Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/288
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAOUIR, Khalil-
dc.contributor.authorCHOUAF, Seloua (Directeur de thèse)-
dc.date.accessioned2025-03-09T11:45:26Z-
dc.date.available2025-03-09T11:45:26Z-
dc.date.issued2024-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/288-
dc.descriptionProjet de fin d’étude d'ingeniorat: Systèmes Embarqués:Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2024en_US
dc.description.abstractPrinted Circuit Boards (PCBs) are fundamental in electronic devices, connecting various parts to form functional circuits. Inspecting these boards for defects is crucial for ensuring their performance and reliability. This thesis concerned with the development of a Visual Inspection System for PCBs using advanced image processing and deep learning (DL) techniques. The system explores high-resolution images of PCBs. These images are then analyzed using pattern recognition, edge detection, and machine learning algorithms to detect defects. The main focus is on leveraging pre-trained deep learning models, particularly YOLO (You Only Look Once), for automatic and early defect detectionen_US
dc.language.isoenen_US
dc.subjectPrinted circuit boards (PCBs)en_US
dc.subjectvisual inspectionen_US
dc.subjectimage processingen_US
dc.subjectdeep learningen_US
dc.subjectYOLOen_US
dc.subjectdefect detectionen_US
dc.titleAutomatic and early Detection of defects on Printed Circuits Bords (PCBs)en_US
dc.typeThesisen_US
Appears in Collections:ING- Système Embarqués

Files in This Item:
File Description SizeFormat 
AOUIR Khalil_PFE_Mme.CHOUAF_2023-2024 - CHOUAF Seloua.pdfProjet d'ingeniorat9.82 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.