Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBenbrahim, Tarek-
dc.contributor.authorOUGERIRAH, Hamida (Directeur de thèse)-
dc.date.accessioned2025-03-11T08:31:02Z-
dc.date.available2025-03-11T08:31:02Z-
dc.date.issued2024-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/301-
dc.descriptionMémoire de fin d’étude du Master: Systèmes Embarqués:Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2024en_US
dc.description.abstractA comparative analysis of three sign language classification methods: random forest, YOLO (You Look On{}ce), and look-up table method , the strengths and weaknesses of each method are examined diversity in terms of accuracy, speed, flexibility.en_US
dc.language.isoenen_US
dc.publisherENSTAen_US
dc.subjectLookup tablesen_US
dc.subjectsign languageen_US
dc.subjectAccuracyen_US
dc.subjectmachine learningen_US
dc.subjectyoloen_US
dc.subjectRandom Foresten_US
dc.titleComparative Analysis of Random Forest, YOLO, and Classical Lookup Table-based Approaches for Sign Language Classificationen_US
dc.typeArticleen_US
Appears in Collections:ART- Systèmes Embarqués

Files in This Item:
File Description SizeFormat 
MFE_Benbrahim_SE - Département Génie Electrique et Informatique Industrielle.pdfMémoire du Master7.56 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.