Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/327
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBRAHIM, Abderraouf-
dc.contributor.authorSALHI, Nedjma (Directeur de thèse)-
dc.date.accessioned2025-03-12T08:43:34Z-
dc.date.available2025-03-12T08:43:34Z-
dc.date.issued2024-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/327-
dc.descriptionMaster: Programme Complémentaire d'Ingéniorat: Management et ingénierie de la maintenance industrielle : Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2024en_US
dc.description.abstractPredictive maintenance has become an essential strategy in the industrial equipment management, revolutionizing classical maintenance methods. This article aims to discuss the integration of modern real-time monitoring technologies, including IoT, AI and machine learning, in the development of the predictive maintenance models. It examines the evolution of PdM from reactive to predictive models, highlighting the central role of these technologies in facilitating decision-making based in data. This discussion will address the practical implications of these advances, including significant cost reductions, increased equipment durability and optimized functional efficiency, leading to more accurate AI algorithms for autonomous systems and precise predictive analytics. This exploration shows the importance of real-time monitoring and advanced technologies in shaping the future of predictive maintenance, moving industries towards greater efficiency, minimized downtime and optimized asset management.en_US
dc.language.isoenen_US
dc.publisherENSTAen_US
dc.subjectPredictive maintenanceen_US
dc.subjectreal-time monitoringen_US
dc.subjectInternet of Objects (IoT)en_US
dc.subjectArtificial Intelligence (AI)en_US
dc.subjectdata analysisen_US
dc.subjectmachine learning (ML)en_US
dc.titlePredictive Maintenance based on real-time monitoringof industrial assetsen_US
dc.typeArticleen_US
Appears in Collections:ART- Génie Industriel ( Management et Ingénierie de la Maintenance Industrielle)

Files in This Item:
File Description SizeFormat 
MFE_BRAHIM_Abderraouf_MIMI_2024 - SALHI Nedjma.pdfMaster: Programme Complémentaire d'Ingéniorat1.54 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.