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Abstract
As digital networks expand at an unprecedented rate, alongside
with the progression of cyber-attacks which present significant
challenges to traditional security measures. Although intrusion
detection systems (IDSs) have long served as the primary line of
defense, they often struggle to keep pace with novel ,zero-day,
and unknown threats. Recent advancements in Artificial Intel-
ligence—particularly through ML and and DL approaches—By
learning from evolving attack patterns, AI-powered IDS can dy-
namically adapt, offering faster and more precise threat detection.
This paper provides a state of the art review of AI-enabled IDS ap-
proaches by examining architectures, detection techniques, and
performance metrics across a range of benchmark datasets.Our
comparative analysis highlights the superior accuracy of deep
learning approaches on modern datasets, while also examining
the impact of dataset quality, detection of rare attacks, and model
efficiency.It also analysis demonstrates that while AI-driven meth-
ods markedly enhance detection accuracy and reduce false alarm
rates, persistent challenges remain, especially in reliably classi-
fying rare and novel attack types due to imbalanced datasets and
computational constraints.This study offers valuable insights for
future advancements toward robust, real-world intrusion detec-
tion systems.

Keywords: Intrusion Detection Systems (IDS); Machine
Learning; Deep Learning;Attacks;Cyber Security.

1 Introduction
In today’s digital world, rapid technological advancements and the
massive volume of cloud-handled data have significantly reshaped
cybersecurity strategies. Intrusion detection systems (IDS) have
evolved since the late 1980s; early systems struggled with high re-
source demands and failed to detect zero-day attacks. In the 1990s,
anomaly detection, which focused on detecting unusual activity
patterns instead of relying on known threat signatures; however,
variable network traffic led to high false alarm rates and reduced
reliability.

Recent advances in network infrastructure, computational power,
and machine learning have refreshed IDS capabilities. Modern AI-
based systems continuously learn from network data to improve
threat detection while aiming to minimize false positives. Despite
these improvements, challenges remain, especially when applying
these models to diverse datasets and dynamic real-world environ-

ments, particularly in terms of detection accuracy, false positive
rates, and computational efficiency.

This paper presents a state of the art review of AI-enabled IDS, fo-
cusing on two main criteria: Algorithm Performance—comparing
different AI models across various IDS datasets—and Practical
Limitations—exploring the challenges current AI-based IDS face
in dynamic network settings.

2 Intrusion Detection Systems (IDS)
Cyber threats aim to compromise systems by stealing, altering,
or disabling data and services. They are commonly categorized
into four types [1]: DoS/DDoS, Probe, U2R, and R2L attacks.
DoS/DDoS flood resources, Probe scans networks for vulnera-
bilities, U2R and R2L exploit access levels to gain unauthorized
control, often bypassing detection [2].

An IDS is a security tool, hardware or software, that moni-
tors network traffic and raises alarms when it detects malicious
activity by logging traffic and providing real-time details. There
are three types of IDS: Network IDS (NIDS), Host IDS (HIDS)
and Hybrid IDS [3]. NIDS are designed to continuously monitor
network traffic to detect various threats, including DDoS attacks,
unauthorized attempts, and port scanning activities [3]. NIDS
face challenges in processing large volumes of data, particularly
when encryption is used. In contrast, HIDS operates directly
on individual devices or hosts [4]. They monitor local system
logs, file integrity, and system calls to detect suspicious activities.
Hybrid systems integrate the strengths of both HIDSs and NIDSs
by combining detailed insights from individual hosts with a
broad perspective on overall network activity [5], [6]. Figure 1
illustrates how the three types of Intrusion Detection Systems
can be integrated to operate collaboratively within a network
infrastructure.

An IDS architecture could be either Centralized—consolidate all
monitoring data at a single location for unified analysis and man-
agement—or Distributed—deploy independent monitoring nodes
across different network segments, enabling localized threat detec-
tion and improved scalability. Hybrid IDS models combine the
strengths of centralized and distributed systems; they distribute de-
tection tasks among various nodes while centrally aggregating data
for analysis. For IDS types , a classification taxonomy is given
in Figure 2 [7] , this classification is based on the the perspec-
tive of IDS deployment or detection methods.There are two main
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Figure 1: Types of IDS.

detection techniques for IDS, Misuse-based and Anomaly-based.
Misuse-based detection comprises two subcategories [8]: the first
one being Signature-Based Detection, which relies on a predefined
database of attack signatures, raising alerts when a match is found.
The second approach is ML-Based Misuse Detection, developed
to overcome the rigidity of signature-based systems; ML models
learn from historical attack data, understanding the general struc-
ture of known attacks and potentially predicting evolving variants.
Anomaly-Based Detection builds a model of normal behavior by
analyzing network traffic features. Deviations from this model are
flagged as anomalies, indicating potential security threats [4]. It
can be implemented usin ML, statistical techniques, or finite-state
machines [8]. For better efficiency, Hybrid systems were developed
to combine misuse-based and anomaly-based methods, using sig-
nature matching to detect known threats and anomaly detection to
identify novel attacks [9].

Figure 2: IDS Classification [7].

Figure 3 shows the differences in how the two techniques Misuse-
based and Anomaly-based generate the alerts.

