Please use this identifier to cite or link to this item:
http://dspace.ensta.edu.dz/jspui/handle/123456789/308
Title: | Data Mining to Enhance Reliability of Industrial Systems |
Other Titles: | A Comprehensive Approach to Predictive Maintenance and Performance Optimization |
Authors: | HIRECHE, Zoulikha SOUABNI, Chaima REZGUI, Wail (Directeur de thèse) |
Keywords: | Predictive Maintenance Data Mining CRISP-DM FMECA AHP Reliability KNN regressor Prediction |
Issue Date: | 2024 |
Publisher: | ENSTA |
Abstract: | This project aims to enhance the reliability and optimize the performance of industrial systems through data mining and predictive maintenance. By analyzing and understanding the sensor data and then utilizing regression algorithms, a KNN regressor model is trained to predict future values. These forecasts are subsequently integrated into the predictive maintenance strategy to facilitate the prevention of failures, reduce downtime, and improve operational efficiency. This project will showcase the efficacy of this approach through a comprehensive case study conducted at IRIS-Tyres for the Quintoplex machine. |
Description: | Projet de fin d’étude d'ingeniorat: Management et ingénierie de la maintenance industrielle : Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2024 |
URI: | http://dspace.ensta.edu.dz/jspui/handle/123456789/308 |
Appears in Collections: | ING- Génie Industriel (Management et Ingénierie de la Maintenance Industrielle) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PFE_2024_MIMI-HIRECHE Zoulikha_SOUABNI Chaima-2 - REZGUI Wail.pdf | Projet D'ingeniorat | 16.2 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.