Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/400
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAIT MIMOUNE, Yasmine-
dc.contributor.authorREBAHI, Khadidja-
dc.contributor.authorLAKHDARI, Kheira (Directeur de thèse)-
dc.contributor.authorTIZIRINE, Nasraddine (Directeur de thèse)-
dc.date.accessioned2025-11-09T09:02:23Z-
dc.date.available2025-11-09T09:02:23Z-
dc.date.issued2025-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/400-
dc.descriptionProjet de fin d’étude d'ingeniorat: Systèmes de Télécommunications et Réseaux: Alger: Ecole Nationale Supérieure des Technologie Avancées: 2025en_US
dc.description.abstractSecurity Information and Event Management (SIEM) systems are critical for modern cybersecurity, but their reliance on static rule-based detection limits their effectiveness against evolving threats. This thesis presents a Hybrid AI-SIEM Framework that combines the strengths of machine learning models and the open-source Wazuh SIEM to improve attack identification and response. We integrate a CNN-LSTM architecture for detecting complex attacks like DDoS and anomalies, and augmentWazuh with targeted solutions for various threats, including malware detection using YARA, LLMs technology,Wazuh rules, and Suricata-based network intrusion detection. The framework was tested against several critical attack types, including DDoS, brute-force login attempts, web application exploits, malware infections, and suspicious activities. The result is a layered, adaptable system that not only detects but actively responds to security incidents with improved accuracy and reduced false positives. This research demonstrates how hybrid intelligence can transform static SIEMs into smarter, more responsive security ecosystemsen_US
dc.language.isoenen_US
dc.publisherENSTAen_US
dc.relation.ispartofseriesGEII-STR 05-25;GEII-STR 05-25-
dc.subjectCybersecurityen_US
dc.subjectSIEMen_US
dc.subjectWazuhen_US
dc.subjectAIen_US
dc.subjectThreat Detectionen_US
dc.subjectDDoSen_US
dc.subjectMalwareen_US
dc.subjectIntrusion Detectionen_US
dc.titleHybrid AI-SIEM Framework: Leveraging CNN-LSTM Models and Wazuh For Attack Identification and Responseen_US
dc.typeThesisen_US
Appears in Collections:ING- Systèmes de Télécommunications et Réseaux

Files in This Item:
File Description SizeFormat 
GEII-STR 05-25 PFE_P25_STR3_2 - LAKHDARI Keira.pdfProjet d'ingeniorat7.39 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.