin
Lesion Classification [33]

C. Transfer Learning in Dermatology

Transfer learning (TL) addresses the challenge of limited
medical image data by adapting pre-trained CNNs (e.g., on
ImageNet) to dermatology tasks. A common practice is to fine-
tune architectures like ResNet, MobileNet, or EfficientNet on
dermoscopic datasets [31], [34].

In TL, either the entire network is retrained or only the top
layers are updated. This reduces training time and improves ac-
curacy on small datasets like PH2. For example, EfficientNet-
B7 achieved over 84% accuracy in melanoma detection after
fine-tuning on limited data [34].

TL is also effective for clinical photographs captured via
smartphones, where data variability (lighting, focus) presents
additional challenges. Studies confirm that TL improves per-
formance over training from scratch even in non-dermoscopic
settings [35].

D. Comparative Discussion

• Feature extraction: ML relies on handcrafted descrip-
tors, DL learns features end-to-end, and TL reuses pre-
trained features from general domains.



TABLE I
COMPARISON OF SKIN LESION IMAGE DATASETS.

Dataset No. of Im-
ages

Lesion Classes Annotations Origin / Phototypes Image Type

ISIC Archive >30,000 Melanoma, nevus,
BCC, AK, etc.

Diagnosis, sometimes
masks

Europe, Australia
(light skin types)

Dermoscopy

HAM10000 10,015 7 pigmented classes Histological diagnosis +
metadata

Austria, Australia (I–
III)

Dermoscopy

PH2 200 Typical/atypical ne-
vus, melanoma

Diagnosis + manual seg-
mentation

Portugal (light skin) Dermoscopy

Dermofit 1,300 10 classes Simple diagnosis United Kingdom Clinical photo
Derm7pt 2,013 15 classes 7-point checklist Italy (light skin) Dermoscopy +

macro
PAD-UFES-20 2,298 6 classes Clinical diagnosis Brazil (diverse photo-

types)
Smartphone photo

BCN20000 19,424 9 classes Clinical/histological diag-
nosis

Spain Dermoscopy

MED-NODE 170 2 classes (nevus,
melanoma)

Histological diagnosis Netherlands Clinical photo

• Data requirements: ML performs adequately on small
datasets; DL requires large datasets or augmentation; TL
enables DL to generalize from fewer examples.

• Performance: DL and TL significantly outperform ML
in complex classification tasks, especially when trained
on dermoscopic datasets [30], [31].

• Device constraints: ML models are light and inter-
pretable, making them suitable for microcontrollers.
DL/TL models like MobileNet or EfficientNet-lite, once
quantized, can run efficiently on devices like Raspberry
Pi or Edge TPU [34], [35].

• Explainability: ML features are inherently understand-
able; DL requires tools like Grad-CAM to provide inter-
pretability.

In summary, ML is suitable for lightweight scenarios but
has limited flexibility. DL provides superior performance at
higher computational cost. TL bridges the gap by enabling
powerful models to perform well on limited and diverse
medical datasets. The choice depends on the target deployment
context, data availability, and accuracy requirements [12].

VI. COMPARATIVE ANALYSIS OF PRE-TRAINED CNN
MODELS

Pre-trained convolutional neural networks (CNNs) are ex-
tensively utilized for the classification of dermoscopic images.
The most common architectures in dermatology are VGGNet,
GoogleNet/Inception, ResNet and its variations, DenseNet,
EfficientNet, and MobileNet [36].They are typically imple-
mented using transfer learning (i.e., weights pre-trained on
ImageNet) and fine-tuned on dermatological datasets like ISIC,
HAM10000 or PH2.

A. Performance on Dermoscopic Datasets

Performance varies depending on the task (binary vs. multi-
class classification) and the dataset. However, several studies
from 2019–2024 allow for general performance trends to be
drawn:

• VGG-16 (≈138M parameters) generally achieves around
82.8% accuracy on dermoscopic lesion classification
tasks [37]. It is a very deep but heavy model, whose
uniform architecture (3×3 conv layers) remains effective.