Table 1: Summary of Intrusion Detection Systems Characteris-
tics [10]

Characteristic Signature-based
IDS

Anomaly-based
IDS

Detection Capa-
bility

Uses predefined sig-
natures and contex-
tual analysis to recog-
nize known threats.

Detects both
known and un-
known attacks
by identifying
deviations from
established net-
work norms.

System Depen-
dency

Relies on specific
system software and
OS details to identify
vulnerabilities.

Less dependent
on system-specific
details; instead, it
focuses on overall
network traffic
patterns.

Update Require-
ments

Requires regular up-
dates of its signa-
ture database to re-
main effective.

Builds dynamic
profiles of normal
network behavior,
eliminating the
need for constant
database updates.

Protocol Analysis Offers limited in-
depth protocol in-
sights.

Performs compre-
hensive protocol
analysis to exam-
ine detailed packet
information.

Figure 3: Comparison of IDS Techniques

Modern cybersecurity demands more than passive detection
(IDS). Organizations increasingly adopt Intrusion Prevention Sys-
tems (IPS), which actively block attacks by operating inline and
often merging firewall and IDS functionalities [4]. While this
enhances protection, IPSs can generate false positives that block le-
gitimate traffic and risk DoS conditions. As potential single points
of failure, especially in network setups, IPSs must remain robust
and stable [4].
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3 AI-Based Intrusion Detection Systems
AI-based Intrusion Detection Systems is using AI approaches to
identify malicious activities within a network. By learning from
how network traffic behaves, these systems can spot both known
and new threats when they happen.

3.1 Machine Learning Models
Machine learning algorithms are used in IDS by learning from his-
torical data, spot patterns, and make smart decisions. These models
are categorized into supervised, unsupervised, and semi-supervised
learning. The diagram in Figure 4 illustrates this categorization.

Figure 4: Machine learning Models Categorization.

Supervised machine learning: The system is trained on a labeled
datasets where we know both the input data and corresponding
output. The model learns how different features relate to specific
outcomes, so it can recognize and classify new data. The supervised
learning is divided into two categories: classification techniques,
where the output is a discrete class label. The common classi-
fication algorithms are: support vector machines which finds the
optimal hyperplane that separates data points of different classes,
making it effective for high-dimensional and sparse data classifi-
cation, K-Nearest Neighbor algorithm (KNN), which classifies a
given data sample based on feature similarity [10]. Decision trees
have a conventional tree structure for rule-based classification, it
can represent the result of a test of one or more attributes [7].
Random Forest (RF) is based on building multiple decision trees
using the bagging method to enhance classification accuracy and
reduce overfitting [11]. Naïve Bayes classification estimates feature
likelihood from data using Bayes’ theorem [10].Logistic regression
predicts probabilities and class labels using the logit (sigmoid)
function. On the other hand, we have regression techniques where
the output is predicted as a continuous value , by modeling the re-
lationship between independent variables and a dependent variable
[4]. Common regression algorithms include Linear Regression,
Decision Tree Regression, Random Forest Regression, Polynomial
regression and Support Vector Regression (SVR).

Unsupervised machine learning: Used when labeled data are
unavailable, in this model the algorithm independently identifies
hidden patterns and relationships within the data. Typically, it
groups data points based on their similarities or differences. This
type of learning is effective for analyzing large datasets in tasks such
as clustering algorithms like k-means and DB scan that group sim-

ilar data points together, association rule learning when the model
looks for relationships between variables, and dimensionality re-
duction that reduces the number of variables in data without losing
significant information [4].

Semi-supervised machine learning: A combination of super-
vised and unsupervised machine learning models. The dataset is
partially labeled in semi-supervised learning. The ability to use
methods and algorithms from both forms of machine learning is
one of the primary benefits of semi-supervised learning. To im-
prove accuracy, new machine learning algorithms can be developed.
Additionally, because semi-supervised learning does not need the
usage of a whole set of labeled data, it takes less time. Neverthe-
less, semi-supervised learning also bears the drawbacks of the two
methods mentioned above [4].

3.2 Deep Learning Models
Kimanzi et al. [12] define deep learning as a subset of machine
learning that is inspired by biological neural networks. It interprets,
classifies, and organizes data into different categories, mimicking
how the brain processes information. Deep learning incorporates
artificial neural networks (ANNs) with multiple layers, allowing
different levels of abstraction to extract complex patterns. The key
characteristic lies in its deep structure, consisting of multiple hid-
den layers that enable automatic feature extraction from raw data,
which has also made significant contributions to the development
of AI-based IDS. Common deep learning models include convo-
lutional neural networks (CNNs) for analyzing structured network
data. CNNs process packet headers and log files to detect intrusion
attempts and can automatically learn relevant features from raw
traffic data, reducing the need for manual feature engineering [13].
Deep Belief Networks (DBNs) combine unsupervised learning for
feature extraction with supervised fine-tuning to improve classifi-
cation. Their layered architecture enables DBNs to automatically
learn high-level abstract features from raw network traffic, making
them effective for detecting complex and unknown threats[12].
Deep Neural Networks (DNNs), often implemented as feedforward
or multilayer perceptrons [12], are widely used in large-scale IDS
applications due to their scalability and ability to generalize across
diverse datasets. Recurrent neural networks (RNNs) are used for
sequential data processing, making them effective in identifying
evolving threats across time-series network traffic [13]. Their
ability to capture temporal dependencies improves detection accu-
racy, particularly in dynamic environments [13]. Long Short-Term
Memory (LSTM), as a type of RNN, uses gating mechanisms
to allow the network to remember or forget information from its
memory selectively. LSTMs are a solid approach when it comes
to analyzing network traffic data in real-time to identify anomalies
and potential intrusions, taking into account both short-term and
long-term patterns [14]. Autoencoders learn to compress data into
a smaller representation and then reconstruct it, minimizing the
difference between the input and output, reducing reconstruction
loss [10].They are particularly effective for anomaly detection, as
abnormal traffic often produces higher reconstruction errors.

