Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHIRECHE, Zoulikha-
dc.contributor.authorSOUABNI, Chaima-
dc.contributor.authorREZGUI, Wail (Directeur de thèse)-
dc.date.accessioned2025-03-11T09:51:42Z-
dc.date.available2025-03-11T09:51:42Z-
dc.date.issued2024-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/308-
dc.descriptionProjet de fin d’étude d'ingeniorat: Management et ingénierie de la maintenance industrielle : Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2024en_US
dc.description.abstractThis project aims to enhance the reliability and optimize the performance of industrial systems through data mining and predictive maintenance. By analyzing and understanding the sensor data and then utilizing regression algorithms, a KNN regressor model is trained to predict future values. These forecasts are subsequently integrated into the predictive maintenance strategy to facilitate the prevention of failures, reduce downtime, and improve operational efficiency. This project will showcase the efficacy of this approach through a comprehensive case study conducted at IRIS-Tyres for the Quintoplex machine.en_US
dc.language.isoenen_US
dc.publisherENSTAen_US
dc.subjectPredictive Maintenanceen_US
dc.subjectData Miningen_US
dc.subjectCRISP-DMen_US
dc.subjectFMECAen_US
dc.subjectAHPen_US
dc.subjectReliabilityen_US
dc.subjectKNN regressoren_US
dc.subjectPredictionen_US
dc.titleData Mining to Enhance Reliability of Industrial Systemsen_US
dc.title.alternativeA Comprehensive Approach to Predictive Maintenance and Performance Optimizationen_US
dc.typeThesisen_US
Appears in Collections:ING- Génie Industriel (Management et Ingénierie de la Maintenance Industrielle)

Files in This Item:
File Description SizeFormat 
PFE_2024_MIMI-HIRECHE Zoulikha_SOUABNI Chaima-2 - REZGUI Wail.pdfProjet D'ingeniorat16.2 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.