Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/308
Title: Data Mining to Enhance Reliability of Industrial Systems
Other Titles: A Comprehensive Approach to Predictive Maintenance and Performance Optimization
Authors: HIRECHE, Zoulikha
SOUABNI, Chaima
REZGUI, Wail (Directeur de thèse)
Keywords: Predictive Maintenance
Data Mining
CRISP-DM
FMECA
AHP
Reliability
KNN regressor
Prediction
Issue Date: 2024
Publisher: ENSTA
Abstract: This project aims to enhance the reliability and optimize the performance of industrial systems through data mining and predictive maintenance. By analyzing and understanding the sensor data and then utilizing regression algorithms, a KNN regressor model is trained to predict future values. These forecasts are subsequently integrated into the predictive maintenance strategy to facilitate the prevention of failures, reduce downtime, and improve operational efficiency. This project will showcase the efficacy of this approach through a comprehensive case study conducted at IRIS-Tyres for the Quintoplex machine.
Description: Projet de fin d’étude d'ingeniorat: Management et ingénierie de la maintenance industrielle : Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2024
URI: http://dspace.ensta.edu.dz/jspui/handle/123456789/308
Appears in Collections:ING- Génie Industriel (Management et Ingénierie de la Maintenance Industrielle)

Files in This Item:
File Description SizeFormat 
PFE_2024_MIMI-HIRECHE Zoulikha_SOUABNI Chaima-2 - REZGUI Wail.pdfProjet D'ingeniorat16.2 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.