Figure 5 illustrates the key difference between traditional
machine learning and deep learning approaches. In ML (top),
the process requires manual feature extraction before classifica-
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tion—meaning human experts must define relevant features from
raw input data. In contrast, DL (bottom) integrates both feature
extraction and classification into a single model, automatically
learning hierarchical patterns directly from raw data. This
end-to-end capability makes DL particularly effective for complex
tasks such as intrusion detection, where high-dimensional and
dynamic patterns are common.

Figure 5: Main difference between Machine and deep learning
approaches [15].

3.3 Ensemble Learning
This technique improves prediction accuracy by combining pre-
dictions from several base learners (e.g., by voting or averag-
ing). Ensemble learning is widely used for tasks like classification
and regression ,some ensembles (e.g., Random Forest) also pro-
vide feature-importance scores that can be used for feature selec-
tion.Common approaches include bagging (e.g., Random Forest) , it
creates random subsets of the data to train each base model in paral-
lel, which helps reduce variance and can improve efficiency on large
datasets, boosting (e.g., AdaBoost, XGBoost) which trains models
sequentially to correct the errors of previous ones and reduce bias,
and stacking which trains multiple base learners independently and
then uses a meta-learner to optimally combine their outputs. In in-
trusion detection, ensemble methods help balance detection across
diverse attack types and have shown increased resilience in han-
dling imbalanced or noisy data without heavily increasing model
complexity [10].

3.4 Hybrid Approaches
Combining multiple techniques enhances the accuracy and robust-
ness of IDS [4]. A hybrid model might combine the strengths of su-
pervised and unsupervised approaches using labeled and unlabeled
data. Some studies have proposed combinations like CNN-LSTM
where CNNs were used for structured data and LSTMs were used
for long-term dependency, or RF-Autoencoder, showing that hybrid
models can offer better balance between detection capability and
resource efficiency, especially in complex environments like IoT
and cloud systems [12].

3.5 Reinforcement Learning
This is another theoretical model applied in AI-based IDS. This
model is inspired by behavioral psychology, where an agent learns

to make decisions by interacting with its environment and receiving
feedback in the form of rewards or penalties [16]. Reinforcement
learning can be used to develop adaptive security policies that
evolve based on the threat landscape.
Figure 6 represents AI-based IDS techniques in detail from a ML,
DL, and ensemble learning point of view.

Figure 6: AI-based IDS Algorithms[10].

4 Datasets
Datasets consist of real-world or simulated network traffic data,
containing labeled examples of both normal and malicious activ-
ities. These datasets play a crucial role in training and evaluat-
ing AI-based IDS models. This section presents the most widely
utilized datasets for various IDS testing and highlights their key
characteristics and applications.

KDDCup99, derived from the DARPA 98 dataset, is widely used
for evaluating IDS. It comprises roughly 4,900,000 samples, each
with 41 features, labeled as either Normal or Attack. Attacks are
categorized into four types: Denial of Service (DoS), User to Root
(U2R), Remote to Local (R2L), and Probe. The dataset is available
in three versions: the full dataset, a 10% subset, and a test set with
311,029 samples. A key drawback is its imbalance; while classes
like DoS and Probe are well-represented, R2L and U2R are sparse,
and some subsets may entirely lack these classes [17].

NSL-KDD was developed to address the primary shortcomings
of KDDCup99. Introduced by Tavallaee et al. in 2009 [18], it re-
tains the four attack categories of its predecessor. However, it may
not perfectly represent existing real networks due to the lack of
public datasets for network-based IDSs, but it remains an effective
benchmark for comparing different IDS models. The dataset is split
into two subsets: a training set with 126,620 instances covering 21
attack types, and a testing set with 22,850 instances representing
37 attack types [17]. It has 41 features, including 38 numeric and
3 categorical features, specifically protocol type, service, and flag
[19].
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UNSW-NB15 was developed by the Australian Centre for Cyber Se-
curity to simulate traffic that blends normal activities with various
attack behaviors. It categorizes nine attack types: Fuzzers, Anal-
ysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shell-
code, and Worms. The total number of records is approximately
2,540,044, stored in four CSV files. A partition from this dataset
was configured as a training set including 175,341 instances, while
the testing set contains 82,332 records [20].
CIC-IDS-2017 is a dataset developed by the Canadian Institute for
Cybersecurity in 2017. It consists of five days of data collection
with 225,745 packets, containing over 80 features. The dataset
captures more than seven days of network activity, including both
normal and attack samples. It was analyzed using CICFlowMeter,
extracting metrics such as timestamps, source and destination IP
addresses, protocols, and attack types (stored in CSV files). It cat-
egorizes seven attack types: Brute Force FTP, Brute Force SSH,
DoS, HeartBleed, Web attacks, Infiltration, Botnet, and DDoS [21].
CSE-CIC-IDS-2018, developed by the Canadian Institute for Cy-
bersecurity, introduces the concept of profiles. It is the most recent
intrusion detection dataset designed for big data applications [22],
enabling both automated agents and individuals to generate network
events across various protocols and topologies [23]. Updated with
standards from CIC-IDS-2017, this dataset minimizes duplicate en-
tries and ambiguous data while being provided in CSV format for
immediate use [24].
To build an ideal Dataset or to choose what’s adequate for the appli-
cation or the model studied, certain characteristics are considered.
Table 2 outlines these critical characteristics for IDS applications.