• ResNet-50 (≈25.6M parameters) is often used as a
baseline: for example, ≈88% accuracy was reported on
HAM10000 [38]. Residual networks benefit from avoid-
ing vanishing gradients and offer fast convergence, with
moderate size.

• InceptionV3 (≈23.9M) integrates multi-scale convolu-
tion modules. Reported performance is comparable: e.g.,
86.9% accuracy on HAM10000 [38]. Its complex archi-
tecture tends to converge more slowly.

• DenseNet-121 (≈8.1M) uses dense layer connections.
It is among the top performers, with around 87–88%
accuracy on HAM10000 in various studies [39]. With
fewer parameters than ResNet or VGG, it enables com-
pact training and strong feature reuse.

• EfficientNet-B0/B1 (≈5.3M/7.9M) are scaled mod-
els optimized for efficiency. They typically achieve
≈84.12–86.41% accuracy on HAM10000 [40]. Their
performance-to-complexity ratio is excellent, offering
good accuracy with low parameter count.

• MobileNetV2/V3 (≈3–5M) are optimized for lightweight
inference. For example, MobileNet-V3 achieved ∼89%
accuracy in a 10-class dermatology classification
task [41]. In practice, MobileNetV2/V3 offer slightly
lower accuracy than larger networks (typically 80–90%)
but are fast to train and deploy.

B. Pre-trained CNN Models
Table II presents a comparative evaluation of widely used

pre-trained CNN models applied to skin lesion classification
tasks.

C. Advantages and Limitations in the Medical Context

• Interpretability: All of these CNNs are essentially black-
box models. None is inherently interpretable, but tools



TABLE II
COMPARISON OF PRE-TRAINED CNN MODELS FOR SKIN LESION IMAGE CLASSIFICATION.

Model Parameters
(M)

Size (MB) Accuracy (%) Convergence Remarks

VGG-16 138.4 528 82.8 [37] Slow Very heavy; effec-
tive but prone to
overfitting.

ResNet-50 25.6 98 88 [38] Fast Stable results
and performant
architecture.

InceptionV3 23.9 92 86.9 [38] Rather slow Multi-scale
branches; good
trade-off.

DenseNet-121 8.1 33 87 [39] Medium Good
generalization;
efficient feature
reuse.

EfficientNet-B0 5.3 29 84.12 [40] Fast Excellent
accuracy-to-size
balance.

EfficientNet-B1 7.9 31 86.41 [40] Fast Slightly more ac-
curate than B0; still
very light.

MobileNetV2 3.5 14 82.58 [41] Very fast Ultra-compact;
ideal for mobile
deployment.

MobileNetV3 Large 5.4 16 89 [42] Very fast Optimized for em-
bedded inference.

like Grad-CAM help visualize activated regions.
• Overfitting: Larger networks (VGG, ResNet) are more

prone to overfitting. Lighter architectures such as
DenseNet and EfficientNet help mitigate this risk.

• Bias: None of the models includes built-in bias mitiga-
tion. Balanced datasets are therefore essential.

• Robustness and Generalization: DenseNet and Effi-
cientNet show strong generalization capabilities. ResNet
remains a stable reference. MobileNet is fast but some-
times less accurate.

• Deployment and Regulation: ResNet and EfficientNet-
B0/B1 offer strong candidates for reliable and inter-
pretable medical deployment (with visualization tools),
while remaining compact and robust.

D. Recommendations

Based on the above ResNet and EfficientNet-B0/B1 show
the best performance and availability for a reliable and general-
purpose classification system for pigmented lesions. They
provide the best balance of accuracy, compactness and gen-
eralizability, have some resistance to overfitting and are very
suited to transfer learning.

