Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/184
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAIT MOULOUD, Louiza-
dc.contributor.authorDEBOUCHA, Abdelhakim (Supervisor)-
dc.contributor.authorOUNNAS, Badredine (Supervisor)-
dc.date.accessioned2023-12-21T13:26:44Z-
dc.date.available2023-12-21T13:26:44Z-
dc.date.issued2020-
dc.identifier.urihttp://dspace.edu.enst.dz/jspui/handle/123456789/184-
dc.descriptionMemoire de fin d'étude master:Traction Electrique :Alger Ecole National Supérieure des Technologies Avancées (ex ESSA):2020en_US
dc.description.abstractRotary Machines such as motors, compressors, pumps and turbines are of major importance in the industry and keeping them running reliably and efficiently at all time is a number one purpose all of the companies. However, the harsh environment where these machines operate make them expose to many failures that may lead to machinery downtimes and production shutdowns, therefore, predictive maintenance is introduced primarily in the context of industry 4.0 to prevent such catastrophes and increase manufacturing productivity.en_US
dc.language.isoenen_US
dc.titleInduction Machine Faults Diagnosisen_US
dc.title.alternativeA State of the Arten_US
dc.typeThesisen_US
Appears in Collections:MFE- Electrotechnique (Traction Electrique)

Files in This Item:
File Description SizeFormat 
MFE.2020.TE.AIT MOULOUD.pdfMFE d'ingeniorat864.57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.