Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/220
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBAYOU, Nada-
dc.contributor.authorDEBOUCHA, Abdelhakim (Directeur de thèse)-
dc.contributor.authorOUNNAS, Badreddine (Directeur de thèse)-
dc.date.accessioned2024-02-06T10:59:45Z-
dc.date.available2024-02-06T10:59:45Z-
dc.date.issued2021-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/220-
dc.descriptionMemoire de fin d'étude master :Traction électrique :Alger Ecole National Supérieure des Technologies Avancées (ex ESSA):2021en_US
dc.description.abstractRolling bearing is an important part that is often used in rotating machinery.Rolling bearings faults are one of the main causes of breakdown of these machines. Therefore, the fault diagnosis of rolling bearing is very important to guarantee the production efficiency and plant safety. This document presents different techniques for rolling bearing diagnosis among that the frequency analysis include enevelope analysis using (Fast fourier tronform) FFT and Singular value decomposition (SVD) , In the category of time-domain analysis technique there are STFT, Continuous wavelet transform(CWT), Spectral kurtosis,Time domain include EMD decomposition. In addition A brief introduction of different AI algorithms is presented including the following methods: k-nearest neighbour K-NN), naive Bayes (NB), support vector machine(SVM) , artificial neural network (ANN) and fuzzy neural network. Finally deep learining methods include Convolutional neural network (CNN)and Cyclic Spectral Coherence (CSCoh).en_US
dc.language.isoenen_US
dc.subjectBearings faulten_US
dc.subjectfault diagnosisen_US
dc.subjectFFTen_US
dc.subjectSVDen_US
dc.subjectSTFTen_US
dc.subjectCWTen_US
dc.subjectEMDen_US
dc.subjectANNen_US
dc.subjectNBen_US
dc.subjectK-NNen_US
dc.titleTheoretical Study of Rolling Bearing Defect Condition Monitoring Techniquesen_US
dc.typeThesisen_US
Appears in Collections:MFE- Electrotechnique (Traction Electrique)

Files in This Item:
File Description SizeFormat 
MFE.2021.TE. BAYOU.pdfMFE d'ingeniorat1.27 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.