5 Methodology and Comparative Ap-
proach

This study employs a comparative analysis to evaluate the per-
formance of AI-enabled Intrusion Detection Systems using both
Machine Learning (ML) and Deep Learning (DL) models. The
algorithms and models analysis was based on their relevance in
recent research, frequent use in cybersecurity studies, and avail-
ability of reproducible results. The evaluation focused on three
main dimensions:

• Performance Metrics such as Accuracy, detection rate (recall),
false alarm rate, precision, F1-score, and ROC, these metrics
were selected due to their comprehensive representation of
IDS performance, especially in distinguishing between major
and minor attack classes.

• Datasets: Standard benchmarks such as NSL-KDD, CI-
CIDS2017, CIC-IDS-2018, KDDcup99, and UNSW-NB15,
the datasets vary in terms of complexity, balance, and attack
diversity, offering a broad spectrum for evaluation.

• Attack Coverage,models were assessed based on their ability
to detect various threats, including DoS, Probe, R2L, U2R,
Botnet, and Brute Force attacks.

This approach supports a fair and consistent comparison of IDS
models under diverse conditions.

Table 2: Key Characteristics for Datasets [25]

Characteristic Description
Network Traffic Packets from hosts, firewalls, destina-

tions, and web applications should be
captured to enable detailed flow analysis
and robust dataset creation.

Network Configura-
tion

The network’s topology and device con-
nections are essential for accurately sim-
ulating real-world attack scenarios.

Network Interaction Both internal and external communica-
tion in the network provides a complete
view of network activity.

Labeled Dataset Each data instance must be precisely
tagged to clearly distinguish between
normal and malicious behavior, ensur-
ing comprehensive insight into network
interactions (supervised learning).

Capturing the Traffic Collect operational and non-operational
traffic to effectively measure the IDS’s
detection rates and false positive rates.

Protocols The dataset should include every com-
munication protocol used, including
both legitimate and malicious ex-
changes.

Attacks A wide and current range of attack types
should be included to reflect evolving
threat landscapes.

Anonymity The dataset must include details from
both packet headers and payloads to en-
sure full data representation while main-
taining privacy.

Heterogeneity Data should be sourced from diverse ori-
gins to capture the full image of attack
detection procedures.

Features Datasets should have a complete and
well-defined set of attributes for accu-
rate classification of attack types.

Metadata Comprehensive documentation detail-
ing the testing environment, network in-
frastructures (both attack and victim),
and specific attack scenarios is required.

5.1 Evaluation metrics

IDSs that use ML models are evaluated using four metrics: true
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). TP is the number of attack records correctly identi-
fied as attacks, TN is the number of normal records accurately clas-
sified as normal, FP represents normal records mistakenly flagged
as attacks, and FN is the count of attack records incorrectly labeled
as normal [26]. These metrics are then used to derive performance
indicators such as detection rate (DR), false alarm rate (FAR), and
accuracy (ACC), Precision, Recall, True Negative Rate, F-measure,
and Receiver Operating Characteristics (ROC) [4].



Methodology and Comparative Approach 6

5.2 Outcomes
Tables 4 and 5 present a categorized summary of ML- and
DL-based IDS performance, detailing strengths, limitations, and
specific attack detection capabilities. These comparisons form the
basis for identifying promising techniques and outlining existing
research gaps in the field.

Table 4 provides a comparative overview of various ma-
chine learning models—such as SVM, RF and decision trees,
logistic regression, KNN, Naive Bayes and K-Means clustering.
Some of these studies were combined with feature extraction
methods such as Stacked Sparse Auto-Encoder (SSAE) and
Non-symmetric Deep Auto-Encoder (NDAE).

