Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/108
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSERAICHE, Oubada-
dc.contributor.authorZITOUNI, Nour El Islam-
dc.contributor.authorREBAI, Karima (Supervisor)-
dc.date.accessioned2023-11-26T09:14:09Z-
dc.date.available2023-11-26T09:14:09Z-
dc.date.issued2023-
dc.identifier.urihttp://dspace.edu.enst.dz/jspui/handle/123456789/108-
dc.descriptionProjet de fin d’étude d'ingeniorat: Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2023en_US
dc.description.abstractThis work aims to advance gesture recognition by combining multimodal signals, including surface electromyography (sEMG), accelerometer, and eye-tracking data, using deep learning techniques. The proposed hybrid architecture incorporates Convolutional Neural Networks (CNNs) for feature extraction and Long Short-Term Memory (LSTM) networks for time series processing, aiming to enhance gesture recognition accuracy. The evaluation involves two stages: first, assessing performance with sEMG data alone, and second, evaluating a multimodal dataset with accelerometers and eye-tracking. The MeganePro dataset is used for training deep learning algorithms to improve hand gesture recognition and develop intuitive human-computer interaction control mechanisms. This research significantly contributes to the field of gesture recognition.en_US
dc.language.isoenen_US
dc.subjectGesture recognitionen_US
dc.subjectmultimodal signalsen_US
dc.subjectSEMGen_US
dc.subjectaccelerometeren_US
dc.subjecteye trackingen_US
dc.subjectdeeplearningen_US
dc.subjectConvolutional neural networks (CNN)en_US
dc.subjectLong Short Time Memory (LSTM)en_US
dc.titleContribution to Gestures Recognition Using Multimodal Signals through Deep Learningen_US
dc.typeThesisen_US
Appears in Collections:ING- Automatique et Informatique Industrielle

Files in This Item:
File Description SizeFormat 
PFE.2023.AII.SERAICHE.Oubada_ZITOUNI.Nour.Elislam - SERAICHE Oubada.pdfPFE ING5.47 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.