VII. PREPROCESSING AND DATA AUGMENTATION
TECHNIQUES

A. Image Preprocessing for Dermoscopic Images

Raw dermoscopic images are frequently resized to a partic-
ular input size (e.g., 224×224 pixels) to meet the requirements
of CNN architectures [43]. There are also color normalization
methods which address illumination and color imbalances,

such as the gray-world or Shades-of-Gray algorithms [44].
Contrast enhancement methods like CLAHE (Contrast Lim-
ited Adaptive Histogram Equalization) are applied to make
lesion features more visible [45]. Noise reduction filters (e.g.,
Gaussian or median) are also used to suppress image artifacts
while preserving edges.

Removing artifacts is a necessary first step during im-
age preprocessing, since the lesion images may contain hair
strands, ruler markings, or gel bubbles, which may interfere
with identification of lesion borders. Conventional approaches
such as DullRazor have used inpainting, and morphological
filtering , more recent comparing approaches focused on deep
learning (e.g., SharpRazor), which have shown superiority
in automated artifact detection and removal [46]. Then, seg-
mentation algorithms (e.g., active contours, U-Net, or GVF
snakes) can be used to isolate the lesion from the national
skin surrounding and background [45], increasing the model’s
attention and relevance.



To clarify the entire preprocessing and segmentation
pipeline, the following flowchart illustrates each stage involved
in preparing dermoscopic images for classification.

Fig. 4. Flowchart of the Preprocessing and Segmentation Pipeline for Skin
Lesion Analysis [47]

B. Image Preprocessing for Clinical (Smartphone) Images

Smartphone-acquired clinical images pose specific chal-
lenges such as inconsistent lighting, blur, background noise,
and shadows. Preprocessing typically begins with white bal-
ance correction and illumination normalization [44]. CLAHE
is also used to compensate for lighting variations and enhance
lesion contrast [45]. Since lesions in smartphone images
are often surrounded by irrelevant background, background
cropping or segmentation is essential to reduce noise before
classification. Smoothing or masking is used to suppress
shadows and reflections.

C. Data Augmentation Strategies

Data augmentation is imperative for improving model gen-
eralization and reducing overfitting. Common transformations,
typically in a geometric sense, include flipping, rotation,
scaling, and translation [43]. Augmentations like these help
the model learn invariant features, so that the orientation or
position of the lesion is not significant.

Photometric augmentations (for example, brightness, con-
trast and hue jitter) can be useful to simulate changes in
illumination. Gaussian noise injection is another useful aug-
mentation and helps the model to account for sensor noise.

Elastic distortions and grid warping can be used to mimic
variations in skin elasticity or shape.

Advanced methods such as MixUp and CutMix create
hybrid images by blending or patching regions from dif-
ferent samples. These strategies reduce class overfitting and
increase robustness to spatial variation . For example, MixUp
has shown improvements in ISIC classification by balancing
minority classes .

Generative approaches using GANs (Generative Adversarial
Networks) are increasingly used to synthesize realistic lesion
images, especially for rare classes. For instance, Self-Transfer
GANs can generate high-fidelity synthetic lesions, improving
training balance and diversity [48]. Domain adaptation GANs
are also used to convert clinical images into dermoscopy-like
images, addressing domain shift.

D. Addressing Imbalance and Domain Shift

Preprocessing and augmentation help address major dataset
problems, including the class imbalance, small sample size,
and domain shift that stem from diverse datasets. Class balanc-
ing is achieved through augmentation to ensure that minority
lesion types are not overlooked [43], [48]. Illumination and
color normalization mitigates the effects of device inequities,
which is essential for generalization across domains. The
addition of regularization through GAN-based synthesis and
heavy augmentation works to increase the effective size of the
dataset by diminishing overfitting.

E. Deployment Considerations

In embedded applications (e.g., Raspberry Pi), preprocess-
ing must be computationally efficient. Lightweight operations
such as resizing, flipping, and brightness adjustments can
be performed on-device. TensorFlow Lite quantized models
require fixed input shapes and scales (e.g., 8-bit uint inputs
between 0–255), so images must be pre-scaled accordingly
[43]. These optimizations allow preprocessing and augmenta-
tion to run in real time on low-power hardware.