Many studies have explored SVM performance for intrusion de-
tection, highlighting the impact of feature selection. According to
[4], Yan et al. [27] combined SVM with a Stacked Sparse Auto-
Encoder (SSAE) for feature extraction, achieving an accuracy of
99.35% on NSL-KDD dataset and reduced training time, though
detection rates for R2L and U2R attacks were lower. Also, Gu et al.
[28] used Naïve Bayes for feature selection before SVM, improving
accuracy to 98.92% on CICIDS2017 and 93.75% on UNSW-NB15,
but failing to classify specific attacks. And according to [10],Kim
et al. [29] evaluated SVM on KDD’99, achieving high detection for
DoS 91.6%, but poor performance for Probe 35.65%, U2R 12%,
and R2L 22%. which shows that feature selection improves SVM
performance, but attack classification remains a challenge, partic-
ularly for minority attack classes. According to [4], in a study
of Shone et al. [30], they combined non-Symmetric deep Auto-
Encoder (NDAE) with Random Forest, achieving 97.85% on KD-
Dcup99 dataset and 85.42% on NSL-KDD dataset, but had some
difficulties with small attack classes like R2L and U2R. Also Yiping
et al. [31] improved RF for wireless network attacks, integrating
a signal detection model and reinforcement learning, achieving
96.93% accuracy. According to [32], Huancayo Ramos et al. [33]
used RF and Decision Trees for botnet detection, achieving 99.99%
accuracy, 100% precision and a recall of 100 on CICIDS2018 and
ISOT HTTP, using feature importance [34] for selection and Grid
Search [35] for optimization, but lacked details on data prepro-
cessing. Also, Filho et al. [36] applied RF to detect DoS/DDoS
attacks, achieving 100% accuracy and precision across multiple
datasets but relied on outdated ISCX2012 for normal traffic. Ac-
cording to [10], Waskle et al. [37] achieved 96.78% accuracy with
RF and Logistic Regression. Belouch M et al. [38] reached 97.49%
on UNSW-NB15 using RF.

According to [4], Pan et al. [26] tried in their study to optimize
KNN with PM-CSCA (Polymorphic Mutation-Compact SCA) to
enhance intrusion detection in wireless networks, leveraging fog
computing to reduce cloud workload and reduce time response,
achieving 99.33% on NSL-KDD and 98.27% on UNSW-NB15,
but lacking attack type classification. According to [10], Lin et
al. [39] used in their study KNN on KDD dataset to detect DoS,
Probe, U2R, and R2L attacks, achieving 99.89% accuracy. Also,
Wenchao Li et al. [40] also implemented KNN achieving 98.5%
accuracy and a False Alarm Rate FAR of 4.63%, details on dataset
or methodology were not provided. Karatas et al. [24] evaluated
various ML algorithms, including KNN, on the CSE-CIC-IDS2018
dataset, addressing the issue of class imbalance using SMOTE. This

Table 3: IDS Performance Metrics

Metric Description Formula

ACC Ratio of all correctly predicted
samples (both attacks and nor-
mals) to the total number of sam-
ples.

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

Precision Ratio of correctly predicted at-
tack samples to all samples pre-
dicted as attacks.

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

FAR Ratio of normal samples in-
correctly flagged as attacks to
all actual normal samples (also
known as False Positive Rate).

𝐹𝑃

𝑇𝑁 + 𝐹𝑃

Recall
(DR)

Ratio of correctly predicted at-
tack samples to all actual attack
samples (also known as Detec-
tion Rate).

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1-score The harmonic mean of Precision
and Recall, providing a balanced
measure of performance.

2 × Precision × Recall
Precision + Recall

TNR Ratio of correctly predicted nor-
mal samples to all actual normal
samples.

𝑇𝑁

𝑇𝑃 + 𝐹𝑁

ROC Graphical analysis representing
the trade-off between detection
rate and false alarm rate. A
curve closer to the top-left in-
dicates a more effective IDS.

—

TP: True Positives; TN: True Negatives; FP: False Positives; FN: False Nega-
tives.

approach enhanced detection rates for minority attacks, which could
have further impacted KNN performance positively.

According to [10], Monika Vishwakarma et al. [41] applied
a Naive Bayes classifier on the NSL-KDD, UNSW-NB15, and
CICIDS2017 datasets. achieving accuracies of 97%, 86.9%, and
98.59%, respectively, for detecting DoS, Probe, U2R, and R2L
attacks. Also, Sharmila B.S et al. [42] implemented in their
study Naive Bayes method on the NSL-KDD dataset, obtaining
an accuracy of 83% for the same attack types. This accuracy
diminution may be attributed to dataset-specific challenges, like
class imbalance.

According to [10], K. Samunnisa et al. [43] combined K-Means
clustering with Random Forest on NSL-KDD, achieving 92.77%
accuracy. Also Vipin et al. [44] used K-Means in their study, they
achieved 82.29% accuracy on the NSL-KDD dataset. So k-means
showed lower accuracy in detecting attacks compared to the com-
bined method with Random Forest, highlighting the benefit of using
ensemble techniques.
Table 5 compares deep learning models like CNN, RNN, autoen-
coders, DBN, and LSTM.



Methodology and Comparative Approach 7

According to [4] and [32], CNNs have consistently demonstrated
high accuracy in identifying intrusions, with reported results up to
99.99% on CIC-IDS-2018 [22] and over 99.56% on CICIDS2017
[45]. Their ability to learn spatial features from network traffic
makes them effective, although some studies note challenges in
detecting low-frequency attacks (U2R, R2L) in older datasets like
KDDcup99 [46].

