Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/387
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLEBKARA, Haithem-
dc.contributor.authorOUAR, Narimane-
dc.contributor.authorBelayadi, Djahida (Directeur de thèse)-
dc.date.accessioned2025-11-03T12:19:35Z-
dc.date.available2025-11-03T12:19:35Z-
dc.date.issued2025-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/387-
dc.descriptionMaster : Programme Complémentaire d'Ingéniorat: Génie Industriel : Alger: Ecole Nationale Supérieure des Technologie Avancées: 2025en_US
dc.description.abstractSCADA systems are used to effectively monitor and control critical industrial infrastructure . Due to Industry 4.0 , SCADA systems have evolved towards linked architectures, which has enhanced operational efficiency but also made them more vulnerable to cyberattacks. SCADA systems, which were once intended to be dependable, are now at risk from malware, DoS attacks, illegal access,and various types of threats endangering both safety and service continuity. In this context, artificial intelligence enables real-time detection of anomalies and cyberattacks especially by ML and deep DL based IDS. This paper offers a thorough analysis of current AI strategies for SCADA security, emphasising important techniques, difficulties, and results .en_US
dc.language.isoenen_US
dc.publisherENSTAen_US
dc.subjectArtificial intelligenceen_US
dc.subjectattack detectionen_US
dc.subjectcybersecurityen_US
dc.subjectIndustrial Internet of Things (IioT)en_US
dc.subjectSupervisory Control and Data Acquisition (SCADA)en_US
dc.titleSecuring SCADA Systems Using Machine Learningen_US
dc.title.alternativeA Review of rections Current Methods and Future Dien_US
dc.typeThesisen_US
Appears in Collections:ART- Génie Industriel (Génie Industriel)

Files in This Item:
File Description SizeFormat 
ART-GI 05-25 LEBKARA ET OUAR- BELAYADI Djahida.pdfMaster : Programme Complémentaire d'Ingéniorat746.75 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.