F. Summary

Dermoscopic preprocessing entails resizing, normalization,
artifact removal, and segmentation [44], [46]. Clinical images
require all of these plus suppression of background. Basic
augmentation techniques (flip, rotate, zoom, noise) are univer-
sally used while there are also more advanced augmentation
techniques using MixUp, CutMix, and GANs which help
provide more regularization and diversity of samples. These
augmentations can significantly increase robustness, accuracy,
and cross-domain generalization for skin lesion classifiers.

VIII. DEPLOYMENT ON EMBEDDED DEVICES: REVIEW OF
HARDWARE PLATFORMS

The goal of this section is to identify the best trade-off
between cost, performance, and integration for deploying AI
models for skin lesion classification/detection on embedded
devices.



A. Platform Comparison

• Raspberry Pi 4 + Camera Module 3
– CPU: quad-core ARM Cortex-A72 @ 1.5 GHz,

RAM: 2–8 GB, CSI port for camera (up to 12 MP).
– Frameworks: TensorFlow, TensorFlow Lite, ONNX

Runtime, PyTorch Mobile (quantization int8/float16,
pruning, distillation).

– Performance: ∼30 fps for quantized MobileNetV2
[49].

– Connectivity: Wi-Fi 802.11ac, Bluetooth 5, Gigabit
Ethernet, USB 3.0.

– Price: ≈50 C (4 GB) + ≈30 C for Camera Module
3.

• NVIDIA Jetson Nano
– CPU: quad-core ARM Cortex-A57 @ 1.43 GHz +

GPU Maxwell 128 cores, RAM: 4 GB.
– Frameworks: JetPack SDK (CUDA, cuDNN, Ten-

sorRT), TensorFlow, TensorFlow Lite, ONNX, Py-
Torch; optimization via TensorRT (int8/FP16) [50].

– Performance: MobileNetV2 via TensorRT ≈0.30
s/image (≈3 fps) vs pure CPU ≈5 s/image [51].

– Connectivity: Gigabit Ethernet, USB 3.0, CSI Cam
(2 ports), Wi-Fi/Bluetooth via dongle.

– Price: ≈100 C (developer kit).
• Coral Edge TPU (USB Accelerator)

– Edge TPU: 4 TOPS (2 TOPS/W), connects via USB
3.0 [52].

– Framework: TensorFlow Lite quantized int8 only.
– Performance: MobileNetV2 int8 ≈400 fps [52].
– Connectivity: USB 3.0 (requires host for camera and

network).
– Price: ≈60 $.

• ESP32-CAM
– SoC: ESP32 dual-core 160 MHz, RAM: 520 KB,

OV2640 2 MP camera.
– Framework: TensorFlow Lite for Microcontrollers

(int8), no ONNX/PyTorch support.
– Performance: <0.11 s/image (≈9 fps) for a small

CNN [53].
– Connectivity: Wi-Fi b/g/n, Bluetooth 4.2.
– Price: ≈5–10 C.

• Arduino Nicla Vision
– MCU: STM32H747 (Cortex-M7 480 MHz + M4 240

MHz), RAM: 1–2 MB, 2 MP camera [54].
– Framework: TinyML (TensorFlow Lite Micro), Edge

Impulse.
– Performance: ≈100–200 (estimate) for MobileNet

variant.
– Connectivity: 2.4 GHz Wi-Fi, BLE.
– Price: ≈60–70 $.

B. Embedded Platforms for AI Inference
Table III summarizes various embedded hardware platforms

capable of executing MobileNet-based inference models for
skin lesion analysis.

C. Recommendations

For a low-cost, real-time system, the combination of a
Raspberry Pi 4 + Camera Module 3 with quantized
TensorFlow Lite represents an optimal choice:

• MobileNetV2 inference at ∼30 fps [49],
• total cost around C80,
• broad software flexibility (TF, ONNX, PyTorch) and

integrated connectivity.
To illustrate the proposed low-cost embedded AI system,

the image below shows a Raspberry Pi 4 board connected
to Camera Module 3, ready for real-time inference using
TensorFlow Lite

Fig. 5. Raspberry Pi 4 with Camera Module 3 [55]

The Jetson Nano still has a place in applications needing
GPU acceleration and TensorRT for heavier models; this
comes with a higher budget and power consumption. The
Coral Edge TPU has very high throughput with quantized
int8 models, but needs a host and is seldom available except in
TFLite format. Microcontrollers (ESP32-CAM, Nicla Vision
begin to become fit for very basic tasks and ultra lightweight
models (TinyML), but cannot be expected to run standard
CNNs due to memory limitations and hence expect higher
latencies.