In a study by C. Yin et al. [10], [47], an RNN was evaluated
on the NSL-KDD dataset achieving a training accuracy of 99.81%
but only 83.28% on testing data. RNNs are widely used for su-
pervised classification and feature extraction in IDS, but they can
struggle with long sequences due to short-term memory limitations
[48]. To overcome this, variants such as Long Short-Term Mem-
ory (LSTM) networks and their bidirectional counterpart (BLSTM)
have been developed, enabling models to capture context from both
past and future inputs. Lin et al. [32], [49] reported that an LSTM
model achieved 96.2% accuracy, precision, and detection rate on
the CIC-IDS-2018 dataset, while another study [50] demonstrated
that an LSTM model on CICDOS2017 reached 99.47% accuracy
and precision—with nearly perfect F1 score and recall 99.74%, and
an FPR of only 0.389% for DDoS attacks. Also BLSTM variants,
excel at handling sequential data [32], [51], achieving accuracies
around 98–99% on CICIDS2017. However, they often require
large amounts of training data, and performance can drop when
transitioning from training to testing phases suggesting potential
overfitting.

Also, Autoencoder-based models and their deep variants have
proven highly effective for dimensionality reduction and anomaly
detection in IDS [10], a stacked autoencoder achieved over 94%
accuracy on KDDcup99 [10], [15], while more advanced deep au-
toencoder approaches have demonstrated impressive performance
on recent datasets, particularly for detecting botnet and DoS attacks.
Specifically, Ferrag et al. [32], [52] employed an RNN-AE on CIC-
IDS-2018, achieving 97.38% accuracy and 98.18% recall across
various attack types, including DoS, DDoS, web attacks, botnet,
and brute force. Similarly, studies by Catillo et al. [32], [53] and Li
et al. [32], [54] reported that deep autoencoder models evaluated on
CIC-IDS-2018 and CICIDS2017 achieved 99.20% accuracy with
a precision of 95.0% and a detection rate of 98.90%, with one ap-
proach reaching a 100% detection rate for botnet attacks.also, Khan
et al. [4], [55] achieved 99.996% accuracy on KDDcup99 but only
89.134% on UNSW-NB15, revealing a notable gap with modern
data

Deep Belief Networks (DBNs) use unsupervised pre-training
to detect network anomalies. For instance, Z. Alom et al. [10],
[56] reported 97.5% accuracy on NSL-KDD for DoS, Probe, U2R,
and R2L attacks, though performance may drop on larger datasets.
Additionally, Wei et al. [57] proposed an optimization for DBNs
with swarm and genetic algorithms, which significantly improved
the detection rate for U2R and R2L classes, but with increased
training time due to its complex structure.

ANNs mimic the human brain’s function to recognize complex
patterns in network traffic. In IDS, studies have shown that ANNs
can achieve around 95.45% accuracy on datasets like NSL-KDD
and UNSW-NB15, and even higher accuracies on KDD99 (e.g.,
99.93% for DoS and 96.51% for U2R) [10], [58]. Despite their
strong performance and suitability for large datasets, ANNs require

extensive preprocessing and are computationally intensive due to
their complex architecture. Also For DNNs Deep Neural Networks
models are complex nonlinear functions, and increasing the num-
ber of hidden layers enhances their abstraction capability [59]. Yu
et al. [4], [60] evaluated a DNN on NSL-KDD and UNSW-NB15,
achieving accuracies of 92.34% and 92%, respectively. Their study,
which measured metrics like detection rate, false alarm rate, pre-
cision, and F-measure, reported particularly strong performance in
detecting U2R and R2L attacks.

5.3 Comparative Analysis and Discussion
This section synthesizes the findings from the previous section,
providing a comparative evaluation of the most prominent ML
and DL-based intrusion detection approaches based on key factors:
accuracy, detection of rare attacks, dataset relevance, and compu-
tational cost.

Performance Summary: Deep Learning models generally out-
performed traditional ML models in terms of accuracy and de-
tection rate, especially on modern datasets such as CICIDS2017
and CICIDS2018. For example, CNNs and LSTMs consistently
achieved over 98% accuracy on these datasets, while many ML
models struggled with detection of rare attacks like U2R and R2L.

Detection of Minority Attack Classes: DL approaches (espe-
cially LSTM and DBN) demonstrated stronger results in detect-
ing low-frequency attacks. However, optimization strategies like
SMOTE and hybrid models (e.g., RF + autoencoders) helped im-
prove ML model performance on imbalanced datasets.

Dataset Impact: Model performance was heavily influenced
by dataset choice. Older datasets like KDDcup99 and NSL-KDD
often yielded inflated results but lacked modern attack signatures.
In contrast, CICIDS2017 and CICIDS2018 provided more realistic
traffic and diverse attack types, leading to more reliable evaluation
outcomes.

Model Complexity and Practicality: While DL models provide
higher accuracy, they demand more training data and computational
resources, making them harder to deploy in real-time systems. ML
models like Random Forest or KNN are easier to train and deploy
but may require careful tuning or ensemble strategies to handle
complex attack patterns effectively.

Best Approaches by Criteria: Based on the research we con-
cluded some best approaches but each within certain criteria

• Best overall performance: LSTM and CNN on CICIDS2017
and CICIDS2018.

• Best for rare attacks: Deep Autoencoders.

• Best lightweight ML model: Random Forest with feature se-
lection or optimized KNN.

• Best hybrid approach: RF + Autoencoder, or SVM + feature
extraction (SSAE).

