Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/397
Title: A Data-Driven Framework for AI-Powered LTE Network Performance Optimization
Authors: ALAOUCHICHE, Abderrahmane Yaakoub
KESSOUM, Mohamed Walid
LAKHDARI, Kheira (Directeur de thèse)
BELAHCENE, Abdelkader (Directeur de thèse)
ALREME, Sifeddine (Directeur de thèse)
Keywords: LTE
Network Optimization
Data Warehouse
ETL
AI
ML
Prophet
LSTM
Forecasting
Multi-Vendor Networks
Issue Date: 2025
Publisher: ENSTA
Series/Report no.: GEII-STR 02-25;GEII-STR 02-25
GEII-STR 02-25;GEII-STR 02-25
Abstract: Optimizing modern LTE networks in multi-vendor environments such as Djezzy’s presents significant challenges. This project focuses on integrating AI-driven KPI forecasting and prediction capabilities. A scalable data warehouse with a dimensional model supports efficient KPI data management through robust ETL processes. Advanced AI models, including LSTM and Prophet, were implemented for time series forecasting to enable proactive prediction of network performance metrics. These predictions are delivered via a dedicated web page to enhance network planning and decision-making. Evaluation on real-world data demonstrates improved foresight for network operations, marking a step forward toward data-driven LTE management in complex multi-vendor contexts
Description: Projet de fin d’étude d'ingeniorat: Systèmes de Télécommunications et Réseaux: Alger: Ecole Nationale Supérieure des Technologie Avancées: 2025
URI: http://dspace.ensta.edu.dz/jspui/handle/123456789/397
Appears in Collections:ING- Systèmes de Télécommunications et Réseaux

Files in This Item:
File Description SizeFormat 
GEII-STR 02-25 PFE- Alaouchiche et Kessoum - LAKHDARI Keira.pdfProjet d'ingeniorat28.79 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.