Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/397
Full metadata record
DC FieldValueLanguage
dc.contributor.authorALAOUCHICHE, Abderrahmane Yaakoub-
dc.contributor.authorKESSOUM, Mohamed Walid-
dc.contributor.authorLAKHDARI, Kheira (Directeur de thèse)-
dc.contributor.authorBELAHCENE, Abdelkader (Directeur de thèse)-
dc.contributor.authorALREME, Sifeddine (Directeur de thèse)-
dc.date.accessioned2025-11-09T08:40:17Z-
dc.date.available2025-11-09T08:40:17Z-
dc.date.issued2025-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/397-
dc.descriptionProjet de fin d’étude d'ingeniorat: Systèmes de Télécommunications et Réseaux: Alger: Ecole Nationale Supérieure des Technologie Avancées: 2025en_US
dc.description.abstractOptimizing modern LTE networks in multi-vendor environments such as Djezzy’s presents significant challenges. This project focuses on integrating AI-driven KPI forecasting and prediction capabilities. A scalable data warehouse with a dimensional model supports efficient KPI data management through robust ETL processes. Advanced AI models, including LSTM and Prophet, were implemented for time series forecasting to enable proactive prediction of network performance metrics. These predictions are delivered via a dedicated web page to enhance network planning and decision-making. Evaluation on real-world data demonstrates improved foresight for network operations, marking a step forward toward data-driven LTE management in complex multi-vendor contextsen_US
dc.language.isoenen_US
dc.publisherENSTAen_US
dc.relation.ispartofseriesGEII-STR 02-25;GEII-STR 02-25-
dc.relation.ispartofseriesGEII-STR 02-25;GEII-STR 02-25-
dc.subjectLTEen_US
dc.subjectNetwork Optimizationen_US
dc.subjectData Warehouseen_US
dc.subjectETLen_US
dc.subjectAIen_US
dc.subjectMLen_US
dc.subjectPropheten_US
dc.subjectLSTMen_US
dc.subjectForecastingen_US
dc.subjectMulti-Vendor Networksen_US
dc.titleA Data-Driven Framework for AI-Powered LTE Network Performance Optimizationen_US
Appears in Collections:ING- Systèmes de Télécommunications et Réseaux

Files in This Item:
File Description SizeFormat 
GEII-STR 02-25 PFE- Alaouchiche et Kessoum - LAKHDARI Keira.pdfProjet d'ingeniorat28.79 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.