This analysis shows there is no single “best” IDS model. The
choice depends on deployment context, dataset realism, resource
constraints, and the importance of detecting rare attacks versus
achieving high overall accuracy.
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Table 4: Evaluation of Machine Learning-based IDS.

ML Model Dataset Ref Attacks addressed Performance Met-
rics

Advantages Limitation

SVM NSL-KDD Yan et al.
[27] 2018

DoS, Probe, R2L,
U2R

ACC=99.35% Reduces training and test-
ing duration

Old dataset NSL-KDD,
low detection rate for some
attacks.

Random
Forests

KDDcup99,
NSL-KDD

Shone et al.
[30] 2018

DoS, Probe, R2L,
U2R

ACC=97.85% (KDD-
cup99), ACC=85.42%
(NSL-KDD)

High accuracy, combines
non-symmetric Deep
Auto-Encoder and RF
models for anomaly detec-
tion

Difficulty detecting
smaller attack classes,
lower accuracy on NSL-
KDD, old dataset used.

KNN using
PM-CSCA

NSL-KDD,
UNSW-NB15

Pan et al.
[26] 2021

DoS, Sniffing (Probe),
U2R, R2L

ACC=99.33% ,
ACC=98.27%

Optimized KNN model,
high accuracy, cloud-
enhanced speed in
wireless networks

No classification of attack
types.

SVM CICIDS2017,
UNSW-NB15

Gu et al. [28]
2021

— ACC=98.92%
(CICIDS2017),
ACC=93.75%
(UNSW-NB15)

Use of Naïve Bayes, high
accuracy

No identification of attack
types.

Improved RF
Algorithm

— Yiping et al.
[31] 2022

Wireless network at-
tacks

ACC=96.93% RF model for wireless net-
works

No known datasets used.

SVM KDD’99 Kim et al.
[29]

DoS, Probe, U2R,
R2L

Performance (DoS-
91.6, Probe-35.65,
U2R-12, R2L-22)

Good performance in DoS
attack detection, reduces
training detection

Poor detection for U2R and
R2L, sensitive to param-
eter selection, old dataset
used.

K-NN KDD Lin et al.
[39]

DoS, Probe, U2R,
R2L

ACC=99.89% High accuracy achieve-
ment

Old dataset KDD, limited
to specific attack types.

Random For-
est

UNSW-NB15 Belouch M et
al. [38]

— ACC=97.49% High accuracy on UNSW-
NB15 dataset

No identification of attack
types.

RF, Decision
Tree

CICIDS2018,
ISOT HTTP

Huancayo
Ramos et al.
[33]

Botnet ACC=99.99%, Re-
call=100%

Extremely high accuracy
and precision

Unclear explanation of
data preparation.

RF CICIDS2018,
CICIDS2017,
ISCX2012, CIC-
DoS

Filho et al.
[36]

DoS/DDoS ACC=100%, Re-
call=100%

Perfect accuracy in detect-
ing DDoS attacks

Outdated ISCX2012
dataset, limited traffic
protocols.

RF, Logistic
Regression

— S. Waskle et
al. [37]

— ACC=96.78%, Error
rate=0.21

Good classification perfor-
mance, low error rate

No known datasets used,
no identification of attack
types.

LMRDT-
SVM

NSL-KDD Huiwen
Wang et al.
[61]

— ACC=99.31%, Detec-
tion rate=99.20%

Excellent accuracy and de-
tection rate

No identification of attack
types.

Naïve Bayes NSL-KDD,
UNSW-NB15,
CICIDS2017

Monika
Vish-
wakarma
et al. [41]

DoS, Probe, U2R,
R2L

NSL-KDD: 97%,
UNSW-NB15:
86.9%, CIC-
IDS2017: 98.59%

Simple, fast classification,
high accuracy for NSL-
KDD, CIC-IDS2017

Low accuracy on UNSW-
NB15 compared to other
datasets.

K-NN — Wenchao Li
et al. [40]

— ACC=98.5%,
FAR=4.63%

High accuracy No known datasets used.

Naïve Bayes NSL-KDD Sharmila B.S
et al. [42]

DoS, Probe, U2R,
R2L

ACC=83% Simple, fast classification
for IDS

Low accuracy compared to
other models.

K-Means +
RF

NSL-KDD K.
Samunnisa et
al. [43]

DoS, Probe, U2R,
R2L

ACC=92.77% Hybrid models improve
performance

—

K-Means NSL-KDD Vipin et al.
[44]

DoS, Probe, U2R,
R2L

ACC=82.29% Effective for clustering-
based anomaly detection

Low accuracy compared to
other studies.
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Table 5: Evaluation of Deep Learning based IDS

DL Model Dataset Ref Addressed Attacks Performance Met-
rics

Advantages Limitation

CNN KDDcup99 Xiao et al.
[46] (2019)

DoS, Probe, U2R,
R2L

FAR, DR, ACC=94% CNN for IDS using PCA
and Auto-Encoder for fea-
ture extraction.

A low detection rate of
U2R and R2L attacks.

CNN CICIDS2017 Lin et al.
[45] (2020)

FTP Brute Force, SSH
Brute Force, DoS,
Web attacks, penetra-
tion attacks

ACC: 99.56% NIDS using CNN achieves
excellent results on one of
the most recent datasets,
the CICIDS2017.