IX. CROSS-SECTIONAL DISCUSSION AND SYNTHESIS

A. Cross-Comparison of AI Models, Datasets, and Hardware
Platforms

The Raspberry Pi 4 (ARM Cortex-A72, quad-core) roughly
doubles the CPU performance of the Pi 3 [56]. A quantized
CNN such as ResNet50 can reach inference times in the range
of 10–30ms per image on the Pi 4, which is suitable for near
real-time applications [57]. By comparison, the Jetson Nano,
equipped with a GPU, can perform inference in ∼29ms at
10W power consumption, or ∼48ms in low-power mode (5W)
[57]. The Coral Edge TPU achieves extremely fast inference
(∼2.5ms for MobileNet v2), thanks to its 4TOPS hardware
acceleration, but it requires full 8-bit quantization and restricts
model architecture compatibility [58].

Microcontrollers (e.g., ARM Cortex-M) are highly con-
strained: they support only very small models (typically



TABLE III
SUMMARY OF EMBEDDED PLATFORMS FOR AI INFERENCE WITH MOBILENET.

Platform CPU/GPU/NPU RAM Frameworks MobileNet Inference Price
Raspberry Pi 4 + Cam
Module 3

ARM Cortex-A72,
1.5 GHz (quad-core)

2–8 GB TF, TFLite, ONNX, Py-
Torch Mobile

∼30 fps [49] ∼80C

Jetson Nano ARM Cortex-A57,
1.43 GHz + Maxwell
GPU (128 cores)

4 GB CUDA, TensorRT, TF,
ONNX, PyTorch

∼3 fps [51] ∼100C

Coral Edge TPU (USB) Edge TPU (4 TOPS) – TFLite (int8 only) ∼400 fps [52] ∼60$
ESP32-CAM Xtensa LX6, 160 MHz 520 KB TFLite for Microcontrollers ∼9 fps [53] ∼5–10C
Arduino Nicla Vision STM32H747 (Cortex-M7

480 MHz + M4 240 MHz)
1–2 MB TFLite Micro, Edge Im-

pulse
∼5–10 fps [54] ∼60–70$

<512KB), making them unsuitable for standard CNNs like
ResNet [59].

Concerning datasets, the ISIC Archive and HAM10000
provide more than 10,000 annotated dermoscopic images,
ideal for training robust deep networks across various lesion
types . The PH2 dataset contains ∼200 high-quality images,
suitable for validation but limited for training; on PH2 one
study reported ResNet50 yielding only 56.7% accuracy versus
93.3% for a dedicated CNN [60]. PAD-UFES-20 provides
2,298 smartphone-acquired clinical images from rural envi-
ronments, capturing real-world variability [61].

We adopt a cross-validation strategy: training is performed
on ISIC + HAM10000, while validation uses PH2 (standard
dermoscopy) and PAD-UFES (smartphone photos), to ensure
both clinical accuracy and field generalization.

B. Project-Specific Constraints

• Low Power Consumption: The system runs on standard
mains power outlets. The Raspberry Pi 4 consumes only
∼4–5 W during inference [57].

• Rural and Non-Medical Use: Image input comes from
smartphones instead of a professional dermoscope. The
interface has to be helpful to health workers with no
medical training and be forgiving of different light and
image quality.

• No On-Site Medical Expertise: The AI system must
generate automated outputs without requiring clinical
interpretation. Results should be clear, e.g., risk scores
or traffic-light warnings.