No feature extraction
methods (no accuracy
details on each kind of
attacks).

CNN CIC-IDS-2018 Kim et al.
[22]

DoS, DDoS, Web at-
tacks, Botnet, Brute
force

ACC: 99.99%, Preci-
sion: 81.75%, DR:
82.25%

Highest accuracy score in
DDoS 100%

Requires large amounts of
training data.

RNN NSL-KDD C. Yin et al.
[47]

DoS, Probe, U2R,
R2L

ACC: Training data
99.81%, Testing data
83.28%

High accuracy on training
data.

Low performance on test-
ing data.

RNN-
BLSTM

CICIDS2017 S. Sivamo-
han et al.
[51]

Brute force, DoS,
DDoS

ACC: 98.48% Perfect handling for se-
quential data.

Requires large amounts of
training data.

ANN KDD99 Akashdeep
[58]

DoS, U2R, R2L,
Probe

DoS-99.93%, U2R-
96.51%, R2L-
92.54%, Probe-98.7%

Works well with large
datasets.

Requires extensive prepro-
cessing and complex na-
ture.

AE KDDcup99 Farahna Kian
et al. [62]

DoS, Probe, U2R,
R2L

ACC: 94.71% Effective in feature re-
duction and identifying
anomalies.

May not perform well
with complex and diverse
datasets.

Deep Auto-
Encoders

CIC-IDS-2018,
CICIDS2017

Catillo et al.
[53], Li et al.
[54]

DoS, DDoS, Web at-
tacks, Botnet, Brute
force

(ACC=99.20%, Preci-
sion: 95.0%, DR:
98.90%) [53], DR:
100% [54]

Highest accuracy in Botnet
type.

LSTM CIC-IDS-2018 Lin et al.
[49]

DoS, DDoS, Web at-
tacks, Botnet, Brute
force

ACC: 96.2%, Preci-
sion: 96%, DR: 96%

Excels at handling sequen-
tial data.

Requires large amounts of
training data.

DNN and
CNN

NSL-KDD,
UNSW-NB15

Yu et al. [60]
(2020)

DoS, Probe, U2R,
R2L, Other attack
(normal, generic,
fuzzers, worms, back-
door)

ACC, DR, FAR,
Precision, F-measure:
92.34% (NSL-KDD),
92% (UNSW-NB15)

Good results for U2R and
R2L compared to other
methods.

Complex architecture.

Deep Auto-
encoders

KDDcup99,
UNSW-NB15

Khan et al.
[55]

Normal, DoS, Probe,
R2L, U2R (22 differ-
ent categories of at-
tacks tested)

99.996% (KDD-
cup99), 89.134%
(UNSW-NB15)

Very high accuracy on old
dataset.

Old dataset; there is a
10% gap compared to the
accuracy with the recent
dataset.

DBN NSL-KDD Z. Alom et al.
[56]

DoS, Probe, U2R,
R2L

ACC: 97.5% High accuracy in identify-
ing attacks.

May not perform well with
large datasets.

RNN-AE CIC-IDS-2018 Ferrag et al.
[52]

DoS, DDoS, Web at-
tacks, Botnet, Brute
force

ACC: 97.38%, Recall:
98.18%

Impressive performance
on recent datasets.

LSTM CICDOS2017 Noe et al.
[50]

DoS, DDoS, Web at-
tacks, Botnet, Brute
force

ACC: 99.473%, Pre-
cision: 99.47%, F1
score: 99.473%, Re-
call: 99.473%, FPR:
0.389%

Achieves the highest per-
formance metrics and the
lowest FPR.

Requires large amounts of
training data.
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5.3.1 Challenges and Limitations:

Despite their promise, AI-based intrusion detection systems face
key limitations. Many models emphasize overall accuracy but over-
look critical metrics like F1-score, precision, and recall—especially
important for detecting rare or simultaneous attacks. Model perfor-
mance also depends heavily on the quality and relevance of datasets,
many of which are outdated or imbalanced, reducing detection ef-
fectiveness for minority attack classes [10] and missing modern
threats like zero-day exploits. Additionally, few studies consider
the computational demands of real-world deployment [3], includ-
ing time complexity and resource usage. While accuracy is often
reported in ideal conditions, real-world validation remains limited,
and practical, adaptive IDS frameworks are still lacking.

6 Conclusion
In conclusion, this research highlights the significant progress made
by AI-enabled intrusion detection systems, especially deep learning
models, which have achieved high accuracy on recent benchmark
datasets. Models such as LSTM, CNN, and deep autoencoders
consistently outperform traditional machine learning approaches in
detecting complex and evolving attack patterns. Our findings also
emphasize the critical role of dataset quality—modern, balanced
datasets like CICIDS2017 and CIC-IDS-2018 yield more reliable
results compared to outdated datasets such as KDDcup99. Despite
these advances, key challenges remain. Many models still struggle
with detecting rare attack types, depend on outdated data, or are
not optimized for real-time deployment. Additionally, high accu-
racy in controlled environments does not always guarantee robust
performance in real-world networks. Looking ahead, leveraging
the complementary strengths of deep learning and machine learn-
ing can lead to intrusion detection systems that are not only highly
effective but also practical for real-world use.
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