• Real-Time Inference: Inference times of 10–30ms (on
Raspberry Pi 4) meet the responsiveness requirements for
on-site consultation [57].

C. Identified Gaps and Persisting Challenges

• Dataset Bias: Most datasets underrepresent darker skin
tones. For instance, HAM10000 contains less than 5% of
images from Fitzpatrick typesIV–VI, leading to degraded
performance on those skin types [62].

• Lack of Turnkey Open-Source Solutions: While there
are open frameworks such as TensorFlow or Pytorch, and
even other methods from imaging, acquisition, segmen-
tation, classification through to the end representations,

there are almost no end-to-end solutions ready for em-
bedded deployment. There are still manual components
to developing a full solution.

• Limited Interpretability: CNN models like ResNet are
black boxes. Although external tools (e.g., Grad-CAM)
can provide visual explanations, the model lacks native
explainability, a key factor in clinical trust.

D. Final Prototype Design Decisions

• AI Model: A quantized ResNet50 is selected for its ac-
curacy, generalization, and robustness. While EfficientNet
offers strong performance with fewer parameters, ResNet
remains a widely validated and interpretable architecture.

• Datasets: Training uses the combined ISIC Archive
+ HAM10000 dataset for diversity [63]. Validation is
performed on PH2 (high-quality dermoscopy) and PAD-
UFES (real-world smartphone images) [60].

• Hardware Platform: The Raspberry Pi 4 + Camera
Module 3 is chosen for its performance (10–30ms infer-
ence), low energy consumption ( 5W), and support for
TensorFlow Lite. Alternatives like Jetson Nano or Coral
Edge TPU were considered but ruled out due to higher
cost or integration complexity [56].

• Software Stack: TensorFlow Lite with int8 quanti-
zation is used to reduce model size (e.g., from 3MB
to 0.98MB) and accelerate inference. The full pipeline
(capture → inference → display) runs locally on the Pi,
without internet dependency—a critical requirement for
rural settings [57].

These design decisions take advantage of the unique
strengths for each component: a compact and accurate CNN
model; diverse and representative training data; a low-cost and
efficient hardware platform; and an embodied software envi-
ronment that reflects the real-world constraints. The outcome
is a robust, low-cost and explainable AI prototype capable of
detecting skin lesions early in underserved communities.



X. CONCLUSION

In recent years, artificial intelligence (AI) has demonstrated
real promise and potential in its ability to assist with the earlier
detection of skin abnormalities, with particular emphasis on
skin cancer. When AI systems used deep learning techniques
such as convolutional neural networks (CNNs) to classify
skin lesions, the performance of those AI systems was often
exquisite and could equal or exceed diagnostic performance of
experienced dermatologists. However, in addition to good ad-
vances in AI, there are obstacles for clinicians and researchers
regarding bias in datasets, the interpretability of models, and
putting AI into the hands of clinicians within their accepted
clinical workflow. Among important issues are datasets that
may not represent darker skin that could exacerbate exist-
ing health disparities, and while deep learning models yield
very high accuracies, they operate as a "black-box" which
raises important questions with regard to transparency and
the degree of trust healthcare workers may determine with
findings derived from a black box. It is important to approach
the examination of trust and transparency with AI around
explainability frameworks such as Grad-CAM and LIME that
not only build clinician trust to the AI but also increase the
transparency of the AI’s predictions.

Another major challenge is the requirement of lightweight,
efficient models that are scalable with regard to real-time
deployment on embedded systems, and specifically in chal-
lenging resource-limited contexts. A great deal of progress
in model optimization, data augmentation, and pragmatic
hardware deployment strategies may suggest that mobile and
embedded AI systems might actually be a feasible solution for
real-world applications at scale, and a cost-effective option
for many rural/remote areas who may not have access to
dermatological specialists.

As AI technology evolves, future research must prioritize
developing diverse and balanced datasets, improving models’
transparency, and developing AI systems that will integrate
well within clinical settings. Once these gaps are filled, AI can
help to improve access and accuracy in skin cancer detection,
thus improving patient outcomes across multiple populations
globally.
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